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Abstract
Flash caches are used to reduce peak backend load for

throughput-constrained data center services, reducing the total
number of backend servers required. Bulk storage systems
are a large-scale example, backed by high-capacity but low-
throughput hard disks, and using flash caches to provide a
more cost-effective storage layer underlying everything from
blobstores to data warehouses.

However, flash caches must address the limited write en-
durance of flash by limiting the long-term average flash write
rate to avoid premature wearout. To do so, most flash caches
must use admission policies to filter cache insertions and
maximize the workload-reduction value of each flash write.

The Baleen flash cache uses coordinated ML admission
and prefetching to reduce peak backend load. After learning
painful lessons with our early ML policy attempts, we exploit
a new cache residency model (which we call episodes) to
guide model training. We focus on optimizing for an end-to-
end system metric (Disk-head Time) that measures backend
load more accurately than IO miss rate or byte miss rate.
Evaluation using Meta traces from seven storage clusters
shows that Baleen reduces Peak Disk-head Time (and hence
the number of backend hard disks required) by 12% over state-
of-the-art policies for a fixed flash write rate constraint. Baleen-
TCO, which chooses an optimal flash write rate, reduces our
estimated total cost of ownership (TCO) by 17%. Code and
traces are available via https://www.pdl.cmu.edu/CILES/.

1 Introduction
Large-scale storage continues to be predominantly done with
hard disks (HDDs), which provide much more cost-effective
storage than flash. However, HDDs have low throughput, and
each can generally only perform about 100 IOs per second
(IOPS). Modern storage systems rely heavily on flash caches
to absorb a substantial fraction of requests and thereby reduce
the number of disks needed to satisfy the IO workload.

Although a functional cache can be realized using traditional
approaches, which assume items can be admitted to the cache
arbitrarily, it is important to consider the differing natures of
HDDs and flash SSDs. In particular, the IOPS and bandwidth
of HDDs has not kept up with increases in their capacity,
making disk time a key goal of flash caching more than
average IO latency. Flash, on the other hand, provides orders
of magnitude higher IOPS, but it wears out as it is written. As
a result, expected SSD lifetime projections assume relatively
low average write rate limits, such as “three drive-writes per
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(a) Estimated TCO
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(b) Peak load
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(c) Median load

Figure 1: Baleen-TCO reduces (estimated) TCO by 17% and
peak load by 16% over the best baseline on 7 Meta traces by
choosing the optimal flash write rate. IO and byte miss rates
were reduced by 14% and 2% (Suppl A.1). For the default
flash write rate, Baleen reduces peak load by 12% over the
best baseline.

day”, meaning 3N TB of writes to a N TB SSD each day.
Manufacturers offer SSDs with even lower endurance (e.g., 1
drive write per day) with correspondingly lower prices. All of
this translates to a need for smart admission policies to decide
which items get written into cache [5, 14]. Popular policies
have included random admission and history-based policies
that reject items without sufficient recent usage.

Machine learning (ML) policies for flash cache admission
have been proposed as a solution for avoiding excessive flash
writes. However, caching does not easily map to well-trodden
problems in computer vision or natural language processing.
In particular, a policy’s decision is often affected by its past
decisions, and can have synergistic or antagonistic effects on
other parts of the system. While in theory this can be addressed
with end-to-end and reinforcement learning techniques, in
practice, such models require large amounts of human capital
and computing resources, and do not necessarily outperform
a typical well-tuned production system [6, 21, 25, 28, 29, 57].

Making ML policies introspectable is key to their adoption
by systems practitioners [55]. While accurate models are
desirable, success also hinges on the correct decisions being
posed to the models. How one uses ML is key: how to generate
training examples from traces, how to arrive at optimal deci-
sions for ML to learn from, which subproblems ML should
be applied to, and how to optimize end-to-end systems perfor-
mance without sacrificing introspectability, debuggability, and
efficiency. In Baleen, we decompose the flash caching problem
into admission, prefetching, and eviction (§3.3). This helped
us align policy decisions to well-understood and efficient ML
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techniques for supervised learning. We do, however, want to
co-design these different components to reap the full benefits.
One may depend on the other to be effective, as we found to
be true for ML prefetching and ML admission.

This paper explores ML policies for flash caches in bulk
storage systems. We introduce a new analytic approach for
access pattern analysis, based on a cache residency model we
call episodes (§3.4), which groups accesses that correspond to
an item’s cache residency if admitted. Our approach provides
a more complete view of end-to-end flash caching policy per-
formance, and enables us to efficiently model policy behavior
under multiple constraints. This is especially useful for flash
caches given that the resource burden of an admission is domi-
nated by its flash writes, which is the same whether the item is
admitted at the start or end of the episode. From our approach,
we develop OPT (3.5), an episode-based approximation of
optimal admission and train ML admission policies to imitate
OPT. We benchmark them against OPT and other baseline
admission policies on seven recent real-world storage cluster
traces collected over 3 years.

Baleen is our resulting ML-guided Flash cache policy. We
evaluate it by its savings in Peak Disk-head Time (§3.1), a
measure of peak backend load, and we find that a combination
of ML-guided admission and ML-guided prefetching provides
the largest improvement. In deploying ML, we learned that
determining the right optimization metric is not an easy task;
an earlier version of Baleen improved IO hit ratio but had worse
end-to-end performance (disk-head time). Optimizing for the
right metric in the ML policy improved both introspectability
and system performance. We also developed a variant Baleen-
TCO, which chooses the optimal flash write rate to optimize
our estimate of the total cost of ownership (TCO). This also
results in improvements to traditional metrics, reducing IO
miss rate by 14% and byte miss rate by 2% (Suppl A.1).

Contributions This paper makes 3 primary contributions:
(1) a new cache residency model (episodes) that enables a
useful comparison point (OPT) and improves ML training
effectiveness; (2) ML-guided cache policies that optimize for
Disk-head Time and TCO, not hit rate; (3) Baleen, which uses
episodes to train coordinated ML admission and prefetching
policies, saving 16% in peak load and 17% in (estimated)
TCO over our best baseline (Fig 1).

2 Background
2.1 Bulk storage systems in data centers
Tectonic is an example of a bulk storage system, which ag-
gregates persistent storage needs in data centers (e.g., from
blobstores and data warehouses). Flash caches are used to
reduce the load on the backing HDDs and meet throughput
requirements. Other systems have a similar design [16,35,42].

Accesses are made to byte ranges within blocks. Blocks are
mapped to a location on backing HDDs and subdivided into
many smaller units called segments that can be individually
cached. (Tectonic has 8 MB blocks and 128 kB segments.)
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Figure 2: Disk-head Time (DT) for one IO. When a HDD
performs an IO, the disk head seeks before it reads data. For tiny
IOs, throughput is limited by IOPS; for large IOs, by bandwidth. DT
encompasses both metrics and generalizes to variable-size IOs.

Upon an access, the cache is checked for all segments needed
to cover the request byte range. If any are missing, an IO is
made to the backing store to fetch them, at which point they
can be admitted into the cache.

Each cluster has 10,000s of storage nodes independently
serving requests. Each node has 378 TB in HDDs [35], 400
GB in flash cache, and 10 GB in DRAM cache (37,800:40:1).
This paper focuses on the scope of the individual node.
2.2 Bulk storage limited by disk-head time (DT)
At scale, hard disks (HDDs) remain the choice of backing store
as they are cheaper by 10X per TB over SSDs [32]. Newer
HDDs offer increased storage density, resulting in shrinking
throughput (IOPS and bandwidth) per GB as more GBs are
served by the same disk head.

Disk-head time (defined in §3.1) on backing HDDs is a
premium resource, especially with workloads that are more
random than sequential. The mechanical nature of HDDs
results in a high, size-independent access time penalty (e.g.,
10 ms) for positioning the read/write head before bytes are
transferred. With a high read rate (e.g., 5.5 ms/MB), a request
could take 10 to 70 ms (Fig 2).

In provisioning bulk storage, peak demand for disk-head
time matters most. If the system has insufficient IO capacity,
requests queue up, and slowdowns occur. If sustained, clients
retry requests and failures occur, affecting user experience.
Thus, bulk storage IO requirements are defined by peak load,
which in turn affects storage costs.
2.3 Flash caches absorb HDD load but have limited

write endurance
Flash caching plays an important role in absorbing backend
load, compensating for disk-head time limitations of the under-
lying HDDs. This setup enables resource-efficient storage for
workloads that exceed the throughput requirements of HDDs
but which are infeasible to store using flash alone. With the
trends towards higher density HDDs and fewer bytes per HDD
spindle, flash caches unlock more usable bytes per spindle.

While managing throughput is the primary goal of flash
caching, tail latency can improve as a result of reduced backend
contention [56]. Flash caches also add flexibility for matching
system throughput to ever-growing demand, as it is easier
to enlarge flash caches than swap out existing HDDs. When
AI training put pressure on storage bandwidth at Meta, the
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solution was to add a disaggregated flash caching tier [60].
Flash does not have access setup penalties, but does have

wearout that translates into long-term average-write-rate limits.
SSD manufacturers rate their drives’ endurance in terms of
drive-writes per day (DWPD) over their warranty period.
Caching is an especially challenging workload for flash, since
items will have widely varying lifetimes, resulting in a usage
pattern closer to random I/Os than large sequential writes.
Items admitted together may not be evicted at the same time,
worsening write amplification. Writing every miss into flash
would cause it to wear out prematurely. Admitting everything
requires up to 492 MBs−1 or 43 DWPD for our traces; for
an SSD rated at 3 DWPD over 5 years, this means a reduced
lifetime of just 4 months (i.e., 14 × as fast). One solution is
SSD capacity overprovisioning, but this can rapidly become a
dominant part of the total storage costs [5, 55].

Flash caches leverage admission policies (APs) to decide if
items should be inserted into the flash cache or discarded, and
have simple eviction policies (LRU, FIFO) to minimize write
amplification [5]. Like eviction policies, admission policies
weigh the benefit of hits from new items against lost hits from
evicted items. They must also weigh the write cost of admitting
the new item against other past or future items. Policies have
an admission threshold that can be varied to achieve the target
flash write rate. We provide some examples.
• CoinFlip (baseline) On a miss, segments for an access are

either all admitted, or not at all, with probability 𝑝. This
simple policy does not need tracking of past items seen.

• RejectX (baseline) rejects a segment the first 𝑋 times it
is seen. Past accesses are tracked using probabilistic data
structures similar to Bloom filters. We use 𝑋 = 1 and vary
the window size of past accesses to achieve the desired
write rate. Both Meta [5] and Google [55] used this prior to
switching to more complex policies.

• ML admission policies use offline features to make de-
cisions in addition to online features such as past access
counts. An ML model can be trained offline based on a trace
(as we do), or online using reinforcement learning.

2.4 Challenges in flash caching
Challenges in flash admission Flash admission policies are
difficult to design for many reasons. DRAM caches do not need
admission policies as they can defer decisions to the eviction
policy, which has the advantage of knowing the item’s usage
while in cache. Flash caches incur write costs at insertion
time, forcing admission policies to decide a priori to optimize
the limited write budget. A longer residency better amortizes
this upfront write cost. In contrast, the space-time cost of an
item is incurred at a steady rate over time in DRAM caches.

Challenges for ML admission We describe 4 challenges:
Correct optimization metric not obvious The right metric

is important not only because optimizing it gives better perfor-
mance, but because it makes the system more robust. Systems
practitioners know the importance of using end-to-end metrics

such as IO hit rate, rather than cache hit rate (problem: an IO
hit can require multiple cache hits) or ML model accuracy
(problem: asymmetrical misprediction cost and class imbal-
ance). Yet even optimizing for IO hit rate is still an (easy)
misstep, as a policy that increases the IO hit rate but consumes
much more bandwidth may result in overall higher DT, and
require more HDDs to serve that load.

Asymmetrical misprediction cost Mispredictions consist
of false positives (FPs) and false negatives (FNs). A FP incurs
a full write cost (reducing writes left for true positives), and
time in cache. FPs have a large performance impact since
given the limit on flash writes. With an FN, a hit is lost but the
policy may have further chances to admit the item. These lost
hits are insignificant for popular items, but have an outsized
impact on items with only a few potential hits. There is a long
but heavy tail of such items; our traces show many admitted
items with 5–8 hits (Fig 20 of Supp A.8). Policies trading off
too many FNs for FPs suffer a performance hit [55].

Class imbalance Since most items will not be admitted (94%
in our experiments), true negatives (accesses that should not
be admitted) far exceeds the number of true positives (accesses
that should be admitted). Indeed, we observe that while ML
admission policies may achieve a high ML accuracy, this does
not always translate into a high cache hit rate. We found typical
solutions (oversampling, undersampling, and sample weights)
ineffective at countering the extreme imbalance.

APs operate only on misses For an ML policy, it makes
sense to train only on accesses in a trace that result in misses,
rather than all accesses in the trace. However, this requires
an online simulation to determine which accesses are misses,
adding additional complexity to training.

Challenges for prefetching policies On a miss, a backend
IO must be made to retrieve all missed segments. This IO
can be extended and more segments admitted. Done correctly,
compulsory misses (when a segment is first observed) are
eliminated, reducing disk-head time. However, prefetching
mistakes are costly as they consume both writes and extra DT.

Limitations of existing systems Existing works are often:
• Not modular. Without a modular design, the system can

be oversimplified and miss out on key design considera-
tions [14], or else veer towards too much complexity and
be difficult to debug and reason about.

• Optimizing for intermediate metrics. Many systems op-
timize hit rate [8, 13,14, 22, 37,43], bandwidth [41,42] or
write rate without considering the larger system the cache
is part of. This makes them less performant and robust.

• Not focused on peak. Almost all systems report averages,
giving less accurate assessments of system performance,
as bad performance at peak can be covered up by good
(but ultimately unhelpful) off-peak performance. To our
knowledge, only one other system evaluates load at peak [42].

• Not co-designed. Many systems focus on a single aspect
like flash admission [5, 13,14] or eviction [3, 8, 22,26,37,
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41–43, 47, 61] without considering the effect of one part on
another, in the belief that their benefits will be fully retained
when applied with other techniques. To our knowledge,
only two other systems evaluate multiple subproblems ( [1]:
admission and eviction; [56]: admission and prefetching).

3 Exploring potential gains in flash caching
To improve admission, we must first know what “better” looks
like. We use Disk-head Time as an end-to-end throughput met-
ric to evaluate this. This section describes our decomposition
of the flash caching problem, and our attempt at approximating
an optimal admission policy (OPT) and a framework (episodes)
to evaluate the cost-benefit trade-offs of not just admission
policies, but orthogonal improvements such as prefetching.
3.1 Measure Disk-head Time, not hits or bandwidth
We quantify backing store load via disk-head time (DT), which
is a metric that balances IOPS and bandwidth.

Definition Disk-head Time (DT) is the cost of serving
requests to the backend. For a single IO that fetches 𝑛 bytes,
with 𝑡𝑠𝑒𝑒𝑘 the time for one disk seek and 𝑡𝑟𝑒𝑎𝑑 the time to read
one additional byte: 𝐷𝑇 𝑖 = 𝑡𝑠𝑒𝑒𝑘 +𝑛 · 𝑡𝑟𝑒𝑎𝑑

Definition Backend load (Utilization) of a time window is
the total DT needed to serve misses, normalized by provisioned
DT (1 disk-sec per disk per sec):𝑈𝑡𝑖𝑙𝐷𝑇 =

∑
𝑖 𝐷𝑇𝑖

𝐷𝑇𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑒𝑑
, where∑︁

𝑖

𝐷𝑇 𝑖 = 𝐹𝑒𝑡𝑐ℎ𝑒𝑠𝐼𝑂𝑠 · 𝑡𝑠𝑒𝑒𝑘 + 𝐹𝑒𝑡𝑐ℎ𝑒𝑠𝐵𝑦𝑡𝑒𝑠 · 𝑡𝑟𝑒𝑎𝑑 (1)

DT accurately models throughput constraints of bulk
storage systems. DT models both the IOPS and bandwidth
limitations of the backing HDDs. (This concept can be ex-
tended to other systems with IO setup and transfer costs, such
as CDNs.) In our caching setup, we fetch the smallest range
covering all cache misses, and normalize DT by HDDs per
node to get backend load.

In Fig 3, we validate DT that can be calculated using
only two production counters, IO misses and bytes fetched,
against system-reported disk utilization on a Meta production
cluster in Feb 2023. The peaks line up within 1%, which was
surprisingly accurate given the simplicity of this formula (𝑡𝑠𝑒𝑒𝑘
and 𝑡𝑟𝑒𝑎𝑑 are constants) and the vagaries of production systems
(included in the system disk utilization measurements).

DT correctly balances IO misses and byte misses. In
practice, 𝐹𝑒𝑡𝑐ℎ𝑒𝑠𝐵𝑦𝑡𝑒𝑠 ≈ 𝑀𝑖𝑠𝑠𝑒𝑠𝐵𝑦𝑡𝑒𝑠 (there is a very small
difference due to non-consecutive misses). Hence,

∑
𝐷𝑇 can

be interpreted as a weighted sum of IO misses and byte misses,
and reducing DT consumed reduces the familiar caching
metrics of IO miss rate and byte miss rate.

Conversely, optimizing only the IO miss rate or byte miss
rate may result in mistakes made. For example, IO hit rate
cannot distinguish these two scenarios though one is better
than the other. Consider two blocks, both with 64 accesses.
For the first block, each of the 64 segments is requested, one
at a time. For the second block, every access requests all 64

0 1 2 3 4 5 6
Days

0

20

40

60

Ba
ck

en
d 

Lo
ad

 (
%

)

System-Reported Disk Utilization
UtilDT (using FetchesIOs & FetchesBytes counters)

Figure 3: DT validated in production. Our DT formula (plug-
ging counters into Eq 1) matches measured disk utilization (blue)
closely. The peak of 58% occurs on Day 0.

segments. While both require the same cache space and save
the same IOs, caching the second block saves more DT.

Definition Peak DT is the P100 backend utilization
(𝑈𝑡𝑖𝑙𝐷𝑇 ), measured every 10 minutes. The peak refers to
the 10-min interval with the highest DT: 𝑃𝑒𝑎𝑘𝐷𝑇 =𝑈𝑡𝑖𝑙𝑃100

𝐷𝑇

Peak DT is proportional to the number of backend
servers required. System capacity, such as the number of
backend servers, is provisioned to handle peak load in systems
that need to meet real-time demand. Therefore, to reduce the
backend size required, Peak DT should be minimized. This
introduces the need for scheduling (i.e., when to spend the
flash write rate budget) to prioritize the admission of items that
contribute to the Peak DT. As explicitly optimizing admission
for the peak introduces significant complexity, we leave that
for future work. For this paper, we design our admission and
prefetching policies to minimize average DT (and show that
they are successful in reducing Peak DT), and optimize for
Peak DT in other aspects of the system.
3.2 TCO dominated by backend servers required
In the absence of actual cost numbers, we approximate TCO
(total cost of ownership) based on public information. [56]
defines TCO as the total cost of HDD reads and written
flash bytes, assuming a fixed flash cache size and that other
costs (CPU, RAM, power, network) are negligible. We design
a similar function, assuming that the cost of HDD reads is
proportional to the HDDs required (and Peak DT), and the cost
of written flash bytes is proportional to the SSDs purchased
in the long run: 𝑇𝐶𝑂 ∝𝐶𝑜𝑠𝑡𝐻𝐷𝐷 ·#𝐻𝐷𝐷𝑠 +𝐶𝑜𝑠𝑡𝑆𝑆𝐷 ·#𝑆𝑆𝐷𝑠

We calculate relative TCO savings using the Peak DT saved
with our baseline AP RejectX (𝑃𝑒𝑎𝑘𝐷𝑇0), and relative to the
default target flash write rate (𝐹𝑙𝑎𝑠ℎ𝑊𝑅0).

TCO1 ∝
PeakDT1
𝑃𝑒𝑎𝑘𝐷𝑇 0

·#𝐻𝐷𝐷𝑠0+
𝐶𝑜𝑠𝑡𝑆𝑆𝐷

𝐶𝑜𝑠𝑡𝐻𝐷𝐷
· FlashWR1
𝐹𝑙𝑎𝑠ℎ𝑊𝑅0

·#𝑆𝑆𝐷𝑠0 (2)

This gives us a TCO function based on a policy’s Peak DT
(𝑃𝑒𝑎𝑘𝐷𝑇1) and the flash write rate chosen (𝐹𝑙𝑎𝑠ℎ𝑊𝑅1). (See
App A.4 for a line-by-line derivation.) The skewed ratio of
HDD to SSD capacity (945:1 [35]) means that SSD cost is
a fraction of TCO (3% on our workloads). Hence, reducing
Peak DT (and HDDs needed) is key to reducing TCO.
3.3 Decomposing the caching problem
We define the caching problem as determining which times
we should fetch, admit, and evict each segment to minimize
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Figure 4: An episode is a group of accesses during a block’s
residency. Accesses (in blue) are grouped into two episodes as the
interarrival time (in red) exceeds the assumed eviction age.

Figure 5: Episodes span space (measured in segments) in
addition to time. An episode’s size is the smallest number of
segments required to be admitted to get all possible hits within an
episode. OPT-Range (§ 3.6) is (1,3) and (2,3) respectively.

the backend’s DT given a flash write rate limit.
We propose a heuristic decomposition of this problem into

three sub-problems: admission, prefetching, and eviction. This
makes it easier to reason about the optimal solutions to each
sub-problem and the training and behavior of ML solutions
for each part. Making ML solutions easier to train, understand,
and debug mitigates production engineers’ common criticism
of their blackbox nature [40].

Admission: Whether to admit something into cache in
anticipation of future hits that reduce DT. Here,we trade off the
disk-head time saved against the write rate used from caching
an item. We model this as a binary classifier, where misses are
admitted if the output probability exceeds the policy threshold.
We also considered regression models (e.g., predicting no. of
expected hits). Such models eliminate the threshold parameter,
but we found they perform worse end-to-end, perhaps because
their loss functions incentivize performance at all thresholds
(write rates) rather than just those at the boundary.

Prefetching: Whether to prefetch extra segments outside
the current access range (which was a miss). Here, we trade off
DT saved from hits on the first accesses against the additional
time spent in cache, and for incorrect prefetches, the DT wasted
and the opportunity cost of the wasted flash write rate. We
further decompose the prefetching problem into a) deciding
what segments to prefetch and b) when to prefetch (whether
the expected benefit exceeds the cost, taking into account the
possibility of mispredictions).

Eviction: Which segment in the cache to pick for eviction
upon an admission. Here, one can employ existing approaches
for non-flash caches, including ML-based policies. Here, we
employ a simple eviction policy (in our case, LRU) as is used
in production systems, leaving ML-based flash-aware eviction
policies for future work.
3.4 Episodes: an offline model for flash caching
We devised an offline model for flash caching for efficient
evaluation of flash caching improvements, and to facilitate the

training of ML-based policies. This model revolves around
episodes, which are defined as:

Definition An episode is a sequence of accesses that would
be hits (apart from the first access) if the corresponding item
was admitted. It is defined on a block (the rationale being that
a cache hit only occurs if all segments are present in cache).

An episode may span multiple segments, and as shown in
Fig 5, an episode’s size is the number of segments needed to
cache it. This leads naturally to a formulation for prefetching.
(An important distinction between episodes and block-level
LRU analysis is that different episodes for the same block
can have different sizes.) An episode’s timespan is the length
of time between the first access of any segment and the last
eviction of a segment.

We generate episodes to aid ML training by exploiting the
model of an LRU cache as evicting items at a constant logical
time (eviction age) after the last access [7, 10, 15, 30]. In an
LRU cache, the eviction age is the logical time between an
item’s last access & eviction. As shown in Fig 4, we group
accesses into episodes such that all inter-arrival times within
episodes are no larger than the assumed eviction age.

Episodes provide a direct mapping to the costs and benefits
associated with an admission, and which corresponds directly
to the decisions being made by admission policies. These
benefits and costs are associated with an item’s entire lifespan
in cache, and are not obvious from looking at a stream of
individual accesses. Moreover, with flash caching, it is optimal
to admit as early as possible in the episode, given that the
flash writes required are a fixed cost. By shifting the mental
model from interdependent accesses to independent episodes,
we can reason about decisions more easily.

Decisions on episodes can be made independently by as-
suming a constant eviction age. This also allows decisions to
be made in parallel. The added pressure on cache space via
an admission is accounted for via downward pressure on the
eviction age. We determine an appropriate eviction age using
simulations that measure the average eviction age. In reality,
the eviction age is not constant and varies with cache usage
over time. One approach deals with this by calculating policies
for a wide range of possible eviction ages [55]. However, we
find that in terms of end-to-end performance, Baleen is not
sensitive to the assumed eviction age (typically 2+ hours) as
long as it is not extremely low (e.g., seconds to minutes).

The episode model also allows for an efficient offline ana-
lytical analysis of policies via Little’s Law. Given the arrival
rate and assumed eviction age, we can estimate the cache
size required, and set the eviction age such that the analytical
cache size is equal to the cache size constraint. While this is
much more efficient than an online simulation and is useful
to explore a greater range of parameters than is possible with
online simulation, the numbers will differ from simulated ones
as the cache size constraint is not enforced all the time, only
as a long-term average.

Admission policies can be viewed as partitioning these
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episodes into those admitted and discarded. This can be done
via scoring episodes and ranking them by score, and we
elaborate on this in the next section.
3.5 OPT approximates optimal online AP
Using episodes, we can devise an admission policy (AP) for
online simulation that approximates the optimal AP using
offline information from the entire trace. First, each block’s
accesses are grouped into episodes using an assumed eviction
age. Second, all episodes are scored and sorted. Last, the
maximum no. of episodes are admitted such that the total flash
writes required do not exceed the write rate budget. During
online simulation, accesses will be admitted if they belong
to episodes marked as admitted during the offline process.
OPT scores each episode to maximize on the DT saved if
admitted and to minimize its size (flash writes required to
admit): 𝑆𝑐𝑜𝑟𝑒 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒) = 𝐷𝑇𝑆𝑎𝑣𝑒𝑑 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒 )

𝑆𝑖𝑧𝑒 (𝐸𝑝𝑖𝑠𝑜𝑑𝑒 )

3.6 Prefetching: what and when?
Episodes are also used to design our prefetchers and generate
OPT labels for prefetching. By default, on a miss, the smallest
IO that covers all missed segments is made, i.e., no prefetching
occurs. It is possible to extend this IO and preemptively admit
more segments. If done correctly, this reduces the total no of
IOs needed and thus reduces DT.

Prefetching the correct segments is important to achieve
a reduction in DT given a write bound. With imperfect ad-
mission policies, predicting a confidence value is necessary
to balance the risk of real prefetching costs against possible
benefits. Otherwise, prefetched segments compete with seg-
ments admitted from misses and drive up write rate while not
reducing DT, meaning an overall reduction in DT for the same
write bound. Note that the costs and benefits of prefetching
must be evaluated against the opportunity cost of using writes
for admission of missed blocks instead.

Deciding when to prefetch Fetching insufficient segments
results in minimal or no DT reduction. On the other hand,
fetching excess segments results in a high write rate. To
balance these trade-offs, we need to know our confidence in
our range prediction.

For instance, prefetching the entire block on every miss will
result in an overall IOPS reduction given write rate constraints.
A blunt method to increase precision is to prefetch on every
2nd miss or on every partial IOPS hit (when some but not
all segments in an access return a hit). This indicates that
part of the block was admitted to cache. For OPT prefetching,
we prefetch on OPT-Ep-Start, the start of the episode as
determined by the episode model.

Deciding what to prefetch: Whole-Block, OPT-Range
The straightforward choice is to prefetch the entire 8 MB block
(Whole-Block). However, the resultant write rate is too high,
making it infeasible unless combined with prefetching on
every partial IOPS hit. To evaluate how well we could perform
given offline information from the whole trace, we introduce

Training
Trace

Episodes model

used to train
Admission Policy

Prefetcher

Flash Cache 
(e.g., CacheLib) 

Bulk Storage

Deployment

Admission Policy

Prefetcher IOIO

Figure 6: Architecture. An admission policy in CacheLib decides
whether to admit items into flash. Prefetching (preloading of data
beyond current request) takes place in Tectonic.

OPT-Range, which uses the generated episodes to determine
an optimal range of segments to prefetch. OPT-Range is the
minimal range of segments that covers all accesses in an
episode. For the episodes in Fig 5, OPT-Range is (1,3) for Ep
1 and (2,3) for Ep 2. Whole-Block always fetches (1,64).

4 Baleen Implementation
We describe how Baleen provides episode-based solutions to
two problems: how to train an ML-based admission policy,
and using prefetching to improve beyond admission policies.
4.1 Training Baleen’s ML admission policy
Episodes generated from the trace are used to train an admis-
sion policy, as shown in Fig 6. The policy is a binary classifi-
cation model. We describe: 1) how we generate training data
and labels from episodes, 2) what features and architecture
we use for the ML admission model, 3) how we determine
appropriate values for training parameters (assumed eviction
age, admission policy threshold) through an iterative loop,
and 4) how we implement ML admission in CacheLib.

Features Baleen’s admission policy utilizes a total of 9
features, grouped into offline metadata and online usage counts.

Metadata features are provided by the bulk storage system
and supplied in the trace. These metadata features identify
the provenance of the request (namespace, user) and indicate
whether the block is tagged as temporary (e.g., as a result of
a JOIN) or permanent. Feature cardinality is less than 100
for namespaces and less than 200 for users. Both features are
associated with the system user (internal service) executing
the request rather than an end user. These features are often
the same for accesses to the same object and almost always
the same for accesses belonging to the same episode. These
features are provided per IO and thus the same for all segments.

Online dynamic features (times the item is accessed in the
last 1,2, . . . 6 hours) change with every access. This can be
measured at the block or segment level. For Baleen, we record
both the number of IOs for each block and the cumulative
segment accesses for each block to use as features. For each
workload, a simple simulation is done on the training set (the
first day) to collect these dynamic features. We do not use
individual segment counts as features, as this would add 64
features without an appreciable increase in performance.

Modeling admission as binary classification We admit
misses if the classifier’s output probability exceeds the policy
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threshold. We also considered regression models (e.g., predict-
ing no. of expected hits). Such models eliminate the threshold
parameter, but we found they perform worse end-to-end [14],
perhaps because their loss functions incentivize performance
at all thresholds and not just those at the boundary.

Training data and label generation The goal is to differ-
entiate episodes at the decision boundary, which tend to have
few accesses. Learning to identify these episodes is hard but
important as they are significant in aggregate. To avoid a train-
ing bias towards popular but easy-to-differentiate episodes,
only the first 6 accesses from each episode are incorporated
into training data. Baleen learns to imitate OPT, and the binary
labels are determined by whether that episode, based on its
score, would have been admitted under OPT.

Converging on Eviction Age, Policy Threshold Parame-
ters We repeatedly run the offline episode model and online
simulation in a loop to converge on values for assumed eviction
age (EA) and admission policy threshold. Recall that episodes
are generated with an assumed EA. These episodes are used
to train models, which are used in an online simulation where
the average EA can be measured. We initialize assumed EA
to an arbitrary value of 2 hours and repeat episode genera-
tion, model training, and online simulation until the assumed
EA converges on the average EA from an online simulation.
Within each loop iteration, there is another nested loop to
find the correct admission policy threshold that results in the
simulation achieving the target flash write rate. This inner loop
aims to offset the small differences between offline analysis
and a higher-fidelity online simulation.

Online flash caching simulator The training loop men-
tioned in the prior paragraph requires an online simulator to
be run multiple times. We developed a Python simulator to
accurately estimate CacheLib performance without doing the
actual heavy lifting. This is an approach taken by other ML for
Systems projects [44]. This lightweight simulator is easier to
include in a ML training pipeline, and takes as input a Tectonic
trace and measures many end-to-end metrics (e.g., average
eviction age, Peak DT) that cannot be obtained from offline
episode analysis. Having the training setup be Python-centric
aids in faster prototyping, ease of use by data scientists, and
ease of integration with existing ML training pipelines.

Gradient boosting machines (GBM) We chose to use
GBMs as they are fast and have some inherent tolerance to
overfitting and imbalanced classes. Compared to deep neural
networks, they are far more efficient and are well-proven to
run within the latency requirements of a production caching
system [5]. Practitioners also find them easier to understand,
given that they are based on widely-understood decision trees.

Adding a ML admission policy to CacheLib The open-
sourced version of CacheLib supports flash admission policies,
but does not include a mechanism for storing and supplying
features to ML admission policies. We describe how this
may be done. For the static metadata features, they can be
embedded as part of the item payload. Since payloads are a

few MB on average, storing the features (less than 1 kB) in this
way does not impose any significant overhead. To provide the
dynamic features, counts of accesses are tracked in CacheLib
using a count-min-sketch data structure (similar to bloom
filters, but with counts). Each data-structure holds the count
for approximately one hour, with a queue of 6, such that we
have counts at hour-level granularity for the last 6 hours.
4.2 Training Baleen’s Prefetcher using episodes
Models are trained to solve two subproblems: what to prefetch,
and when to prefetch.

Learning what to prefetch: ML-Range We need a ML
model that predicts a range of segments for prefetching. We do
this by training the model to imitate OPT-Range, the smallest
range of segments needed for all accesses in an episode to be
hits (defined in §3.6). We use the same features as the ML
admission model, but add size-related features (access start
index, access end index, access size). We train two regression
models to predict the episode range start and end. Each episode
is represented once in the training data, with only episodes
that meet the score cutoff for the target write rate included.

Learning when to prefetch: ML-When Mispredictions by
the ML admission policy and in ML-Range can easily cause
prefetching to hurt instead of help. In reality, the expected
benefit will be lower than OPT prefetching and the cost can
only be higher. DT saved from prefetching ML-Range may
not be realized (which we call underfetch, see Eq 3a). Further,
prefetching mispredictions are costly in terms of DT consumed
to fetch unused segments (which we call overfetch, see Eq 3b)
and the opportunity cost of flash writes used to store them.

ML-When aims to address this by excluding episodes
that do not have a high probability of benefiting from
prefetching. In particular, it hedges against the broader effect
of prefetching on eviction age by requiring that the marginal
DT gained from ML prefetching (𝑃𝐹𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡𝑀𝐿

𝑒𝑝𝑠 , Eq 3c) be
larger than 𝜖 (ML-When label, Eq 3e). 𝜖 is a proxy for the
unknown broader opportunity costs of flash writes and cache
space, and set to 5 ms (for comparison, an IO seek is 12 ms).

𝑈𝐹 : 𝑢𝑛𝑑𝑒𝑟 𝑓 𝑒𝑡𝑐ℎ = 𝑡𝑟𝑢𝑒 if ML-Range ⊂ OPT-Range (3a)
𝑂𝐹 : 𝑜𝑣𝑒𝑟 𝑓 𝑒𝑡𝑐ℎ = 𝐷𝑇𝑈𝑠𝑒𝑑 (extra segments) (3b)

𝑃𝐹𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡𝑂𝑃𝑇
𝑒𝑝𝑠 = 𝐷𝑇

𝑁𝑜𝑃𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ
𝑒𝑝𝑠 −𝐷𝑇

𝑂𝑃𝑇−𝑅𝑎𝑛𝑔𝑒
𝑒𝑝𝑠 (3c)

𝑃𝐹𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡𝑀𝐿
𝑒𝑝𝑠 =

{
0 if underfetch
𝑃𝐹𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡𝑂𝑃𝑇

𝑒𝑝𝑠 −𝑂𝐹 otherwise
(3d)

ML-When(𝑒𝑝𝑠) = 𝑃𝐹𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡
𝑀𝐿−𝑅𝑎𝑛𝑔𝑒
𝑒𝑝𝑠 > 𝜖 (3e)

Prefetching is implemented in CacheLib applications
Every request to the bulk storage system references a block
in the backing store and a byte range within that 8 MB block.
Each request is translated by the application into (potentially
multiple) CacheLib segment-level requests. CacheLib is not
aware that segments may belong to the same block.

Thus, prefetching must be implemented by the application
issuing requests against CacheLib, which is the bulk storage
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system in our case (Fig 6). On each client request, Baleen’s
prefetcher will be triggered after the application has queried
CacheLib and found out whether segments are hits or misses.
Thus, the prefetcher has access to the client request metadata
and knows how many requested segments were present in
cache. On a miss, the application makes a request to the
backing store, giving the prefetcher a chance to fetch extra
segments and insert those into cache.
4.3 Optimizing for Peak DT and TCO
Baleen-TCO We designed a variant of Baleen, Baleen-TCO,
that optimizes our TCO function (Eq 4b) by simulating Baleen
over a range of flash write rates to get the respective Peak
DT. Baleen-TCO then chooses the optimal flash write rate to
minimize the TCO function.

Optimizing for Peak DT. Prefetching is key to Baleen’s
performance on most workloads, but on some workloads, ML-
When is not aggressive enough as it optimizes for the mean,
not Peak DT. To correct for this, we allow Baleen to choose
another prefetching option per workload (e..g, ML-Range on
Partial-Hit) if it is better at reducing Peak DT in training.

5 Evaluation
This section evaluates and explains Baleen’s effectiveness in
reducing backend peak load & TCO for 7 real workload traces.
5.1 Experimental setup
We evaluate Baleen using a testbed and a simulator. We
validate both with counters from production deployments.
Our key results use simulation runs, but we validate individual
points (e.g., Fig 11). We explain our setup, workloads, metrics,
and the flash write rate and cache size constraints used.

ML training setup We wrote a Python module that gen-
erates episodes and trains the ML models. This plugs into a
Python simulator for CacheLib we developed for training and
prototyping (§4). We validate this Python simulator against
testbed and production (§5.2). The episode module takes in
a trace and returns the ML models. We then run simulation
loops to converge on an assumed eviction age and admission
policy threshold. LightGBM [19] was used for training and
inference, with 500 rounds of boosting and 63 leaves.

Implementation in CacheLib We implemented support
for ML admission and prefetching policies.We emulate calls
to Tectonic so that every miss issues a real IO of the right
size against HDDs, and measure the wall-clock time as DT
consumed. Static features are stored in the CacheLib pay-
load, while history counts are tracked by CacheLib. We use
CacheLib’s region-based LRU with a region size of 142 kB.

Overhead Baleen’s overheads are low in the context of
caching for bulk storage systems. CPU overhead: Baleen adds
4 inferences per IO miss (admission, start & end of ML-Range,
ML-When). The system is limited by the latency of disk IOs
upon misses (10–70ms per IO) rather than ML inferences ( 30
microseconds per inference). Even when replaying a trace
at full speed, CacheLib only contributes a small fraction of

overall system CPU utilization (5% of the 16-core CPUs in
our testbed) because it is waiting for disk IO, and thus using
ML policies only translate to an additional 1% increase in
overall CPU usage. Metadata overhead: Baleen also stores
static metadata features in the payload (<1kB), but as payloads
are at least 128KB, this overhead is not significant (<1%).

Hardware The Tectonic production setup used to record
traces and counter values has a 400 GB flash cache, 10 GB
DRAM cache and 36 HDDs. Our academic testbed uses
enterprise-grade hardware, but with less HDDs per node and
thus a proportionally smaller cache size (see Suppl A.9).

Table 1: Key statistics of traces.
Dataset Req

Rate
(𝑠−1)

Access
size
(MB)

CMR1 OHW2 Admit-
All Writes
(MB/s)

Region1 244 3.41 18% 54% 316
Region2 106 2.85 39% 83% 121
Region3 139 2.42 19% 48% 45
Region4 406 2.87 14% 53% 280
Region5 364 2.62 18% 59% 480
Region6 404 2.74 14% 55% 478
Region7 426 2.23 17% 62% 492
1 CMR (Compulsory miss rate): ratio of blocks to accesses;
2 OHW (One-hit-wonder): % of blocks with no reuse.
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Figure 7: Block popularity and access interarrival. In a,
lower values of 𝛼 indicate it is harder to cache, and × denotes 400 GB.
In b, × denotes eviction ages for Baleen at 400 GB & 3 DWPD.

Workloads We report results for 7 production traces from
Meta. Each workload sampled production traffic from a Tec-
tonic [35] cluster, which can span an entire datacenter, includ-
ing traffic for hundreds of applications. Traces were recorded
in 3 different years. The popularity distribution of blocks
(Fig 7a) fit a Zipf(𝛼 = 0.8) distribution, where the 𝑖-th most
popular block has a relative frequency of 1/𝑖𝛼 . Fig 7b shows
the interarrival time distribution, with the converged eviction
age for Baleen marked with crosses. For all traces, less than
20% of interarrival times exceed the converged eviction age.
The majority of blocks are the maximum size (8 MB) with
averages of 5.1-6.8 MB across traces, but most accesses are
only a fraction of the block with the median access less than
2 MB. Full details are available in Supp A.8.

Each trace is sampled from an entire cluster (eachnumbering
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thousands of nodes). A fraction of traffic is sampled at every
node and the resulting samples aggregated to get a trace. The
sampling rate and number of nodes are recorded, and used
in further downsampling of the trace. For quicker simulation
runs, the trace is sampled on the block key space, with each
block weighted by number of accesses, with the cache size
scaled down proportionally. A train-test split is performed on
the time dimension, i.e., the first day of each workload is used
as training data, with the remaining days used for testing.

Metrics and Assumptions The savings from using Baleen
are dominated by the degree by which it reduces the no. of
HDDs required to handle peak load. Therefore, our evaluation
focuses on Peak DT (see § 3.1). To aid comparison across
traces, we normalize each policy’s Peak DT by the Peak DT
required with no cache. We also show estimated TCO savings
over RejectX (using Eq 4b).

Testbed results (used to validate our simulator at a fixed flash
write rate) used 1-5% samples (maximum sample rate is 5%,
limited by the ratio of HDDs (2:36)). Simulator results used
0.1-5%-traces. The sample percentage is higher for smaller
workloads. We scale to a 400 GB-equivalent flash cache and
our target flash write rate.

Baleen accounts for differences in hardware (HDDs, SSDs)
via the target flash write rate and constants in the TCO & disk-
head time formulas. For flash, the pertinent characteristics are
those affecting endurance (and thus write rate). Fig 10 show
Baleen performing at different flash write rates and cache
sizes. Baleen-TCO also allows for a different flash-to-HDD
cost ratio to be substituted in. For HDDs, our simulations
assume a constant average seek time and bandwidth in the
DT formula (Eq 1). These parameters vary minimally across
disks, as illustrated in Fig 3 (simple formula closely matches
actual disk utilization in production). Baleen includes a small
benchmark to measure these constants for a given disk.

Baselines We compared Baleen to 4 baselines: RejectX,
CoinFlip, and two state-of-the-art ML baselines, Flashield [14]
and CacheLib [5]). We focus on RejectX as it is publicly
available and has been chosen over state-of-the-art ML models
in industry. The CacheLib ML policy addresses Flashield’s
limitations (see §5.2) and uses non-episode-related features.

5.2 Baleen reduces Peak DT over baselines
Fig 1b shows Baleen reduces Peak DT over RejectX by an
average of 12% across all traces for a fixed target flash write
rate. Fig 9 shows this ranges from 5% to 29% across the
traces. Region1, Region3 and Region4 derive most of their
gains from prefetching.

Flashield is not shown in the graphs as it failed on half the
trace samples due to insufficient training data (more details
in Suppl A.5). If we consider only workloads Flashield could
train a model on, Baleen outperformed Flashield by 18%.

Validation of simulator and testbed Fig 11a shows us
validating Baleen on our simulator against Baleen on our
testbed. Further, we took the additional step of showing that

our testbed is consistent with production counters, and show
it matches closely (Fig 11b).

Training on episodes (instead of accesses) is essential
to ML prefetching Episodes make it easier to reason about
flash caching and was key to designing both OPT and ML
prefetching. We also found that in the absence of episodes,
others in the literature devised ad-hoc sampling heuristics
that would achieve the same goal of avoiding ML training
bias towards popular objects [41]. In addition, we quantify
the benefit of episodes by comparing Baleen to an earlier ML
admission policy that did not use episodes. Adding prefetching
to the non-episode-based ML admission would cause it to
perform worse than without prefetching.

Benefits consistent at higher write rates and larger cache
sizes Fig 10 shows that Baleen allows for a reduction in cache
size by 55% while keeping the same Peak DT as RejectX,
or alternatively a reduction in Peak DT equivalent to a 4X
increase in cache size. As expected, increasing write rate or
cache size has diminishing returns in reducing Peak DT. Also,
the different admission policies (without prefetching) start to
converge, indicating that admission by itself is insufficient to
drive further reductions in Peak DT. Graphs for all 7 traces
are available in Supp A.11.
5.3 Baleen-TCO chooses optimal flash write rate
Fig 8 shows Baleen-TCO reducing TCO by 17% over
CacheLib-ML and 18% over RejectX. Workloads have dif-
ferent optimal flash write rates; Baleen-TCO picks the best
flash write rate for each, as illustrated in Fig 12. If a constant
flash write rate target is used, Baleen is able to reduce TCO
by 14% over RejectX. (Thus, Baleen-TCO saves an additional
4% over Baleen with a fixed write rate). Flash writes account
for 2% to 5% of TCO (3% on average).
5.4 Prefetch selectively, in tandem with admission
We show both ML-Range and ML-When are effective in
reducing Peak DT over static baselines, and contribute to
Baleen’s robustness across the multiple traces. We also show
that prefetching must be paired with a good admission policy;
if not, the same prefetching policy can hurt rather than help.

ML-Range outperforms no prefetching and fixed range
prefetching. Using ML to decide what to prefetch (ML-Range)
saves 16% of Peak DT over no prefetching, and 4% over a
simple baseline (All on Partial Hit) (Fig 13). Baleen admission
is used in all cases, with only the prefetching policy varied.
We note this comes with a small increase in Median DT.

ML-When helps Baleen discriminate between beneficial
and bad prefetching. ML-When expresses Baleen’s confi-
dence in the quality of its ML-Range prediction. A general
challenge with prefetching is that one is predicting without a
direct signal (such as a miss in the case of admission). If used
indiscriminately, prefetching can hurt rather than help. This
is best illustrated by how prefetching ML-Range on Every
Miss is worse than no prefetching in Fig 14. Prefetching only
on ML-When or on Partial-Hit consistently does better than
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Figure 8: Baleen-TCO reduces TCO.
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Figure 11: Validation of simulator and testbed.

both no prefetching and prefetching on every miss across
all traces.ML-When performs better on 2 traces (Region2,
Region7) and Partial Hit on the remaining 5.

Poor admission decisions lead to poor prefetching ML
prefetching reduces Peak DT most when paired with a good
admission policy like Baleen. With RejectX, prefetching is less
helpful or even hurts (in Region7). Thus, the Baleen admission
policy is important to the performance of prefetching despite
not always reducing Peak DT by itself. Adding prefetching to
CoinFlip yielded results similar to RejectX.
5.5 Optimizing the right metric: Peak DT
Optimizing for IO hit ratio can be misleading as doing so
is optimal for reducing seeks, not total disk-head time. Poli-
cies that do so may reduce IOs at the expense of increased
bandwidth, which can be a net loss in bandwidth constrained
systems. For example, for the prefetching option "ML-Range
on Every Miss" from Fig 14. relative to no prefetching, the
mean DT used ratio increases from 67% to 73% despite the
IO hit ratio increasing from 46% to 47%.

DT during peak periods Most of the reduction in Peak
DT comes from eliminating seeks rather than read time,
often through prefetching. Certain traffic patterns affect some
policies more, which is why the DT peaks for different policies
can differ. In particular,Baleen’s peaks occur when prefetching
is not beneficial. We show further analysis in Supp A.3.
5.6 Other ML-guided cache results/experiences
Baleen is the end result of substantial exploration and experi-
mentation with ML for caching, including negative outcomes
from which we drew lessons and see unrealized potential. This

section shares and quantifies these lessons.
GBM better than deep models (Transformer & MLP)

We compared GBM to more complex ML architectures (a
Transformer-based architecture we designed and MLP). We
found that GBM performs best (0.2% better than Cache Trans-
former), despite only having features for the current access. A
challenge we faced when training these deep models were the
highly imbalanced classes. Details are in Supp C.

Explicitly optimizing Peak DT Fig 15 shows DT varying
over time, with a peak-to-mean ratio of 2. A policy wanting
to optimize Peak DT should be aware of the current load level
and able to adapt to it. We performed a simple extension where
we only admitted to the cache during periods of high load.
We found that while this saved flash writes, it did not reduce
Peak DT. This suggests that more fundamental changes (e.g.,
scoring episodes by their usefulness in reducing Peak DT)
will be required to optimize explicitly for peak load.

Baleen benefits from size-awareness. An earlierML model
required explicit size-awareness for a 5%-savings in mean DT.
Baleen learns it implicitly if size-related features are supplied.

Gap between Baleen and OPT Fig 13 shows a remaining
gap of 16%, indicating significant room for improvement.
Episode-based analysis shows 9% of DT is lost to late admis-
sions (i.e., where episodes are admitted after the first access).
We observed Baleen learning to reject almost all items on the
first access (a behavior similar to RejectX). Many training
examples shared identical features (on the first miss) but had
different labels. Baleen thus predicted the most probable label
for each feature set (i.e., Bayes Optimal classifier behavior).
Since dynamic, history-based features cannot differentiate
unseen items, we hypothesize that better metadata features are
required to distinguish the few true positives.

Segment-aware admission & prefetching Baleen operates
at the block level and can only choose to admit or reject the
entire access range, rather than individual segments (unlike
RejectX). Episode-based analysis showed a potential reduction
of DT by 11%. However, we were unable to realize this.

Prefetch on PUT This would yield an additional hit on the
first-ever access to the item. However, this is difficult as many
written blocks are not touched again for the duration of our
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is used as training data. Peak is on Day 5 and is lowest for Baleen.

traces, meaning that a classifier must be extremely accurate
or else incur costly false positives. This could work for other
workloads with higher incidences of read-after-writes.

Early eviction If items could be evicted immediately after
their last access in an episode, instead of waiting to leave the
cache, this would eliminate dead time and result in a greater
effective cache size. Episode-based analysis showed mean DT
could potentially be reduced by 11%. However, our current
ML models are not accurate enough to realize this.

6 Lessons from deploying ML in production
We summarize a few lessons gleaned from 3 years of deploying
ML in production caches at Meta.

Optimizing the wrong metric is an easy misstep. Our
initial prototypes for prefetching and admission increased IO
hit rate, but was actually worse for DT. To overcome this,
we redesigned our ML admission policy and introduced a
prefetching confidence prediction (ML-When). Picking the
right end-to-end metric is important.

ML model performance does not always translate to pro-
duction system performance. The same algorithm performs
differently when moved from offline to online settings, and
again when moved from development to production environ-
ments. Evaluation in production is slow (many days needed
to collect data in real time) and laborious (restarts, aborts,
debugging). This makes it challenging to tune thresholds and
evaluate improvements to ML policies. The plethora of direc-
tions makes it hard to decide on the best path forward without
extensive exploratory research. This motivated our episodes
model that allows for the principled design of ML policies

that can directly optimize systems metrics like DT under write
rate constraints, and quickly evaluate the end-to-end impact
of hypothetical improvements without the effort to implement
them in production or debugging unrelated production noise.

Rethink use of DRAM in flash caching. The typical use
of DRAM is as a small cache before [5, 14] (or after [55])
flash, with admission decisions made on DRAM evictions. We
moved the admission policy from post-DRAM to pre-DRAM,
with minimal impact on end-to-end metrics. The initial motiva-
tion was saving DRAM bandwidth, as this became a bottleneck
with Admit-All rates near 500 MB/s (Table 1). The impact
was small – while a DRAM cache may appear to absorb hits,
it is simply stealing them from the flash cache. Since DRAM
eviction ages (a few seconds) are so much shorter than flash
(2+ hrs), almost every item worth caching needs to be in flash.
Further, the write costs of an item are proportional to its size,
and any potential avoidance of flash writes is limited by how
small the DRAM cache is (2.5% of flash cache). Flexible
placement of the admission policy enables optimizations such
as prefetching, which must be done prior to inserting into the
topmost cache. In summary, we need to find better uses for
DRAM than simply adding it before a flash cache.

ML-based caching should aim for encapsulation of ML,
caching, and storage. Designing bespoke ML for caching
solutions requires coordination between ML experts (formodel
training), caching experts (for integration), and the storage
backend owner (for deployment and monitoring). This involves
one more area of expertise than most other ML for systems
problems. There is no clear path to single ownership of the
problem, making it difficult to sustain over time. It is hard for
a service owner to prioritize spending engineering resources
to aid the design phase of unproven ML solutions. Baleen
provides an analytic framework thatML experts couldoptimize
DT on without requiring caching expertise. Designing ML
models around episodes makes it easier for caching experts
to reason about. Having the DT formula correspond closely
to measured DT (Fig 3) in production assures caching and
storage experts that a reduction in calculated DT will translate
to a drop in disk utilization. Further, with setups that are
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tightly-coupled by hand and not automatically, performance
regressions may occur as systems and workloads change.
Models often performed the best when they were first deployed
and slowly regressed over time even with retraining using the
same set of features. In contrast,Baleen was designed primarily
using traces from 2019 but also demonstrates improvements
on traces from 2021 and 2023.

7 Additional related work
Production flash caching systems CacheSack [55,56] opti-
mizes admission policies for the flashcache in front ofGoogle’s
bulk storage system, Colossus. This design shares Baleen’s
objectives of co-optimizing backend disk reads and flash write
endurance. CacheSack partitions traffic into categories us-
ing metadata and user annotations, assigning probabilities
to each of 4 simple admission policies for each category by
solving a fractional knapsack problem. This offline approach
has slower reaction times than Baleen, and only solves the ad-
mission problem. Meta’s Tectonic bulk storage system uses a
CacheLib-managed flash cache, with an ML admission policy
that does not use episodes and does not perform prefetching.
Section 5.6 shows that this approach is significantly less effec-
tive than Baleen. Kangaroo [31] improves CacheLib’s small
object cache, and is orthogonal to Baleen, which improves
performance for large objects. Amazon’s AQUA [2] also fills
a similar role for Redshift (data warehouse), acting as an off-
cluster flash caching layer with S3 as the backing store. Bulk
storage systems backed by HDDs and fronted by cache servers
can also be found at Alibaba Cloud [23] and Tencent [58].

Non-ML flash admission policies CacheLib [5] is Meta’s
general-purpose caching library and includes random and Re-
jectX admission policies for flash caches. Section 2 discusses
RejectX. Section 5 extensively compares Baleen to random
(CoinFlip) and RejectX. LARC [18] is equivalent to RejectX
and was the default admission policy used at Google prior to
CacheSack. TinyLFU [13] proposed a frequency-based admis-
sion policy that leverages probabilistic data structures for com-
pact history representation. Baleen adds ML, size-awareness,
disk performance goals, and prefetching over TinyLFU.

ML-based flash caching policies Flashield [14] addresses
the lack of information on flash admission candidates by
putting them in a DRAM buffer first. The item’s usage history
is used to generate features for a support vector machine
classifier. However, we found this approach infeasible as
DRAM lifetimes are too short in practice (see Supp A.5).
More targeted applications of ML aim to exclude one-hit-
wonders [48] or items that have no reads [59]. Reinforcement
learning has also been used to train a feedforward neural
network for admission policies on CDNs, given a broad set of
features [20]. Baleen adds more flexible admission policies,
size-awareness, disk performance goals, and prefetching over
these works. Early work on flash caching focused on flash-
friendly eviction policies [36]. Recent work instead uses
simpler eviction policies such as CLOCK or FIFO, and leaves

the heavy lifting to the admission policy [55]. Smart policies
for data placement seek to reduce write amplification [9], and
can be used in tandem with Baleen.

Prefetching policies CacheSack [56] incorporated static
prefetching policies as choices for their optimization function.
[62] implemented heuristic-based prefetching for photo stores,
but found significant room for improvement relative to their
offline optimal. Others have posed caching as a scheduling
problem in the context of streaming video and incorporated
aspects of prefetching [27, 38, 46]. In databases, Leaper trains
a ML prefetcher to exploit reuse at the key range level [54].

Models for caching and offline optimal Bélády’s MIN
algorithm is the optimal eviction policy [4]. [41] introduces
Relaxed Bélády for eviction which prunes the decision space
like OPT does; however OPT makes stronger assumptions
valid for flash admission and decides at a higher granularity
(see Suppl A.7). Raven [17] is a probabilistic approximation
of MIN. [11] sought to extend Bélády to admission with a
container-optimized MIN that optimizes hit rate while mini-
mizing flash erasures, but did not provide an online algorithm.
Our proposed OPT policy is the only online policy that ap-
proximates the optimal flash admission policy, and which can
easily optimize an arbitary metric like DT, not just hit rate.

ML for eviction Some policies seek to learn from Bélády,
such as LRB which learns a relaxed Bélády [41], and RL-
Bélády [51]. A key challenge to using RL is the long delays
for rewards. [6] Others seek to go beyond Bélády, such as
LRU-BaSE [49]. MAT [52] reduces ML inference overhead
by using a heuristic to filter out likely candidates. HALP [42]
augments a heuristic with ML for the YouTube CDN. Deep
learning has also been applied to learn forward reuse distance
with LSTMs [24] and reinforcement learning [50]. [39] uses
a support vector machine with features they derived from
training an LSTM. [12] proposes that a classical caching
policy be run in parallel with ML policies, allowing the
implementation to switch to the better-performing policy
dynamically. ML-based eviction is orthogonal to Baleen’s
contribution and cannot control flash write rates.

8 Conclusion
Baleen uses ML to guide both prefetching and cache admission,
reducing peak disk time by 16% and TCO by 17% on real
workload traces, compared to state-of-the-art non-ML policies.
Although applying ML to caching policies is an expected
advancement, Baleen’s design arose from false-step lessons
and a cache residency (episodes) formulation that improves
training effectiveness, provides a target (OPT), and exposes
the value of ML-guided prefetching. As such, Baleen is an
important step forward in flash caching for disk storage.
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9 Artifact Appendix
Abstract
Our artifact is targeted at those seeking to reproduce the results
found in the Baleen paper. It contains a Python simulator, an
implementation of our cache residency model (episodes), and
scripts for downloading traces. You may view our artifact and
its README at https://github.com/wonglkd/Baleen-
FAST24.
Scope
Our artifact allows users to easily 1) test our Python cache
simulator with small-scale experiments, and 2) plot paper
figures using supplied intermediate results.

We list the specific key claims and corresponding figures:
1. Baleen reduces estimated total cost of owner-

ship (TCO), peak backend load (Fig 1) and miss
rates (Fig A.1) (fig-01a,08,13-202309-tco.ipynb,
fig-01bc,17-202309.ipynb)

2. Baleen does so across a range of traces
(Fig 8, Fig 9) (fig-01a,08,13-202309-tco.ipynb,
fig-09-202309.ipynb)

3. Baleen performs well across a range of
cache sizes and flash write rates (Fig 10,
24, 25) (fig-10a,24-wr-20230414.ipynb,
fig-10b,25-csize-20230424.ipynb)

4. Baleen benefits from smart prefetching that predicts
the right range (Fig 13) and when to prefetch (Fig 14)
(fig-13,14-prefetching-20230424.ipynb)

We also include additional notebooks that:
1. show how Baleen-TCO picks the optimal write rate

(Fig 12), (fig-01a,08,13-202309-tco.ipynb)
2. show breakdown of benefit at peak (Fig 18) and

(fig-18-peak-hrs-20230424.ipynb)
3. describe statistical properties of the workloads (Fig 7).

(fig-07,19,20-tracestats-20230504.ipynb)
Caveats
When reproducing the results, we expect trends to be the same
but small differences in the actual results due to two reasons: 1)
Meta’s exact constants for the disk-head time function will not
be released, meaning that results will not be exactly the same;
instead, in the released code, we use constants (seek time
and bandwidth) measured on the hard disks in our university
testbed; 2) the testbed code modified a proprietary internal
version of CacheLib and that will not be released at this time.
However, we expect the simulator to closely match the testbed
(and have presented supporting evidence to that effect).

While all the necessary code and data is supplied to re-
produce our results, setting up the simulator with a cluster
scheduling system would be recommended if re-running all ex-
periments (624 machine-days were utilized; each simulation of
a ML policy takes at least 30 minutes,multiplied by 7 traces and
10 samples each). Helper code is included to facilitate runs on a
cluster, but this will need to be adapted for your own cluster (see

BCacheSim/episodic_analysis/local_cluster.py).
Contents
Our artifact includes the full traces used in the paper, a Python
module (BCacheSim) that contains the flash cache simulator,
an implementation of the episodes model, and code to train
the policies. Further detail on the directory structure can be
found in the README.

We also provide a walkthrough video that shows the authors
reproducing the results on the Chameleon Cloud platform:
http://tiny.cc/BaleenArtifactYT

Hosting
The artifact is hosted in a GitHub repository, in the main branch:
https://github.com/wonglkd/Baleen-FAST24. For ease
of reproduction, the artifact is also hosted on the Chameleon
Cloud platform, a free academic cloud supported by
NSF: https://www.chameleoncloud.org/experiment/
share/aa6fb454-6452-4fc8-994a-b028bfc3c82d Users
can choose to either use the artifact on their own machines or
Chameleon.
Requirements
If using Chameleon Cloud, no local dependencies are required
apart from the ability to SSH and a web browser. If using your
own computer, the primary software dependency is Python
3.10 with specific packages listed in a requirements.txt in
the repository. If you wish to run experiments in parallel on a
cluster, a job scheduling system like Brooce (which we used)
is recommended.

Baleen was developed on the Carnegie Mellon University
Parallel Data Lab’s Emulab testbed using Meta traces.
Time to reproduce
About 3 hours is required on Chameleon Cloud to run a set
of basic experiments, and plot figures using the intermediate
results supplied. To re-run all experiments from scratch would
take 624 machine-days (based on the logged time it took to
simulate the runs used). As a guideline, each simulation of a
ML policy takes at least 30 minutes, multiplied by 7 traces
and 10 samples each.
Troubleshooting and suppoort
A list of common issues and remedies is included in the
README. GitHub issues are the preferred means of commu-
nication. You may also contact the corresponding author via
email.
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A Supplemental Material

A.1 Comparison to IO miss rate and bandwidth miss rate
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Figure 16: We provide IO miss rate and byte miss rate, two commonly used caching metrics, for comparison.

A.2 Median DT
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A.3 Breakdown of DT during peak periods
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Figure 18: Breakdowns of DT at Peaks. Each graph shows the peak 10-min window for that setup. Baleen’s DT reduction is
mostly due to reduced seeks.

In Fig 18a, we break down DT at the peak hours and show most of the Peak DT reduction is from eliminating seeks rather than
data transfer. This is in line with how prefetching saves DT.

Fig 18 shows policies’ performance at the respective peak windows for Baleen and RejectX. The peak window can differ from
policy to policy, as one policy may be good at dealing with a traffic pattern that causes peaks for other policies, but be foiled by a
pattern that is handled well by others. This makes optimizing the peak a whack-the-mole game. Baleen’s worst time intervals are
those in which prefetching is not beneficial. This suggests that a policy wanting to optimize Peak DT would be aware of the
current load level and able to adapt to it.
A.4 TCO function: step-by-step

TCO1 ∝
PeakDT1
𝑃𝑒𝑎𝑘𝐷𝑇 0

·#𝐻𝐷𝐷𝑠0 +
𝐶𝑜𝑠𝑡𝑆𝑆𝐷

𝐶𝑜𝑠𝑡𝐻𝐷𝐷

· FlashWR1
𝐹𝑙𝑎𝑠ℎ𝑊𝑅0

·#𝑆𝑆𝐷𝑠0 (4a)

𝑇𝐶𝑂1 ∝ 𝑃𝑒𝑎𝑘𝐷𝑇 1 ·𝑅1 + 𝐹𝑙𝑎𝑠ℎ𝑊𝑅1 ·𝑅2 (4b)

𝑅1 =
1

𝑃𝑒𝑎𝑘𝐷𝑇 0
(4c)

𝑅2 =
1

𝐹𝑙𝑎𝑠ℎ𝑊𝑅0
· #𝑆𝑆𝐷𝑠0
#𝐻𝐷𝐷𝑠0

· 𝐶𝑜𝑠𝑡𝑆𝑆𝐷
𝐶𝑜𝑠𝑡𝐻𝐷𝐷

(4d)

=
1

𝐹𝑙𝑎𝑠ℎ𝑊𝑅0
· 1
36

· 170
281

(4e)

We calculate relative TCO savings using the Peak DT saved with our baseline admission policy RejectX (𝑃𝑒𝑎𝑘𝐷𝑇0), and
relative to the default target flash write rate (𝐹𝑙𝑎𝑠ℎ𝑊𝑅0). From [35], we know that each node has 1x 1-TB SSD and 36x 10-TB
HDDs ( #𝐻𝐷𝐷𝑠0

#𝑆𝑆𝐷𝑠0
= 36).
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From [35], we know that each node has 1x 1-TB SSD and 36x 10-TB HDDs ( #𝐻𝐷𝐷𝑠0
#𝑆𝑆𝐷𝑠0

= 36). We substitute the 2023 price of a
10TB HDD ($281) and a 1 TB SSD ($170) on Newegg [33,34] ( 𝐶𝑜𝑠𝑡𝑆𝑆𝐷

𝐶𝑜𝑠𝑡𝐻𝐷𝐷
= 170

281 ), i.e., the HDD is 6x cheaper per TB than the SSD.
(For comparison, a 2020 industry report showed a 10x difference [32].)

A.5 Comparison to Flashield
We compared Baleen to Flashield, a state-of-the-art ML baseline. We adapted the implementation of Flashield used in the
S3-FIFO paper in SOSP 2023 [53]. Flashield was worse than our RejectX baseline.

In practice, we found that a disadvantage of this approach is that DRAM lifetimes are too short to yield useful features.
(Flashield assumes a 1:7 DRAM:Flash ratio, whereas Tectonic has a 1:40 ratio.)

Flashield failed on half the trace samples due to insufficient training data, because it relies on items’ hits in DRAM for its
features and labels. With DRAM lifetimes of seconds-to-minutes, most items never receive DRAM hits. Considering only
workloads favorable to Flashield (that it could train a model on), Baleen outperformed Flashield by 18%.

A.6 Comparison to CacheLib ML
CacheLib ML is a ML model that Meta used in production for 3 years, which was first described by Berg et al [5]. Baleen uses
the same ML architecture (GBT) and serving (inference) setup, but a different training setup (episodes and optimizing DT instead
of hit rate). Based on this, we assert that Baleen’s architecture is feasible for production with acceptable inference overhead.
Meta’s implementation is proprietary but general lessons learnt from it were described in §6.

A.7 Comparison to LRB’s Relaxed Belady
LRB [41] introduces Relaxed Bélády for eviction, which only considers objects for eviction beyond a time it calls the Belady
boundary. Like our OPT’s use of the assumed eviction age, it prunes the decision space making it more efficient; our OPT is able
to make stronger assumptions (due to the flash admission context), and train ML at a higher granularity of disjoint episodes,
whereas LRB still operates at the finer granularity of accesses and is choosing which object is more likely to be good (has higher
Good Decision Ratio) whereas OPT can determine which object is better to admit).

A.8 Workloads
The Region1 and Region2 traces were recorded from different clusters over the same 7 days in Oct 2019, while the Region3 trace
was recorded from another cluster over 3 days in Sep 2019. Region4 was recorded over 7 days in Oct 2021, and the remaining
traces (Region5, Region6, Region7) were collected in Mar 2023.

1. Regions 1-3 (2019): each a data warehouse
2. Region4 (2021): data warehouse
3. Region5 (2023): 10 ”tenants”, largest being data warehouse and blob store
4. Region6 (2023): 10 ”tenants”, largest being data warehouse and blob store
5. Regions 4-6 are from different geographical regions.
Each tenant supports 100s of applications. Data warehouse is storage for data analytics (e.g., Presto, Spark, AI training), with

larger reads than blob storage. Blobs are immutable and opaque, and include media (photos, videos) and internal application data
(e.g., core dumps). See the Tectonic [35] paper for further details.

Table 2: Full statistics of traces.
Dataset Year Request

Rate
(𝑠−1)

Avg
Block
Size
(MB)

Access
size
(MB)

Comp-
ulsory
miss
rate1

One-hit-
wonder
rate2

PUT-
Only
Blocks

#PUT /
#Acc

Admit-All
Write Rate

Region1 2019 244 5.70 3.41 18% 54% 46% 13% 316 MB/s
Region2 2019 106 5.07 2.85 39% 83% 81% 14% 121 MB/s
Region3 2019 139 6.71 2.42 19% 48% 46% 16% 45 MB/s
Region4 2021 406 5.87 2.87 14% 53% 40% 10% 280 MB/s
Region5 2023 364 6.84 2.62 18% 59% 33% 9% 480 MB/s
Region6 2023 404 6.77 2.74 14% 55% 38% 10% 478 MB/s
Region7 2023 426 5.71 2.23 17% 62% 38% 12% 492 MB/s
1 Compulsory miss rate refers to the ratio of blocks to accesses;
2 One-hit-wonder rate is the fraction of blocks with no reuse.
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Figure 19: Distributions of block popularity, access interarrival times, block sizes, and access sizes for three traces. In a,
lower values of 𝛼 indicate it is harder to cache.
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Figure 20: Distribution of hits per episode. This reflects the possible hits accrued from admitting an item.

A.9 Testbed hardware

As we did not have direct access to production hardware, we ran simulations (using our Python simulator) and testbed evaluations
(using our modified version of CacheLib) on our academic testbed. This research testbed was a 24-node cluster, where each node
has a 16-core Intel Xeon E5-2698 CPU, 64 GB of DRAM, Intel P3600 400 GB NVMe SSD, Seagate ST4000NM 4 TB HDDs,
and runs Ubuntu 18.04. The SSDs and HDDs used are enterprise-grade. The size of the cluster does not affect the veracity of
the testbed as each individual experiment run only involves one node; multiple nodes are used to speed up the completion of
the experiments, as the total number of runs required is the total number of policy configurations multiplied by 7 traces and 10
samples from each trace.

A.10 Validating simulator and testbed

Fig 21 shows that testbed and simulator are faithful to production counters. We compare production counters for one day (collected
on a per-minute basis and aggregated to 10-min intervals) to simulator and testbed results for a trace collected on the same day.
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Figure 21: Sim-Testbed-Production comparison, RejectX, 1 day
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Figure 22: Testbed-Production comparison, Baleen, 1 week
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Figure 23: Testbed backend load over time, on the Region1 trace. Peak-to-mean ratio is 2. Granularity is 10 mins.

A.11 Write Rates and Cache Sizes for all traces
In Fig 10 we showed an average across all traces and selected traces; here we show data for all 7 traces.
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Figure 24: Benefits consistent as write rate increases.
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Figure 25: Benefits consistent as cache size increases.

B CacheLib deployment
B.1 CacheLib settings
CacheLib employs a region-based LRU, with different regions for different sizes. Since segments are uniformly 128 KB, we set
region size to 142 KB to contain one segment each plus overhead.

We added functionality to CacheBench (CacheLib’s benchmark suite) to replay Tectonic traces.

C Cache Transformer
GBMs are relatively simple and thus we also implemented more complex ML models for learning cache access patterns.
Specifically, we add two deep models used to learn sequences in natural language processing:

Baseline: MLP feedforward A basic multilayer perceptron (MLP) feedforward model that takes the same features as our
GBM model, i.e., only features from the current access, with a single hidden layer of size 80.
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Cache Transformer architecture A Transformer [45] encoder that uses features from the prior ℎ (ℎ = 16) accesses in addition
to the current access. Instead of sequences of words, it uses sequences of accesses. Further details are in Supp C.1.

We found that GBM performs best (0.2% better than Cache Transformer), despite only having features for the current access.
This was contrary to our hypothesis that more historical information and access to the pattern of accesses would help model
performance. Although we cannot dismiss the possibility that the Cache Transformer model is held back by our training process,
a challenge we struggled with was the highly imbalanced classes. GBMs are known to be robust and work out of the box on many
datasets. We observe that GBM produces the highest F1-score, i.e., it balances recall and precision the best. The MLP has the
highest precision at the expense of recall. Baleen hence uses GBM given that it performs best and is the most efficient of the
options explored.

C.1 Architecture

Figure 26: Cache Transformer architecture.

As shown in Fig 26, the Cache Transformer architecture consists of a series of Transformer encoders stacked together, with a
linear classifier at the end. Before being passed to the first encoder, the windows are normalized and a sinusoidal positional
encoding is applied. The encoders serve the purpose of learning and evaluating the self-attention between different accesses in
the window. After the windows are passed through all the encoders, a final linear layer maps the last encoder’s output to the
model’s prediction, which is represented as a probability distribution.

In summary: first, the model passes the sequence through a sinusoidal positional encoding to inject relative position information.
Then, the encoded sequence is passed through 6 encoders with 4 attention heads each, followed by a linear layer that maps to a
similar binary probability distribution to the MLP feedforward model.

C.2 Training setup

Neural network models such as the Transformer used PyTorch for training and prediction. When training the Transformer neural
network models, positive training examples are upsampled to balance out the classes and reduce the tendency to overfit. The
MLP used for comparison had one 80-size hidden layer. Neural network training was done using RaySGD on a cluster with 8
Nvidia GeForce Titan X GPUs.

370    22nd USENIX Conference on File and Storage Technologies USENIX Association



C.3 Evaluation
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Figure 27: Different architectures for ML admission. GBM is the best non-OPT policy. A 10%-trace was used. Mean DT is
reported here, relative to no cache.

Table 3: Performance of different models, online and offline. ℎ denotes the number of past accesses used as input into the
model. Write rate and IO hit rate are from online simulations.

Model (ℎ, history) Loss Offline
accuracy

Online
accuracy

Write Rate IO hit rate Precision Recall F1

MLP feedforward (ℎ = 1) 0.41 90.2% 88.5% 28.1 MB/s 48.1% (-8.6%) 85.6% 35.5% 0.502
Transformer (ℎ = 16) 0.18 92.6% 89.5% 42.9 MB/s 49.3% (-6.5%) 66.7% 50.7% 0.576
GBM (ℎ = 1) - 93.8% 91.1% 37.9 MB/s 49.4% (-6.3%) 76.8% 51.9% 0.619
OPT - 100% 100% 30.4 MB/s 52.7% 100% 100% 1
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