
Convertible Codes: New Class of Codes for
Efficient Conversion of Coded Data in Distributed
Storage
Francisco Maturana
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
http://www.cs.cmu.edu/~fmaturan/
fmaturan@cs.cmu.edu

K. V. Rashmi
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
http://www.cs.cmu.edu/~rvinayak/
rvinayak@cs.cmu.edu

Abstract
Erasure codes are typically used in large-scale distributed storage systems to provide durability
of data in the face of failures. In this setting, a set of k blocks to be stored is encoded using an
[n, k] code to generate n blocks that are then stored on different storage nodes. A recent work
by Kadekodi et al. [32] shows that the failure rate of storage devices vary significantly over time,
and that changing the rate of the code (via a change in the parameters n and k) in response to
such variations provides significant reduction in storage space requirement. However, the resource
overhead of realizing such a change in the code rate on already encoded data in traditional codes is
prohibitively high.

Motivated by this application, in this work we first present a new framework to formalize
the notion of code conversion – the process of converting data encoded with an [nI , kI] code into
data encoded with an [nF , kF] code while maintaining desired decodability properties, such as the
maximum-distance-separable (MDS) property. We then introduce convertible codes, a new class of
code pairs that allow for code conversions in a resource-efficient manner. For an important parameter
regime (which we call the merge regime) along with the widely used linearity and MDS decodability
constraint, we prove tight bounds on the number of nodes accessed during code conversion. In
particular, our achievability result is an explicit construction of MDS convertible codes that are
optimal for all parameter values in the merge regime albeit with a high field size. We then present
explicit low-field-size constructions of optimal MDS convertible codes for a broad range of parameters
in the merge regime. Our results thus show that it is indeed possible to achieve code conversions
with significantly lesser resources as compared to the default approach of re-encoding.

2012 ACM Subject Classification Mathematics of computing → Coding theory; Theory of compu-
tation → Error-correcting codes

Keywords and phrases Coding theory, Reed-Solomon codes, Erasure codes, Code conversion, Dis-
tributed storage

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.66

Funding This work was funded in part by a Google Faculty Research Award.

Acknowledgements We thank Venkatesan Guruswami and Michael Rudow for their helpful sugges-
tions on improving the writing for the paper.

1 Introduction

Erasure codes have become an essential tool for protecting against failures in distributed
storage systems [18, 9, 30, 4]. Under erasure coding, a set of k data symbols to be stored
is encoded using an [n, k] code to generate n coded symbols, called a codeword (or stripe).

© Francisco Maturana and K. V. Rashmi;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 66; pp. 66:1–66:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7532-8399
http://www.cs.cmu.edu/~fmaturan/
mailto:fmaturan@cs.cmu.edu
https://orcid.org/0000-0002-2227-7460
http://www.cs.cmu.edu/~rvinayak/
mailto:rvinayak@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.ITCS.2020.66
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

66:2 Convertible Codes

Each of the n symbols in a codeword is stored on a different storage node, and the system
as a whole will contain several independent codewords distributed across different sets of
storage nodes in the cluster.

A key factor that determines the choice of parameters n and k is the failure rate of the
storage devices. It has been shown that failure rates of storage devices in large-scale storage
systems can vary significantly over time and that changing the code rate, by changing n and
k, in response to these variations yields substantial savings in storage space and hence the
operating costs [32]. For example, in [32], the authors show that an 11% to 44% reduction
in storage space can be achieved by tailoring n and k to changes in observed device failure
rates. Such a reduction in storage space requirement translates to significant savings in
the cost of resources and energy consumed in large-scale storage systems. It is natural to
think of potentially achieving such a change in code rate by changing only n while keeping k
fixed. However, due to several practical system constraints, changing code rate in storage
systems often necessitates change in both the parameters n and k [32]. We refer the reader
to [32] for a more detailed discussion on the practical benefits and constraints of adapting
the erasure-code parameters with the variations in failure rates in a storage system.

Changing n and k for stripes in a storage system would involve converting already encoded
data from one code to another. Such conversions, however, can generate a large amount of
load (as explained below) which adversely affects the operation of the cluster. Furthermore,
in some cases these conversions might need to be performed in an expedited manner, for
example, to avoid the risk of data loss when facing an unexpected rise in failure rate. Hence
it is critical to minimize the resource consumption of code conversion operations. Clearly, it
is always possible to re-encode the data in a codeword (or a stripe) according to a new code
by accessing (or decoding if needed) all the (original) message symbols. However, such an
approach, which we call the default approach, requires accessing a large number of nodes
(for example, for MDS codes, the initial value of k number of nodes need to be accessed)
reading out all the data, transferring over the network, and re-encoding, which consumes
large amounts of resources.

To the best of our knowledge, the existing literature [44, 59, 29] on formally studying
the problem of changing parameters n and k for already encoded data model the code
conversion problem within the framework of repair-efficient codes. Repair-efficient codes
(e.g., [16, 47, 71, 49, 21]), which are a class of codes that can reconstruct a small subset of
codeword symbols more efficiently than reconstructing the entire (original) message, has been
an active area of research in the recent past. While the existing approach of exploiting repair
efficiency for conversion efficiency provides reduction in the network bandwidth consumed as
compared to the default approach for several parameter regimes, it has several drawbacks.
For example, under this approach conversion requires accessing every symbol in the codeword
and redistributing (“subsymbols”) around. A more detailed discussion on repair-efficient
codes and existing works which exploit repair efficiency for conversion efficiency is provided
in Section 6.

In this paper, we propose a fundamentally new framework to model the code conversion
problem, which is independent of repair efficiency. Our approach is based on the observation
that the problem of changing code parameters in a storage system can be viewed as converting
multiple codewords of an [nI , kI] code (denoted by CI) into (potentially multiple) codewords
of an [nF , kF] code (denoted by CF)1, with desired constraints on decodability such as both

1 The superscripts I and F stand for initial and final respectively, representing the initial and final state
of the conversion.

F. Maturana and K. V. Rashmi 66:3

kI

Initial codeword 1

kI

Initial codeword 2

2kI

Final codeword

Figure 1 Example of code conversion: two codewords of a [kI + 1, kI] single-parity-check code
become one codeword of a [2kI + 1, 2kI] single-parity-check code. The parity symbols are shown
shaded. The data symbols from each codeword are preserved, and the parity symbol from the final
codeword is the sum of the parities from each initial codeword.

codes satisfying the maximum-distance-separability (MDS) property. The code constructions
that we present in this paper, under this new framework, require accessing significantly fewer
symbols during conversion than existing works. Furthermore, even though the constructions
presented in this paper optimize for reducing the number of symbols accessed for conversion,
the bandwidth consumed for conversion is also lower in several parameter regimes of practical
interest, compared to existing works (based on repair efficiency) that optimize for network
bandwidth.

We now present a toy example to elucidate the concept of code conversion in our
framework.

I Example 1. Consider conversion from an [nI = kI + 1, kI] code CI to an [nF = kF + 1, kF]
code CF . In our framework, this conversion is achieved by “merging” two codewords of the
initial code for each codeword of the final code. Let us focus on the number of symbols
accessed during conversion. The default approach requires accessing kI symbols from each
codeword belonging to CI (initial codewords), and accessing at least one symbol for each
codeword belonging to CF (final codewords) to write out the result, totalling 2kI + 1 symbols
accessed per final codeword. Alternatively, as depicted in Figure 1, one can choose CI and CF
to be single-parity-check codes with the parity symbol holding the sum of the data symbols
in each codeword (shown with a shaded box in the figure). To convert from CI to CF , one
sums the parity symbol from each initial codeword and stores the result as the parity symbol
of the final codeword CF . This alternative approach requires accessing only three symbols
for each final codeword, which is significantly more efficient.

Next, we give an overview of the main results and key ideas presented in this paper.

1.1 Overview of results
In this paper, we propose a new framework to model the problem of code conversion, that
is, the process of converting data encoded with an [nI , kI] code into data encoded with an
[nF , kF] code while maintaining desired decodability properties, such as maximum-distance-
separable (MDS) property (Section 2). We then introduce a new class of code pairs, which we
call convertible codes, that allow for resource-efficient conversions. We begin the study of this
new class of code pairs, by focusing on an important regime where kF = λkI for any integer
λ ≥ 2 with arbitrary values of nI and nF , which we call the merge regime. Furthermore, we
focus on the access cost of code conversion, which corresponds to the total number of symbols
accessed during conversion. Keeping the number of symbols accessed small makes conversion
less disruptive, allows the unaffected nodes to remain available for normal operations, and
also reduces the amount of computation and communication needed.

ITCS 2020

66:4 Convertible Codes

Using our framework, we prove a tight lower bound on the access cost of conversions for
linear MDS codes in the merge regime (Section 3). Let rI = nI − kI and rF = nF − kF .
This lower bound identifies two regions: (1) rF ≤ rI , where significant savings in access cost
can be achieved when rF < kI , and (2) the complement rF > rI , where linear MDS codes
cannot achieve lower access cost than the default approach. Specifically, we prove:

I Theorem 15. For all linear MDS (nI , kI ;nF , kF = λkI) convertible codes, the access cost
of conversion is at least rF + λmin{kI , rF }. Furthermore, if rI < rF , the access cost of
conversion is at least rF + λkI .

We prove this lower bound first on a class of linear MDS convertible codes that we call stable
convertible codes. We then extend this lower bound to all linear MDS convertible codes
by showing that non-stable convertible codes cannot achieve this lower bound, and thus all
optimal linear MDS convertible codes in the merge regime are stable.

Then, we describe a construction of linear MDS Convertible Codes in the merge regime
that meet the bound of Theorem 15, thereby providing convertible codes that are access-
optimal (Section 4). Specifically:

I Theorem 22. The explicit construction provided in Section 4.1 yields access-optimal linear
MDS convertible codes for all parameter values in the merge regime.

The construction is deterministic and yields codes over a finite extension field. To prove
that those codes are access-optimal, we show that the resulting generator matrices have a
particular structure, and that none of their minors are zero when the degree of the field
extension is large enough. This implies that the field size required is very large (exponential
in nF for fixed constant final code rate and typical parameters). Field size is an important
aspect of code design that has been widely studied in the context of other code families
[12, 62, 2, 24]. To address this issue, we introduce a sequence of constructions of convertible
codes that have significantly lower field size requirements (Section 5). This sequence of
constructions, which we denote Hankels (s ∈ {λ, . . . , rI}), presents a tradeoff between field
size and the parameter range that they support. Specifically, we show:

I Theorem 25. Given parameters kI , rI , λ, and a field Fq, Hankels (s ∈ {λ, . . . , rI}) con-
structs an access-optimal (nI , kI ;nF , kF = λkI) convertible code if:

rF ≤ (s− λ+ 1)
⌊
rI

s

⌋
+ max{(rI mod s)− λ+ 1, 0} and q ≥ skI +

⌊
rI

s

⌋
− 1.

Of particular interest are the two extreme points of this tradeoff which we call Hankel-
I and Hankel-II respectively: Hankel-I supports rF ≤ brI/λc requiring field size q ≥
max{nI − 1, nF − 1}; and Hankel-II supports a wider range rF ≤ rI − λ+ 1 requiring field
size q ≥ kIrI .

The key idea behind our construction is to construct the parity generator matrices of the
initial and final codes as cleverly-chosen submatrices of a specially constructed upper-left
triangular array. This array has two important properties: (1) every square submatrix of this
array is non-singular, and (2) it has Hankel form, that is, each ascending diagonal from left to
right is constant. By exploiting the repetitive structure of the array, our constructions yield
convertible codes that achieve optimal access cost during conversion. Given the way in which
these codes are constructed, they also have the additional property of being (punctured)
generalized doubly-extended Reed-Solomon codes.

Our results thus show that there is a broad regime where code conversions can be
achieved with significantly less access cost than the default approach, and another regime
where achieving less access cost than the default approach is not possible. We provide a

F. Maturana and K. V. Rashmi 66:5

general explicit construction of access-optimal convertible codes in the former regime, and
low-field-size constructions for a wide parameter range within this regime. The framework
of convertible codes presented in this work opens several new opportunities which pose
interesting theoretical questions that have a potential for impact on real-world systems.

1.2 Background
In this subsection we introduce some notation and basic definitions related to linear codes.
Let Fq be a finite field of size q. An [n, k] linear code C over Fq is a k-dimensional subspace
C ⊆ Fnq . Here, n is called the length of the code, and k is called the dimension of the code.
A generator matrix of an [n, k] linear code C over Fq is a k × n matrix G over Fq such that
the rows of G form a basis of the subspace C. A k × n generator matrix G is said to be
systematic if it has the form G = [I | P], where I is the k × k identity matrix and P is a
k × (n − k) matrix. Even though the generator matrix of a code C is not unique, we will
sometimes associate code C to a specific generator matrix G, which will be clear from the
context. The encoding of a message m ∈ Fkq under an [n, k] code C with generator matrix G
is denoted C(m) = mTG.

Let [i] denote the set {1, 2, . . . , i}. A linear code C is maximum distance separable (MDS)
if the minimum distance of the code is the maximum possible:

min-dist(C) = min
c 6=c′ ∈C

|{i ∈ [n] : ci 6= c′i}| = n− k + 1

where ci ∈ Fq denotes the i-th coordinate of c. Equivalently, a linear code C is MDS if and
only if every k × k submatrix of its generator matrix G is non-singular [34].

2 A framework for studying code conversions

In this section, we formally define our new framework for studying code conversions and
introduce convertible codes. While we use the notation of linear codes introduced in Section 1.2,
the framework introduced in this section can be applied to arbitrary (not necessarily linear)
codes. Suppose one wants to convert data that is already encoded using an [nI , kI] initial
code CI into data encoded using an [nF , kF] final code CF where both codes are over the same
field Fq. In the initial and final configurations, the system must store the same information,
but encoded differently. In order to capture the changes in the dimension of the code during
conversion, we consider M = lcm(kI , kF) number of “message” symbols (i.e., the data to be
stored) over a finite field Fq, denoted by m ∈ FMq . This corresponds to multiple codewords in
the initial and final configurations. We note that this need for considering multiple codewords
in order to capture the smallest instance of the problem deviates from existing literature on
the code repair problem (e.g., [16, 26, 47, 49]) and code locality (e.g., [21, 41, 27]), where a
single codeword is sufficient to capture the problem.

Since there are multiple codewords, we first specify an initial partition PI and a final
partition PF of the set [M], which map the message symbols of m to their corresponding
initial and final codewords. The initial partition PI ⊆ 2[M] is composed of M/kI disjoint
subsets of size kI , and the final partition PF ⊆ 2[M] is composed of M/kF disjoint subsets
of size kF . In the initial (respectively, final) configuration, the data indexed by each subset
S ∈ PI (respectively,PF) is encoded using the code CI (respectively, CF). The codewords
{CI(mS), S ∈ PI} are referred to as initial codewords, and the codewords {CF (mS), S ∈ PF }
are referred to as final codewords, where mS corresponds to the projection of m onto the
coordinates in S. The descriptions of the initial and final partitions and codes, along with
the conversion procedure, define a convertible code. We now proceed to define conversions
and convertible codes formally.

ITCS 2020

66:6 Convertible Codes

I Definition 2 (Code conversion). A conversion from an initial code CI to a final code CF
with initial partition PI and final partition PF is a procedure, denoted by TCI→CF , that for
any m, takes the set of initial codewords {CI(mS) | S ∈ PI} as input, and outputs the
corresponding set of final codewords {CF (mS) | S ∈ PF }.

I Definition 3 (Convertible code). A (nI , kI ;nF , kF) convertible code over Fq is defined by:
(1) a pair of codes (CI , CF) where CI is an [nI , kI] code over Fq and CF is an [nF , kF] code
over Fq; (2) a pair of partitions PI ,PF of [M = lcm(kI , kF)] such that each subset in PI is
of size kI and each subset in PF is of size kF ; and (3) a conversion procedure TCI→CF that
on input {CI(mS) | S ∈ PI} outputs {CF (mS) | S ∈ PF } for all m ∈ FMq .

Typically, additional constraints would be imposed on CI and CF , such as requiring both
codes to be MDS.
I Remark 4. Note that the definition of convertible codes (Definition 3) assumes that
(nI , kI ;nF , kF) are known at the time of code construction. This will be helpful in under-
standing the fundamental limits of the conversion process. In practice, this assumption
might not hold. For example, nF , kF might depend on the node failure rates that are
yet to be observed. Interestingly, it is possible for a (nI , kI ;nF , kF) convertible code to
facilitate conversion to multiple values of nF , kF simultaneously, as is the case for the code
constructions presented in this paper.

The cost of conversion is determined by the cost of the conversion procedure TCI→CF ,
as a function of the parameters (nI , kI ;nF , kF). Towards minimizing the overhead of
the conversion, our general objective is to design codes (CI , CF), partitions (PI ,PF) and
conversion procedure TCI→CF that satisfy Definition 3 and minimize the conversion cost for
given parameters (nI , kI ;nF , kF), subject to desired decodability constraints on CI and CF .

Depending on the relative importance of various resources in the cluster, one might be
interested in optimizing the conversion with respect to various types of costs such as symbol
access, computation (CPU), communication (network bandwidth), read/writes (disk IO),
etc., or a combination of these costs. The general formulation of code conversions above
provides a powerful framework to theoretically reason about convertible codes. In what
follows, we will focus on a specific regime and a specific cost model.

3 Lower bounds on access cost of code conversion

The focus of this section is on deriving lower bounds on the access cost of code conversion in
the merge regime (as defined below). We focus on a fundamental regime given by kF = λkI ,
where integer λ ≥ 2 is the number of initial codewords merged, with arbitrary values of nI
and nF . We call this regime as merge regime. We additionally require that both the initial
and final code are linear and MDS. Since linear MDS codes are widely used in storage systems
and are well understood in the Coding Theory literature, they constitute a good starting
point. In terms of cost of conversion, we focus on the access cost of code conversion, that
is, the number of symbols that are affected by the conversion. Each symbol read from the
initial codewords requires one symbol access and each symbol written to the final codeword
requires one symbol access. Therefore, minimizing access cost amounts to minimizing the
sum of the number of symbols written to the final codeword and the number of symbols read
from the initial codewords.2 Keeping this number small makes code conversion less disruptive

2 Readers who are familiar with the literature on regenerating codes might observe that convertible codes
optimizing for the access cost are “scalar” codes as opposed to being “vector” codes.

F. Maturana and K. V. Rashmi 66:7

and allows the unaffected symbols to remain available for normal operation. Furthermore,
reducing the number of accesses also reduces the amount of computation and communication
required in contrast to the default approach.
I Remark 5. Note that, when defining the access cost above, we implicitly assume that
conversion is performed by downloading all the required data to a central location, where the
new symbols are computed and then distributed to their final locations. This assumption
does not affect the access cost, but it could affect other forms of cost, such as network
bandwidth, which could be reduced by transferring data in a different way.

We now introduce some notation. We use the term unchanged symbols to refer to symbols
from the initial codewords that remain as is in the final codeword, and we use the term
new symbols to refer to symbols from the final codeword that are not present in the initial
codewords (i.e. they are not unchanged). For example, in Figure 1, all the data symbols are
unchanged symbols (unshaded boxes), and the parity symbol of the final codeword is a new
symbol (striped box). We define the read access set of an (nI , kI ;nF , kF = λkI) convertible
code as a set of tuples D ∈ [λ] × [nI], where (i, j) ∈ D corresponds to the j-th symbol of
initial codeword i. The set D must be such that all new symbols are linear combinations of
symbols indexed by the tuples in D. Furthermore, we use Di = {j | (i, j) ∈ D}, ∀i ∈ [λ] to
denote the symbols read from a particular initial codeword.

In Section 4, we show that the lower bounds on the access cost derived in this section
are in fact achievable. Therefore, we refer to MDS convertible codes in the merge regime
achieving these lower bounds as access-optimal.

I Definition 6 (Access-optimal). A linear MDS (nI , kI ;nF , kF = λkI) convertible code is
said to be access-optimal if and only if it attains the minimum access cost over all linear
MDS (nI , kI ;nF , kF = λkI) convertible codes.

Now we present the access cost lower bounds of convertible codes in the merge regime.

3.1 Lower bounds on the access cost of code conversion
In this subsection, we present lower bounds on the access cost of linear MDS convertible
codes in the merge regime. This is done in four steps:
1. We show that in the merge regime, all possible pairs of partitions PI and PF partitions

are equivalent up to relabeling, and hence do not need to be specified.
2. An upper bound on the maximum number of unchanged symbols is proved. We call

convertible codes that meet this bound as “stable”.
3. Lower bounds on the access cost of linear MDS convertible codes are proved, under the

added restriction that the convertible codes are stable.
4. The stability restriction is removed, by showing that non-stable linear MDS convertible

codes necessarily incur higher access cost, and hence it suffices to consider only stable
MDS convertible codes.

In the general regime, partitions need to be specified since they indicate how message
symbols from the initial codewords are mapped into the final codewords. In the merge regime,
however, the choice of the partitions does not matter.

I Proposition 7. For every (nI , kI ;nF , kF = λkI) convertible code, all possible pairs of
initial and final partitions (PI ,PF) are equivalent up to relabeling.

Proof. It holds that M = λkI , and there is only one possible final partition PF = {[λkI]}.
Thus, all data is mapped to the same final codeword, regardless of PI . J

ITCS 2020

66:8 Convertible Codes

Since one of the terms in access cost is the number of new symbols, a natural way to
reduce access cost is to maximize the number of unchanged symbols. However, there is a
limit on the number of symbols that can remain unchanged.

I Proposition 8. In an MDS (nI , kI ;nF , kF = λkI) convertible code, there can be at most
kI unchanged symbols from each initial codeword.

Proof. By the MDS property of CI every subset of kI + 1 symbols is linearly dependent.
Hence, there can be at most kI unchanged symbols from each initial codeword for CF to be
MDS. J

This implies that there are at most λkI unchanged symbols and at least rF new symbols in
total.

Intuitively, having more new symbols means that more symbols have to be read in order
to construct them, resulting in higher access cost. With this intuition in mind, we first focus
on convertible codes that minimize the number of new symbols, which we call stable.

I Definition 9 (Stability). An MDS (nI , kI ;nF , kF = λkI) convertible code is stable if and
only if it has exactly λkI unchanged symbols, or in other words, exactly rF new blocks.

We first prove lower bounds on the access cost of stable linear MDS convertible codes, and
then show that the minimum access cost of conversion in MDS codes without this stability
property can only be higher. Minimizing the access cost of a stable convertible code reduces
to minimizing the size of its read access set D. The first lower bound on the size of Di is
given by the interaction between new symbols and the MDS property.

I Lemma 10. For all linear stable MDS (nI , kI ;nF , kF = λkI) convertible codes, the read
access set Di from each initial codeword i ∈ [λ] satisfies |Di| ≥ min{kI , rF }.

Proof sketch. For the MDS property to hold in the final code, the encoding vectors of the
new symbols must fulfill certain independence requirements. This requires reading at least as
many symbol from each initial codeword as there are new symbols, up to kI symbols. Please
refer to Appendix A.2 for full proof. J

We next show that when the number of new symbols rF is greater than rI in a MDS
stable convertible code in the merge regime, then the default approach is optimal in terms of
access cost.

I Lemma 11. For all linear stable MDS (nI , kI ;nF , kF = λkI) convertible codes, if rI < rF

then the read access set Di from each initial codeword i ∈ [λ] satisfies |Di| ≥ kI .

Proof sketch. By Lemma 10, one is forced to read at least rI + 1 symbols. Hence there exist
symbols that are both unchanged and are read during conversion. Since unchanged blocks
are also part of the final codeword, the information read from these symbols is not useful in
creating a new symbol that retains the MDS property of the final code, unless kI symbols
(that is, full data) are read. Please refer to Appendix A.3 for full proof. J

Combining the above results leads to the following theorem on the lower bound of read
access set size of linear stable MDS convertible codes.

I Theorem 12. Let d∗(nI , kI ;nF , kF) denote the minimum integer d such that there exists
a linear stable MDS (nI , kI ;nF , kF = λkI) convertible code with read access set D of size
|D| = d. For all valid parameters, d∗(nI , kI ;nF , kF) ≥ λmin{kI , rF }. Furthermore, if
rI < rF , then d∗(nI , kI ;nF , kF) ≥ λkI .

Proof. Follows directly from Lemma 10 and Lemma 11. J

F. Maturana and K. V. Rashmi 66:9

We next show that this lower bound generally applies even for non-stable convertible
codes by proving that increasing the number of new symbols from the minimum possible
does not decrease the lower bound on the size of the read access set D.

I Lemma 13. The lower bounds on the size of the read access set from Theorem 12 hold for
all linear MDS (nI , kI ;nF , kF = λkI) convertible codes.

Proof. In Appendix A.4. J

The above result, along with the fact that the lower bound in Theorem 12 is achievable
(as will be shown in Section 4), implies that all access-optimal linear MDS convertible codes
in the merge regime are stable.

I Lemma 14. All access-optimal linear MDS (nI , kI ;nF , kF = λkI) convertible codes are
stable.

Proof. In Appendix A.5. J

Thus, for MDS convertible codes in the merge regime, it suffices to focus only on stable codes.
Combining all the results above, leads to the following key result.

I Theorem 15. For all linear MDS (nI , kI ;nF , kF = λkI) convertible codes, the access cost
of conversion is at least rF + λmin{kI , rF }. Furthermore, if rI < rF , the access cost of
conversion is at least rF + λkI .

Proof. Follows from Theorem 12, Lemma 13, Lemma 14, and the definition of access cost. J

Next, in Section 4 we show that the lower bound of Theorem 15 is achievable for all parameters.
Thus, Theorem 15 implies that it is possible to perform conversion of MDS convertible codes
in the merge regime with significantly less access cost than the default approach if and only
if rF ≤ rI and rF < kI .

I Remark 16. As discussed in Section 1, existing works [44, 59, 29] on code conversion
model the problem within the framework of repair-efficient codes and optimize for network
bandwidth consumed during conversion. These works require accessing every symbol, i.e. nF
symbols in total, during conversion. Our approach, thus, provides a significant reduction in
terms of access cost in comparison to existing solutions for code conversion. To compare
in terms of network bandwidth, consider each symbol to be a vector of size α as in these
existing works. Then, our constructions (Section 4) can be easily implemented in a way that
only requires a network bandwidth of (λ − 1)rFα in the merge regime, by independently
constructing each new symbol at the same location as one of the retired symbols it depends
on. On the other hand, existing solutions [44, 59, 29] require network bandwidth of at least
[(λ− 1)kI + rF − rI]α. Thus, although our constructions are optimized for access cost and
not network bandwidth, they outperform existing solutions for several parameter regimes
of practical interest, such as the merge regime with rI = rF < kI which corresponds to
increasing the code rate for a code with rate greater than 0.5 (most storage systems use
codes with rate greater than 0.5 and a conversion that increases the rate has been shown to
be beneficial when a reduction in failure rate of storage devices is observed [32]).

ITCS 2020

66:10 Convertible Codes

4 Achievability: Explicit access-optimal convertible codes in the
merge regime

In this section, we present an explicit construction of access-optimal MDS convertible codes
for all parameters in the merge regime. In Section 4.1, we describe the construction of the
generator matrices for the initial and final code. Then, in Section 4.2, we describe sufficient
conditions for optimality and show that this construction yields access-optimal convertible
codes.

4.1 Explicit construction
Recall that, in the merge regime, kF = λkI , for an integer λ ≥ 2 and arbitrary nI and nF .
Also, recall that rI = nI − kI and rF = nF − kF . Notice that when rI < rF , or kI ≤ rF ,
constructing an access-optimal convertible code is trivial, since one can simply use the default
approach. Thus, assume rF ≤ min{rI , kI}.

Let Fq be a finite field of size q = pD, where p is any prime and the degree D is a function
of the convertible code parameters, which grows as Θ((nF)3) when nF > nI and the rate
of the final code is constant. Let θ be a primitive element of Fq. Let GI = [I|PI] and
GF = [I|PF] be systematic generator matrices of CI and CF over Fq, where PI is a kI × rI
matrix and PF is a kF × rF matrix. Define entry (i, j) of PI ∈ FkI×rIq as θ(i−1)(j−1), where
(i, j) ranges over [kI]× [rI]. Entry (i, j) of PF ∈ FkF×rFq is defined identically as θ(i−1)(j−1),
where (i, j) ranges over [kF] × [rF]. Notice that this construction is stable, because it is
access-optimal (recall Lemma 14). The unchanged symbols of the initial code are exactly the
systematic symbols.

4.2 Proof of optimality
Throughout this section, we use the following notation for submatrices: let M be a n×m
matrix, the submatrix ofM defined by row indices {i1, . . . , ia} and column indices {j1, . . . , jb}
is denoted by M [i1, . . . , ia; j1, . . . , jb]. For conciseness, we use ∗ to denote all row or column
indices, e.g., M [∗; j1, . . . , jb] denotes the submatrix composed by columns {j1, . . . , jb}, and
M [i1, . . . , ia; ∗] denotes the submatrix composed by rows {i1, . . . , ia}.

We first recall an important fact about systematic generator matrices of MDS codes.

I Proposition 17 ([34]). Let C be an [n, k] code with generator matrix G = [I|P]. Then C is
MDS if and only if P is superregular, that is, every square submatrix of P is nonsingular3.

Thus, to be MDS, both PI and PF need to be superregular.
To be access-optimal during conversion in the non-trivial case, the new symbols (corre-

sponding to the columns of PF) have to be such that they can be generated by accessing rF
symbols from the initial codewords (corresponding to columns of GI).

During conversion, the encoding vectors of symbols from the initial codewords are
represented as λkI -dimensional vectors, where each initial codeword occupies a disjoint
subset of kI coordinates. To capture this property, we introduce the following definition.

3 This definition of superregularity is stronger than the definition introduced in [19] in the context of
convolutional codes.

F. Maturana and K. V. Rashmi 66:11

I Definition 18 (t-column block-constructible). We will say that an n × m1 matrix M1
is t-column constructible from an n × m2 matrix M2 if and only if there exists a subset
S ⊆ cols(M2) of size t, such that the m1 columns of M1 are in the span of S. We say that a
λn×m1 matrix M1 is t-column block-constructible from an n×m2 matrix M2 if and only if
for every i ∈ [λ], the submatrix M1[(i− 1)n+ 1, . . . , in; ∗] is t-column constructible from M2.

I Theorem 19. A systematic (nI , kI ;nF , kF = λkI) convertible code with kI × rI initial
parity generator matrix PI and kF × rF final parity generator matrix PF is MDS and
access-optimal, if the following two conditions hold: (1) if rI ≥ rF then PF is rF -column
block-constructible from PI , and (2) PI ,PF are superregular.

Proof. Follows from Proposition 17 and the fact that PF must be generated by accessing
just rF symbols from each initial codeword (Lemma 10). J

Thus, we can reduce the problem of proving the optimality of a systematic MDS convertible
code in the merge regime to that of showing that matrices PI and PF satisfy the two
properties mentioned in Theorem 19.

We first show that the construction specified in Section 4.1 satisfies condition (1) of
Theorem 19.

I Lemma 20. Let PI ,PF be as defined in Section 4.1. Then PF is rF -column block-
constructible from PI .

Proof sketch. Given the structure of PI and PF , it is easy to see that PF can be obtained
by “vertically stacking” copies of PI , with their columns appropriately scaled by powers of θ.
Please refer to Appendix B.1 for full proof. J

It only remains to show that the construction in Section 4.1 satisfies condition (2) of
Theorem 19, that is, that PI and PF are superregular.

I Lemma 21. Let PI ,PF be as defined in Section 4.1. Then PI and PF are superregular,
for sufficiently large field size.

Proof sketch. Consider the minors of PI and PF as polynomials on θ. Due to the structure
of the the matrices PI and PF as specified in Section 4.1, all of these are non-zero polynomials
which cannot have θ as a root as long as the degree of the extension field is large enough.
Therefore none of the minors can be zero. Please refer to Appendix B.2 for the full proof. J

Combining the above results leads to the following key result on the achievability of the
lower bounds on access cost derived in Section 3.

I Theorem 22. The explicit construction provided in Section 4.1 yields access-optimal linear
MDS convertible codes for all parameter values in the merge regime.

Proof. Follows from Theorem 19, Lemma 20, and Lemma 21. J

The construction presented in this section is practical only for very small values of these
parameters since the required field size grows exponentially with the lengths of the initial
and final codes. In Section 5 we present practical low-field-size constructions.

ITCS 2020

66:12 Convertible Codes

5 Low field-size convertible codes based on superregular Hankel
arrays

In this section we present alternative constructions for (nI , kI ;nF , kF = λkI) convertible
codes that require a significantly lower (polynomial) field size than the construction presented
in Section 4. The key idea behind our constructions is to take the matrices PI and PF as
cleverly-chosen submatrices from a specially constructed triangular array of the following form:

Tm :

b1 b2 b3 · · · bm−1 bm
b2 b3 · · · · · · bm

b3
...

... ...
...

...
...

bm−1 bm
bm

(1)

with the property that every submatrix of Tm is superregular (the submatrix must lie
completely within the triangular array). Here, (1) b1, . . . , bm are (not necessarily distinct)
elements from Fq, and (2) m is at most the field size q. The array Tm has Hankel form, that
is, Tm[i, j] = Tm[i − 1, j + 1], for all i ∈ [2,m], j ∈ [m − 1]. We denote Tm a superregular
Hankel array. Such an array can be constructed by employing the algorithm proposed in [52]
(where the algorithm was employed to generate generalized Cauchy matrices to construct
generalized Reed-Solomon codes). This algorithm is described in Appendix D for reference,
although it is not necessary for understanding the constructions in this section.

We construct the initial and final codes by taking submatrices PI and PF in a specific
manner from superregular Hankel arrays (the submatrices have to be contained in the triangle
where the array is defined). This guarantees that PI and PF are superregular. In addition,
we exploit the Hankel form of the array by carefully choosing the submatrices that form PI

and PF to ensure that PF is rF -column block-constructible from PI . Given the way we
construct these matrices and the properties of Tm, all the initial and final codes presented in
this subsection are (punctured) generalized doubly-extended Reed-Solomon codes [52].

The above idea yields a sequence of constructions with a tradeoff between the field
size and the range of rF supported. We first present two examples that correspond to the
extreme ends of this tradeoff, which we call Hankel-I and Hankel-II. Construction Hankel-I,
shown in Example 23, can be applied whenever rF ≤ brI/λc, and requires a field size of
q ≥ max{nI , nF }−1. Construction Hankel-II, shown in Example 24, can be applied whenever
rF ≤ rI − λ+ 1, and requires a field size of q ≥ kIrI .

We then describe in detail the sequence of constructions that define a tradeoff between
field size and coverage of rF values in Section 5.1. In Section 5.2, we finalize with a discussion
on the ability of these constructions to be optimal even when parameters of the final code
are a priori unknown. Throughout this section we will assume that λ ≤ rI ≤ kI . The ideas
presented here are still applicable when rI > kI , but the constructions and analysis change
in minor ways.

I Example 23 (Hankel-I). Consider the parameters (nI = 9, kI = 5;nF = 12, kF = 10) and
the field F11. Notice that these parameters satisfy:

rF = 2 ≤
⌊
rI

λ

⌋
= 2 and q = 11 ≥ max{nI , nF } − 1 = 11.

F. Maturana and K. V. Rashmi 66:13

1 3 4 3 10 10 5 9 6 5 10

3 4 3 10 10 5 9 6 5 10

4 3 10 10 5 9 6 5 10

3 10 10 5 9 6 5 10

10 10 5 9 6 5 10

10 5 9 6 5 10

5 9 6 5 10

9 6 5 10

6 5 10

5 10

10

T11 :
P I ∈ F5×4

11

P F ∈ F10×2
11

(a) Hankel-I

12 12 1 9 1 5 11 9 10 6 9 2

12 1 9 1 5 11 9 10 6 9 2

1 9 1 5 11 9 10 6 9 2

9 1 5 11 9 10 6 9 2

1 5 11 9 10 6 9 2

5 11 9 10 6 9 2

11 9 10 6 9 2

9 10 6 9 2
. . .

T12 :
P I ∈ F4×3

13

P F ∈ F8×2
13

(b) Hankel-II

Figure 2 Examples of constructions based on Hankel arrays: (a) Hankel-I construction par-
ity generator matrices for systematic (nI = 9, kI = 5; nF = 12, kF = 10) convertible code. Notice
how matrix PF corresponds to the vertical concatenation of the first two columns and the last
two columns of matrix PI . (b) Hankel-II construction parity generator matrices for systematic
(nI = 7, kI = 4; nF = 10, kF = 8) convertible code. Notice how matrix PF corresponds to the vertical
concatenation of the first and second column of PI , and the second and third column of PI .

First, construct a superregular Hankel array of size nF − 1 = 11, T11, employing the
algorithm in [52]. Then, divide the rI = 4 initial parities into λ = 2 groups: encoding vectors
of parities in the same group will correspond to contiguous columns of T11. The submatrix
PI ∈ F5×4

11 is formed from the top kI = 5 rows and columns 1, 2, kI + 1 = 6 and kI + 2 = 7
of T11, as shown in Figure 2a. The submatrix PF ∈ F10×2

11 is formed from the top kI = 10
rows and columns 1, 2 of T11, as shown in Figure 2a. Checking that these matrices are
superregular follows from the superregularity of T11. It is to check that both these matrices
are superregular, which follows from the the superregularity of T11. Furthermore, notice that
the chosen parity matrices have the following structure:

PI =

p1 p2 p3 p4

 , PF =
[
p1 p2
p3 p4

]
.

From this structure, it is clear that PF is 2-column block-constructible from PI . Therefore,
PI and PF satisfy the sufficient conditions of Theorem 19, and define an access-optimal
convertible code.

I Example 24 (Hankel-II). Consider parameters (nI = 7, kI = 4;nF = 10, kF = 8) and field
F13. Notice that these parameters satisfy:

rF = 2 ≤ rI − λ+ 1 = 2 and q = 13 ≥ kIrI = 12

First, construct a superregular Hankel array of size kIrI = 12, T12, by choosing q = 13 as
the field size, and employing the algorithm in [52]. The submatrix PI ∈ F4×3

13 is formed by
the top kI = 4 rows and columns 1, kI + 1 = 5 and 2kI + 1 = 9 of T12, as shown in Figure 2b.
The submatrix PF ∈ F8×2

13 is formed by the top kF = 8 rows and columns 1 and kI + 1 = 5
of T12, as shown in Figure 2b. It is easy to check that PI and PF are superregular, which
follows from the superregularity of T12. Furthermore, notice that the chosen parity matrices
have the following structure:

PI =

p1 p2 p3

 , PF =
[
p1 p2
p2 p3

]

It is easy to see that PF is 2-column block-constructible from PI . Therefore, PI and PF

satisfy the sufficient conditions of Theorem 19, and define an access-optimal convertible code.

ITCS 2020

66:14 Convertible Codes

5.1 General Hankel-array-based construction of convertible codes
In this subsection, we present a sequence of Hankel-array-based constructions of access-
optimal MDS convertible codes. This sequence of constructions presents a tradeoff between
field size and the range of rF supported. To index the sequence we use a s ∈ {λ, λ+1, . . . , rI}
which corresponds to the number of groups into which the initial parity encoding vectors are
divided. Given parameters kI , rI , λ and a field Fq, construction Hankels (s ∈ {λ, λ+1, . . . , rI})
supports:

rF ≤ (s−λ+1)
⌊
rI

s

⌋
+max{(rI mod s)−λ+1, 0}, requiring q ≥ max{skI+

⌊
rI

s

⌋
−1, nI−1}.

Therefore, Hankel-I, from Example 23 corresponds to Hankelλ and Hankel-II from Example 24
corresponds to HankelrI .

Construction of Hankels. Assume, for the sake of simplicity, that s | rI and let t = rI/s.
Now we describe how to construct PI and PF over a field Fq whenever:

rF ≤ (s− λ+ 1)t and q ≥ skI + t− 1.

Without loss of generality, we consider rF = (s− λ+ 1)t (lesser values of rF can be obtained
by puncturing the final code, i.e., eliminating some of the final parities). Let Tm be as in
Equation (1), with m = skI + t − 1. Divide the rI initial parity encoding vectors into s
disjoint sets S1, S2, . . . , Ss of size t each. We associate each set Si (i ∈ [s]) with a set of
column indices col(Si) = {(i−1)kI +1, (i−1)kI +2, . . . , (i−1)kI +t} of Tm. Matrix PI is the
submatrix formed by the top kI rows and the columns indexed by the set col(S1)∪· · ·∪col(Ss)
of Tm. Matrix PF is the submatrix formed by the top λkI rows and the columns indexed by
the set col(S1) ∪ · · · ∪ col(Ss−λ+1) of Tm. This results in the following matrices PI and PF :

PI =

b1 ··· bt ··· b(i−1)kI+1 ··· b(i−1)kI+t ··· b(s−1)kI+1 ··· b(s−1)kI+t
b2 ··· bt+1 ··· b(i−1)kI+2 ··· b(i−1)kI+t+1 ··· b(s−1)kI+2 ··· b(s−1)kI+t+1
...

...
... ···

...
...

... ···
...

...
...

bkI ··· bkI+t−1 ··· bikI ··· bikI+t−1 ··· bskI ··· bskI+t−1

 ,

PF =

b1 ··· bt ··· b(i−λ)kI+1 ··· b(i−λ)kI+t ··· b(s−λ)kI+1 ··· b(s−λ)kI+t
b2 ··· bt+1 ··· b(i−λ)kI+2 ··· b(i−λ)kI+t+1 ··· b(s−λ)kI+2 ··· b(s−λ)kI+t+1
...

...
... ···

...
...

... ···
...

...
...

bλkI ··· bλkI+1 ··· bikI ··· bikI+t−1 ··· bskI ··· bskI+t−1

 .
I Theorem 25. Given parameters kI , rI , λ, and a field Fq Hankels (s ∈ {λ, . . . , rI}) con-
structs an access-optimal (nI , kI ;nF , kF = λkI) convertible code if:

rF ≤ (s− λ+ 1)
⌊
rI

s

⌋
+ max{(rI mod s)− λ+ 1, 0} and q ≥ skI +

⌊
rI

s

⌋
− 1.

Proof. In Appendix C.1. J

(Access-optimal) conversion process. During conversion, the kI data symbols from each
of the λ initial codewords remain unchanged, and become the kF = λkI data symbols from
the final codeword. The rF new (parity) blocks from the final codeword are constructed by
accessing symbols from the initial codewords as detailed below. To construct the l-th new

F. Maturana and K. V. Rashmi 66:15

symbol (corresponding to the l-th column of PF , l ∈ [rF]), read parity symbol l + (i− 1)t
from each initial codeword i ∈ [λ], and then sum the λ symbols read. The encoding vector of
the new symbol will be equal to the sum of the encoding vectors of the symbols read. This is
done for every new encoding vector l ∈ [rF].

5.2 Handling a priori unknown parameters
So far, we had assumed that the parameters of the final code, nF , kF , are known a priori
and are fixed. As discussed in Section 2, this is useful in developing an understanding of the
fundamental limits of code conversion. When realizing code conversion in practice, however,
the parameters nF , kF might not be known at code construction time (as it depends on
the empirically observed failure rates). Thus, it is of interest to be able to convert a code
optimally to multiple different parameters. The Hankel-array based constructions presented
above indeed provide such a flexibility. Our constructions continue to enable access-optimal
conversion for any kF ′ = λ′kI and nF ′ = rF

′ + kF
′ with 0 ≤ rF ′ ≤ rF and 2 ≤ λ′ ≤ λ.

6 Related work

MDS erasure codes, such as Reed-Solomon codes, are widely used in storage systems because
they achieve the optimal tradeoff between failure tolerance and storage overhead [43, 42].
However, the use of erasure codes in storage systems raises a host of other challenges. Several
works in the literature have studied these aspects.

The encoding and decoding of data, and the finite field arithmetic that they require,
can be compute intensive. Motivated by this, array codes [7, 70, 31, 28] are designed to use
XOR operations exclusively, which are typically faster to execute, and aim to decrease the
complexity of encoding and decoding.

The repair of failed nodes can require a large amount of network bandwidth. Several
approaches have been proposed to alleviate this problem. Dimakis et al. [16] proposed a new
class of codes called regenerating codes that minimize the amount of network bandwidth
consumed during repair operations. Under the regenerating codes model [16], each symbol
(i.e., node) is represented as an α-dimensional vector over a finite field. During repair of
a failed node, download of elements of the finite field (i.e., “sub-symbols”) is allowed as
opposed to the whole vector (i.e., one “entire” symbol). This line of research has led to
several constructions [10, 47, 55, 60, 68, 69, 64, 11, 40, 53, 71, 73, 50, 54, 22, 13, 35, 36],
generalizations [56, 58, 1], and more efficient repair algorithms for Reed-Solomon codes [57,
26, 72, 15, 66, 37, 14, 67]. It has been shown that meeting the lower bound on the repair
bandwidth requirement when MDS property and high rate are desired necessitates large
sub-packetization [65, 23, 5, 3], which negatively affects certain key performance metrics
in storage systems [45]. To overcome this issue, several works [49, 25] have proposed code
constructions that relax the requirement of meeting lower bounds on IO and bandwidth
requirements for repair operations. For example, the Piggybacking framework [49] provides
a general framework to construct repair-efficient codes by transforming any existing codes,
while allowing a small sub-packetization (even as small as 2).

Several works [46, 39] study the problem of two stage encoding: first generating a certain
number of parities during the encoding process and then adding additional parities. As
discussed in [46], adding additional parities can be conceptually viewed as a repair process
by considering the new parity nodes to be generated as failed nodes. Furthermore, as shown
in [55], for MDS codes, the bandwidth requirement for repair of even a single node is lower
bounded by the same amount as in regenerating codes that require repair of all nodes.
Thus one can always employ a regenerating code to add additional parities with minimum

ITCS 2020

66:16 Convertible Codes

bandwidth overhead. However, when MDS property and high rate are desired, as discussed
above, using regenerating codes requires a large sub-packetization. The paper [39] employs
the Piggybacking framework [48, 49] to construct codes that reduce the sub-packetization
factor for two-stage encoding. The scenario of adding a fixed number of additional parities,
when viewed under the setting of conversions, corresponds to having kI = kF and nI < nF .

Existing works that consider changing the parameters n and k of already encoded
data [44, 59, 29] consider a model similar to the regenerating codes model, wherein symbols
are represented as vectors and communication is modeled via an information flow graph.
In order to accommodate the changes in parameter k, the dimension α of each vector is
changed, and constructions exploit repair efficiency to achieve conversion efficiency. However,
this approach has the disadvantage that during conversion every symbol must be accessed.
Our approach circumvents this problem by considering multiple codewords at a time, which
allows convertible codes to achieve significantly smaller access cost during conversion. For a
more detailed comparison between convertible codes and existing works on code conversion,
see Remark 16 in Section 3.

Another class of codes, called locally repairable codes (LRCs) [21, 51, 8, 20, 41, 61, 33,
12, 63, 62, 6, 17, 2, 38, 27], focuses on the locality of codeword symbols during repair, that
is, the number of nodes that need to be accessed when repairing a single failure. LRCs
improve repair and degraded read performance, since missing information can be recovered by
accessing a small subset of symbols. The objective of LRCs and convertible codes optimized
for access cost is similar, as both aim to minimize the number of symbols that need to be
accessed for different operations in storage systems.

7 Conclusions and future directions

In this paper, we propose a new framework to model the code conversion problem, that of
converting data encoded with an [nI , kI] code into data encoded with an [nF , kF] code in a
resource-efficient manner. The code conversion problem is motivated by the practical necessity
of reducing the overhead of redundancy adaptation in erasure-coded storage systems [32].
We present the framework of convertible codes for studying code conversions, and fully
characterize the fundamental limits on the access cost of conversions for an important
regime of convertible codes. Furthermore, we present practical low-field-size constructions
for access-optimal convertible codes for a wide range of parameters.

This work leads to a number of challenging and potentially impactful open problems.
An important future direction is to go beyond the merge regime considered in this paper.
While the construction techniques presented in this paper can be easily extended to upper
bound the access cost of some parameter values outside the merge regime, identifying the
fundamental limits on the access cost in general and constructing access-optimal convertible
codes for all parameters remains open. Another important future direction is to analyze
the fundamental limits of convertible codes on the overhead of other resources, such as disk
IO (i.e., device bandwidth), communication (network bandwidth), computation (CPU), and
construct convertible codes optimizing these resources. Note that while the access-optimal
convertible codes considered in this paper also reduce the total disk IO, communication and
computation during conversion as compared to the default approach, the overhead on these
other resources may not be optimal. A final important direction is to explore additional
applications of convertible codes beyond our initial motivation, to other problems within
theoretical computer science where codes are used.

F. Maturana and K. V. Rashmi 66:17

References
1 Vitaly Abdrashitov, N Prakash, and Muriel Médard. The storage vs repair bandwidth trade-off

for multiple failures in clustered storage networks. In 2017 IEEE Information Theory Workshop
(ITW), pages 46–50. IEEE, 2017.

2 Abhishek Agarwal, Alexander Barg, Sihuang Hu, Arya Mazumdar, and Itzhak Tamo. Com-
binatorial alphabet-dependent bounds for locally recoverable codes. IEEE Transactions on
Information Theory, 64(5):3481–3492, 2018.

3 Omar Alrabiah and Venkatesan Guruswami. An Exponential Lower Bound on the Sub-
packetization of MSR Codes. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, pages 979–985, New York, NY, USA, 2019. ACM.

4 Apache Software Foundation. Apache hadoop: HDFS erasure coding. Accessed: 2019-07-
23. URL: https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/
HDFSErasureCoding.html.

5 SB Balaji and P Vijay Kumar. A tight lower bound on the sub-packetization level of optimal-
access MSR and MDS codes. In 2018 IEEE International Symposium on Information Theory
(ISIT), pages 2381–2385. IEEE, 2018.

6 Alexander Barg, Kathryn Haymaker, Everett W Howe, Gretchen L Matthews, and Anthony
Várilly-Alvarado. Locally recoverable codes from algebraic curves and surfaces. In Algebraic
Geometry for Coding Theory and Cryptography, pages 95–127. Springer, 2017.

7 M. Blaum, J. Brady, J. Bruck, and Jai Menon. EVENODD: an efficient scheme for tolerating
double disk failures in RAID architectures. IEEE Transactions on Computers, 44(2):192–202,
February 1995.

8 Mario Blaum, James Lee Hafner, and Steven Hetzler. Partial-MDS codes and their application
to RAID type of architectures. IEEE Transactions on Information Theory, 59(7):4510–4519,
2013.

9 Dhruba Borthakur, Rodrigo Schmidt, Ramkumar Vadali, Scott Chen, and Patrick Kling.
HDFS RAID - Facebook. URL: http://www.slideshare.net/ydn/hdfs-raid-facebook.

10 Viveck R Cadambe, Cheng Huang, Jin Li, and Sanjeev Mehrotra. Polynomial length MDS
codes with optimal repair in distributed storage. In 2011 Conference Record of the Forty Fifth
Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pages 1850–1854.
IEEE, 2011.

11 Viveck R Cadambe, Syed A Jafar, Hamed Maleki, Kannan Ramchandran, and Changho Suh.
Asymptotic interference alignment for optimal repair of MDS codes in distributed storage.
IEEE Transactions on Information Theory, 59(5):2974–2987, 2013.

12 Viveck R Cadambe and Arya Mazumdar. Bounds on the size of locally recoverable codes.
IEEE Transactions on Information Theory, 61(11):5787–5794, 2015.

13 Ameera Chowdhury and Alexander Vardy. New Constructions of MDS Codes with Asymptot-
ically Optimal Repair. In 2018 IEEE International Symposium on Information Theory, pages
1944–1948, 2018.

14 Hoang Dau, Iwan M Duursma, Han Mao Kiah, and Olgica Milenkovic. Repairing Reed-Solomon
codes with multiple erasures. IEEE Transactions on Information Theory, 64(10):6567–6582,
2018.

15 Hoang Dau and Olgica Milenkovic. Optimal repair schemes for some families of full-length
Reed-Solomon codes. In 2017 IEEE International Symposium on Information Theory (ISIT),
pages 346–350. IEEE, 2017.

16 A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran. Network Coding
for Distributed Storage Systems. IEEE Transactions on Information Theory, 56(9):4539–4551,
September 2010.

17 S Luna Frank-Fischer, Venkatesan Guruswami, and Mary Wootters. Locality via Partially
Lifted Codes. In Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques (APPROX/RANDOM 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

ITCS 2020

https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
http://www.slideshare.net/ydn/hdfs-raid-facebook

66:18 Convertible Codes

18 S. Ghemawat, H. Gobioff, and S.T. Leung. The Google file system. In ACM SIGOPS Operating
Systems Review, volume 37-5, pages 29–43. ACM, 2003.

19 H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache. Strongly-MDS convolutional codes.
IEEE Transactions on Information Theory, 52(2):584–598, February 2006.

20 Parikshit Gopalan, Cheng Huang, Bob Jenkins, and Sergey Yekhanin. Explicit maximally
recoverable codes with locality. IEEE Transactions on Information Theory, 60(9):5245–5256,
2014.

21 Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and Sergey Yekhanin. On the locality of
codeword symbols. IEEE Transactions on Information Theory, 58(11):6925–6934, 2012.

22 Sreechakra Goparaju, Arman Fazeli, and Alexander Vardy. Minimum Storage Regenerating
Codes for All Parameters. IEEE Transactions on Information Theory, 63(10):6318–6328, 2017.

23 Sreechakra Goparaju, Itzhak Tamo, and Robert Calderbank. An improved sub-packetization
bound for minimum storage regenerating codes. IEEE Transactions on Information Theory,
60(5):2770–2779, 2014.

24 Sivakanth Gopi, Venkatesan Guruswami, and Sergey Yekhanin. Maximally Recoverable LRCs:
A field size lower bound and constructions for few heavy parities. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2154–2170. SIAM,
2019.

25 Venkatesan Guruswami and Ankit Singh Rawat. MDS code constructions with small sub-
packetization and near-optimal repair bandwidth. In ACM-SIAM Symposium on Discrete
Algorithms, 2017.

26 Venkatesan Guruswami and Mary Wootters. Repairing Reed-Solomon codes. In ACM
Symposium on Theory of Computing, pages 216–226, 2016.

27 Venkatesan Guruswami, Chaoping Xing, and Chen Yuan. How Long Can Optimal Locally
Repairable Codes Be? In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

28 James Lee Hafner. WEAVER codes: Highly fault tolerant erasure codes for storage systems.
In Proceedings of the 4th Conference on USENIX Conference on File and Storage Technologies
- Volume 4, FAST’05, pages 16–16, Berkeley, CA, USA, 2005. USENIX Association.

29 Yuchong Hu, Xiaoyang Zhang, Patrick PC Lee, and Pan Zhou. Generalized Optimal Storage
Scaling via Network Coding. In 2018 IEEE International Symposium on Information Theory
(ISIT), pages 956–960. IEEE, 2018.

30 C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and S. Yekhanin. Erasure
Coding in Windows Azure Storage. In Proceedings of USENIX Annual Technical Conference
(ATC), 2012.

31 Cheng Huang and Lihao Xu. STAR: An efficient coding scheme for correcting triple storage
node failures. IEEE Transactions on Computers, 57(7):889–901, 2008.

32 Saurabh Kadekodi, K. V. Rashmi, and Gregory R. Ganger. Cluster storage systems gotta have
HeART: improving storage efficiency by exploiting disk-reliability heterogeneity. USENIX
FAST, 2019.

33 Govinda M Kamath, N Prakash, V Lalitha, and P Vijay Kumar. Codes with local regeneration
and erasure correction. IEEE Transactions on Information Theory, 60(8):4637–4660, 2014.

34 F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-holland
Publishing Company, 2nd edition, 1978.

35 Kaveh Mahdaviani, Ashish Khisti, and Soheil Mohajer. Bandwidth adaptive & error resilient
MBR exact repair regenerating codes. IEEE Transactions on Information Theory, 65(5):2736–
2759, 2018.

36 Kaveh Mahdaviani, Soheil Mohajer, and Ashish Khisti. Product matrix MSR codes with
bandwidth adaptive exact repair. IEEE Transactions on Information Theory, 64(4):3121–3135,
2018.

F. Maturana and K. V. Rashmi 66:19

37 Jay Mardia, Burak Bartan, and Mary Wootters. Repairing multiple failures for scalar MDS
codes. IEEE Transactions on Information Theory, 65(5):2661–2672, 2018.

38 A. Mazumdar. Capacity of Locally Recoverable Codes. In 2018 IEEE Information Theory
Workshop, pages 1–5, November 2018.

39 S. Mousavi, T. Zhou, and C. Tian. Delayed Parity Generation in MDS Storage Codes. In 2018
IEEE International Symposium on Information Theory (ISIT), pages 1889–1893, June 2018.

40 D Papailiopoulos, A Dimakis, and V Cadambe. Repair Optimal Erasure Codes through
Hadamard Designs. IEEE Transactions on Information Theory, 59(5):3021–3037, May 2013.

41 Dimitris S Papailiopoulos and Alexandros G Dimakis. Locally repairable codes. IEEE
Transactions on Information Theory, 60(10):5843–5855, 2014.

42 David A Patterson, Garth Gibson, and Randy H Katz. A case for redundant arrays of
inexpensive disks (RAID), volume 17-3. ACM, 1988.

43 J.S. Plank. T1: Erasure codes for storage applications. Proceedings of the 4th USENIX
Conference on File and Storage Technologies, pages 1–74, January 2005.

44 Brijesh Kumar Rai, Vommi Dhoorjati, Lokesh Saini, and Amit K Jha. On adaptive distributed
storage systems. In 2015 IEEE international symposium on information theory (ISIT), pages
1482–1486. IEEE, 2015.

45 K. V. Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and Kannan
Ramchandran. A Hitchhiker’s guide to fast and efficient data reconstruction in erasure-coded
data centers. In ACM SIGCOMM, 2014.

46 K. V. Rashmi, Nihar B Shah, and P Vijay Kumar. Enabling node repair in any erasure
code for distributed storage. In 2011 IEEE International Symposium on Information Theory
Proceedings, pages 1235–1239. IEEE, 2011.

47 K. V. Rashmi, Nihar B Shah, and P Vijay Kumar. Optimal exact-regenerating codes for
distributed storage at the MSR and MBR points via a product-matrix construction. IEEE
Transactions on Information Theory, 57(8):5227–5239, 2011.

48 K. V. Rashmi, Nihar B Shah, and Kannan Ramchandran. A piggybacking design framework for
read-and download-efficient distributed storage codes. In 2013 IEEE International Symposium
on Information Theory, 2013.

49 K. V. Rashmi, Nihar B Shah, and Kannan Ramchandran. A piggybacking design framework
for read-and download-efficient distributed storage codes. IEEE Transactions on Information
Theory, 63(9):5802–5820, 2017.

50 Ankit Singh Rawat, O Ozan Koyluoglu, and Sriram Vishwanath. Progress on high-rate
MSR codes: Enabling arbitrary number of helper nodes. In 2016 Information Theory and
Applications Workshop (ITA), pages 1–6. IEEE, 2016.

51 Ankit Singh Rawat, Onur Ozan Koyluoglu, Natalia Silberstein, and Sriram Vishwanath.
Optimal locally repairable and secure codes for distributed storage systems. IEEE Transactions
on Information Theory, 60(1):212–236, 2013.

52 Ron M Roth and Gadiel Seroussi. On Generator Matrices of MDS Codes. IEEE Transactions
on Infortmation Theory, 31(6):826–830, November 1985.

53 Birenjith Sasidharan, Gaurav Kumar Agarwal, and P Vijay Kumar. A high-rate MSR code with
polynomial sub-packetization level. In 2015 IEEE International Symposium on Information
Theory (ISIT), pages 2051–2055. IEEE, 2015.

54 Birenjith Sasidharan, Myna Vajha, and P Vijay Kumar. An explicit, coupled-layer construction
of a high-rate MSR code with low sub-packetization level, small field size and d<(n- 1). In
2017 IEEE International Symposium on Information Theory (ISIT), pages 2048–2052. IEEE,
2017.

55 Nihar B Shah, K. V. Rashmi, P Vijay Kumar, and Kannan Ramchandran. Interference
alignment in regenerating codes for distributed storage: Necessity and code constructions.
IEEE Transactions on Information Theory, 58(4):2134–2158, 2011.

ITCS 2020

66:20 Convertible Codes

56 Nihar B Shah, KV Rashmi, and P Vijay Kumar. A flexible class of regenerating codes for
distributed storage. In 2010 IEEE International Symposium on Information Theory, pages
1943–1947. IEEE, 2010.

57 Karthikeyan Shanmugam, Dimitris S Papailiopoulos, Alexandros G Dimakis, and Giuseppe
Caire. A repair framework for scalar MDS codes. IEEE Journal on Selected Areas in
Communications, 32(5):998–1007, 2014.

58 Kenneth W Shum. Cooperative regenerating codes for distributed storage systems. In 2011
IEEE International Conference on Communications (ICC), pages 1–5. IEEE, 2011.

59 Mridupawan Sonowal and Brijesh Kumar Rai. On adaptive distributed storage systems based
on functional MSR code. In 2017 International Conference on Wireless Communications,
Signal Processing and Networking (WiSPNET), pages 338–343. IEEE, 2017.

60 C. Suh and Kannan Ramchandran. Exact-Repair MDS Code Construction Using Interference
Alignment. IEEE Transactions on Information Theory, pages 1425–1442, March 2011.

61 Itzhak Tamo and Alexander Barg. A family of optimal locally recoverable codes. IEEE
Transactions on Information Theory, 60(8):4661–4676, 2014.

62 Itzhak Tamo, Alexander Barg, and Alexey Frolov. Bounds on the parameters of locally
recoverable codes. IEEE Transactions on Information Theory, 62(6):3070–3083, 2016.

63 Itzhak Tamo, Dimitris S Papailiopoulos, and Alexandros G Dimakis. Optimal locally re-
pairable codes and connections to matroid theory. IEEE Transactions on Information Theory,
62(12):6661–6671, 2016.

64 Itzhak Tamo, Zhiying Wang, and Jehoshua Bruck. Zigzag codes: MDS array codes with
optimal rebuilding. IEEE Transactions on Information Theory, 59(3):1597–1616, 2013.

65 Itzhak Tamo, Zhiying Wang, and Jehoshua Bruck. Access versus bandwidth in codes for
storage. IEEE Transactions on Information Theory, 60(4):2028–2037, 2014.

66 Itzhak Tamo, Min Ye, and Alexander Barg. Optimal repair of Reed-Solomon codes: Achieving
the cut-set bound. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 216–227. IEEE, 2017.

67 Itzhak Tamo, Min Ye, and Alexander Barg. The Repair Problem for Reed–Solomon Codes:
Optimal Repair of Single and Multiple Erasures With Almost Optimal Node Size. IEEE
Transactions on Information Theory, 65(5):2673–2695, 2018.

68 Zhiying Wang, Itzhak Tamo, and Jehoshua Bruck. On codes for optimal rebuilding access. In
2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pages 1374–1381. IEEE, 2011.

69 Zhiying Wang, Itzhak Tamo, and Jehoshua Bruck. Long MDS codes for optimal repair
bandwidth. In 2012 IEEE International Symposium on Information Theory Proceedings, pages
1182–1186. IEEE, 2012.

70 Lihao Xu and Jehoshua Bruck. X-code: MDS array codes with optimal encoding. IEEE
Transactions on Information Theory, 45(1):272–276, 1999.

71 M. Ye and A. Barg. Explicit Constructions of Optimal-Access MDS Codes With Nearly
Optimal Sub-Packetization. IEEE Transactions on Information Theory, 63(10):6307–6317,
October 2017.

72 Min Ye and Alexander Barg. Explicit constructions of MDS array codes and RS codes with
optimal repair bandwidth. In 2016 IEEE International Symposium on Information Theory
(ISIT), pages 1202–1206. IEEE, 2016.

73 Min Ye and Alexander Barg. Explicit constructions of high-rate MDS array codes with optimal
repair bandwidth. IEEE Transactions on Information Theory, 63(4):2001–2014, 2017.

F. Maturana and K. V. Rashmi 66:21

A Proofs of Section 3

A.1 Notation used in proofs
Let CI be an [nI , kI] MDS code over field Fq, specified by generator matrix GI , with columns
(that is, encoding vectors) {gI1, . . . ,gInI} ⊆ FkIq . Let λ ≥ 2 be an integer, and let CF be an
[nF , kF = λkI] MDS code over field Fq, specified by generator matrix GF , with columns
(that is, encoding vectors) {gF1 , . . . ,gFnF } ⊆ FkFq . Let rI = nI −kI and rF = nF −kF . When
CI and CF are systematic, rI and rF correspond to the initial number of parities and final
number of parities, respectively. All vectors are assumed to be column vectors. We will use
the notation v[l] to denote the l-th coordinate of a vector v.

We will represent all the code symbols in the initial codewords as being generated by
a single λkI × λnI matrix G̃I , with encoding vectors {g̃Ii,j | i ∈ [λ], j ∈ [nI]} ⊆ FkFq . This
representation can be viewed as embedding the column vectors of the generator matrix GI in
an λkI -dimensional space, where the index set Ki = {(i−1)kI+1, . . . , ikI}, i ∈ [λ] corresponds
to the encoding vectors for initial codeword i. Let g̃Ii,j denote the j-th encoding vector in
the initial codeword i in this (embedded) representation. Thus, g̃Ii,j [l] = gIj [l − (i− 1)kI] for
l ∈ Ki, and g̃Ii,j [l] = 0 otherwise. As an example, Figure 3 shows the values of the defined
terms for the single parity-check code from Figure 1 with nI = 3, kI = 2, nF = 5, kF = 4.

At times, focus will be only on the coordinates of an encoding vector of a certain initial
codeword i. For this purpose, define projKi(v) ∈ FkIq to be the projection of v ∈ FkFq to the
coordinates in an index set Ki, and for a set V of vectors, projKi(V) = {projKi(v) | v ∈ V}.
For example, projKi(g̃

I
i,j) = gIj for all i ∈ [λ] and j ∈ [nI].

The following sets of vectors are defined: the encoding vectors from initial codeword i,
SIi = {g̃Ii,j | j ∈ [nI]}, all the encoding vectors from all the initial codewords, SI = ∪i∈[λ]SIi ,
and all the encoding vectors from the final codeword SF = {gFj | j ∈ [nF]}.

We use the term unchanged symbols to refer to symbols from the initial codewords that
remain as is (that is, unchanged) in the final codeword. The symbols in the final codeword
that were not present in the initial codewords are called new, and the symbols from the
initial codewords that do not carry over to the final codeword are called retired. For example,
in Figure 1, all the data symbols are unchanged symbols (unshaded boxes), the single parity
symbol of the final codeword is a new symbol, and the two parity blocks from the initial
codewords are retired symbols. Each unchanged symbol corresponds to a pair of identical
initial and final encoding vectors, that is, a tuple of indices (i, j, l) such that g̃Ii,j = gFl .
For instance, the example in Figure 1 has four unchanged symbols, corresponding to the
identical encoding vectors g̃Ii,j = gF2(i−1)+j for i, j ∈ [2]. The final encoding vectors SF can
thus be partitioned into the following sets: unchanged encoding vectors from initial codeword
i, Ui = SF ∩ SIi for all i ∈ [λ], and new encoding vectors N = SF \ SI .

From the point of view of conversion cost, unchanged symbols are ideal, because they
require no extra work. On the other hand, constructing new symbols require accessing
symbols from the initial codewords. When a symbol from the initial codewords is accessed,
all of its contents are downloaded to a central location, where they are available for the
construction of all new symbols. For example, in Figure 1, one symbol from each initial
codeword is accessed during conversion.

During conversion, new symbols are constructed by reading symbols from the initial
codewords. That is, every new encoding vector is simply a linear combination of a specific
subset of SI . Define the read access set for an MDS (nI , kI ;nF , kF = λkI) convertible code
as the set of tuples D ∈ [λ]× [nI] such that the set of new encoding vectors N is contained in
the span of the set {g̃Ii,j | (i, j) ∈ D}. Furthermore, define the index sets Di = {j | (i, j) ∈ D},
∀i ∈ [λ] which denote the encoding vectors accessed from each initial codeword.

ITCS 2020

66:22 Convertible Codes

1 0 1

0 1 1

[]
GI =

gI
1 gI

2 gI
3 1 0 1 0 0 0

0 1 1 0 0 0

0 0 0 1 0 1

0 0 0 0 1 1

G̃I =

g̃I
1,1 g̃

I
1,2 g̃

I
1,3 g̃

I
2,1 g̃

I
2,2 g̃

I
2,3

1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

GF =

gF
1 gF

2 gF
3 gF

4 gF
5

Figure 3 Generator matrices for a specific (nI = 3, kI = 2; nF = 5, kF = 4) convertible code: GI

is the generator matrix of the initial code; G̃I is the generator matrix of all initial codewords; GF is
the generator matrix of the final code.

A.2 Proof of Lemma 10
The notation used in this proof is introduced in Appendix A.1. By the MDS property, every
subset V ∈ SF of size at most kF = λkI is linearly independent. For any initial codeword
i ∈ [λ], consider the set of all unchanged encoding vectors from other codewords, ∪` 6=iU`, and
pick any subset of new encoding vectors W ⊆ N of size |W| = min{kI , rF }. Consider the
subset V = (∪` 6=iU` ∪W): it is true that V ⊆ SF and |V| = (λ− 1)kI + min{kI , rF } ≤ kF .
Therefore, all the encoding vectors in V are linearly independent.

Notice that the encoding vectors in V \W contain no information about initial codeword
i and complete information about every other initial codeword ` 6= i. Therefore, the
information about initial codeword i in each encoding vector in W has to be linearly
independent since, otherwise, V could not be linearly independent. Formally, it must be the
case that Wi = projKi(W) has rank equal to min{kI , rF } (recall from Appendix A.1 that Ki
is the set of coordinates belonging to initial codeword i). However, by definition, the subset
Wi must be contained in the span of {gIj | j ∈ Di}. Therefore, the rank of {gIj | j ∈ Di} is
at least that of Wi, which implies that |Di| ≥ min{kI , rF }. J

A.3 Proof of Lemma 11
The notation used in this proof is introduced in Appendix A.1. When rF ≥ kI , this lemma
is equivalent to Lemma 10, so assume rI < rF < kI . From the proof of Lemma 10, for every
initial codeword i ∈ [λ] it holds that |Di| ≥ rF . Since rF > rI , this implies that Di must
contain at least one index of an unchanged encoding vector.

Choose a subset of at most kF = λkI encoding vectors from SF , which must be linearly
independent by the MDS property. In this subset, include all the unchanged encoding vectors
from the other initial codewords, ∪l 6=iUl. Then, choose all the unchanged encoding vectors
from initial codeword i that are accessed during conversion, W1 = ({g̃Ii,j | j ∈ Di} ∩ Ui). For
the remaining vectors (if any), choose an arbitrary subset of new encoding vectors, W2 ⊆ N ,
such that:

|W2| = min{kI − |W1|, rF }. (2)

It is easy to check that the subset V = ∪l 6=iUl ∪W1 ∪W2 is of size at most kF = λkI , and
therefore it is linearly independent. This choice of V follows from the idea that the information
contributed by W1 to the new encoding vectors is already present in the unchanged encoding
vectors, which will be at odds with the linear independence of V.

Since the elements of W1 and W2 are the only encoding vectors in V that contain
information from initial codeword i, it must be the case that W̃ = projKi(W1) ∪ projKi(W2)
has rank |W1|+ |W2|. Moreover, W̃ is contained in the span of {gIj | j ∈ Di} by definition,
so it holds that:

|Di| ≥ |W1|+ |W2|. (3)

F. Maturana and K. V. Rashmi 66:23

From Equation (2), there are two cases:
Case 1: kI − |W1| ≤ rF . Then |W2| = kI − |W1| and by Equation (3) it holds that
|Di| ≥ |W1|+ |W2| = kI .

Case 2: kI − |W1| > rF . Then |W2| = rF and by Equation (3) it holds that:

|Di| ≥ |W1|+ rF . (4)

Notice that there are only rI retired (i.e. not unchanged) encoding vectors in codeword i.
Since every accessed encoding vector is either in W1 or is a retired encoding vector, it
holds that:

|Di| ≤ |W1|+ rI . (5)

By combining Equation (4) and Equation (5), we arrive at the contradiction rF ≤ rI , which
occurs because there are not enough retired symbols in the initial codeword i to ensure that
the final code has the MDS property. Therefore, case 1 always holds, and |Di| ≥ k. J

A.4 Proof of Lemma 13
The notation used in this proof is introduced in Appendix A.1. We show that, even for
non-stable convertible codes, that is, when there are more than rF new symbols, the bounds
on the read access set D from Theorem 12 still hold.
Case 1: rI ≥ rF . Let i ∈ [λ] be an arbitrary initial codeword. We lower bound the

size of Di by invoking the MDS property on a subset V ⊆ SF of size |V| = λkI that
minimizes the size of the intersection |V ∩ Ui|. There are exactly rF encoding vectors in
SF \ V, so the minimum size of the intersection |V ∩ Ui| is max{|Ui| − rF , 0}. Clearly,
the subset projKi(V) has rank kI due to the MDS property. Therefore, it holds that
|Di|+ max{|Ui| − rF , 0} ≥ kI . By reordering, the following is obtained:

|Di| ≥ kI −max{|Ui| − rF , 0} ≥ min{rF , kI},

which means that the bound on Di established in Lemma 10 continues to hold for
non-stable codes.

Case 2: rI < rF . Let i ∈ [λ] be an arbitrary initial codeword, let W1 = ({g̃Ii,j | j ∈ Di}∩Ui)
be the unchanged encoding vectors that are accessed during conversion, and let W2 =
Ui \ W1 be the unchanged encoding vectors that are not accessed during conversion.
Consider the subset V ⊆ SF of kF = λkI encoding vectors from the final codeword such
that W1 ⊆ V and the size of the intersection W3 = (S ∩W2) is minimized. Since V may
exclude at most rF encoding vectors from the final codeword, it holds that:

|W3| = max{0, |W2| − rF }. (6)

By the MDS property, V is a linearly independent set of encoding vectors of size kF , and
thus, must contain all the information to recover the contents of every initial codeword,
and in particular, initial codeword i. Since all the information in V about codeword i is
in either W3 or the accessed encoding vectors, it must hold that:

|Di|+ |W3| ≥ kI . (7)

From Equation (6), there are two cases:

Subcase 2.1: |W2|−rF ≤ 0. Then |W3| = 0, and by Equation (7) it holds that |Di| ≥ kI ,
which matches the bound of Lemma 11.

ITCS 2020

66:24 Convertible Codes

Subcase 2.2: |W2| − rF > 0. Then |W3| = |W2| − rF , and by Equation (7) it holds that:

|Di|+ |W2| − rF ≥ kI . (8)

The initial codeword i has kI + rI symbols. By the principle of inclusion-exclusion we
have that:

|Di|+ |Ui| − |W1| ≤ kI + rI . (9)

By using Equation (8), Equation (9) and the fact that |W2| = |Ui| − |W1|, we conclude
that rI ≥ rF , which is a contradiction and means that subcase 2.1 always holds in this
case. J

A.5 Proof of Lemma 14
Lemma 13 shows that the lower bound on the read access set D for stable linear MDS
convertible codes continues to hold in the non-stable case. Furthermore, this bound is
achievable by stable linear MDS convertible codes in the merge regime (as will be shown
in Section 4). The number of new blocks written during conversion under stable MDS
convertible codes is rF . On the other hand, the number of new symbols under a non-stable
convertible code is strictly greater than rF . Thus, the overall access cost of a non-stable
MDS (nI , kI ;nF , kF = λkI) convertible code is strictly greater than the access cost of an
access-optimal (nI , kI ;nF , kF = λkI) convertible code. J

B Proofs of Section 4

B.1 Proof of Lemma 20
Consider the first rF columns of PI , which we denote as PI

rF = PI [∗; 1, . . . , rF]. Notice that
PF can be written as the following block matrix:

PF =

PI
rF

PI
rF diag(1, θkI , θ2kI , . . . , θk

I(rF−1))
PI
rF diag(1, θ2kI , θ2·2kI , . . . , θ2kI(rF−1))

...
PI
rF diag(1, θ(λ−1)kI , θ2(λ−1)kI , . . . , θ(λ−1)kI(rF−1))

 ,

where diag(a1, a2, . . . , an) is the n × n diagonal matrix with a1, . . . , an as the diagonal
elements. From this representation, it is clear that PF can be constructed from the the first
rF columns of PI . J

B.2 Proof of Lemma 21
Let R be a t× t submatrix of PI or PF , determined by the row indices i1 < i2 < · · · < it
and the column indices j1 < j2 < · · · < jt, and denote entry (i, j) of R as R[i, j]. The
determinant of R is defined by the Leibniz formula:

det(R) =
∑

σ∈Perm(t)

sgn(σ)
t∏
l=1

R[l, σ(l)] =
∑

σ∈Perm(t)

sgn(σ)θEσ (10)

where Eσ =
t∑
l=1

(il − 1)(jσ(l) − 1), (11)

F. Maturana and K. V. Rashmi 66:25

Perm(t) is the set of all permutations on t elements, and sgn(σ) ∈ {−1, 1} is the sign of
permutation σ. Clearly, det(R) defines a univariate polynomial fR ∈ Fp[θ]. We will now
show that deg(fR) =

∑t
l=1(il − 1)(jl − 1) by showing that there is a unique permutation

σ∗ ∈ Perm(t) for which Eσ∗ achieves this value, and that this is the maximum over all
permutations in Perm(t). This means that fR has a leading term of degree Eσ∗ .

To prove this, we show that any permutation σ ∈ Perm(t)\{σ∗} can be modified into
a permutation σ′ such that Eσ′ > Eσ. Specifically, we show that σ∗ = σid, the identity
permutation. Consider σ ∈ Perm(t)\{σid}: let a be the smallest index such that σ(a) 6= a,
let b = σ−1(a), and let c = σ(a). Let σ′ be such that σ′(a) = a, σ′(b) = c, and σ′(d) = σ(d)
for d ∈ [t]\{a, b}. In other words, σ′ is the result of “swapping” the images of a and b in σ.
Notice that a < b and a < c. Then, we have that:

Eσ′ − Eσ = (ia − 1)(ja − 1) + (ib − 1)(jc − 1)− (ia − 1)(jc − 1)− (ib − 1)(ja − 1) (12)
= (ib − ia)(jc − ja) > 0 (13)

The last inequality comes from the fact that a < b implies ia < ib and a < c implies ja < jc.
Therefore, deg(fR) = maxσ∈Perm(t) Eσ = Eσid .

Let E∗(λ, kI , rI , rF) be the maximum degree of fR over all submatrices R of PI or PF .
Then, E∗(λ, kI , rI , rF) corresponds to the diagonal with the largest elements in PI or PF .
In PF this is the diagonal of the square submatrix formed by the bottom rF rows. In PI it
can be either the diagonal of the square submatrix formed by the bottom rI rows, or by the
right kI columns. Thus, we have that:

E∗(λ, kI , rI , rF) = max

rF−1∑
i=0

i(λkI − rF + i),
rI−1∑
i=0

i(kI − rI + i),
kI−1∑
i=0

i(rI − kI + i)

= (1/6) ·max

rF (rF − 1)(3λkI − rF − 1),
rI(rI − 1)(3kI − rI − 1),
kI(kI − 1)(3rI − kI − 1)

 .

Let D = E∗(λ, kI , rI , rF) + 1. Then, if det(R) = 0 for some submatrix R, θ is a root of fR,
which is a contradiction since θ is a primitive element and the minimal polynomial of θ over
Fp has degree D > deg(fR) [34]. J

C Proofs of Section 5

C.1 Proof of Theorem 25

Consider the construction Hankels described in this section, for some s ∈ {λ, . . . , rI}. The
Hankel form of Tm and the manner in which PI and PF are constructed guarantees that the
l-th column of PF corresponds to the vertical concatenation of columns l, l+ t, . . . , l+(λ−1)t
of PI . Thus, PF is rF -column block-constructible from PI . Furthermore, since PI and
PF are submatrices of Tm, they are superregular. Thus PI and PF satisfy both of the
properties laid out in Theorem 19 and hence the convertible code constructed by Hankels is
access-optimal. J

ITCS 2020

66:26 Convertible Codes

D Algorithm for constructing superregular Hankel triangular arrays

In this appendix we describe the algorithm from [52] for constructing a superregular Hankel
triangular array over any finite field. This is supplied as reference and is not necessary for
understanding the constructions described in this paper. We note that the algorithm outlined
in [52] takes the field size q as input, and generates Tq as the output. It is easy to see that
Tq thus generated can be truncated to generate the triangular array Tm for any m ≤ q.

Let Fq be a given base field, and let m ≤ q be the size of the output triangular array Tm.
The triangular array Tm has Hankel form, as shown in Equation (1). Therefore, it suffices to
specify the entries b1, b2, . . . , bm in the first column of Tm. On input m ≤ q, the algorithm
proceeds as follows:
1. Consider the extension field Fq2 and choose an element β ∈ Fq2 such that βi 6∈ Fq for

i ∈ [q] and βq+1 ∈ Fq. Let p(x) = x2 + µx+ η be the minimal polynomial of β over Fq2 .
2. Let σ−1, σ0, . . . , σm ∈ Fq be such that σ−1 = −η−1, σ0 = 0, and σi = −µσi−1 − η σi−2,

for i ∈ [m].
3. Set bi = σ−1

i , for all i ∈ [m].
The resulting triangular array is superregular, that is, every square submatrix taken from
Tm is superregular. Please refer to [52] for a proof of this fact.

	Introduction
	Overview of results
	Background

	A framework for studying code conversions
	Lower bounds on access cost of code conversion
	Lower bounds on the access cost of code conversion

	Achievability: Explicit access-optimal convertible codes in the merge regime
	Explicit construction
	Proof of optimality

	Low field-size convertible codes based on superregular Hankel arrays
	General Hankel-array-based construction of convertible codes
	Handling a priori unknown parameters

	Related work
	Conclusions and future directions
	Proofs of Section 3
	Notation used in proofs
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 13
	Proof of Lemma 14

	Proofs of Section 4
	Proof of Lemma 20
	Proof of Lemma 21

	Proofs of Section 5
	Proof of Theorem 25

	Algorithm for constructing superregular Hankel triangular arrays

