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Abstract
Machine learning models are becoming the primary work-

horses formany applications. Services deploymodels through

prediction serving systems that take in queries and return

predictions by performing inference on models. Prediction

serving systems are commonly run on many machines in

cluster settings, and thus are prone to slowdowns and failures

that inflate tail latency. Erasure coding is a popular technique

for achieving resource-efficient resilience to data unavail-

ability in storage and communication systems. However,

existing approaches for imparting erasure-coded resilience

to distributed computation apply only to a severely limited

class of functions, precluding their use for many serving

workloads, such as neural network inference.

We introduce parity models, a new approach for enabling

erasure-coded resilience in prediction serving systems. A par-

ity model is a neural network trained to transform erasure-

coded queries into a form that enables a decoder to recon-

struct slow or failed predictions. We implement parity mod-

els in ParM, a prediction serving system that makes use

of erasure-coded resilience. ParM encodes multiple queries

into a “parity query,” performs inference over parity queries

using parity models, and decodes approximations of unavail-

able predictions by using the output of a parity model. We

showcase the applicability of parity models to image clas-

sification, speech recognition, and object localization tasks.

Using parity models, ParM reduces the gap between 99.9th

percentile and median latency by up to 3.5×, while maintain-

ing the same median. These results display the potential of

parity models to unlock a new avenue to imparting resource-

efficient resilience to prediction serving systems.
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1 Introduction
Machine learning is widely deployed in production services

and user-facing applications [1, 5, 7, 15, 21]. This has in-

creased the importance of inference, the process of returning

a prediction from a trained machine learning model. Predic-
tion serving systems are platforms that host models for in-

ference and deliver predictions for input queries. Numerous

prediction serving systems are being developed by service

providers [3, 4, 8] and open-source communities [9, 25, 64].

To meet the demands of user-facing production services,

prediction serving systems must deliver predictions with

low latency (e.g., within tens of milliseconds [25]). Similar

to other latency-sensitive services, prediction services must

adhere to strict service level objectives (SLOs). Queries that

are not completed by their SLO are often useless to appli-

cations [15]. In order to reduce SLO violations, prediction

serving systems must minimize tail latency.

Prediction serving systems often employ distributed ar-

chitectures to support high query rate [25]. As depicted in

Figure 1 (ignoring the purple components for the moment),

a prediction serving system consists of a frontend which

receives queries and dispatches them to one or more model

instances. Model instances perform inference and return

predictions. This distributed setup is typically run in large-

scale, multi-tenant clusters (e.g., public clouds), where tail

latency inflation is a common problem [26]. There are numer-

ous causes of inflated tail latencies in these settings, such as

multi-tenancy and resource contention [38, 44, 88], hardware

unreliability and failures [19], and other complex runtime

interactions [18]. Within the context of prediction serving

systems, network and computation contention have both

been shown as potential bottlenecks [25, 38], and routines

like loading a new model can also cause latency spikes [64].

https://doi.org/10.1145/3341301.3359654
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Figure 1. Architecture of a prediction serving system along

with components introduced by ParM (shown in purple).

Due to the many causes of tail latency inflation, it is im-

portant for mitigations to be agnostic to the cause of slow-

down [26]. However, current agnostic approaches formitigat-

ing tail latency inflation either require significant resource

overhead by replicating queries, or sacrifice latency by wait-

ing to detect a slowdown or failure before retrying.

Erasure codes are popular tools for imparting resilience

to data unavailability while remaining agnostic to the cause

of unavailability and using less resources than replication-

based approaches. These properties have led to the wide

adoption of erasure codes in storage and communication

systems [6, 43, 66–68, 72, 73, 91]. An erasure code encodes

k data units to produce r redundant “parity” units in such a

way that any k of the total (k + r ) data and parity units are

sufficient for a decoder to recover the original k data units.

The overhead incurred by an erasure code is
k+r
k , which is

typically much less than that of replication (by setting r < k).
A number of recent works have studied the theoretical

aspects of using erasure codes for alleviating the effects of

slowdowns and failures that occur in distributed computa-
tion (e.g.,[30, 54, 92]). This setup, called “coded-computation,”

uses erasure coding to recover the outputs of a deployed

computation over data units. In coded-computation, data

units are encoded into parity units, and the deployed compu-

tation is performed over all data and parity units in parallel.

A decoder then uses the outputs from the fastest k of these

computations to reconstruct the outputs corresponding to

the original data units. For a prediction serving system, em-

ploying coded-computation would involve encoding queries
such that a decoder can recover slow or failed predictions.

The primary differences between coded-computation and

the traditional use of erasure codes in storage and communi-

cation come from (1) performing computation over encoded

data and (2) the need for an erasure code to recover the re-

sults of computation over data units rather than the data

units themselves. Whereas traditional applications of era-

sure codes involve encoding data units and decoding from a

subset of data and parity units, in coded-computation one de-

codes by using the output of computation over data and parity
units. This difference calls for fundamentally rethinking the

design of erasure codes, as many of the erasure codes which

have been widely used in storage and communication (e.g.,

Reed-Solomon codes [70]) are applicable only to a highly

restricted class of computations [54].

As erasure codes can correct slowdowns with low latency

and require less resource-overhead than replication-based

techniques, enabling the use of coded-computation in pre-

diction serving systems has potential for efficient mitigation

of tail latency inflation. However, the complex non-linear

components common to popular machine learning models,

like neural networks, make it challenging to design effective

coded-computation solutions for prediction serving systems.

Existing coded-computation approaches, which focus on

hand-crafting new erasure codes, can support only rudimen-

tary computations [29, 30, 54, 57, 62, 71, 82, 92, 93], rendering

them inadequate for prediction serving systems.

We propose to overcome the challenges of employing

coded-computation for prediction serving systems via a

learning-based approach. We show that machine learning

can eschew the difficulty of hand-crafting codes and enable

coded-computation over neural network inference. How-

ever, this approach requires careful consideration: we show

that simply replacing encoders and decoders with machine

learning models limits opportunities to reduce tail latency.

Motivated by these insights, we present parity models, a
fundamentally new approach to coded-computation. A parity

model is a neural network trained to convert encoded queries

into a form that enables decoding of unavailable predictions.

Unlike conventional coded-computation approaches, which

design new erasure codes, parity models enable the use of

simple, fast encoders and decoders, such as addition and sub-

traction. This reduces the computational burden introduced

on a prediction serving system frontend, and also reduces the

latency of reconstructions. We implement parity models in

ParM (parity models), a prediction serving system designed

to make use of erasure-coded resilience. As depicted in Fig-

ure 1, ParM encodes multiple queries together into a parity

query. A parity model transforms the parity query such that

its output enables a decoder to reconstruct slow or failed

predictions.

The predictions returned by ParM are the same as any

prediction serving system in the absence of slowdowns and

failures. When slowdowns and failures do occur, the output

of ParM’s decoder is an approximate reconstruction of a

slow or failed predictions. Reconstructing approximations

of unavailable predictions is appropriate for inference, as

predictions are already approximations and because ParM’s

reconstructions are returned only when a prediction from

the deployed model would otherwise be slow or failed. In this

scenario, it is preferable to return an approximate prediction

rather than a late one or no prediction at all [15].

We have built ParM atop Clipper [25], an open-source pre-

diction serving system. We evaluate the accuracy of ParM’s
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reconstructions on a variety of neural networks and in-

ference tasks such as image classification, speech recogni-

tion, and object localization. We also evaluate ParM’s ability

to reduce tail latency across varying query rates, levels of

background load, and amounts of redundancy. ParM recon-

structs unavailable predictions with high accuracy and re-

duces tail latency while using 2-4× less additional resources

than replication-based approaches. For example, using only

half of the additional resources as replication, ParM’s re-

constructions from ResNet-18 models on various tasks are

within a 6.5% difference in accuracy compared to if the origi-

nal predictions were not slow or failed. This enables ParM to

reign in tail latency: ParM reduces 99.9th percentile latency

in the presence of load imbalance for a ResNet-18 model by

up to 48% compared to a baseline that uses the same amount

of resources as ParM, while maintaining the same median.

This brings tail latency up to 3.5× closer to median latency,

enabling ParM to maintain predictable latencies in the face

of slowdowns and failures. These results show the promise

of learning-based coded-computation to open new doors for

imparting efficient resilience to prediction serving systems.

The code used to train and evaluate parity models is avail-

able at https://github.com/thesys-lab/parity-models.

2 Background and Motivation
This section describes prediction serving systems, as well as

challenges and opportunities for improvement.

2.1 Prediction serving systems
A prediction serving system hosts machine learning models

for inference; it accepts queries from clients, performs infer-

ence on hosted models, and returns predictions. We refer to

a model hosted for inference as a “deployed model.”

As depicted in Figure 1 (ignoring the purple components),

prediction serving systems have two types of components: a

frontend and model instances. The frontend receives queries

and dispatches them to model instances for inference. Model

instances are containers or processes that contain a copy of

the deployed model and return predictions by performing

inference on the deployed model.

Prediction serving systems employ scale-out architectures

to serve predictions with low latency and high throughput

and to overcome the memory and processing limitations of a

single server [56]. In such a setup, multiple model instances

are deployed on separate servers, each containing a copy

of the same deployed model [25]. The frontend distributes

queries to model instances according to a load-balancing

strategy (e.g., single-queue, round-robin).

Prediction serving systems use a variety of hardware for

inference, including GPUs [25], CPUs [39, 65, 96], TPUs [48],

and FPGAs [23]. As some hardware is optimized for batched

operation (e.g., GPUs), some systemswill buffer queries at the

frontend and dispatch them tomodel instances in batches [25,

64]. However, as buffering induces latency, many systems

perform minimal or no batching [23, 96].

2.2 Challenges and opportunity
As described above, prediction serving systems are often

run in a distributed fashion and make use of many cluster

resources (e.g., compute, network). These systems are thus

prone to the slowdowns and failures common to cloud and

cluster settings. Left unmitigated, these slowdowns inflate

tail latency and cause violations of latency targets. Predic-

tion serving systems must therefore employ some means to

mitigate the effects of slowdowns. Due to the many causes

of slowdowns, such as those described in §1, it is important

for mitigations to be agnostic to the cause of slowdowns.

A popular approach to imparting resilience to serving sys-

tems (e.g., web services) while remaining agnostic to the

cause of slowdown is to issue redundant requests to multi-

ple servers [26]. Previous work has theoretically motivated

the potential for redundancy-based techniques to reduce

latency [31, 47, 59, 76]. Redundancy-based approaches com-

monly navigate a tradeoff space between resource-overhead

and latency. We next characterize existing redundancy-based

techniques and where they operate within this tradeoff space.

Proactive approaches. A common technique used to ach-

ieve the lowest latency in recovering from slowdowns and

failures is to proactively issue redundant requests to multiple

servers and to wait only for the first replica to respond. Under

such techniques, a system that replicates each query to d
servers can tolerate (d − 1) slow/failed servers. By issuing

redundant queries as soon as a query arrives in the system,

proactive approaches mitigate slowdowns and failures with

low latency. However, current proactive approaches result in

high resource-overhead, as replicating queries to d servers

requires d-times as many resources to handle increased load.

Reactive approaches. Reactive approaches operate with

lower resource-overhead than replication-based approaches

by issuing redundant queries only when confident that a

slowdown or failure has occurred [13, 26, 94]. Under such

approaches, each query is dispatched to a single server, and

redundant requests are only issued if a certain amount of

time has elapsed without receiving the result from the server.

Such waiting time is commonly chosen to be long enough

such that one is confident a server is running slowly if a result

has not been returned by this time [26]. By issuing redun-

dant queries only when confident that a slowdown or failure

has occurred, reactive approaches reduce the amount of ad-

ditional load introduced to a system, and thus the amount

of resource-overhead necessary. However, by waiting for a

significant amount of time before issuing redundant requests,

reactive approaches are unable to mitigate slowdowns and

failures with latency as low as proactive approaches.

3
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Figure 2. Abstract example of coded-computation with k =
2 original units and r = 1 parity units.

Erasure codes: proactive, resource-efficient. As descr-

ibed above, current proactive approaches operate with low-

latency, but high resource-overhead, while current reactive

approaches operate with low resource-overhead, but higher

latency. Thus, existing techniques do not enable points of

operation for serving systems other than the extremes in the

tradeoff space between latency and resource-overhead.

Erasure codes are tools from the domain of coding the-

ory capable of imparting proactive resilience to unavailabil-

ity while using significantly less resource-overhead than

replication-based approaches. These properties have made

erasure codes an attractive and widely deployed alternative

to replication-based and reactive approaches in storage and

communication systems [6, 66, 68, 73, 91]. An erasure code

encodes k data units to generate r redundant “parity units”

such that anyk out of the total (k+r ) data and parity units are
sufficient for a decoder to recover the original k data units.

Therefore, erasure codes operate with a resource-overhead

of
k+r
k , which is less than that of replication by setting r < k .

By varying parameters k and r , erasure codes enable fine-
grained exploration of the tradeoff space between latency

and resource-overhead in storage and communication sys-

tems. Thus, if possible, erasure codes have the potential to

enable new points of operation within this tradeoff space

that are currently inaccessible through existing proactive

and reactive approaches for prediction serving systems.

2.3 Coded-computation and its challenges
The approach of using erasure codes for alleviating the ef-

fects of slowdowns and failures in computation is termed

“coded-computation.” Coded-computation differs fundamen-

tally from the traditional use of erasure codes. Erasure codes

have traditionally been used for recovering unavailable data

units using a subset of data and parity units. In contrast, un-

der coded-computation, (1) computation is performed over

encoded data and (2) the goal is to recover unavailable out-
puts of computation over data units using a subset of the

outputs of computation over data and parity units.

Example. Consider an example in Figure 2. Let ℱ be a com-

putation that is deployed on two servers. Let X1 and X2 be

inputs to the computation. The goal is to return ℱ(X1) and

ℱ(X2). In a prediction serving system,ℱ is a deployed model

and X1 and X2 are queries. Coded-computation adds an en-

coder ℰ and a decoder 𝒟, along with a third copy of ℱ for

ℱ (X) ℱ (P) Desired ℱ (P)

2X 2X1 + 2X2 2X1 + 2X2

X 2 X 2

1
+ 2X1X2 + X

2

2
X 2

1
+ X 2

2

Table 1. Toy example with parity P = X1 + X2 showing the

challenges of coded-computation on non-linear functions.

tolerating one of the copies of ℱ being unavailable. The

encoder produces a parity P = ℰ(X1,X2). The parity is dis-

patched to the third copy of ℱ to produce ℱ(P). Given ℱ(P)
and any one of {ℱ(X1),ℱ(X2)}, the decoder reconstructs the

unavailable output. In the example in Figure 2, the second

computation is slow. The decoder produces a reconstruction

of ℱ(X2) as �ℱ(X2) = 𝒟(ℱ(X1),ℱ(P)).

General parameters. More generally, given k instances of

ℱ , for k queries X1, . . . ,Xk , the goal is to output ℱ(X1), . . . ,
ℱ(Xk ). To tolerate any r of these being unavailable, the en-
coder generates r parity queries that are operated on by r
redundant copies of ℱ . The decoder acts on any k outputs

of these (k + r ) instances of ℱ to recover ℱ(X1), . . . ,ℱ(Xk ).

Challenges. Coded-computation is straightforward when

the underlying computation ℱ is a linear function. A func-

tionℱ is linear if, for any inputsX1 andX2, and any constant

a: (1)ℱ(X1+X2) = ℱ(X1)+ℱ(X2) and (2)ℱ(aX1) = aℱ(X1).

Many of the erasure codes used in traditional applications,

such as Reed-Solomon codes, can recover from unavailability

of any linear function [54]. For example, consider having

k = 2, r = 1. Supposeℱ is a linear function as in the first row

of Table 1. Here, even a simple parity P = X1 + X2 suffices

since ℱ(P) = ℱ(X1) + ℱ(X2), and the decoder can subtract

the available output from the parity output to recover the

unavailable output. The same argument holds for any linear

ℱ . However, a non-linear ℱ significantly complicates the

scenario. For example, considerℱ to be the simple non-linear

function in the second row of Table 1. As shown in the table,

ℱ(P) , ℱ(X1) + ℱ(X2), and even for this simple function,

ℱ(P) involves complex non-linear interactions of the inputs

which makes decoding difficult.

Coded-computation for inference? Handling non-linear

computation is key to using coded-computation in prediction

serving systems due to the non-linear components of popular

machine learning models, like neural networks. While neural

networks do contain linear components (e.g., matrix multi-

plication), they also contain many non-linear components

(e.g., activation functions, max-pooling), which make the

overall function computed by a neural network non-linear.

Existing techniques approach coded-computation by hand-

crafting new encoders and decoders. However, due to the

challenge of handling non-linear computations, these ap-

proaches support only rudimentary computations [29, 30,
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54, 57, 62, 71, 82, 92, 93], and hence cannot support popular

machine learning models like neural networks.

Thus, while coded-computation has promise for impart-

ing resource-efficient resilience to slowdowns and failures,

current approaches are inadequate for prediction-serving.

3 Handling Non-Linearity via Learning
We propose to overcome the barrier of coded-computation

over non-linear functions via a learning-based approach. We

next describe the potential and challenges of using machine

learning to design a coded-computation framework.

3.1 Learning an erasure code
As illustrated in §2.3, it is challenging to hand-craft erasure

codes for the non-linear components common to neural net-

works. This problem is further complicated by the multitude

of mathematical components employed in neural networks

(e.g., types of activation functions); even if one hand-crafted

an erasure code suitable for one neural network, the ap-

proach might not work for other neural networks.

To overcome this, we make a key observation: erasure

codes for coded-computation can be learned. Using machine

learning models for encoders and decoders, designing an

erasure code simply involves training encoder and decoder

models. Consider again the example in Figure 2. An opti-

mization problem for learning encoder ℰ and decoder 𝒟 for

this example is: given ℱ , train ℰ and𝒟 so as to minimize the

difference between
�ℱ(X2) and ℱ(X2), for all pairs (X1,X2),

with
�ℱ(X2) = 𝒟(ℱ(X1),ℱ(P)) and P = ℰ(X1,X2).

One distinction of using learned encoders and decoders

as opposed to hand-crafted ones is that reconstructions of

unavailable outputs will be approximations of the function
outputs that would be returned if theywere not slow or failed.

However, any decrease in accuracy due to reconstruction

is only incurred in the case when a model is slow to return

a prediction. In this scenario, prediction services prefer to

return an approximate prediction rather than a late one [15].

3.2 Benefits and challenges of learned codes
Based on this observation, we developed learned encoders

and decoders for coded-computation over neural networks.

We focused on designing encoders and decoders as neural

networks due to their recent success in a number of tasks.

Our experimentationwith this approachwas nuanced; as this

approach is not the primary focus of this paper, we only de-

scribe the experimental outcomes. For further details on this

approach, we direct the reader to our technical report [50].

We experimentedwithmany neural networks for encoders

and decoders on image classification tasks. We found that a

particular encoder and decoder pair was capable of recon-

structing unavailable predictions from a ResNet-18 model

on the CIFAR-10 dataset with 82% accuracy. This is a small

drop in accuracy compared to the accuracy of the deployed

model (93%), considering that the drop only occurs when

the deployed model is unavailable. This marks a significant

step forward from existing coded-computation techniques,

which are unable to support even simple neural networks.

While our experience with learned erasure codes show-

cased the potential of learning-based coded-computation, it

also revealed a challenge: neural network encoders and de-

coders add significant latency to reconstruction. Recall that

a coded-computation technique can reconstruct unavailable

outputs only after (1) encoding, (2) performing k out of (k+r )
computations, and (3) decoding. As neural networks are of-

ten computationally expensive, encoding and decoding with

neural networks adds significant latency to this process, and

thus limits opportunities for tail latency reduction. Indeed,

we found that the average latency of encoding and decoding

using the most accurate models was up to 7× higher than

that of the deployed model, making this approach appropri-

ate only for alleviating extreme slowdowns. Furthermore,

using computationally expensive neural network encoders

and decoders would require hardware acceleration and a

beefier, expensive frontend, which is the ideal location for

encoders and decoders, as will be described in §4.1.

Takeaway. Our experience with learning erasure codes in-

dicates that using machine learning has promise for over-

coming the challenges of coded-computation over non-linear

functions, but that learned erasure codes can significantly in-

crease the latency of reconstructing unavailable predictions,

limiting the effectiveness in reducing tail latency.

These insights motivate ParM’s novel approach to coded-

computation, which we describe next.

4 Design of ParM
To overcome the challenge of performing coded-computation

over non-linear functions as well as the overhead of learned

erasure codes, we take a fundamentally new approach to

coded-computation. Rather than designing new encoders

and decoders, we propose to use simple, fast encoders and

decoders and instead design a new computation over pari-
ties, called a “parity model.” We implement this approach in

ParM, a prediction serving system that uses parity models to

enable erasure-coded resilience. In the example in Figure 2,

instead of the extra copy of ℱ deployed by current coded-

computation approaches, ParM introduces a parity model,

which we denote as ℱP . The challenge of this approach is

to design a parity model that enables reconstruction. We

address this by designing parity models as neural networks,

and learning a parity model that enables simple encoders

and decoders to reconstruct slow or failed predictions.

By learning a parity model and using simple, fast encoders

and decoders, ParM is (1) able to impart resilience to mod-

ern machine learning models, like neural networks, while

(2) operating with low latency without requiring expensive

hardware acceleration for encoding and decoding.
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Figure 3. Components of a prediction serving system and

those added by ParM (dotted). Queues indicate components

which may group queries/predictions (e.g., coding group).

Setting and notation. We first describe ParM in detail for

imparting resilience to any one out of k predictions expe-

riencing slowdown or failure (i.e., r = 1). This setting is

motivated by measurements of production clusters [67, 68].

Section 7 describes how the proposed approach can tolerate

multiple unavailabilities (i.e., r > 1) as well. We will continue

to use the notation of ℱ to represent the deployed model, Xi
to represent a query, ℱ(Xi ) to represent a prediction result-

ing from inference on ℱ with Xi , and �ℱ(Xi ) to represent a

reconstruction of ℱ(Xi ) when ℱ(Xi ) is unavailable.

4.1 System architecture
The architecture of ParM is shown in Figure 3. ParM builds

atop a typical prediction serving system architecture that

has m instances of a deployed model. Queries sent to the

frontend are batched (according to a batching policy) and

dispatched to a model instance for inference on the deployed

model. Query batches
1
are dispatched to model instances

according to a provided load-balancing strategy.

ParM adds an encoder and a decoder on the frontend along

with
m
k instances of a parity model. Each parity model uses

the same amount of resources (e.g., compute, network) as a

deployed model. ParM thus adds
1

k resource-overhead.

As query batches are dispatched, they are placed in a

coding group consisting of k batches that have been consecu-

tively dispatched. A coding group acts similarly to a “stripe”

in erasure-coded storage systems; the query batches of a

coding group are encoded to create a single “parity batch.”

ParM treats queries as though they are independent from one

another. In particular, the queries that form a coding group

need not have been sent by the same application or user.

Encoding takes place across individual queries of a coding

group: the ith queries of each of the k query batches in a cod-

ing group are encoded to produce the ith query of the parity

batch. Encoding does not delay query dispatching as query

batches are immediately handled by the load balancer when

they are formed, and placed in a coding group for later en-

coding. The parity batch is dispatched to a parity model and

1
We use the terms “batch” and “query batch” to refer to one or more queries

dispatched to a model instance at a single point in time.

the output resulting from inference over the parity model

is returned to the frontend. Encoding is performed on the

frontend rather than on a parity model so as to incur only
1

k
network bandwidth overhead. Otherwise, all queries would

need to be replicated to a parity model prior to encoding,

which would incur 2× network bandwidth overhead.

Predictions that are returned to the frontend are immedi-

ately returned to clients. ParM’s decoder is only used when

any one of the k prediction batches from a coding group is

unavailable. ParM enables flexibility in determining when a

prediction is considered unavailable, and thus when decod-

ing is necessary. A prediction could be considered unavail-

able if the (k−1) other predictions from its coding group and

the output of the parity model have been returned before

the prediction in question. Alternatively, a system could set

a timeout after which a prediction is considered unavailable

if the conditions above are still not met.

When a prediction is considered unavailable, the decoder

uses the outputs of the parity model and the (k − 1) avail-

able model instances to reconstruct an approximation of the

unavailable prediction batch. Approximate predictions are

returned only when predictions from the deployed model are

unavailable. ParM thus reduces tail latency when an unavail-

able prediction is reconstructed before the actual prediction

for the query returns (e.g., from a slow model instance).

4.2 Encoder and decoder
Introducing and learning parity models enables ParM to use

simple, fast erasure codes to reconstruct unavailable predic-

tions. ParM can support many different encoder and decoder

designs, opening up a rich design space. In this paper, we

will illustrate the power of parity models by using the sim-

ple addition/subtraction erasure code described in §2.3, and

showing that even with this simple encoder and decoder,

ParM significantly reduces tail latency and accurately re-

constructs unavailable predictions. This simple encoder and

decoder is applicable to a wide range of inference tasks, in-

cluding image classification, speech recognition, and object

localization, allowing us to showcase ParM’s applicability to

a variety of inference tasks. A prediction serving system that

is specialized to a specific inference task could potentially

benefit from designing task-specific encoders and decoders

for use in ParM, such as an encoder that downsamples and

concatenates image queries for image classification. We eval-

uate an example of such a task-specific code in §5.2.3.

Under the simple addition/subtraction encoder and de-

coder showcased in this paper, the encoder produces a par-

ity as the summation of queries in an coding group, i.e.,

P =
∑k

i=1Xi . Queries are normalized to a common size prior

to encoding, and summation is performed across correspond-

ing features of each query (e.g., top-right pixel of each image

query). The decoder subtracts (k − 1) available predictions

from the output of the parity model ℱP (P) to reconstruct
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an unavailable prediction. Thus, an unavailable prediction

ℱ(X j ) is reconstructed as
�ℱ(X j ) = ℱP (P) −

∑k
i,j ℱ(Xi ).

4.3 Parity model design
ParM uses neural networks for paritymodels to learn amodel

that transforms parities into a form that enables decoding.

In order for a parity model to help in mitigating slowdowns,

the average runtime of a parity model should be similar to

that of the deployed model. One simple way of enforcing

this is by using the same neural network architecture for the

parity model as is used for the deployed model (i.e., same

number and size of layers). Thus, if the deployed model is a

ResNet-18 architecture, the parity model also uses ResNet-

18, but with parameters trained using the procedure that

will be described in §4.4. As a neural network’s architecture

determines its runtime, this approach ensures that the parity

model has the same average runtime as the deployed model.

We use this approach in our evaluations.

In general, a parity model is not required to use the same

architecture as the deployed model. In cases where it is neces-

sary or preferable to use a different architecture for a parity

model, such as when the deployed model is not a neural

network, a parity model could be designed via architecture

search [97]. However, we do not focus on this scenario.

It is common in classification tasks to use a softmax func-

tion to convert the output of a neural network into a prob-

ability distribution. We do not apply a softmax function to

the output of a parity model, as the desired output of a par-

ity model is not necessarily constrained to be a probability

distribution. As we will describe in §4.4, we employ a loss

function in training that does not require the output of parity

model to be a probability distribution.

4.4 Training a parity model
A parity model is trained prior to being deployed.

Training data. The training data are the parities generated
by the encoder, and training labels are the transformations

expected by the decoder. For the simple encoder and decoder

described in §4.2, with k = 2, training data from queries X1

and X2 are (X1 + X2) and labels are (ℱ(X1) + ℱ(X2)).

Training data is generated using queries that are represen-

tative of those issued to the deployed model for inference.

A parity model is trained using the same dataset used for

training the deployed model, whenever available. Thus, if the

deployed model was trained using the CIFAR-10 [16] dataset,

samples from CIFAR-10 are used as queries X1, . . . ,Xk that

are encoded together to generate training samples for the

parity model. Labels are generated by performing inference

with the deployed model to obtain ℱ(X1), . . . ,ℱ(Xk ) and

summing these predictions to form the desired parity model

output. For example, if the outputs of a deployed model are

vectors of n floating points, as is the case in a classification

F
0.19 0.71 0.10

approximate 
reconstruction

unavailable 
prediction

FP(P) - F(X3) - F(X2) =

X1

X2

X3

Σ

0.30 0.08 0.62

0.72 0.23 0.05

1.28 0.92 0.85

0.26 0.61 0.18

FP

Figure 4. Example of ParM (k = 3) mitigating a slowdown.

task withn classes, a label would be generated as the element-

wise summation of these vectors. ParM can also use as labels

the summation of the true labels for queries.

If the dataset used for training the deployed model is not

available, a parity model can be trained using queries that

have been issued to ParM for inference on the deployed

model. The predictions that result from inference on the

deployed model are used to form labels for the parity model.

In this case, as expected, ParM can deliver benefits only after

the parity model has been trained to a sufficient degree.

Loss function. While there are many loss functions that

could be used in training a parity model, we use the mean-

squared-error (MSE) between the output of the parity model

and the desired output as the loss function. We choose MSE

rather than a task-specific loss function (e.g., cross-entropy)

to make ParM applicable to many inference tasks.

Training procedure. Training a parity model involves the

same optimization procedure commonly used for training

neural networks. In each iteration, k samples are drawn at

random from the deployed model’s training dataset and en-

coded to form a parity sample. The parity model performs

inference over this parity query (forward pass) to gener-

ate ℱP (P). A loss value for this parity query is calculated

between ℱP (P) and the desired parity model output (e.g.,

ℱ(X1)+ℱ(X2) for the addition/subtraction code with k = 2).

Parity model parameters are updated based on this loss value

using the standard backpropogation algorithm (backward

pass). This iterative process continues until a parity model

reaches sufficient accuracy on a validation dataset.

Reducing the time to train a parity model was not a goal of

this work; we describe inefficiencies of the procedure above

and their potential solutions in §7.

4.5 Example
Figure 4 shows an example of how ParM mitigates unavail-

ability of any one of three model instances (i.e., k = 3).

Queries X1,X2,X3 are dispatched to three separate model

instances for inference on deployed model ℱ to return pre-

dictions ℱ(X1),ℱ(X2),ℱ(X3). The learning task here is clas-

sification across n classes. Each ℱ(Xi ) is thus a vector of
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n floating-points (n = 3 in Figure 4). As queries are dis-

patched to model instances, they are encoded (Σ) to generate
a parity P = (X1 +X2 +X3). The parity is dispatched to a par-

ity model ℱP to produce ℱP (P). In this example, the model

instance processing X1 is slow. The decoder reconstructs

this unavailable prediction as (ℱP (P) −ℱ(X3) −ℱ(X2)). The

reconstruction provides a reasonable approximation of the

true prediction that would have been returned had the model

instance not been slow (labeled as “unavailable prediction”).

In this example, ParM remains resilient to any one out

of three model instances being unavailable by using one ex-

tra instance to serve a parity model. To achieve the same

resilience, a replication-based approach requires three ex-

tra model instances. Thus, in this example, ParM operates

with 3× less additional resources than replication-based ap-

proaches. More generally, ParM operates with k-times less

additional resources of replication-based approaches.

5 Evaluation of Accuracy
In this section, we evaluate ParM’s ability to accurately re-

construct unavailable predictions.

5.1 Experimental setup
We use PyTorch [12] to train separate parity models for each

parameter k , dataset, and deployed model.

Inference tasks and models. Learning a parity model to

enable reconstruction of predictions represents a fundamen-

tally new learning task. Therefore, we evaluate ParM on pop-

ular inference tasks and datasets to establish the potential of

using parity models. Specifically, we use popular image clas-

sification (CIFAR-10 and 100 [16], Cat v. Dog [14], Fashion-

MNIST [87], and MNIST [52]), speech recognition (Google

Commands [85]), and object localization (CUB-200 [86]) tasks.

We evaluate ParM on the ImageNet dataset [74] in §5.2.3.

As described in §4.3, a parity model uses the same neural

network architecture as the deployed model. We consider

five different architectures: a multi-layer perception (MLP),
2

LeNet-5 [53], VGG-11 [77], ResNet-18, and ResNet-152 [40].

The former two are simpler neural networks while the others

are variants of state-of-the-art neural networks.

Parameters. We consider values for parameter k of 2, 3,

and 4, corresponding to 33%, 25%, and 20% redundancy. We

use Adam [27], learning rate of 0.001, L2-regularization of

10
−5
, and batch sizes between 32-64. Convolutional layers

use Xavier initialization [32], biases are initialized to zero,

and other weights are initialized from 𝒩 (0, 0.01).

Encoder and decoder. Unless otherwise specified, we use
the generic addition encoder and subtraction decoder de-

scribed in §4.2. We showcase the benefit of employing task-

specific encoders and decoders within ParM in §5.2.3.

2
The MLP has two hidden layers with 200 and 100 units and ReLUs.

Metrics. Analyzing erasure codes for storage and communi-

cation involves reasoning about performance under normal

operation (when unavailability does not occur) and perfor-

mance in “degraded mode” (when unavailability occurs and

reconstruction is required). These different modes of opera-

tion are similarly present for inference. The overall accuracy

of any approach is calculated based on its accuracy when

predictions from the deployed model are available (Aa ) and

its accuracy when these predictions are unavailable (Ad , “de-

graded mode”). If f fraction of deployed model predictions

are unavailable, the overall accuracy (Ao ) is:

Ao = (1 − f )Aa + f Ad (1)

ParM aims to achieve high Ad ; it does not change the accu-

racy when predictions from the deployed model are available

(Aa ). We report both Ao and Ad .

We report accuracies on test datasets, which are not used

in training. Test samples are randomly placed into groups

of k and encoded to produce a parity. For each parity P ,
we compute the output of inference on the parity model as

ℱP (P). During decoding, we use ℱP (P) to reconstruct �ℱ(Xi )

for each Xi that was used in encoding P , simulating every

scenario of one prediction being unavailable. Each
�ℱ(Xi ) is

compared to the true label for Xi . For CIFAR-100, we report

top-5 accuracy, as is common (i.e., the fraction for which the

true class of Xi is in the top 5 of
�ℱ(Xi )).

5.2 Results
Figure 5 shows the accuracy of the deployed model (Aa )

along with the degraded mode accuracy (Ad ) of ParM with

k = 2 for image classification and speech recognition tasks

using ResNet-18. VGG-11 is used for the speech dataset and

ResNet-152 for CIFAR-100. ParM’s degraded mode accuracy

is no more than 6.5% lower than that when predictions from

the deployed model are available. As Figure 6 illustrates, this

enables ParM to maintain high overall accuracy (Ao ) in the

face of unavailability. For this example, at expected levels of

unavailability (i.e., f less than 10%), ParM’s overall accuracy

is at most 0.4%, 1.9%, and 4.1% lower than when all predic-

tions are available at k values of 2, 3, and 4, respectively.

This indicates a tradeoff between ParM’s parameter k , which
controls resource-efficiency and resilience, and the accuracy

of reconstructed predictions, which we discuss in §5.2.2. Fi-

nally, ParM’s framework enables encoders and decoders to

be specialized to the inference task at hand, allowing for fur-

ther increase in degraded mode accuracy. We showcase task-

specific specialization with an image-classification-specific

encoder on CIFAR and ImageNet datasets (§5.2.3).

5.2.1 Inference tasks
ParM achieves high degraded mode accuracy with k = 2

for the image classification and speech recognition datasets

in Figure 5. For these tasks, degraded mode accuracy is at
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Figure 5. Comparison of ParM’s accuracy when predic-

tions from the deployed model are available (Aa , “Avail-

able”) and when ParM’s reconstructions are necessary

(Ad , “Degraded”). ParM uses k = 2.
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tions that are unavailable (f ) increases. The
horizontal orange line shows the accuracy

of the ResNet-18 deployed model (Aa ).
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Figure 7. Example of

ParM’s reconstruction

for object localization.

most 6.5% lower than when predictions are not slow or failed.

We observe similar results for a variety of neural network

architectures. For example, on the Fashion-MNIST dataset,

ParM’s degraded mode accuracy for the MLP, LeNet-5, and

ResNet-18 models are only 1.7-9.8% lower than the accuracy

when predictions from the deployed model are available.

Object localization task. We next evaluate ParM on object

localization, which is a regression task. The goal in this task

is to predict the coordinates of a bounding box surrounding

an object of interest in an image. As a proof of concept

of ParM’s applicability for this task, we evaluate ParM on

the Caltech-UCSD Birds dataset [86] using ResNet-18. The

performance metric for localization tasks is the intersection

over union (IoU): the IoU between two bounding boxes is

computed as the area of their intersection divided by the

area of their union. IoU values fall between 0 and 1, with an

IoU of 1 corresponding to identical boxes, and an IoU of 0

corresponding to boxes with no overlap.

Figure 7 shows an example of the bounding boxes returned

by the deployed model and ParM’s reconstruction. For this

example, the deployed model has an IoU of 0.88 and ParM’s

reconstruction has an IoU of 0.61. ParM’s reconstruction

captures the gist of the localization and would serve as a

reasonable approximation in the face of unavailability. On

the entire dataset, the deployed model achieves an average

IoU of 0.95 with ground-truth bounding boxes. In degraded

mode, ParM with k = 2 achieves an average IoU of 0.67.

5.2.2 Varying redundancy via parameter k
Figure 8 shows ParM’s degraded mode accuracy with k =
2, 3, 4. ParM’s degraded mode accuracy decreases with in-

creasing parameter k . As parameter k increases, features

from more queries are packed into a single parity query,

making the parity query noisier and making it challenging

to learn a parity model. This indicates a tradeoff between

the value of parameter k and degraded mode accuracy.

To put these accuracies in perspective, consider a scenario

in which no redundant computation is used to mitigate un-

availability. In this case, when the output from any deployed

model is unavailable, the best one can do is to return a ran-

dom output as a “default” prediction. The option to provide

such a default prediction is available in Clipper. The degraded

mode accuracy when returning default predictions depends

on the number of possible outputs of an inference task (e.g.,

the number of classes). For example, on a classification task

with ten classes, the expected degraded mode accuracy of

this technique would be 10%. The degraded mode accuracy

of default predictions provides a lower bound on degraded

mode accuracy and an indicator of the difficulty of a par-

ticular inference task. For all datasets in Figure 8, ParM’s

degraded mode accuracy is significantly above this lower

bound, indicating that ParM makes significant progress in

the task of reconstructing predictions.

5.2.3 Inference task-specific encoders and decoders
As described in §4.2, ParM’s framework enables a large de-

sign space for possible encoders and decoders. So far, all

evaluation results have used the simple, general addition en-

coder and subtraction decoder, which is applicable to many

inference tasks. We now showcase the breadth of ParM’s

framework by evaluating ParM’s accuracy with alternate

encoders and decoders that are inference-task specific.

We design an encoder specialized for image classification

which takes in k image queries, and downsizes and concate-

nates them into a parity query. For example, as shown in

Figure 9, given k = 4 images from the CIFAR-10 dataset

(each with 32× 32× 3 features), each image is resized to have

16× 16× 3 features and concatenated together. The resulting

parity query is a 2 × 2 grid of these resized images, and thus

has a total of 32×32×3 features, the same amount as a single

image query. We use the subtraction decoder alongside this

encoder. In training parity models with this encoder, we use

a loss function specialized to classification: the cross-entropy
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Figure 8. Accuracies of predictions reconstructed by ParM

with k = 2, 3, 4 compared to returning a default response

when deployed model predictions are unavailable (Ad ).

between the output of the parity model and the summation

of the one-hot-encoded labels for concatenated images (after

normalizing this summation to be a probability distribution).

By specializing to the task at hand, this encoder improves

degraded mode accuracy compared to the general addition

encoder. For example, at k values of 2 and 4 on CIFAR-10, the

task-specific encoder achieves a degraded mode accuracy

of 89% and 74%, respectively. This represents a 2% and 22%

improvement compared to the general encoder, respectively.

On the 1000-class ImageNet dataset (ILSVRC 2012 [74])

with k = 2 and using ResNet-50 models, this approach

achieves a 61% top-5 degraded mode accuracy. To put these

results in perspective, we note that the first use of neural

networks for the ImageNet classification task resulted in

a top-5 accuracy of 84.7% [51]. Our results similarly repre-

sent the first use of learning and neural networks for coded-

computation. As the task of a parity model is considerably

more difficult than that of image classification, these results

show the promise of using parity models for coded com-

putation, even on massive datasets. We expect that further

improvements may be achieved on large datasets like Ima-

geNet through a more principled approach to forming train-

ing samples than the random selection described in §4.4.

This will be particularly beneficial for classification datasets

like ImageNet for which there is imbalance in the number

of training samples available per class. We also expect that

improvement in degraded mode accuracy may be achieved

by further exploring the design space for encoders, decoders,

and the model architecture used for parity models.

6 Evaluation of Tail Latency Reduction
We next evaluate ParM’s ability to reduce tail latency. The

highlights of the evaluation results are as follows:

• ParM significantly reducing tail latency: in the presence

of load imbalance, ParM reduces 99.9th percentile latency

by up to 48%, bringing tail latency up to 3.5× closer

to median latency, while maintaining the same median

(§6.2.1). Even with little load imbalance, ParM reduces

the gap between tail and median latency by up to 2.3×

32

32

32

32

Input Images
Parity Image

Encoder

Figure 9. Example of an image-classification-specific en-

coder with k = 4 on the CIFAR-10 dataset.

(§6.2.4). These benefits hold for a variety of inference

hardware, query rates, and batch sizes.

• ParM’s approach of introducing and learning parity mod-

els enables using encoders and decoders with low laten-

cies (less than 200 µs and 20 µs, respectively) (§6.2.5).

• ParM reduces tail latency while maintaining simpler de-

velopment and deployment than other hand-crafted ap-

proaches, such as deploying approximate models (§6.2.6).

6.1 Implementation and Evaluation Setup
We have built ParM atop Clipper [25], an open-source pre-

diction serving system. We implement ParM’s encoder and

decoder on the Clipper frontend in C++. Inference runs in

Docker containers on model instances, as is standard in Clip-

per, and we use PyTorch [12] to implement models. We dis-

able the prediction caching feature in Clipper to evaluate

end-to-end latency, though ParM does not preclude the use

of prediction caching. We use OpenCV [11] for pixel-level

encoder operations.We use the addition encoder and subtrac-

tion decoder described in §5.2.3 in all latency evaluations.

Baselines. We consider as a baseline a prediction serving

system with the same number of instances as ParM but using

all additional instances for deploying extra copies of the

deployed model. We call this baseline “Equal-Resources.” For

a setting of parameter k on a cluster withm model instances

for deployed models, both ParM and Equal-Resources use
m
k

additional model instances. ParM uses these extra instances

to deploy parity models, whereas this baseline hosts extra

deployed models on these instances. These extra instances

enable the baseline to reduce system load, which reduces tail

latency and provides a fair comparison. We compare ParM to

another baseline, deploying approximate models, in §6.2.6.

Cluster setup. All experiments are run on Amazon EC2.

We evaluate ParM on two different cluster setups to mimic

various production prediction-serving settings.

• GPU cluster. Each model instance is a p2.xlarge in-

stance with one NVIDIA K80 GPU. We use 12 instances

for deployed models and
12

k additional instances for re-

dundancy. With k = 2 there are thus 18 instances.

• CPU cluster. Each model instance is a c5.xlarge in-

stance, which AWS recommends for inference [2]. We

use 24 instances for deployed models and
24

k additional

10



Parity Models SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

instances for redundancy. This emulates production set-

tings that use CPUs for inference [39, 65, 96]. This cluster

is larger than the GPU cluster since the CPU instances

are less expensive than GPU instances.

We use a single frontend of type c5.9xlarge. We use this

larger instance for the frontend to sustain high aggregate

network bandwidth to model instances (10 Gbps). Each in-

stance uses AWS ENA networking. We observe bandwidth of

1-2 Gbps between each GPU instance and the frontend and

of 4-5 Gbps between each CPU instance and the frontend.

Queries and deployed models. Recall that accuracy re-

sults were presented for various tasks and deployed models

in §5. For latency evaluations we choose one of these models

and tasks, ResNet-18 [40] for image classification. We use

ResNet-18 rather than a larger model like ResNet-152, which

would have a longer runtime, to provide a more challenging

scenario in which ParM must reconstruct predictions with

low latency. Queries are drawn from the Cat v. Dog [14]

dataset. These higher-resolution images test the ability of

ParM’s encoder to operate with low latency.
3
We modify

deployed models and parity models to return 1000 values

as predictions to create a more computationally challenging

decoding scenario in which there are 1000 classes in each

prediction, rather than the usual 2 classes for this task.

Load balancing. Both ParM and the baseline use a single-

queue load balancing strategy for dispatching queries to

model instances as is used in Clipper, and is optimal in re-

ducing average response time [36]. The frontend maintains a

single queue to which all queries are added. Model instances

pull queries from this queue when they are available. Simi-

larly, ParM adds parity queries to a single queue which parity

models pull from. Evaluation on other, sub-optimal, load bal-

ancing strategies (e.g., round-robin) revealed results that are

even more favorable for ParM than those showcased below.

Background traffic. Like any redundancy-based technique,
ParM is most beneficial in operating scenarios prone to un-

predictable latency spikes and failures; if unavailability is

absent or entirely predictable, redundancy-based approaches

are not necessary. Therefore, we focus the evaluation of

ParM on these scenarios by inducing background load on

the clusters running ParM. The main form of background

load we use emulates network traffic typical of data analyt-

ics workloads. Specifically, two model instances are chosen

randomly to transfer data to one another of size randomly

drawn between 128-256 MB. Unless otherwise mentioned,

four shuffles take place concurrently. In this setting only the

cluster network is imbalanced; we do not introduce compu-

tational multitenancy. We experiment with light multitenant

computation and varying the number of shuffles in §6.2.4.

3
While CIFAR-10/100 are more difficult tasks for training a model than Cat

v. Dog, their low resolution makes them computationally inexpensive. This

makes Cat v. Dog a more realistic workload for evaluating latency.

Latency metric. Clients send 100-thousand queries to the

frontend using a variety of Poisson arrival rates. All latencies

measure the time between when the frontend receives a

query and when the corresponding prediction is returned

to the frontend (from a deployed model or reconstructed).

We report the median of three runs of each configuration,

with error bars showing the minimum and maximum. Unless

otherwise noted, all experiments are run with batch size of

one, as this is the preferred batch size for low latency [23, 96].

We evaluate ParM with larger batch sizes in §6.2.3.

6.2 Results
We now report ParM’s reduction of tail latency.

6.2.1 Varying query rate
Figure 10 shows median and 99.9th percentile latencies with

k = 2 (i.e., both ParM and Equal-Resources have 33% redun-

dancy) on the GPU and CPU clusters. We consider query

rates up until a point in which a prediction serving system

with no redundancy (i.e., withm instances) experiences tail

latency dominated by queueing. Beyond this point, ParM

could be used alongside techniques that reduce queueing [24].

ParM reduces the gap between 99.9th percentile and me-

dian latency by 2.6-3.2× compared to Equal-Resources on the

GPU cluster, and by 3-3.5× on the CPU cluster. ParM’s 99.9th

percentile latencies are thus 38-43% lower on the GPU cluster

and 44-48% lower on the CPU cluster. This enables ParM to

operate with more predictable latency. As expected from any

redundancy-based approach, ParM adds additional system

load by issuing redundant queries, leading to a slight increase

in median latency (less than 0.5ms, which is negligible).

6.2.2 Varying redundancy via parameter k
Figure 11 shows the latencies achieved by ParM with k being

2, 3, and 4, when operating at 270 qps on the GPU cluster.

As k increases, ParM’s tail latency also increases. This is

due to two factors. First, at higher values of k , ParM is more

vulnerable to multiple predictions in a coding group being

unavailable, as the decoder requiresk−1 predictions from the

deployed model to be available (in addition to the output of

the parity model). Second, increasing k increases the amount

of time ParM needs to wait for k queries to arrive before

encoding into a parity query. This increases the latency of the

end-to-end path of reconstructing an unavailable prediction.

Despite these factors, ParM still reduces tail latency, even

when using less resources than the baseline. At k values

of 3 and 4, which have 25% and 20% redundancy, ParM re-

duces the gap between tail and median latency by up to 2.5×

compared to when Equal-Resources has 33% redundancy.

6.2.3 Varying batch size
Due to the low latencies required by user-facing applications,

many prediction serving systems perform no or minimal

query batching [23, 39, 96]. For completeness, we evaluate

11



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada J. Kosaian, K. V. Rashmi, S. Venkataraman

150 210 270 330 390

20

30

40

50

60

Query Rate (qps)

L
a
t
e
n
c
y
(
m
s
)

E.R. med. ParM med.

E.R. 99.9th ParM 99.9th

(a) GPU cluster

120 144 168 192 216 240

75

125

175

225

Query Rate (qps)

L
a
t
e
n
c
y
(
m
s
)

E.R. med. ParM med.

E.R. 99.9th ParM 99.9th

(b) CPU cluster

Figure 10. Latencies of ParM and Equal-Resources (E.R.). The CPU cluster has

twice as many instances as the GPU cluster and thus sustains comparable load.
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Figure 11. Latencies of ParM at varying val-

ues of k compared to the strongest baseline.

The amount of redundancy used in each con-

figuration is listed in parentheses.

ParM when queries are batched on the GPU cluster. ParM

uses k = 2 in these experiments and query rate is set to 460

qps and 584 qps for batch sizes of 2 and 4, respectively. These

query rates are obtained by scaling from 300 qps used at batch

size 1 based on the throughput improvement observed with

increasing batch sizes. ParM outperforms Equal-Resources

at all batch sizes: at batch sizes of 2 and 4, ParM reduces

99.9th percentile latency by 43% and 47%, respectively.

6.2.4 Varying degrees and types of load imbalance
All experiments so far were run with background network

imbalance, as described in §6.1. ParM reduces tail latency

even with lighter background network load: Figure 12 shows

that when 2 and 3 concurrent background shuffles take place

(as opposed to the 4 used for most experiments), ParM re-

duces 99.9th percentile latency over Equal-Resources by 35%

and 39%, respectively on the GPU cluster with query rate of

270 qps. ParM’s benefits increase with higher load imbalance,

as ParM reduces the gap between 99.9th and median latency

by 3.5× over Equal-Resources with 5 background shuffles.

To evaluate ParM’s resilience to a different, lighter form of

load imbalance, we run light background inference tasks on

model instances. Specifically, we deploy ResNet-18 models

on one ninth of instances using a separate copy of Clipper,

and send an average query rate of less than 5% of what the

cluster can maintain. We do not add network imbalance in

this setting. Figure 13 shows latencies at k = 2 on the GPU

cluster with varying query rate. Even with this light form of

imbalance, ParM reduces the gap between 99.9th percentile

and median latency by up to 2.3× over Equal-Resources.

6.2.5 Latency of ParM’s components
ParM’s latency of reconstructing unavailable predictions

consists of encoding, parity model inference, and decoding.

ParM has median encoding latencies of 93 µs, 153 µs, and

193 µs, andmedian decoding latencies of 8 µs, 14 µs, and 19 µs

fork values of 2, 3, and 4, respectively. As the latency of parity

model inference is tens of milliseconds, ParM’s encoding

and decoding make up a very small fraction of end-to-end

reconstruction latency. These fast encoders and decoders are

enabled by introducing and learning parity models.

6.2.6 Comparison to approximate backup models
An alternative to ParM is to replace parity models with less

computationally expensive models that approximate the pre-

dictions of the deployed model, and to replicate queries to

these approximate models. This approach has a number of

drawbacks: (1) it is unstable at expected query rates, (2) it is

inflexible to changes in hardware, limiting deployment flexi-

bility, and (3) it requires 2× network bandwidth. To showcase

these drawbacks of the alternative approach, we compare

ParM (with k = 2) to the aforementioned alternative using

m
k extra model instances for approximate models. We use

MobileNet-V2 [75] (with a width factor of 0.25) as the ap-

proximate models because this model has similar accuracy

(87.6%) as ParM’s reconstructions (87.4%) for CIFAR-10.

Figure 14 shows the latencies of these approaches on the

GPU cluster with varying query rate. While ParM’s 99.9th

percentile latency varies only modestly, using approximate

models results in tail latency variations of over 36%. This vari-

ance occurs because all queries are replicated to approximate

models even though there are only
1

k as many approximate

models as there are deployed models. Thus, approximate

models must be k-times faster than the deployed model for

this system to be stable. The approximate model in this case

is not k-times faster than the deployed model, leading to

inflated tail latency due to queueing as query rate increases.

Even if one crafted an approximate model satisfying the

runtime requirement described above, the model may not be

appropriate for different hardware. We find that the speedup

achieved by the approximate model over the deployed model

varies substantially across different inference hardware. For

example, the MobileNet-V2 approximate model is 1.4× faster

than the ResNet-18 deployed model on the CPU cluster, but

12
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Figure 14. Latencies of ParM and using

approximate backup models (A.B.).

only 1.15× faster on the GPU cluster. Thus, an approximate

model designed for one hardware setup may not provide

benefits on other hardware, limiting deployment flexibility.

Finally, this approach uses 2× network bandwidth by repli-

cating queries. This can be problematic, as limited bandwidth

has been shown to hinder prediction-serving [25, 38].

Some of the limitations of this approach may be miti-

gated by reactively issuing redundant queries to approximate

backup models after a timeout. However, like other reactive

approaches described in §2.2, doing so reduces the potential

for such an approach to reduce tail latency.

ParM does not have the drawbacks described above. As

described in §4, ParM’s parity models have the same average

runtime as deployed models, and ParM encodes k queries

into one parity query prior to dispatching to a parity model.

The
m
k parity models therefore receive

1

k the query rate of

them deployed models, and thus naturally keep pace. This

reduced query rate also means that ParM adds only minor

network bandwidth overhead. Further, by using the same

architecture for parity models as is used for deployed models,

ParM does not face hardware-related deployment issues.

7 Discussion
Training time. We find that the time to train a parity model

can be 3-12× longer than that of a deployed model. Reducing

training time was not a goal of this work. We next describe

ways in which training time may potentially be reduced.

As described in §4.4, the training procedure for a parity

model draws k samples from the deployed model’s training

dataset to form a single training sample for the parity model.

Thus, the number of possible combinations of k samples

that could be used grows exponentially with k . For example,

training a parity model using a deployed model dataset with

1000 samples would lead to an effective dataset size of 1000
k
.

For large deployed model datasets, the effective parity model

dataset is too large to train on every possible combination.

We currently randomly sample combinations of k queries

from the deployed model dataset without keeping track of

which combinations have been used. As was shown in §5,

even this simple approach enables accurate training of parity

models. A more principled approach to sampling from the

deployed model’s dataset may help reduce training time and

improve accuracy, especially for massive datasets and those

with imbalance in the number of samples of a particular type

(e.g., fewer examples of fish than dogs).

Throughput. Like any redundancy-based approach, the

achievable throughput when using coded-computation is

lower than it could be if one used all resources for serving

copies of a deployed model. Specifically, as ParM uses
1

k of all

model instances for parity models, ParM’s maximum achiev-

able throughput is (1 − 1

k )-times that of an approach which

uses no redundancy. However, as shown in §6, reserving

some resources to be used for redundancy aids in reducing

tail latency. ParM enables one to span this tradeoff between

tail latency and throughput by changing parameter k .

Concurrent unavailabilities. ParM can accommodate con-

current unavailabilities by using decoders parameterized

with r > 1. In this case, r separate parity models can be

trained to produce different transformations of a parity query.

For example, consider having k = 2, r = 2 , queries X1 and

X2, and parity P = (X1+X2). One parity model can be trained

to transform P into ℱ(X1) +ℱ(X2), while the second can be

trained to transform P into ℱ(X1) + 2ℱ(X2). The decoder

reconstructs the initial k predictions using any k out of the

(k + r ) predictions from deployed models and parity models.

Parity model design space. In this work, we have cho-

sen to keep encoders and decoders simple and to specialize

parity models so as to reduce the additional computation

introduced on prediction serving system frontends. How-

ever, as described in §4 and shown empirically in §5.2.3 using

an image-classification-task specific encoder, ParM’s frame-

work opens a rich design space for encoders, decoders, and

parity models. Navigating this design space by co-designing

these components may yield interesting opportunities for

improving the accuracy of reconstructions.

13
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Applicability to other workloads. We have showcased

the use of paritymodels on image classification, speech recog-

nition, and object localization tasks. However, the core idea

of learning-based coded-computation has the potential to be

applied more broadly. For example, parity models may po-

tentially be applicable to sequence-to-sequence models, such

as those for translation, though further research is necessary

to accommodate the use of parity models to these tasks.

8 Related Work
Mitigating slowdowns. Many approaches target specific

causes of slowdown. Examples of such techniques include

configuration selection [17, 58, 80, 90], isolation [33, 44, 61,

88], replica selection [35, 79], predicting slowdowns [89], and

autoscaling [24, 34]. As these techniques apply only to spe-

cific slowdowns, they are unable to mitigate all slowdowns.

In contrast, ParM is agnostic to the cause of slowdown.

Many techniques mitigate slowdowns in training [37, 41,

69]. These techniques exploit iterative computations specific

to training and are thus inapplicable to inference.

Accuracy-latency tradeoff. A number of systems trade

accuracy for lower latency [83, 95]. This enables handling

query rate variation efficiently, but may degrade accuracy. In

contrast, ParM does not proactively degrade accuracy; any

inaccuracy due to ParM is incurred only when a prediction

experiences slowdown or failure.

Algorithmic techniques like cascades [81, 84] and anytime

neural networks [42] enable “early exit” during inference for

queries that are easier to complete or those taking longer

than a predefined deadline. These techniques are only ap-

plicable to reducing the latency of inference, and thus will

not help mitigate tail latency induced by other sources, like

network congestion or failure. In contrast, ParM alleviates

slowdowns and failures regardless of their cause.

High performance inference. Many techniques improve

the average latency and throughput of inference [10, 22, 45,

46, 55, 60]. These techniques are complementary to ParM,

which is designed for mitigating slowdowns and failures.

Coded-computation. As described in §2.3, most existing

coded-computation techniques support only rudimentary

computations. A recent class of codes [78, 93] supports poly-

nomial computations, but requires asmany ormore resources

than replication-based approaches. Another approach [28]

performs coded-computation over the linear operations of

neural networks and decodes before each non-linear opera-

tion. This requires splitting the operations of a model onto

multiple servers and many decoding steps, which increases

latency even when predictions are not slow or failed. In con-

trast, ParM uses 2-4× less resource overhead than replication

and does not require splitting neural networks onto separate

servers or induce latency when predictions are available.

Learning error correcting codes. Multiple recent works

have explored learning error correcting codes for commu-

nication [20, 49, 63]. The goal of these works is to recover

data units transmitted over a noisy channel. In contrast, our

goal is to recover the outputs of computation over data units.

To the best of our knowledge, we present the first approach

that leverages learning for coded-computation.

9 Conclusion
We present a fundamentally new, learning-based approach

for enabling the use of ideas from erasure coding to impart

low-latency, resource-efficient resilience to slowdowns and

failures in prediction serving systems. Through judicious

use of learning, parity models overcome the limitations of

existing coded-computation approaches and enable the use

of simple, fast encoders and decoders to reconstruct unavail-

able predictions for a variety of neural network inference

tasks. We have built ParM, a prediction serving system that

makes use of parity models, and shown the ability of ParM to

reduce tail latency while maintaining high overall prediction

accuracy in the face of load imbalance. These results suggest

that our approach may open new doors for enabling the use

of erasure-coded resilience for a broader class of workloads.
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