
3LC: Lightweight and Effective Traffic Compression for
Distributed Machine Learning

Hyeontaek Lim,1 David G. Andersen,1 Michael Kaminsky2
1Carnegie Mellon University, 2Intel Labs

Abstract
The performance and efficiency of distributed machine
learning (ML) depends significantly on how long it takes
for nodes to exchange state changes. Overly-aggressive
attempts to reduce communication often sacrifice final
model accuracy and necessitate additional ML techniques
to compensate for this loss, limiting their generality. Some
attempts to reduce communication incur high computation
overhead, which makes their performance benefits visible
only over slow networks.

We present 3LC, a lossy compression scheme for state
change traffic that strikes balance between multiple goals:
traffic reduction, accuracy, computation overhead, and
generality. It combines three new techniques—3-value
quantization with sparsity multiplication, quartic encod-
ing, and zero-run encoding—to leverage strengths of
quantization and sparsification techniques and avoid their
drawbacks. It achieves a data compression ratio of up
to 39–107×, almost the same test accuracy of trained
models, and high compression speed. Distributed ML
frameworks can employ 3LC without modifications to
existing ML algorithms. Our experiments show that 3LC
reduces wall-clock training time of ResNet-110–based
image classifiers for CIFAR-10 on a 10-GPU cluster by
up to 16–23× compared to TensorFlow’s baseline design.

1 Introduction
Distributed machine learning (ML) harnesses high aggre-
gate computational power of multiple worker nodes. The
workers train an ML model by performing local computa-
tion and transmitting state changes to incorporate progress
made by the local computation, which are repeated at each
training step. Common metrics of interest in distributed
ML include accuracy (how well a trained model performs)
and training time (wall-clock time until a model reaches a
trained state). To improve training time, distributed ML
must be able to transmit large state change data quickly
and avoid impeding local computation.

However, the network does not always provide sufficient
bandwidth for rapid transmission of state changes. Large-
scale deployment of distributed ML often require the

workers to communicate over a low-bandwidth wide-area
network (WAN) to conform to local laws that regulate
transferring sensitive training data (e.g., personal pho-
tos) across regulatory borders [5, 10, 17, 22, 36]. Some
data might be pinned to mobile devices [21, 28], forcing
distributed ML to use a slow and sometimes metered
wireless network. Recent performance studies show that
in-datacenter distributed training can demand more band-
width than local networks and even GPU interconnects
currently offer [3, 25, 39, 41].
Communication reduction intends to mitigate the net-

work bottleneck by reducing the overall communication
cost. In particular, lossy compression schemes reduce the
volume of state change data by prioritizing transmission of
important state changes [1, 16, 17, 24, 30]. Unfortunately,
existing schemes suffer one or more problems: They offer
only a small amount of network traffic reduction, sacrifice
the accuracy of the trained model, incur high computation
overhead, and/or require modifications to existing ML
algorithms.
We present 3LC1 (3-value lossy compression), a

lightweight and efficient communication reduction scheme.
3LC strikes a balance between traffic reduction, accuracy,
computation overhead, and generality, to provide a “go-to”
solution for bandwidth-constrained distributed ML. Our
design (1) uses only 0.3–0.8 bits for each real-number
state change on average (i.e., traffic reduction by 39–107×
from original 32-bit floating point numbers), (2) causes
small or no loss in accuracy when using the same number
of training steps, (3) adds low computation overhead, and
(4) runs with unmodified ML algorithms.

To achieve both high efficiency and high quality for
distributed ML, 3LC unifies two well-known lossy com-
pression approaches commonly used for communication
reduction: Quantization encodes state changes in low
resolution, and sparsification only picks likely important
parts of state changes. We do not blindly combine two
approaches because doing so might end up suffering draw-
backs of both approaches; instead, we take their principle
and reconstruct them as a lightweight-yet-effective lossy
compression scheme.

1Read as “elk.”

1

ar
X

iv
:1

80
2.

07
38

9v
1

 [
cs

.L
G

]
 2

1
Fe

b
20

18

Push

Local
models

Worker

Server Server

Worker Worker Worker

Pull

Global
model

 Training
data

Push

Pull Push

Pull
PullPush

Figure 1: Distributed machine learning architecture
using parameter servers.

3LC combines three new techniques:
3-value quantization with sparsity multiplication is

a lossy transformation that maps each floating-point num-
ber representing a state change onto three values {−1, 0, 1},
with a knob that controls the compression level. It corrects
resulting quantization errors over time by using error ac-
cumulation buffers. Since it makes a small impact on the
trainedmodel’s accuracy, it does not require compensating
for potential accuracy loss with ML algorithm changes.
Quartic encoding is a lossless transformation that folds

each group of five 3-values into a single byte using fast
vectorizable operations, which takes 20% less space use
than simple 2-bit encoding of 3-value data. The quartic
encoding output is easy to compress further.
Zero-run encoding is a lossless transformation that

shortens consecutive runs of common bytes (groups of
five zero values) by using a variant of run-length encod-
ing [31] specialized for quartic encoded data. It achieves
approximately a 2× or higher compression ratio, which
varies by the distribution of state change values.

Our empirical evaluation of 3LC and prior commu-
nication reduction techniques on our custom 10-GPU
cluster shows that 3LC is more effective in saving traffic
reduction while preserving high accuracy at low compu-
tation overhead. When training image classifiers based
on ResNet-110 [15] for the CIFAR-10 dataset [23], 3LC
reduces training time to reach similar test accuracy by
up to 16–23×. To measure 3LC’s practical performance
gains over a strong baseline, we use a production-level dis-
tributed training implementation on TensorFlow [1] that is
already optimized for efficient state change transmission.

2 Distributed ML Background
Machine learning (ML) is a resource-heavy data pro-
cessing task. Training a large-scale deep neural network
(DNN) model may require tens of thousands of machine-

hours [7]. Distributed ML reduces the total training time
by parallelization [1, 24].

Figure 1 depicts typical distributed DNN training using
parameter servers [7, 9, 16, 24]. Parameter servers, or
simply servers, store a partition of the global model, which
consists of parameters (trainable variables). Workers keep
a local copy of the model and training dataset. The
parameters (and their state changes) are often represented
as tensors (multidimensional arrays). For example, the
“weights” of a fully-connected layer (a matrix multiply)
would be a single 2-D tensor of floats. The weights of a
different layer would be a separate 2-D tensor.

The workers train the model by repeatedly performing
local computation and state change transmission via the
servers. Each training step includes the following sub-
steps: Forward pass: The workers evaluate a loss function
(objective function) for the current model using the local
training dataset. Backward pass: The workers generate
gradients that indicate how the model should be updated to
minimize the loss function. Gradient push: The workers
send the gradients to the servers. Gradient aggregation
and model update: The servers average the gradients
from the workers and update the global model based
on the aggregated gradients. Model pull: The workers
retrieve from the servers model deltas that record the
model changes, and apply the deltas to the local model.

Distributed ML may observe two types of communica-
tion costs, training step barriers and state change traffic,
which we discuss in the rest of this section.

2.1 Relaxing Barriers
One important pillar of distributed ML research is how
to perform efficient synchronization of workers using
barriers. Although relaxing barriers is not the main focus
of ourwork, we briefly describe related techniques because
modern distributed ML systems already employ these
optimizations to partially hide communication latency.
In vanilla bulk synchronous parallel (BSP), workers

train on an identical copy of the model [35]. BSP forces
the servers to wait for all workers to push gradients, and
the workers to wait for the servers to finish updating the
global model before model pulls. In this model, slow or
failed workers (“straggler”) [16, 30] make other workers
waste computation resources, increasing training time.

To reduce a straggler problem, researchers have capi-
talized upon the property that stochastic gradient descent
and its variants commonly used in distributed ML tolerate
a small amount of inconsistency in the model across the
workers [30]. Fully asynchronous state change transmis-
sion permits a worker to submit an update based on an
arbitrarily stale version of the model [30]. Approaches
such as stale synchronous parallel make a compromise be-
tween two extremes by limiting the maximum asynchrony
of the model for which an update is calculated [16].

2

Worker

Server

Push

Compressed
gradients

Gradients

Decompressed
gradients

Worker

Aggregated
gradients

(a) Gradient pushes from workers to servers.

Server

Pull

Decompressed
model deltas

Compressed
model deltas

Worker

Model deltas

Updated
local model

Worker

(b) Model pulls from servers to workers.

Figure 2: Point-to-point tensor compression for two example layers in 3LC.

A common downside of asynchronous state change
transmission is that it may accomplish less useful work
per training step because of desynchronized local models.
Asynchronous state change transmission generally requires
more training steps than BSP to train amodel to similar test
accuracy [1, 16, 17, 24, 30]. Thus, recent distributed ML
frameworks often advocate synchronous state change trans-
mission while using other techniques that mitigate strag-
glers. For instance, TensorFlow [1]’s stock distributed
training implementation, SyncReplicasOptimizer, uses
backup workers: A global training step can advance if a
sufficient number of updates to the latest model have been
generated regardless of the number of unique workers that
calculated the updates [6].
Modern distributed ML frameworks split barriers into

more fine-grained barriers that help hide communication
latency. For example, Poseidon pushes individual layers’
gradients, allowing the servers to update part of the model
and let the workers pull that part instead of having to wait
for the entire model to be updated [41]. TensorFlow’s
SyncReplicasOptimizer pulls updated model data for
individual layers as they are evaluated in the forward pass.
Such fine-grained barriers facilitate overlapping commu-
nication and computation and improve computational
efficiency of distributed ML.

2.2 Compressing State Change Traffic

Relaxed barriers reduce communication costs, but they
do not completely hide communication latency. Gradient
pushes and model pulls are sensitive to the available
network bandwidth, as these steps need to transmit large
data quickly, and state change transmission can take longer
as the model size grows and/or the network bandwidth is
more constrained [3, 17, 25, 39, 41]. If the transmission

takes excessive time, cluster nodes experience long stall
time, harming the efficiency of distributed learning.
Quantization and sparsification techniques make state

change transmission generate less network traffic by ap-
plying lossy compression to the state change data. They
prioritize sending a small amount of likely important
state change information and defer sending or even ignore
unsent changes. Quantization uses low-resolution values
to transmit the approximate magnitude of the state change
data [3, 32, 39]. Sparsification discovers state changes
with large magnitude and transmits a sparse version of ten-
sors that contain these state changes [2, 17, 24, 25, 37, 38].

Note that quantization and sparsification we discuss in
this paper differ from model compression [14, 20]. Model
compression reduces the memory requirement and com-
putation cost of DNN models by quantizing and reducing
their parameters (not state changes). Inferencewith a com-
pressed model can run faster without demanding much
computation andmemory resources. In contrast, our paper
focuses on distributed training of a model that consists of
full-precision parameters, which can be processed using
model compression after training finishes.

3 Design
The design goal of 3LC is to achieve good balance between
traffic reduction, accuracy, computation overhead, and
generality. We present the high-level design of 3LC and
its components in detail.
3LC is a point-to-point tensor compression scheme.

Figure 2 depicts how 3LC compresses, transmits, and
decompresses state change tensors for two example lay-
ers. One compression context encompasses the state for
compression and decompression of a single tensor that
represents gradients (a push from a worker to a server) or

3

model deltas (a pull from a server to a worker) of a single
layer in a deep neural network.
This point-to-point design preserves the communica-

tion pattern of existing parameter server architectures. It
adds no extra communication channels between servers
or workers because it involves no additional coordination
between them. Some designs [39] synchronize their com-
pression parameters among workers before actual traffic
compression, which adds round trips to communication
between the workers for each training step.
A potential performance issue of this point-to-point

compression is redundant work during model pulls.
Servers send identical data to workers so that the workers
update their local model to the same state. If the servers
compress individual pulls separately, it would perform
redundant compression work. 3LC optimizes model pulls
by sharing compression: The servers compresses model
deltas and make a shared local copy of the compressed
model deltas, and the workers pull the compressed data
as if they pull uncompressed model deltas (Figure 2b).
Note that distributed ML frameworks that allow loosely
synchronized local models on workers [16, 17, 24, 30]
may require multiple copies of compressed model deltas,
each of which is shared by a subset of the workers with
the same local model.

For 3LC’s tensor compression and decompression, we
introduce one lossy and two lossless transformations:
3-value quantization with sparsity multiplication (Sec-
tion 3.1), quartic encoding (Section 3.2), and zero-run
encoding (Section 3.3). The rest of this section describes
their designs and rationale.

3.1 3-value Quantization with
Sparsity Multiplication

3-value quantization compresses a state change tensor
by leveraging the distribution of state changes that are
centered around zero [39]. It transforms a full-precision
input tensor into a new tensor of three discrete values
{−1, 0, 1} that has the same shape (dimensions) as the
input tensor, and a full-precision scalar M that is the
maximum magnitude of the input tensor values scaled by
a sparsity multiplier s (1 ≤ s < 2).
Suppose Tin is an input tensor. The output of 3-value

quantization is

M = max(|Tin |) · s (1)

Tquantized = round
(
Tin
M

)
(2)

Dequantization is a simple multiplication:

Tout = M · Tquantized (3)

s controls the compression level of 3LC. s = 1 is the
default multiplier that preserves the maximum magnitude

Input Accumulation buffer

(2) 3-value quantization with
sparsity multiplication

(3) Quartic encoding

(4) Zero-run encoding

(a) Local
dequantization

+

(b) Assignment

M=0.3

-.1 .1 -.2 0

.2 -.1 -.1 -.1

0 0 0 .1

0 .1 -.1 0

-.1 0 -.2 0

.3 -.1 0 -.1

-.1 0 0 .1

0 .1 -.1 -.1

-.3 .1 -.4 0

-.2 0 -.2 -.1

.1 -.4 .1 .3

0 .3 -.2 0

113 121 121 121

0 0 -1 0

1 0 0 0

0 0 0 0

0 0 0 0

-.3 .1 -.4 0

-.2 0 -.2 -.1

.1 -.4 .1 .3

0 .3 -.2 0

0 0 -.3 0

.3 0 0 0

0 0 0 0

0 0 0 0

0 -.1 0 0

.1 0 .1 0

-.1 0 0 0

0 0 0 -.1

(1) Accumulation

–

113 244

Output

M=0.3

M=0.3

Figure 3: Tensor compression in 3LC.

of values in the input tensor across quantization and de-
quantization. With a larger s (1 < s < 2), the quantization
output is sparser (more zeros) because the magnitude of
more values are smaller than M/2. The sparser output
may contain less state change information, but can be
compressed more aggressively by zero-run encoding.
Quantization followed by dequantization returns a

slightly different tensor from the input tensor, causing
quantization errors. 3LC can experience relatively larger
quantization errors especially when s is larger because
dequantization can make a value farther from its original
value (but within a certain limit to ensure convergence).

3LC corrects quantization errors using error accumu-
lation buffers [2, 17, 32, 37, 38]. It allows quantization
errors to occur in the first place, but attempts to correct
in quantization at later training steps. It keeps a local per-
tensor error accumulation buffer to remember the errors
across training steps.
Figure 3 depicts 3-value quantization with error accu-

mulation, using s = 1. Step (1) accumulates the input
tensor into a local buffer. Step (2) applies 3-value quanti-
zation to the sum. Step (a) dequantizes the quantized data
locally. Step (b) calculates remaining quantization errors
and stores them in the local buffer.

4

Alternative quantization techniques: Stochastic quan-
tization outputs randomized quantization values whose ex-
pectationmatches their input value [3]. It eliminates biases
that exist in deterministic rounding. For instance, Tern-
Grad [39] uses three values for quantization similarly to
3-value quantization (without the sparsity multiplication),
but uses stochastic selection of output values. We decided
to use error accumulation buffers instead of stochastic
quantization for several reasons: (1) Biases that are caused
by non-stochastic quantization can be corrected over time
by using error accumulation buffers. (2) When used
alone, error correction with error accumulation buffers
achieves better accuracy than stochastic quantization in
our evaluation (Section 5); designs using stochastic quan-
tization require more bits for quantization [3] or additional
accuracy-compensation techniques [39] for high accuracy.
(3) Using both error accumulation buffers and stochas-
tic quantization caused training fail to converge in our
experiments.

Squared quantization error minimization is a determin-
istic method that picks magnitude values that minimize
the squared sum of quantization errors. For instance, 1-bit
stochastic gradient descent maps non-negative values and
negative values of an input tensor into two values {0, 1},
and each of these two values are dequantized using a differ-
ent M value that is the average of non-negative or negative
values in the input tensor [32]. In designing 3LC, we
avoid reducing the magnitude of quantized values instead
of pursuing minimum squared quantization errors because
(1) low quantization errors do not necessarily lead to high
accuracy in empirical evaluation (Section 5) and (2) other
lossy compression techniques for state change traffic also
preserve the approximate magnitude of input tensors for
better accuracy even though doing so may provide weaker
theoretic guarantees [3, 39].
Alternative sparsification techniques: The sparsitymul-
tiplier plays a role similar to the threshold knob in
sparsification-based compression techniques [17, 25].
Both affect how many distinct state changes are cho-
sen for transmission. However, thresholding makes a
decompressed tensor have much smaller average values
than the input tensor by omitting many input values (even
though they are small); overly-aggressive thresholding
can result in lower accuracy, and compensating for it
requires changing ML algorithms such as modified mo-
mentum calculation [25] that does not generalize well
to non-gradient data transmission such as model pulls.
In contrast, dequantization using sparsity multiplication
enlarges (now scarcer) large values, better preserving the
average magnitude of the input tensor.
3-value quantization always uses a dense form (array)

of tensors. Dense tensor operations are easier to accel-
erate than sparsification-based compression techniques
that requires dense-to-sparse and sparse-to-dense tensor

conversion whose vectorization is often unavailable (e.g.,
TensorFlow [1] has only a non-vectorized CPU implemen-
tation and no GPU implementation for sparse-to-dense
conversion as of February 2018).
Prior lossy traffic reduction schemes often employ

custom rounding function [2, 17, 24, 25, 32] that often
makes vectorization difficult. 3-value quantization instead
uses simple round() whose vectorized version is readily
available on modern CPUs and GPUs [8, 18].
Convergence: 3-value quantization with sparsity mul-
tiplication retains convergence of state change tensors.
round() adds a maximum absolute error of 1/2. By Equa-
tions 2 and 3, themaximum absolute errormax(|Tin−Tout |)
is bounded by M/2. Note M/2 < max(|Tin |) because of
Equation 1 and 1 ≤ s < 2. Let α be a decaying learning
rate (if Tin is a gradient tensor) or 1 (if Tin is a model delta
tensor). Under an assumption that αTin converges to zero,
αM/2 converges to zero, and αTout also converges to zero.

3.2 Quartic Encoding
Compactly encoding 3-values is nontrivial because CPU
and GPU architectures do not provide native data types
for base-3 numbers. The space requirement of a sim-
ple encoding for 3 discrete values using 2 bits [39] is
larger than the theoretic minimum of log2 3 ≈ 1.585 by
approximately 26%.

Quartic encoding is a fixed-length representation for a
3-value quantized tensor. It takes five 3-values and packs
them into a single byte [Figure 3 Step (3)], using 1.6 bits
per 3-value that is only 0.95% higher than the theoretic
bound. Quartic encoding exploits the fact that a quartic-
form expression a · 34 + b · 33 + c · 32 + d · 31 + e has only
35 = 243 distinct values (≤ 256) if a, . . . , e ∈ {0, 1, 2}.
Quartic encoding of a 3-value quantized tensor takes the
following steps:

1. Element-wise add 1 to the 3-value quantized tensor
2. Type cast it to an unsigned 8-bit integer array
3. Flatten it into a 1-D array
4. Pad it with zeros to make its length a multiple of 5
5. Divide the array into 5 partitions: p0, p1, p2, p3, p4
6. Compute a = p0 · 81 + p1 · 27 + p2 · 9 + p3 · 3 + p4

Decoding reverses encoding steps:

1. Restore p0, p1, p2, p3, p4 by dividing a by a power of
3 and taking the remainder (a base-3 conversion)

2. Concatenate p0, p1, p2, p3, p4
3. Unpad, reshape, and type cast
4. Element-wise subtract 1

These encoding and decoding steps can be easily vec-
torized on CPUs and GPUs using operations provided by
ML frameworks.

5

3.3 Zero-run Encoding
The input to quartic encoding is sparse (even though the
data structure is dense), containing a large number of zeros.
The number of zeros increases as the sparsity multiplier
s increases. Although quartic encoding is compact, it
always generates a fixed-length representation, which does
not take advantage of the sparseness in the input.
Zero-run encoding is a variant of run-length encod-

ing [31], but is specialized to quartic-encoded data. Note
that quartic encoding maps a group of five zero values
from the 3-value quantized tensor into a byte value 121.
Also recall that quartic encoding only outputs byte values
of 0–242. Zero-run encoding finds a run of 121 and
replaces it with a new byte value between 243 and 255,
inclusive [Figure 3 Step (4)]. In other words, k consecu-
tive occurrences of 121 (2 ≤ k ≤ 14) are replaced with a
single byte value of 243+(k-2). In a hypothetical case of
compressing a zero 32-bit floating-point tensor, the com-
bination of all techniques in 3LC reaches a compression
ratio of 280×.

Compared to general-purpose compression algorithms
or entropy coding schemes [3, 12, 29], zero-run encoding
is simple to implement and fast to run by avoiding any
bit-level operation and lookup tables, which helps 3LC
keep low computation overhead.

4 Implementation
We implement a prototype of 3LC on TensorFlow [1]. 3-
value quantization with sparsity multiplication and quartic
encoding use TensorFlow’s built-in vectorized operators.
Zero-run encoding uses a custom operator written in C++.
Our prototype includes a distributed optimizer that

retains the interface of SyncReplicasOptimizer, which
is TensorFlow’s stock distributed training implementation.
The distributed optimizers augment any local optimizer
with distributed training by providing gradient aggregation
and training step barriers. To replicate TensorFlow’s tensor
caching and incremental pull behavior that copies each
remote tensor into a local cache before local access to that
tensor, our prototype ensures that first-time access to a
tensor at each training step executes extra operators that
pull, decompress, and apply model deltas to the tensor.

One user-facing change is tensor allocation. Our proto-
type asks the user program to call a helper function that
provides the same interface as get_variable(), which is
a TensorFlow function that allocates a single tensor. This
helper function reserves buffers for error accumulation and
compressedmodel deltas, and assigns a correct physical lo-
cation to the buffers. The user program can keep using the
default get_variable() for the tensors that do not require
compression (e.g., tensors for small layers); our distributed
optimizer falls back to SyncReplicasOptimizer’s behav-
ior for distributed training of these tensors.

5 Evaluation
We experimentally evaluate 3LC to quantify its effective-
ness against other communication reduction schemes. Our
experiments investigate the following aspects:

• Traffic: How much traffic does each scheme save?
• Training time: How much wall-clock training time
do they save?

• Accuracy: What is the highest test accuracy each
scheme can achieve using standard training steps?

• Convergence speed: What is the highest test accuracy
they achieve using much fewer training steps?2

• Computation overhead: How low is their computa-
tion overhead?

5.1 Compared Designs
Our evaluation compares representative communication
reduction schemes that we implement on TensorFlow:

32-bit float is the baseline that transmits 32-bit
floating-point state changes without compression.

8-bit int is an 8-bit quantization scheme that ap-
proximates Google Tensor Processing Unit’s internal 8-bit
quantization [20]. Our implementation uses 255 distinct
values ([−127, 127], leaving −128 unused).

Stoch 3-value + QE uses stochastic 3-value quanti-
zation similar to TernGrad (but without “gradient clip-
ping”) [39], and our quartic encoding for 1.6-bit quantiza-
tion (smaller than TernGrad’s 2-bit quantization).

MQE 1-bit int performs 1-bit quantization with mini-
mum squared quantization errors and error feedback [32].

25% sparsification and 5% sparsification
choose 25% and 5% of the largest state changes in each
tensor, respectively, and accumulate unsent changes in
buffers, which reproduce common sparsification tech-
niques [2, 17, 24, 25, 38]. We use the magnitude (not
relative magnitude [17]) of values to find largest values for
better accuracy in our experiments. To avoid exhaustive
sorting while finding a threshold, we only sort sampled
input values [2]. We use a bitmap to indicate which state
changes sparsification has selected, which adds 1 bit per
state change as traffic overhead regardless of input size.

2 local steps transmits state changes every 2 local
steps. Unsent updates are accumulated locally and sent at
the next training step using error accumulation buffers. It
reduces the traffic almost by half and effectively doubles
the global batch size of distributed training.

3LC is the full 3LC design. s is the sparsity multiplier.
Similar to prior work [3], we exclude state changes for

small layers (batch normalization [19] in our experiments)
from compression because avoiding computation overhead
far outweighs compacting already small tensors.

2High convergence speed with few training steps can be useful for
accurate and fast hyperparameter (training configuration) optimizations
using small computational resources [11, 34].

6

Note that the implementation of some compared de-
signs are not identical to prior proposed designs because
their design is incompatible with our workload and the
TensorFlow parameter server architecture. For instance,
sparsification does not use modified momentum al-
gorithms [25] because and TensorFlow sends not only
gradients, but also model deltas to which their modifica-
tions of ML algorithms are inapplicable.

5.2 Evaluation Setup
Workload: Our experiments train image classifiers based
onResNet-110 [15] for theCIFAR-10 dataset [23]. CIFAR-
10 contains 50,000 training images and 10,000 testing
images, each of which has one of 10 labels. ResNet-110 is
a 110-layer convolutional neural network for CIFAR-10.
Detailed training configuration: The following para-
graphs provide an exhaustive description of our ML pa-
rameters and environment for completeness. We use stan-
dard configurations and values from the literature [15, 27].
Readers can feel free to skip these ML-focused details
and resume at the “Hardware and Network” paragraph.
We reuse the local optimizer type and hyperparame-

ters for ResNet-110 training from the original ResNet
paper [15] except for the learning rate schedule. The local
optimizer is TensorFlow’s MomentumOptimizer with the
momentum of 0.9. The weight decay is 0.0001. We vary
the learning rate from 0.1 to 0.001, following the origi-
nal learning rate range, but we use cosine decay without
restarts [27] instead of the original stepwise decay because
the cosine decay achieves better accuracy [4, 27] and has
fewer hyperparameters to tune. We apply the standard
data augmentation that randomly crops and horizontally
flips original images to generate training examples [15].

Our distributed training configuration follows the guide-
line for large-batch stochastic training [13]. We use a
per-worker batch size of 32 images [25]; using the original
batch size of 128 reduces accuracy for all designs because
it produces a large global batch size of 1,280 on a 10-
worker cluster. We scale the learning rate proportionally
to the worker count and make one worker responsible
for updating batch normalization parameters [13]. Our
accuracy matches or exceeds the accuracy of a ResNet-110
trained using a similar batch size but stepwise decay [25].

We choose to train a ResNet because it is both a repre-
sentative and challenging workload for communication re-
duction schemes to show their performance benefits. The
ResNet architecture’s “identity mappings” are commonly
found in high-accuracy neural network architectures [42].
Compared to traditional neural network architectures such
as VGG [33], ResNet models typically have small pa-
rameter count to computation ratios [42], generating less
state change traffic for the same amount of communica-
tion. Its very deep network structure permits efficient
incremental transmission of state changes (Section 2.1),

facilitating overlapping computation and communication
and hiding communication latency. Therefore, we believe
that a capability to show performance gains on the ResNet
architecture is likely to be transferable to other neural
network architectures.
Hardware and Network: Our distributed training runs
on a custom GPU cluster. It uses 10 workers with a GPU;
each pair of workers shares a physical machine equipped
with two Intel Xeon E5-2680 v2 CPUs (total 20 physical
cores), 128 GiB DRAM, and two Nvidia GTX 980 GPUs.
Our experiments use numactl for CPU and memory isola-
tion between worker pairs and CUDA_VISIBLE_DEVICES
for a dedicated per-worker GPU. A separate machine
acts as a parameter server. We use the Linux Traffic
Control [26] on worker and server nodes to emulate con-
strained network bandwidth.
Measurement Methodology: A dedicated node reads
the snapshot of the global model and calculates the top-1
score of the testing images as test accuracy.
Due to limited computation resources, we divide the

experiments into two categories of full measurement and
accelerated measurement. Full measurement measures
training time, average per-step training time, and accu-
racy on 1 Gbps by executing standard training steps
(163.84 epochs [15], which is equivalent to 25,600 steps
for 10 workers with a batch size of 32). Accelerated mea-
surement only obtains average per-step time on 10 Mbps
and 100 Mbps links by executing 100 and 1000 steps,
respectively (about 1 hour of training for 32-bit float);
one exception is that any design with zero-run encoding
runs 10% of standard training steps to faithfully reflect its
compression ratios changing over time. The learning rate
schedule uses adjusted training steps as the total training
steps (as usual) to ensure each training run to sweep the
entire learning rate range.

We predict the training time on 10 Mbps and 100 Mbps
by scaling the training time from the 1 Gbps full measure-
ment based on per-step training time differences between
full and accelerate measurement results while reusing the
accuracy from the full measurement. Suppose a full mea-
surement result for 1 Gbps is training time of tfull, per-step
training time of sfull, and an accelerated measurement
result for 10 Mbps is per-step training time of sshort. We
estimate the training time of 10 Mbps to be tfull · sshort/sfull.
We take test accuracy obtained in the full measurement
as-is because network bandwidth changes do not affect test
accuracy. Without training time extrapolation, obtaining
a single datapoint on a slow network takes approximately
10 days on our cluster, which would make it hard for us to
compare many designs extensively at high confidence.
We show the average of measurement results from

multiple independent runs. Each experiment configuration
is run 5 times for full measurement, and 3 times for
accelerated measurement.

7

Speedup (×)
Design @ 10 Mbps @ 100 Mbps @ 1 Gbps Accuracy (%) Difference
32-bit float 1 1 1 93.37
8-bit int 3.62 3.47 1.51 93.33 −0.04
Stoch 3-value + QE 12.3 7.51 1.53 92.06 −1.31
MQE 1-bit int 14.6 7.40 1.30 93.21 −0.16
25% sparsification 3.25 3.11 1.33 93.40 +0.03
5% sparsification 8.98 6.62 1.44 92.87 −0.50
2 local steps 1.92 1.87 1.38 93.03 −0.34
3LC (s=1.00) 15.9 7.97 1.53 93.32 −0.05
3LC (s=1.50) 20.9 8.70 1.53 93.29 −0.08
3LC (s=1.75) 22.8 9.04 1.53 93.51 +0.14
3LC (s=1.90) 22.8 9.22 1.55 93.10 −0.27

Table 1: Speedup over the baseline and test accuracy using standard training steps (graphs in the next page).

5.3 Macrobenchmark
We examine the tradeoff between total training time and
accuracy of compared schemes. Each datapoint on the
graph represents a separate experiment configuration; the
learning schedule (the cosine decay) depends on total
training steps, requiring a new experiment for accuracy
measurement for a different number of total training steps.
Table 1 summarizes training time speedups over the

baseline and test accuracy when using standard training
steps. 3LC achieves the best speedup across all network
configurations, and its accuracy remains similar to the
baseline, except 3LC (s=1.90) that performs highly ag-
gressive traffic compression. Other designs offer less
training time reduction or suffer lower accuracy.
Figure 4 plots total training time and test accuracy on

10Mbps when varying the total number of training steps to
25%, 50%, 75%, and 100% of standard training steps. An
experiment using 100% training steps gives the accuracy
of fully trained models, while using fewer training steps
indicates the convergence speed of a design.

The result shows that designs that achieve high accuracy
with many training steps do not always yield high accuracy
with fewer training steps. 3LC (s=1.75) provides the
best training time and maintains high accuracy when using
100% training steps because of its effective traffic com-
pression. When using fewer training steps, 3LC (s=1.00)
achieves better accuracy. 3LC’s sparsity multiplication
affects tradeoffs between traffic reduction and convergence
speed, but it does not necessarily harm accuracy obtained
using sufficient training steps (e.g., executing as many
training steps as standard no-compression training uses).
Note that Stoch 3-value + QE has lower accuracy

than 3LC. This accuracy loss by stochastic quantization
supports our design decision of using error accumulation
buffers to correct quantization errors.

With a faster network of 100Mbps, as shown in Figure 5,
the benefit of reducing traffic begins to diminish and
preserving high accuracy becomes more important. For

example, 5% sparsification provides always better
speed-accuracy tradeoffs than Stoch 3-value + QE,
which is different on 10 Mbps.

On a 1 Gbps network, in Figure 6, the most influential
factors to speed-accuracy tradeoffs are high accuracy and
low computation overhead, and traffic reduction becomes
less important. 3LC provides high accuracy using 75%
to 100% of standard training steps and slightly lower
accuracy than 8-bit int using fewer training steps. MQE
1-bit int is slower than 8-bit int that transmits 8×
more traffic; the long training time of MQE 1-bit int is
attributable to its high computation overhead of using an
unconventional rounding function. 3LC does not add such
high overhead because it leverages existing vectorized
operations.

We also examine how designs perform during a training
run in detail. Figure 7 depicts runtime (not final) training
loss and test accuracy of the baseline, the most representa-
tive quantization, sparsification, and multiple local steps
designs, and 3LC with the default sparsity multiplier; the
result of omitted designs is similar to that of a close design
(e.g., 8-bit int is similar to the baseline). Except for
3LC, traffic reduction designs tend to have higher training
loss, and their accuracy also increases slowly. In contrast,
3LC achieves small training loss and high accuracy that
are close to those of the baseline.

5.4 Sensitivity Analysis
The control knob of 3LC is a sparsity multiplier s. With
a high s, 3-value quantization emits more zeros that can
make zero-run encoding more effective. We vary s and
measure training time, traffic reduction, and accuracy.

Figure 8 compares tradeoffs between total training time
and test accuracy. In general, a high sparsity multiplier
reduces training time, but it can also lower convergence
speed with fewer training steps. Most s values lead to high
accuracy when using 100% of standard training steps, but
s = 1.90 exhibits lower accuracy than others.

8

0 2000 4000 6000 8000 10000 12000 14000
Total training time (minutes)

88

89

90

91

92

93

94
Te

st
 a

cc
ur

ac
y

(%
)

32-bit float
8-bit int
Stoch 3-value + QE
MQE 1-bit int
25% sparsification
5% sparsification
2 local steps
3LC (s=1.00)
3LC (s=1.75)

(a) Overview

0 200 400 600 800 1000 1200 1400 1600
Total training time (minutes)

88

89

90

91

92

93

94

Te
st

 a
cc

ur
ac

y
(%

)

Stoch 3-value + QE
MQE 1-bit int
5% sparsification
3LC (s=1.00)
3LC (s=1.75)

(b) Fast designs

Figure 4: Training time and test accuracy using 25/50/75/100% of standard training steps @ 10 Mbps.

0 200 400 600 800 1000 1200 1400
Total training time (minutes)

88

89

90

91

92

93

94

Te
st

 a
cc

ur
ac

y
(%

)

32-bit float
8-bit int
Stoch 3-value + QE
MQE 1-bit int
25% sparsification
5% sparsification
2 local steps
3LC (s=1.00)
3LC (s=1.75)

(a) Overview

0 50 100 150 200
Total training time (minutes)

88

89

90

91

92

93

94

Te
st

 a
cc

ur
ac

y
(%

)

Stoch 3-value + QE
MQE 1-bit int
5% sparsification
3LC (s=1.00)
3LC (s=1.75)

(b) Fast designs

Figure 5: Training time and test accuracy using 25/50/75/100% of standard training steps @ 100 Mbps.

0 25 50 75 100 125 150 175
Total training time (minutes)

88

89

90

91

92

93

94

Te
st

 a
cc

ur
ac

y
(%

)

32-bit float
8-bit int
Stoch 3-value + QE
MQE 1-bit int
25% sparsification
5% sparsification
2 local steps
3LC (s=1.00)
3LC (s=1.75)

(a) Overview

0 20 40 60 80 100 120 140
Total training time (minutes)

88

89

90

91

92

93

94

Te
st

 a
cc

ur
ac

y
(%

)

8-bit int
Stoch 3-value + QE
MQE 1-bit int
5% sparsification
3LC (s=1.00)
3LC (s=1.75)

(b) Fast designs

Figure 6: Training time and test accuracy using 25/50/75/100% of standard training steps @ 1 Gbps.

9

0 5000 10000 15000 20000 25000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 lo
ss

32-bit float
MQE 1-bit int
5% sparsification
2 local steps
3LC (s=1.00)

0 5000 10000 15000 20000 25000
Training steps

0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y
(%

)

32-bit float
MQE 1-bit int
5% sparsification
2 local steps
3LC (s=1.00)

Figure 7: Training loss (left) and test accuracy (right) using standard training steps.

0 200 400 600 800
Total training time (minutes)

88

89

90

91

92

93

94

Te
st

 a
cc

ur
ac

y
(%

)

3LC (s=1.00)
3LC (s=1.50)
3LC (s=1.75)
3LC (s=1.90)

Figure 8: Training time and test accuracy with a var-
ied sparsitymultiplier (s) using 25/50/75/100%of stan-
dard training steps @ 10 Mbps.

Table 2 examines the average traffic reduction of 3LC.
Without zero-run encoding (“ZRE”), the quartic-encoded
size of each state change is 1.6 bits. Applying zero-
run encoding halves the traffic volume for the default
sparsity multiplier (s = 1.00). With a higher s, 3LC
can compress traffic more aggressively; 3LC (s=1.90)
realizes a 160× end-to-end compression ratio and 0.2 bits
per state change. This high compression ratio can be useful
for metered and/or highly bandwidth-constrained network
connections where reducing the number of bytes required
for state change transmission is crucial for cost-effective
distributed ML.
The compression ratio of zero-run encoding changes

over time because nodes generate different gradients and
model deltas as the model changes. Figure 9 plots the
compressed size of gradient pushes and model pulls at

s Compression ratio (×) bits per state change
No ZRE 20.0 1.60
1.00 39.4 0.812
1.50 70.9 0.451
1.75 107 0.298
1.90 160 0.200

Table 2: Average traffic compression of 3LC using
standard training steps.

each training step when executing standard training steps.
Compressed pushes tend to be smaller than compressed
pulls until the later stage of training, which indicates
that state changes in model pulls have lower variance
(including fewer zeros in the quantization output) because
these changes reflect aggregated gradient pushes from
multiple workers. After finishing approximately 70% of
training, compressed pushes become larger, which shows
that workers now generate gradients with lower variance.
3LC does not forcefully limit how many state changes can
be transmitted at each training step; it permits transmitting
important state changes as much as needed, which can
help achieve fast convergence and high accuracy.

6 Related Work
Quantization: 1-bit stochastic gradient descent [32] rep-
resents each state change with two values, which can be
dequantized using two floating-point numbers that mini-
mize squared quantization errors. It accumulates quanti-
zation errors for later error correction. 3LC provides more
effective traffic reduction that transmits approximately
1.6-bit worth information in a sub-1-bit representation
without reducing the maximum magnitude of state change
values (important for fast convergence and high accu-
racy). 3LC also provides a sparsity multiplier that can

10

0 5000 10000 15000 20000 25000
Training steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Co

m
pr

es
se

d
siz

e
pe

r s
ta

te
 c

ha
ng

e
(b

its
)

Without ZRE
With ZRE (push)
With ZRE (pull)

0 5000 10000 15000 20000 25000
Training steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Co
m

pr
es

se
d

siz
e

pe
r s

ta
te

 c
ha

ng
e

(b
its

)

Without ZRE
With ZRE (push)
With ZRE (pull)

Figure 9: Compressed size per state change value using standard training steps (left: s=1.00; right: s=1.75).

change its compression level. 3LC’s quantization and
encoding methods are easier to vectorize by using existing
vectorizable operations.

QSGD [3] and TernGrad [39] use stochastic quantiza-
tion that makes quantized values an unbiased estimator of
the original values. 3LC uses error accumulation buffers
that empirically provide better accuracy without introduc-
ing changes to machine learning algorithms for accuracy
compensation.

TernGrad [39] uses 3-values to quantize state changes,
which is similar to 3LC’s 3-value quantization. How-
ever, TernGrad lacks a knob to control the compression
level and introduces a barrier to synchronize quantization
parameters across all workers. TernGrad uses 2-bit encod-
ing, which is far less compact than 3LC’s encoding that
requires only 0.3–0.8 bits per state change.
Quantization methods often employ entropy coding

schemes such as Huffman coding and Elias coding for
compact binary representations [3, 29]. 3LC’s zero-run
encoding offers high compression ratios (up to 8×) by
using byte-level operations and no lookup tables, which
helps achieve low computation overhead.
Sparsification: The parameter server [24] discusses filter-
ing zero gradients for small-value model parameters. 3LC
provides compression for both gradients and model deltas
regardless of the magnitude of the model parameters.
Bösen [38] can prioritize sending large gradients and

model deltas by sorting them. Because sorting millions
of state change values is expensive, there are proposals
that use a relative threshold [17], a global threshold [2],
per-tensor thresholds [25], or round-robin selection [37]
for low-overhead sparsification. Among these, Gaia [17]
changes the relative threshold to send more state changes
as training progresses. 3LC transmits larger compressed
data in the later stage of training without having to control
the compression level explicitly.

Gradient dropping [2] and Deep Gradient Compres-
sion [25] achieve high compression by selecting only
0.1% of gradients. This very aggressive gradient reduc-
tion, however, has worse accuracy. Recovering accuracy
necessitates modifying machine learning algorithms [25],
which reduces their generality and makes it hard to com-
press non-gradient state changes such as model deltas.
Project ADAM [7] and Poseidon [41] reduce network

traffic by transmitting small “sufficient factors” that con-
tain enough information to construct full gradient tensors
for certain types of neural network layers [40]. 3LC
pursues a general tensor compression scheme that can
compress gradients and model deltas for any type of layers.
Infrequent communication: Federated learning [21, 28]
runsmultiple training steps before each global state change
transmission. Our evaluation shows that infrequent trans-
mission of state changes can lead to lower accuracy when
using the same number of training steps.

7 Conclusion
A key challenge in modern, large-scale machine learning
is marrying the demands of systems (reducing communi-
cation, overlapping computation and communication, and
so on) and learning algorithms (algorithmic efficiency,
accuracy, and convergence). In this paper, we described
a new lossy compression scheme for distributed training
of machine learning models that reduces network traffic
by up to 107× without impairing training or altering ma-
chine learning algorithms. The key contribution is a new
traffic compression scheme that combines the strengths of
tensor quantization and sparsification approaches. 3LC
introduces three new lightweight, yet effective lossy and
lossless transformation techniques, resulting in greater
balance between traffic compression, accuracy, computa-
tion overhead, and generality in distributed training under
a large range of available network bandwidths.

11

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R.Monga, S.Moore, D.G.Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: A system for large-scale machine
learning. In Proc. 12th USENIX OSDI, Nov. 2016.

[2] A. F. Aji and K. Heafield. Sparse communication for
distributed gradient descent. In Proc. Empirical Methods
in Natural Language Processing (EMNLP), 2017.

[3] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic.
QSGD: Communication-efficient SGD via gradient quan-
tization and encoding. In Advances in Neural Information
Processing Systems 30, 2017.

[4] I. Bello, B. Zoph, V. Vasudevan, and Q. V. Le. Neural
optimizer search with reinforcement learning. In Proc.
ICML 2017, 2017.

[5] I. Cano, M. Weimer, D. Mahajan, C. Curino, and G. M.
Fumarola. Towards geo-distributedmachine learning. Tech-
nical Report arXiv:1603.09035, arXiv, 2016.

[6] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz. Re-
visiting distributed synchronous SGD. In International
Conference on Learning Representations Workshop Track,
2016.

[7] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman.
Project Adam: Building an efficient and scalable deep
learning training system. In Proc. 11th USENIX OSDI,
Oct. 2014.

[8] Nvidia cuda c programming guide. http://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html,
Jan. 2018.

[9] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P.
Xing. GeePS: Scalable deep learning on distributed GPUs
with a GPU-specialized parameter server. In Proceedings
of the Eleventh European Conference on Computer Systems
(EuroSys), 2016.

[10] European Commission. EU Commission and United States
agree on new framework for transatlantic data flows: EU-
US Privacy Shield. http://europa.eu/rapid/press-
release_IP-16-216_en.htm, Feb. 2016.

[11] D. Golovin, B. Solnik, S.Moitra, G. Kochanski, J. E. Karro,
and D. Sculley. Google Vizier: A service for black-box
optimization. In Proc. KDD 2017, 2017.

[12] Google. Snappy. https://github.com/google/snappy,
2017.

[13] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.
Accurate, large minibatch SGD: training ImageNet in 1
hour. Technical Report arXiv:1706.02677, arXiv, 2017.

[14] S. Han, H. Mao, and W. J. Dally. Deep Compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. In Proc. ICLR 2016,
2016.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. arXiv preprint arXiv:1512.03385,
2015.

[16] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. Ganger, and E. P. Xing. More effective
distributed ML via a stale synchronous parallel parameter
server. In NIPS, 2013.

[17] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R.
Ganger, P. B. Gibbons, and O. Mutlu. Gaia: Geo-
distributed machine learning approaching LAN speeds.
In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), 2017.

[18] Intel 64 and IA-32 architectures developer’s man-
ual. https://software.intel.com/en-us/articles/
intel-sdm, 2017.

[19] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In Proceedings of the 32nd International Conference on
Machine Learning (ICML), July 2015.

[20] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, et al. In-datacenter performance analysis of a
tensor processing unit. In Proceedings of the 44th Annual
International Symposium on Computer Architecture, ISCA
’17, 2017.

[21] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T.
Suresh, and D. Bacon. Federated learning: Strategies for
improving communication efficiency. Technical Report
arXiv:1610.05492, arXiv, 2016.

[22] KPMG. Overview of China’s Cybersecurity Law. https:
//home.kpmg.com/cn/en/home/insights/2017/02/
overview-of-chinas-cybersecurity-law.html, Feb.
2017.

[23] A. Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, University of Toronto, 2009.

[24] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
distributed machine learning with the parameter server. In
Proc. 11th USENIX OSDI, Oct. 2014.

[25] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally.
Deep Gradient Compression: Reducing the communi-
cation bandwidth for distributed training. Technical Report
arXiv:1712.01887, arXiv, 2017.

[26] Linux Traffic Control. http://tldp.org/HOWTO/Traff
ic-Control-HOWTO/intro.html, 2017.

[27] I. Loshchilov and F. Hutter. SGDR: stochastic gradient
descent with restarts. In Proc. ICLR 2017, 2017.

[28] B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas. Communication-efficient learning of deep
networks from decentralized data. In Proceedings of the
20th International Conference on Artificial Intelligence
and Statistics (AISTATS), 2017.

[29] A. Øland and B. Raj. Reducing communication overhead
in distributed learning by an order of magnitude (almost).
In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2015.

[30] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild!: A lock-
free approach to parallelizing stochastic gradient descent.
In NIPS, 2011.

12

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://europa.eu/rapid/press-release_IP-16-216_en.htm
http://europa.eu/rapid/press-release_IP-16-216_en.htm
https://github.com/google/snappy
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://home.kpmg.com/cn/en/home/insights/2017/02/overview-of-chinas-cybersecurity-law.html
https://home.kpmg.com/cn/en/home/insights/2017/02/overview-of-chinas-cybersecurity-law.html
https://home.kpmg.com/cn/en/home/insights/2017/02/overview-of-chinas-cybersecurity-law.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html

[31] A. H. Robinson and C. Cherry. Results of a prototype
television bandwidth compression scheme. In Proc. IEEE,
1967.

[32] F. Seide, H. Fu, J. Droppo, G. Li, andD. Yu. 1-bit stochastic
gradient descent and application to data-parallel distributed
training of speech DNNs. In Proc. Interspeech 2014, 2014.

[33] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[34] J. Snoek, H. Larochelle, and R. P. Adams. Practical
bayesian optimization of machine learning algorithms. In
NIPS, 2012.

[35] L. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, 1990.

[36] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Pad-
hye, and G. Varghese. Global analytics in the face of
bandwidth and regulatory constraints. In 12th USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI 15), 2015.

[37] P. Watcharapichat, V. L. Morales, R. C. Fernandez, and
P. Pietzuch. Ako: Decentralised deep learning with partial

gradient exchange. In Proceedings of the Seventh ACM
Symposium on Cloud Computing, 2016.

[38] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R. Ganger, P. B.
Gibbons, G. A. Gibson, and E. P. Xing. Managed com-
munication and consistency for fast data-parallel iterative
analytics. In Proceedings of the Sixth ACM Symposium on
Cloud Computing (SoCC), 2015.

[39] W.Wen, C. Xu, F. Yan, C.Wu, Y.Wang, Y. Chen, and H. Li.
TernGrad: Ternary gradients to reduce communication in
distributed deep learning. In Proc. NIPS 2017, 2017.

[40] P. Xie, J. K. Kim, Y. Zhou, Q. Ho, A. Kumar, Y. Yu, and
E. Xing. Distributed machine learning via sufficient factor
broadcasting. Technical Report arXiv:1409.5705, arXiv,
2014.

[41] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu,
J. Wei, P. Xie, and E. P. Xing. Poseidon: An efficient
communication architecture for distributed deep learning
on GPU clusters. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), 2017.

[42] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning
transferable architectures for scalable image recognition.
Technical Report arXiv:1707.07012, arXiv, 2017.

13

	1 Introduction
	2 Distributed ML Background
	2.1 Relaxing Barriers
	2.2 Compressing State Change Traffic

	3 Design
	3.1 3-value Quantization withSparsity Multiplication
	3.2 Quartic Encoding
	3.3 Zero-run Encoding

	4 Implementation
	5 Evaluation
	5.1 Compared Designs
	5.2 Evaluation Setup
	5.3 Macrobenchmark
	5.4 Sensitivity Analysis

	6 Related Work
	7 Conclusion

