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Abstract
PipeDream is a Deep Neural Network (DNN) training

system for GPUs that parallelizes computation by pipelin-
ing execution across multiple machines. Its pipeline
parallel computing model avoids the slowdowns faced
by data-parallel training when large models and/or lim-
ited network bandwidth induce high communication-to-
computation ratios. PipeDream reduces communication
by up to 95% for large DNNs relative to data-parallel
training, and allows perfect overlap of communication
and computation. PipeDream keeps all available GPUs
productive by systematically partitioning DNN layers
among them to balance work and minimize communi-
cation, versions model parameters for backward pass cor-
rectness, and schedules the forward and backward passes
of different inputs in round-robin fashion to optimize
“time to target accuracy”. Experiments with five differ-
ent DNNs on two different clusters show that PipeDream
is up to 5x faster in time-to-accuracy compared to data-
parallel training.

1 Introduction
The last five years has seen a rapid increase in the use

of Deep Neural Networks (DNNs), with researchers and
practitioners applying these models to great effect across
a wide range of applications, including image and video
classification, speech recognition, and language transla-
tion [16, 17, 21, 22, 44]. As DNNs have become more
widely developed and used, model sizes have grown to in-
crease effectiveness—models today have tens to hundreds
of layers totaling 10–20 million parameters. Such growth
not only stresses the already time- and resource-intensive
DNN training processes, but also causes the commonly
used parallelization approaches to break down.
Themost common approach is data parallelism, where

the DNN model is replicated on multiple worker ma-
chines, with each worker processing a subset of the train-
ing data. Weight updates computed on individual work-
ers are aggregated to obtain a final weight update that
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reflects updates across all inputs. The amount of data
communicated per aggregation is proportional to the size
of the model. Although data-parallel training works well
with some popular models that have high computation-
to-communication ratios, two important trends threaten
its efficacy. First, growing model sizes increase per-
aggregation communication. Indeed, some widely-used
models are large enough that the communication over-
heads already eclipse computation time, limiting scaling
and dominating total training time (e.g., up to 85% of
training time for VGG-16 [36]). Second, rapid increases
in GPU compute capacity further shift the bottleneck
of training towards communication across models. Our
results show these effects quantitatively (Figure 1) for
three generations of NVIDIA GPUs (Kepler, Pascal, and
Volta), across five different DNN models.

Another approach to distributed training, model paral-
lelism, is used traditionally for models that are too large
to keep in a worker’s memory or cache during train-
ing [10, 25, 7]. Model-parallel training involves parti-
tioning the model among workers such that each worker
evaluates and performs updates for only a subset of the
model’s parameters. However, even though model paral-
lelism enables training of very large models, traditional
model parallelism can lead to severe underutilization of
compute resources since it either actively uses only one
worker at a time (if each layer is assigned to a worker) or
cannot overlap computation and communication (if each
layer is partitioned). In addition, determining how best
to partition a DNN model among workers is a challeng-
ing task even for the most experienced machine learning
practitioners [30], often leading to additional inefficiency.

This paper describes PipeDream, a new distributed
training system specialized for DNNs. Like model paral-
lelism, it partitions the DNN and assigns subsets of layers
to each worker machine. But, unlike traditional model
parallelism, PipeDream aggressively pipelines minibatch
processing, with different workers processing different
inputs at any instant of time. This is accomplished by
injecting multiple inputs into the worker with the first
DNN layer, thereby keeping the pipeline full and ensur-
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ing concurrent processing on all workers. It also uses
data parallelism for selected subsets of layers to balance
computation load among workers. We refer to this com-
bination of pipelining, model parallelism, and data paral-
lelism as pipeline-parallel training.
Pipeline-parallel training has the potential to provide

high DNN training performance when data parallelism
struggles. In particular, inter-worker communication can
be limited to activations (on the forward pass) and gra-
dients (backward) between adjacent layers assigned to
different workers. We observe such communication to be
up to 95% less than that for data-parallel training.
PipeDream is the first system to combine pipelining,

model parallelism, and data parallelism in a general and
automated way. It realizes the potential of pipeline par-
allelism with a design that addresses several challenges.
First, like pipelining in processors, achieving high effi-
ciency requires the right partitioning of the DNN into
“stages” (layer sub-sequences) that are each executed
on a different worker; this depends on both the model
architecture and the hardware deployment. Bad parti-
tionings, where stages have widely skewed amounts of
work, can lead to workers spending significant time idle.
PipeDream automatically determines how to partition the
layers of the DNN based on a short profiling run, using
an algorithm that balances computation load among the
different stages while minimizing communication. Sec-
ond, since DNNs will not always divide evenly among
available workers, PipeDream can use data parallelism
for some stages—multiple workers can be assigned to
a given stage, processing different minibatches in par-
allel. Third, unlike traditional uni-directional pipelines,
DNN training is bi-directional—the forward pass is fol-
lowed by a backward pass through the same layers in
reverse order. PipeDream interleaves forward and back-
ward minibatch processing on each worker, while making
sure to route minibatches through the same workers on
the backward pass. This helps to keep all workers busy
without pipeline stalls, while preventing excessive in-
progress minibatches and ensuring model convergence.
Fourth, weight versions need to be managed carefully to
obtain a high-quality model at the end of training. We
find that allowing the backward pass for a givenminibatch
to use more up-to-date parameters than those used in the
corresponding forward pass can be a significant problem.
PipeDream maintains parameter value versions for each
in-flight minibatch to combat this problem.
Experiments with PipeDream confirm its effectiveness

for each of the five models we evaluated and that cover
two important DNN classes – CNNs and RNNs (seq-
to-seq). When training Inception-v3 [19], VGG16 [36],
Resnet-50 [16], and AlexNet [26] on the ILSVRC12 [32]
dataset, PipeDream speeds up training by up to 1.45x,
5.12x, 1.21x and 6.76x respectively compared to data-

parallel BSP. When training the S2VT [43] model on the
MSVD [3] dataset, PipeDream speeds up training by 3x
compared to data-parallel BSP.

To summarize, this papermakes four primary contribu-
tions. First, it introduces a parallelization approach spe-
cialized to DNN training to address communication bot-
tlenecks by combining model parallelism with aggressive
pipelining and data parallelism where appropriate. Sec-
ond, it identifies the key challenges in realizing the perfor-
mance potential of this idea and details solutions for each.
Third, it describes a system (PipeDream) that efficiently
implements pipeline-parallel DNN training. Fourth, it
experimentally demonstrates that PipeDream allows par-
allel DNN training in circumstances where communi-
cation overheads limit data-parallel training, including
cases where data-parallel is slower than single-machine
training.

2 Background & Related Work
This section discusses distributed DNN training, in-

cluding terminology, common approaches and their lim-
itations, and related work, using training of image classi-
fication models as a concrete example.

2.1 DNN Training
A DNN model consists of a sequence of layers of dif-

ferent types (e.g., convolutional, fully connected, pool-
ing). DNN models are typically trained using a dataset
of labeled images. Training consists of multiple epochs,
where an epoch is one iteration through all images in the
dataset. In each epoch, the model trains over all images in
the dataset in steps. In each step, the current model first
makes a prediction for a small set of training samples,
also known as a minibatch. This process is referred to as
a forward pass. To make a prediction, input data from
the minibatch is fed to the first layer of the model. Each
layer then computes a function over its inputs, often using
learned parameters (or weights), to produce an output for
the next layer. The output of the last layer is the class
prediction. Based on the model’s predicted label and the
actual label of each image, the output layer computes a
loss (or error). In the ensuing backward pass, each layer
computes 1) the error for the previous layer, and 2) the
weight update (gradient of the loss) for all relevant layers,
which move the model’s predictions toward the desired
output.

The goal of DNN training is to obtain a high-accuracy
model in as little time as possible. This goal can be
captured with two metrics: 1) statistical efficiency, the
number of epochs needed to reach a desired level of ac-
curacy, and 2) hardware efficiency, the time required to
complete a single epoch. The total training time to reach
a desired accuracy level is simply the product of these
two metrics [15]. To train large models in a reasonable
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Figure 1: Communication overhead as a percentage of total training time for different hardware configurations. Many models
(AlexNet, VGG16, S2VT) have a high communication overhead, even on the relatively slow K80. Two factors contribute to an
increase in the communication overhead across allmodels: (i) an increase in the number of data-parallel workers, and (ii) an increase
in GPU compute capacity.

amount of time, training is distributed across multiple
GPUs1, usually using one of two approaches: data or
model parallelism.

Data Parallelism. With data parallelism, the input
dataset is partitioned across multiple GPUs. Each GPU
maintains a full copy of the model and trains on its own
partition of datawhile periodically synchronizingweights
with other GPUs, using either collective communication
primitives [14] or Parameter Servers [28, 9]. The fre-
quency of parameter synchronization affects both statis-
tical and hardware efficiency.
On one end, synchronizing at the end of every

minibatch (referred to as bulk synchronous parallel or
BSP [42]) reduces the staleness of weights used to com-
pute gradients, ensuring good statistical efficiency. How-
ever, as shown in Figure 2, BSP requires eachGPU towait
or stall for gradients from other GPUs, thus significantly
lowering hardware efficiency. Despite optimizations such
as Wait-free Backpropagation [47], where weight gradi-
ents are sent as soon as they are available, (common in
modern parameter servers), communication stalls are in-
evitable in data-parallel training due to the structure of
the DNN computation, and the fact that communication
can often dominate total execution time. Furthermore,
rapid increases in computation speeds further shift the
training bottleneck towards communication.
Figure 1 quantitatively shows the fraction of train-

ing time spent in communication stalls for five different
DNN models run on “commodity” public cloud servers
using three different generations of NVIDIA GPUs—
Kepler (K80), Pascal (Titan X), and Volta (V100)—
linked by a 10Gbps network. We focus on three take-
aways. First, starting with slower GPUs such as the K80s,
we note that some CNNs (VGG16 and AlexNet) and
the sequence-to-sequence model for video transcription

1For the rest of this paper, we use the terms “GPU”, “worker”,
and “machine” interchangeably, although a machine may have multiple
GPUs each running a worker thread.

Machine 1 Machine 2

Machine 3 Machine 4

Time

Backward WorkForward Work

Communication Stall (Model Parameters)

Fn
Cn+1

Bn Cn Cn+1 Fn+1 Bn+1

Figure 2: Example data-parallel setup with 4 machines. Time-
line at one of the machines shows communication stalls during
model parameter exchanges.

(S2VT) spend significant time communicating. Networks
such as ResNet50 and Inception-v3 have comparatively
low communication overhead. Second, as the number
of data parallel workers increases, communication over-
heads increase for all models. Third, as GPU compute
speeds increase (K80s to V100s), communication stalls
also increase for all five models.

Prior work has proposed more relaxed synchronization
models, where each GPU proceeds with the computation
for the next minibatch without stalling for the gradients
from the other GPUs. This approach, which we refer to
as asynchronous parallel or ASP, reduces GPU idle time,
and as a result, improves hardware efficiency compared
to BSP. However, this process can lead to gradients being
computed on stale weights, thereby lowering statistical
efficiency. Our experimental results corroborate recent
findings that show that ASP does not reduce end-to-end
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DNN training time [9, 1, 4].

Model Parallelism. Withmodel parallelism, themodel
is partitioned across multiple GPUs, with each GPU re-
sponsible for only a portion of the model. For ma-
chine learning (ML) problems such as matrix factor-
ization, topic modeling, and linear regression, prior
work [29, 27, 45, 23] has shown that model parallelism
can often achieve faster training times than data paral-
lelism because of the improved statistical efficiency that
arises from not using extremely large minibatch sizes; the
STRADS framework [23] shows that pipelining multiple
minibatches can further improve training times for these
ML problems. Model parallelism has also been used for
DNNs, but traditionally only as a last resort when the
working set of model training is too large to fit in a sin-
gle worker’s memory or cache [25, 7, 10] (making data
parallelism not an option). This is because traditional
model-parallel DNN training suffers from two major lim-
itations.
First, model-parallel DNN training results in severe

under-utilization of GPU resources, as illustrated in Fig-
ure 3. The figure shows a partitioning of the DNN layers
across four machines, such that each machine is respon-
sible for a group of consecutive layers; in this regime,
the inter-layer values (activations and gradients) between
these groups are the only parameters that need to be com-
municated across machines. 2 For each minibatch, only
a single stage is active at any instant of time. Pipelining
multiple minibatches back-to-back would improve uti-
lization, but is traditionally not done because, 1) the bi-
directionality of DNNs (the forward pass is followed by
a backward pass through the same layers in reverse or-
der) makes pipelining challenging, and more importantly
2) a naive pipelining mechanism introduces weight up-
date computations on stale weights, leading to the final
model achieving a lower accuracy than in the data-parallel
training.
Second, the burden of partitioning a model across mul-

tiple GPUs is left to the programmer [25], resulting in
point solutions. Recent work explores the use of re-
inforcement learning to automatically determine device
placement for model parallelism [30]. Unfortunately,
such online decision making techniques are time- and
resource-intensive; they also don’t seamlessly combine
pipelining, data-, and model- parallelism.

Other Related Work. Recent work on fast training
of Convolutional Neural Networks (CNNs) make use of
highly optimized and expensive clusters with high-speed
intra- and inter-machine interconnects [14, 12]. Many
public cloud providers do not yet offer such optimized

2While other partitioning schemes are possible, this is the most
common, and the one we will use for model parallelism in this paper.
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Figure 3: Model parallel training with 4 machines. Numbers
indicate minibatch ID. For simplicity, here we assume that for-
ward and backward work in every stage takes one time unit, and
communicating activations across machines has no overhead.

server SKUs and one can expect such offerings to be
prohibitively expensive when they are offered. In con-
trast, in our work we investigate the use of commodity
SKUs available in public cloud offerings; this is training
infrastructure readily accessible to the masses.

CNTK’s [33] 1-bit quantization technique tackles the
problem of communication bottlenecks in data paral-
lelism training [35]. This approximation strategy lacks
generality and is effective for limited scenarios; it does
not hurt convergence for some speech models [34], but
hurts statistical performance due to noisy gradients in
many others [9, 1].

Goyal et al. [14] uses more efficient implementations
of all_reduce, like the recursive halving-and-doubling
algorithm and the bucket algorithm to reduce the amount
of data being sent over the network [39]. Others have
explored techniques from the HPC literature to reduce
the overhead of communication [2, 41]. But all these
reduction approaches still involve synchronous commu-
nication patterns, resulting in smaller network stalls that
only slightly alleviate the communication bottleneck in-
troduced due to ever growing model sizes and faster com-
pute capabilities.

Chen et al. [6] briefly explore the potential benefits of
pipelining minibatches in model parallel training, but do
not address the conditions for good statistical efficiency,
scale, and generality as applicable to large real-world
models. In fact, our work shows that pipelining compu-
tation naively is not enough for real-world models. In
our proposed solution (Section 3), we address key issues
ignored in prior work, and offer a general and automated
solution.

3 Parallel Training in PipeDream
PipeDream combines traditional data parallelism with

model parallelism enhanced with pipelining. We call this
scheme pipeline parallelism (PP). In this section, we first
describe PP, and then describe PipeDream’s design that
addresses the challenges associatedwithmaking pipeline-
parallel training work effectively.

4
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Figure 4: An example pipeline-parallel assignment with four
machines and an example timeline at one of the machines, high-
lighting the temporal overlap of computation and activation /
gradient communication.

3.1 Pipeline Parallelism
Pipeline-parallel training partitions the layers of the

model being trained into multiple stages – each stage
contains a consecutive set of layers in the model. Each
stage is mapped to a separate GPU that performs both the
forward and backward pass for all the layers in that stage.
We refer to the stage that contains the input layer as the
input stage, and the one that contains the output layer as
the output stage. Figure 4 shows a simple example of
a pipeline-parallel assignment, where the DNN is split
across four machines.
In the simplest case, only one minibatch is active in the

system, as in traditional model-parallel training. Figure 3
shows the computation timeline of an example configu-
ration with four machines and one active minibatch in the
pipeline. In the forward phase, each stage performs the
forward pass for the minibatch for the layers in that stage
and sends the results to the next stage. The output stage,
after completing its forward pass, computes the loss for
the minibatch. In the backward phase, each stage per-
forms the backward pass and propagates the loss to the
previous stage. With only one active minibatch, at most
one GPU is active at any given point in time.
To ensure that no GPU is idle at any point in time,

we inject multiple minibatches into the pipeline one af-
ter the other, thus enhancing model-parallel training with
pipelining. On completing the forward pass for a mini-
batch, each stage asynchronously sends the output acti-
vations to the next stage, while simultaneously starting
to process another minibatch. Similarly, after complet-
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Figure 5: Sizes of layer output data forVGG16with aminibatch
size of 32 on ImageNet1K data. The black dotted line indicates
the size of the model parameters.

ing the backward pass for a minibatch, each stage asyn-
chronously sends the gradient to the previous stage, while
starting computation for another minibatch. Pipelining
has two main advantages over data-parallel training:
Pipelining communicates less. PP requires far less com-
munication compared to BSP. Figure 5 compares the size
of each layer’s output to the overall size of model pa-
rameters for VGG16. Instead of having to communicate
all the parameters, as is done in BSP, each machine in a
PP execution only has to communicate the output data of
one of the layers. This often results in large reductions in
communication (e.g., >90% reduction for VGG16).
Pipelining overlaps computation and communication.
Asynchronous communication of forward output activa-
tions and backward gradients across stages results in a
significant overlap of communication with computation
of a subsequentminibatch, thus achieving better hardware
efficiency compared to BSP (Figure 4).

While pipelining by itself reduces training time com-
pared to data parallelism, we observe model parallelism
and data parallelism work best for different types of
layers [25]. As a result, PipeDream aims to combine
pipelined model parallelism and data parallelism in a
manner that minimizes overall training time. Figure 6
shows how pipeline parallelism might partition layers of
a hypothetical model across stages on 8 machines. How-
ever, there are three challenges that need to be addressed
to make this approach effective for large real-world DNN
models:

1. Automatic partitioning of work across available
compute resources.

2. Scheduling of computation to maximize throughput
while ensuring forward progress in the learning task.

3. Ensuring that learning is effective in the face of asyn-
chrony introduced by pipelining.

The remainder of this section describes these challenges
and PipeDream’s approach to address them.

3.2 Partitioning Layers Across Machines
Given a model and a set of machines, PipeDream’s

first challenge is to automatically partition layers of the
model across available machines so as to minimize over-
all training time. Figure 7 shows the workflow adopted
by PipeDream to partition the layers of the DNN among
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Figure 6: Pipeline Parallel training in PipeDream combines
pipelining, model- and data-parallel training.
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Output Sizes
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Figure 7: PipeDream’s automated mechanism to partition
DNN layers into stages. PipeDream first profiles the input
DNN, to get estimates for each layer’s compute time and output
size. Using these estimates, PipeDream’s optimizer partitions
layers across available machines.

the availablemachines. When partitioning layers into dif-
ferent stages across machines, PipeDream’s partitioning
algorithm must ensure that each stage roughly performs
the same amount of total work. At the same time, the par-
titioning algorithm must also ensure that the amount of
data communicated across stages is as small as possible,
to avoid communication stalls. Load imbalance across
machines or excessive communication between machines
can lower hardware efficiency (throughput).
Taking these factors into account, given a DNNwith N

layers and M available machines, PipeDream first profiles
the model on a single machine, and then runs a partition-
ing algorithm that groups layers into stages, while also
determining the replication factor for each stage that min-
imizes the overall training time for the model.
Profiling the DNN Model. Our profiling mechanism

exploits the fact that DNN training shows little variance
in the computation and communication time across mini-
batches. PipeDream records three quantities for each
layer l: 1) Tl , the total computation time across the for-
ward and backward pass for the layer, 2) al , the size of

the output activations of the layer (also the size of input
gradients in the backward pass), and 3) wl , the size of
parameters for layer l.

To determine Tl for all layers, PipeDream profiles a
short run of the DNN model using 1000 minibatches on
one of the machines.3 Using this profile, PipeDream
computes Tl as the sum of the forward and backward
computation times for the layer l.
All communication happens in three steps: 1) move

data from the GPU to the CPU of the sender, 2) send data
from sender to receiver over the network, and 3) move
data from the CPU to theGPUof the receiver. PipeDream
estimates the time taken for communication as the amount
of data that needs to be transferred divided by the network
bandwidth on the communication link. Cl , the time taken
to communicate the activations from layer l to l + 1 in
a pipeline, is estimated using al . The amount of data
communicated per worker in data-parallel configurations
with m machines is 4 × (m − 1) × |wl |/m; this is used to
estimate Wm

l
, the time for weight synchronization for the

layer when using a distributed parameter server.
PipeDream’s Partitioning Algorithm. Our partition-

ing algorithm takes the output of the profiling step, and
computes: 1) a partitioning of layers into stages, 2) the
replication factor for each stage, and 3) optimal number
of minibatches to keep the training pipeline busy.

The partitioning algorithm tries tominimize the overall
training time of the model. For a pipelined system, this
problem is equivalent to minimizing the time taken by
the slowest stage of the pipeline. This problem has the
optimal sub-problem property; a pipeline that maximizes
throughput given a machine count is composed of sub-
pipelines that maximize throughput for smaller machine
counts. Consequently, we can find the optimal solution
to this problem using Dynamic Programming.

Let A( j,m) denote the time taken by the slowest stage
in the optimal pipeline between layers 1 and j using m
machines. The goal of our algorithm is to find A(N, M),
and the corresponding partitioning. Let T(i → j,m)
denote the time taken by a single stage spanning layers i
through j, replicated over m machines.

T(i → j,m) = 1
m

max
( j∑
l=i

Tl,
j∑

l=i

Wm
l

)
where the left term inside themax is the total computation
time for all the layers in the stage, and the right term is the
total communication time for all the layers in the stage.

The optimal pipeline consisting of layers from 1
through j using m machines could either be a single stage
replicated m times, or be composed of multiple stages.

3All the GPUs used in individual experiments are identical. As a
result, it is sufficient to profile performance on a single GPU.
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Case 1: The optimal pipeline contains only one stage,
replicated m times. In this case,

A( j,m) = T(1→ j,m)

Case 2: The optimal pipeline contains more than one
stage. In this case, it can be broken into an optimal sub-
pipeline consisting of layers from 1 through i with m−m′

machines followed by a single stage with layers i + 1
through j replicated over m′ machines. Then, using the
optimal sub-problem property, we have

A( j,m) = min
1≤i< j

min
1≤m′<m

max


A(i,m − m′)
2 · Ci

T(i + 1→ j,m′)

where the first term inside the max is the time taken by the
slowest stage of the optimal sub-pipeline between layers
1 and i with m − m′ machines, the second term is the
time taken to communicate the activations and gradients
between layers i and i + 1, and the third term is the time
taken by the single stage containing the remaining layers
in a data-parallel configuration of m′ machines.
Initialization. A(1,m) := T(1 → 1,m), where T(.) is as
defined above, and m is varied from 1 through M (the
total number of machines). A(i, 1) := T(1→ i, 1), where
i is varied from 1 through N (the total number of layers
in the model).
Runtime Analysis. The total number of sub-problems
is O(N M). Time complexity per sub-problem is also
O(N M), leading to a total time complexity of O(N2M2).

Based on the partitioning generated by our algorithm,
the optimal number of minibatches admitted per input
stage to keep the pipeline full in steady state is given by
d (# machines) / (# machines in the input stage) e.

We refer to this quantity as the
NUM_OPT_ACTIVE_MINIBATCHES (NOAM).

3.3 Work Scheduling
Unlike traditional uni-directional pipelines, pipelined

DNN training involves a bi-directional pipeline. The for-
ward pass for a minibatch starts at the input layer and the
backward pass ends at the input layer. Consequently, each
activeminibatch in the pipelinemay be in a different layer,
either in the forward pass or backward pass. As a result,
each machine in the system has to make a choice between
two options: i) perform the forward pass for a minibatch,
thus pushing the minibatch to downstream machines, and
ii) perform the backward pass for a different minibatch,
thus ensuring forward progress in learning.
A simple scheduling mechanism that always priori-

tizes forward work hinders overall forward progress as
weight updates can be applied only once backward passes
complete. Similarly, always prioritizing backward work
may periodically result in idle machines with no available

Time
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Figure 8: An example pipeline with 4 machines, showing
startup and steady states.

work. We propose a scheduling mechanism that avoids
these problems.

In the startup phase, the input stage admits NOAM
minibatches to keep the pipeline full in steady state. Once
in steady state, each stage alternates between performing
the forward and backward pass for a minibatch. We call
this mechanism one-forward-one-backward (1F1B). In a
balanced pipeline, 1F1B ensures that no GPU is idle in
steady state and thatwemake forward progress in learning
from each minibatch.

Figure 8 shows the corresponding compute timeline
for a pipeline with 4 stages each running on one machine.
The NOAM for this configuration is 4. In the startup
phase, the input stage admits exactly four minibatches
that propagate their way to the output stage. As soon as
the output stage completes the forward pass for the first
minibatch, it performs the backward pass for the same
minibatch, and then starts alternating between performing
forward and backward passes for subsequentminibatches.
As the backward pass starts propagating to earlier stages
in the pipeline, every stage starts alternating between
forward and backward pass for different minibatches. As
shown in the figure, in the steady state, every machine is
busy either doing the forward pass or backward pass for
a minibatch. For 1F1B to be effective, it is not necessary
for the forward pass to take as long as the backward pass.
In fact, we observe that in practice, the backward pass is
always larger than the forward pass, and 1F1B remains
an effective scheduling mechanism.

When stages run in a data-parallel configuration,
replicated across multiple GPUs, we use determinis-
tic round-robin load balancing (minibatchID mod
stageReplicaID) to spread work from the previous
stages across the replicas. Such deterministic load-
balancing ensures that the backward pass for a minibatch
is performed on the machine responsible for the mini-
batch’s forward pass.

Both the 1F1B scheduling policy for stages in a pipeline
and the round-robin scheduling policy for load balancing
across replicated stages are static policies. Thus, they
can be executed by each machine independently without
requiring expensive distributed coordination.
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3.4 Effective Learning
In a naively pipelined system, the forward pass for each

minibatch is performed using one version of parameters
and the backward pass using a different version of pa-
rameters. Figure 8 illustrates this using a partitioning
with no data parallelism. If we observe stage 1 (machine
1), the forward pass for minibatch 5 is performed after
the updates from minibatch 1 are applied, whereas the
backward pass for minibatch 5 is performed after updates
from minibatches 2, 3, and 4 are applied. As a result, in
the backward pass for minibatch 5 on stage 1, the gradi-
ent is computed using a different set of weights than the
ones used in the corresponding forward pass; this dis-
crepancy in weight versions can prevent the model from
converging.
Furthermore, different stages in the DNN model suf-

fer from different degrees of staleness. For example, in
the third stage, each minibatch has only one interleaved
update between its forward and backward pass, while the
output stage has no interleaved updates. This asymmetry
across layers can further impact model convergence. Our
experimental results show that naive pipelining does not
achieve the same accuracy as data-parallel training. To
address this problem, PipeDream uses two techniques.
Weight Stashing. Weight Stashing maintains multiple
versions of the weights, one for each active minibatch.
When performing the forward pass, each stage processes
a minibatch using the latest version of weights available.
After completing the forward pass, PipeDream stores the
weights used as part of the intermediate state for that
minibatch. When performing the minibatch’s backward
pass, the same version of the weights is used to compute
the weight gradient.
Weight stashing ensures that within a stage, the same

version of model parameters are used for the forward
and backward pass of a given minibatch. For example,
in Figure 8, minibatch 5 uses parameters updates from
batch 1 on machine 1 and from 2 on machine 2. Weight
stashing says nothing about the consistency of parameter
versions used for a given minibatch across stages.
Vertical Sync. Vertical Sync eliminates the potential in-
consistency across stages. For example, in Figure 8, us-
ing vertical sync, minibatch 5 uses parameters updated by
minibatch 1 on all machines for both its forward and back-
ward passes. Each minibatch (mi) that enters the pipeline
is associatedwith the latest weight version (w(i−x)) seen at
the input stage. This information is propagated alongwith
the activations and gradients as the minibatch mi flows
through the pipeline in the forward direction. Across all
stages, the forward pass for mi uses the stashed weights
w(i−x), as opposed to the latest weight update. After per-
forming the backward pass for mi (using stashed weights
w(i−x)), each stage independently applies weight updates
to create the latest weights (w(i)), and can then delete

w(i−x). This coordination across stages is asynchronous.
Staleness. We can now formalize the degree of stale-

ness of weight updates for each of these techniques. For
this discussion, we assume a straight pipeline with the
model split into n stages; the weights in each stage are
represented as w1, w2, and so on. In addition, we denote
w
(t)
1 as the weights w1 after t minibatches.
Now, after every minibatch, we compute the gradi-

ent O f (w1,w2, . . . ,wn) averaged over all samples in the
minibatch. Vanilla minibatch SGD ( f is the loss function
we’re trying to optimize and ν is the learning rate) has
the following gradient update,

w(t+1) = w(t) − ν · O f (w(t)1 ,w
(t)
2 , . . . ,w

(t)
n )

Withweight stashing, gradients in stage 1 are computed
with weights that are n steps delayed, gradients for stage
2 are computed with weights that are n− 1 steps delayed,
and so on. Mathematically, this means our weight update
looks like,

w(t+1) = w(t) − ν · O f (w(t−n+1)
1 ,w

(t−n+2)
2 , . . . ,w

(t)
n )

Without weight stashing, the weight update is not a
valid gradient of the loss function f for any weight vector
w1,w2, . . . ,wn.
Adding vertical sync alters the weight update to,

w(t+1) = w(t) − ν · O f (w(t−n+1)
1 ,w

(t−n+1)
2 , . . . ,w

(t−n+1)
n )

This is semantically the same as data parallelism with
BSP synchronization on n machines (with the same orig-
inal minibatch size on each machine).

Weight stashing is critical for meaningful learning.4
PipeDream’s default semantics (weight stashing but no
vertical sync) are between regular minibatched SGD on a
single machine, and data parallelism with BSP synchro-
nization [8, 18]. Our evaluation demonstrates its effec-
tiveness across several models, datasets, and hardware
configurations.

3.5 GPU Memory Management
Asminibatches enter and leave the pipeline, the system

has to ensure that the inputs, weights, and other interme-
diate state required by the GPU for its computation are
present in GPU memory. If not managed carefully, the
overhead of dynamic memory allocation in the GPU, and
data transfer between GPU and CPUmemory can greatly
reduce hardware efficiency.

PipeDream extracts the layer parameters from theDNN
model and computes the size of activations, parameters,
and intermediate state that needs to be stored at each stage,
across the active minibatches present in the pipeline. The

4In our experiments, we find that the impact of vertical sync is
negligible. PipeDream’s default semantics exclude vertical sync as it
requires more metadata to be stored at every stage in the pipeline.
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Figure 9: Architecture of the stage runtime and integration
with Caffe. PipeDream provides the ML worker thread (Caffe)
pointers to GPU memory containing layer input data, parame-
ters, and buffers for recording layer outputs and parameter up-
dates. PipeDream manages buffer pools, and handles all intra-
and inter-machine communication.

number of minibatches for which each stage has to main-
tain intermediate state varies from stage to stage. While
the output stage has to maintain intermediate state for
only one active minibatch, the input stage needs to do
so for NOAM minibatches. PipeDream allocates all re-
quired GPU memory at the beginning of training, and
reuses the allocated memory as appropriate. This sig-
nificantly reduces the overhead of dynamically managing
GPU memory.

4 Implementation
Figure 7 shows PipeDream’s high-level workflow. The

input to our system is a model architecture, the training
dataset, and the number of GPUs that will be used for
training. PipeDream first profiles the model on a single
machine with a subset of minibatches from the training
dataset. It then runs the optimization algorithm described
in Section 3.2 to partition the DNN model into k stages,
with some stages replicated. The PipeDream runtime
then assigns each stage to a single GPU.
Figure 9 shows the high-level architecture of the stage

runtime in PipeDream. The interface to PipeDream is im-
plemented as a C++ library that manages the parameter
and intermediate data for the ML worker that runs on the
GPU. In our current implementation, we use Caffe [20]
as the ML worker. However, PipeDream is extensible
and can work with other ML frameworks such as Tensor-
flow [1], MXNet [5], and CNTK [33] as well.
As an initialization step, the PipeDream library in each

machine initializes the GPU data structures correspond-
ing to the stage that is assigned to the machine. This
involves 1) initializing the ML worker with the layers that
it must execute as part of the stage, and 2) statically allo-

cating memory in the GPU for the activations, weights,
gradients, and the intermediate state (which includes the
input activations and stashedweights for each activemini-
batch). Once amachine is initialized, theMLworker pulls
its next work assignment from PipeDream; PipeDream’s
runtime provides the ML worker with pointers to input
data. The input stage kick starts the pipeline by creating a
minibatch of forward work for its ML worker. From then
on, each machine follows the 1F1B scheduling algorithm,
while limiting the total number of active minibatches to
NOAM.

For the assigned minibatch (forward or backward), the
ML worker iterates through each layer in the stage and
performs the relevant work for the minibatch. The ML
worker uses appropriate PipeDreamAPI calls to get point-
ers to the inputs, parameters, outputs, gradients, and in-
termediate state for each layer. Once the minibatch is
processed, the ML worker indicates the completion of
work to PipeDream, and pulls its next work item.

Parameter State. For each stage, PipeDream main-
tains all parameters associated with the layers assigned
to the stage directly in GPU memory. The parameters
for each layer are stored separately, and each assigned
a unique ID. If the stage is not replicated, PipeDream
applies the updates to the most recent version of the pa-
rameter data stored in GPU memory when the weight
update is available in the provided GPU buffer. If the
stage is replicated, the weight update is copied to host
memory and then sent to the parameter server. When a
newer version of the parameters becomes available, the
prior version is not immediately discarded, as part of the
weight stashing scheme. Parameter data is only discarded
once a backward pass that uses fresher parameters is per-
formed.

Intermediate State. Each layer’s intermediate data is
also assigned a unique blob ID. Upon receiving interme-
diate data from the prior stage (or from disk in the case of
the input stage), PipeDream copies the intermediate data
to GPU memory and places a pointer to the associated
buffer in a work queue. Intermediate data from the for-
ward pass is not discarded until the associated minibatch
completes that stage’s backward pass. Intermediate data
from the backward pass is released as soon as the ML
worker finishes using it, and if necessary, after it is sent
to the next stage. Due to the differing requirements for in-
termediate data in the forward and backward pass, stages
in PipeDream commonly manage multiple versions of
intermediate data from forward passes, and just a single
version of intermediate data from the currently running
backward pass.

Data Parallelism. PipeDream uses a distributed pa-
rameter server, similar to GeePS [9], to synchronize pa-
rameters for layers of data-parallel stages. Usingwait-free
back propagation, weight gradients are communicated to
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servers as soon as they are as computed, rather than wait-
ing for computation to finish for all layers. Each worker
contains an instance of a parameter server shard that stores
a unique subset of the parameters. The server shards push
the newest version of their parameters to the other shards
as soon as updates from all stage replicas are aggregated.
Since we support replication of individual stages, data-

parallel training can be thought of as a special case in
our framework – we represent this as a single stage that
contains all the layers of the DNN model, and replicate
the stage across all available machines.
All inter-machine communication between

PipeDream’s stages, both in data-parallel and pipeline-
parallel settings, uses ZeroMQ [46] and an efficient
communication stack with fast custom serialization.
Checkpointing. PipeDream supports periodic check-

pointing of model parameters for fault-tolerance, with
default checkpointing across stages at the end of every
epoch. Checkpoints don’t require expensive global co-
ordination; each stage locally decides to dump its model
parameters when it performs the backward pass for the
last minibatch in an epoch. Restarting a failed training
run due to a stage failure entails starting from the last
epoch successfully checkpointed by all the stages.

5 Evaluation
This section compares the effectiveness of PipeDream

with data-parallel training and model-parallel training
across models on two clusters. The results of our exper-
iments support a number of important findings: 1) com-
bining pipelining, model parallelism, and data parallelism
performs significantly better than using model paral-
lelism or data parallelism alone, 2) PipeDream greatly re-
duces the overhead of communication compared to data-
parallel training, and 3) PipeDream’s improvements are
higher for configurations that have a lower computation-
to-communication ratio.

5.1 Experimental Setup
Datasets. We used two datasets in our experiments.

The first is the dataset for the Large Scale Visual Recog-
nition Challenge 2012 (ILSVRC12) [32], also called the
ImageNet 1K dataset. This dataset has∼1.3million train-
ing images categorized into 1000 classes, and 50,000
validation images. The second is the Microsoft Video
description corpus (MSVD) [3], which is a collection of
YouTube clips depicting different activities, collected on
Mechanical Turk. The dataset contains 1,970 videos and
a vocabulary of 12,594 words to describe them.
Clusters. We used two different clusters in our exper-

iments. Cluster-A is a private cluster of NVIDIA Titan
X GPUs with 12 GB of GPU device memory. Each ma-
chine has a E5-2698Bv3 Xeon CPUwith 64 GB of RAM.

Themachines are connected via a 25 Gbps Ethernet inter-
face. Cluster-B is public cloud cluster (AWS p3.2xlarge
instances) of NVIDIA V100 GPUs, with 16 GB of GPU
devicememory. Eachmachine has a E5-2690Xeon CPU,
64 GB of RAM with a 10 Gbps Ethernet interface. Ma-
chines on both clusters run 64-bit Ubuntu 16.04 with
CUDA toolkit 8.0 and cuDNN v6.

In comparison to Cluster-A, Cluster-B has faster GPUs,
but a slower network. As a result, as we show later in
this section, the performance benefits of PipeDream are
higher in Cluster-B than in Cluster-A.

Models and Training Methodology We used
three different DNN models in our experiments:
1) VGG16 [36] with a model size of 550 MB,
2) Inception-v3 [19] with a model size of 157 MB, and
3) S2VT [43], a sequence-to-sequence model for video
transcription, with a model size of 349MB. We use the
ILSVRC12 dataset to train VGG16 and Inception-v3, and
the MSVD dataset to train S2VT model. In our exper-
iments, we trained the VGG16 and S2VT models using
SGD with a momentum of 0.9 and an initial learning rate
of 0.01. For Inception-v3, we used RMSProp [40] with
an initial learning rate of 0.045, decayed every two epochs
using an exponential rate of 0.94. We used a mini-batch
size of 32 per machine for VGG16 and Inception-v3 and
a mini-batch size of 80 per machine for S2VT. For all
the experiments, we measure the time taken to train the
models until they reach their advertised validation accu-
racy: top-1 accuracy of 68% for VGG16, top-1 accuracy
of 67% for Inception-v3, and METEOR [11] score of
0.294 for S2VT. Guided by prior work, we adjust the
learning rate during training to converge to the desired
result faster [31, 37, 38, 13, 24].

PipeDream’s Data-Parallel Implementation. To
measure the performance improvements introduced from
using PipeDream, we compare to PipeDream in data-
parallel and single machine configurations. This allows
us to perform a fair comparison of the different schemes.
To confirm its efficiency, we compared PipeDream’s data-
parallel implementation to the open source version of
GeePS, an efficient data-parallel DNN training system
that also uses Caffe at individual workers and performs
favorably, if not better than, other state-of-the-art DNN
frameworks [9]. In our experiments, PipeDream’s data-
parallel configuration ran at least as fast as GeePS for all
models and datasets tested.

5.2 PipeDream vs. Data Parallelism
Table 1 summarizes results comparingPipeDreamwith

data-parallel training (BSP). For the three models, the ta-
ble shows PipeDream’s auto-generated configuration and
the corresponding speedup in training time over single
machine and data-parallel training (BSP). It also shows
the communication reduction achieved by PipeDream
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DNN # Machines BSP speedup PipeDream PipeDream speedup PipeDream speedup PipeDream communication
Model (Cluster) over 1 machine Config over 1 machine over BSP reduction over BSP

VGG16

4 (A) 1.47× 2-1-1 3.14× 2.13× 90%
8 (A) 2.35× 7-1 7.04× 2.99× 95%
16 (A) 3.28× 9-5-1-1 9.86× 3.00× 91%
8 (B) 1.36× 7-1 6.98× 5.12× 95%

Inception-v3 8 (A) 7.66× 8 7.66× 1.00× 0%
8 (B) 4.74× 7-1 6.88× 1.45× 47%

S2VT 4 (A) 1.10× 2-1-1 3.34× 3.01× 95%

Table 1: Summary of results comparing PipeDreamwith data-parallel configurations (BSP) when trainingmodels to their advertised
final accuracy. “PipeDream config” represents the configuration generated by our partinioning algorithm—e.g., “2-1-1” is a
configuration in which the model is split into three stages with the first stage replicated across 2 machines.

0
0.2
0.4
0.6
0.8

1

0 40 80 120 160 200

To
p-

1 
Ac

cu
ra

cy

Time (in hours)

1 Worker 8 BSP 8 PipeDream

(a) VGG16

0
0.2
0.4
0.6
0.8

1

0 10 20 30 40 50

To
p-

1 
Ac

cu
ra

cy
Time (in hours)

1 Worker 8 BSP 8 PipeDream

(b) Inception-v3
Figure 10: Accuracy vs. time for VGG16 and Inception-v3 with 8 machines on Cluster-A

compared to data-parallel training.
PipeDream Configurations. As described in Sec-

tion 3.2, given a DNN model and a set of machines,
PipeDream’s optimizer selects the best configuration that
partitions the layers of the model into multiple stages and
assigns one or more machines to each stage. While most
prior research has focused on improving data-parallel
training, our results indicate that the best configurations
are neither fully data-parallel nor fully model-parallel. In
all but one of our experiments, the best PipeDreamconfig-
uration combines model parallelism, pipelining, and data
parallelism; each of these configurations significantly
outperform data-parallel training, thus highlighting the
importance of pipeline parallelism. PipeDream’s opti-
mizer recommends data-parallel as the best configuration
for Inception-v3 with 8 machines in Cluster-A.
Base Results: 8 Machines in Cluster-A. Figure 10

shows accuracy vs. training time for VGG16 and
Inception-v3, using 8 machines in Cluster-A, for both
BSP and PipeDream 5. The first conclusion we draw
is that for VGG16, BSP with 8 machines reduces train-
ing time by only 2.35× compared to training with a sin-
gle machine since with 8 machines, the communication
overhead for VGG16 in Cluster-A is 72%. PipeDream
eliminates 95% of this communication overhead thereby
improving performance by 7.04× compared to training
with single machine (2.99× compared to BSP). Second,
for Inception-v3, the communication overheadwith 8ma-
chines on Cluster-A is just 5%. As a result, BSP achieves
near perfect scaling with a 7.66× speedup over a single

5For Figure 10– 12 each displayed point represents 5 epochs

machine. PipeDream’s partitioning algorithm (Section
3.2) selects a data-parallel configuration (no pipelining
or model parallelism) to train Incpetion-v3 on Cluster-A,
thus matching the data-parallel BSP performance (Fig-
ure 10b).

Effect of using faster compute (V100s). Figure 11
shows accuracy vs. training time for VGG16 and
Inception-v3, using 8 machines in Cluster-B, for both
BSP and PipeDream. Compared to Cluster-A, Cluster-
B employs faster V100 GPUs with 10Gbps intercon-
nect between the machines (as granted by the cloud
provider). Thus, models running on Cluster-B have lower
computation-to-communication ratios. We note that the
faster GPUs result in faster end-to-end training time —
e.g., training time for VGG16 reduces from 220 hours on
Cluster-A to little less than 100 hours on Cluster-B (Fig-
ures 10 and 11). We also observe that the higher com-
munication overhead causes both BSP and PipeDream
to scale less effectively to 8 machines. However, this
increased communication overhead affects BSP signifi-
cantly more than PipeDream. Moving from Cluster-A to
Cluster-B, the speedup of PipeDream over BSP increases
from 2.99× to 5.12× for VGG16. Even for Inception-v3,
PipeDream improves training time by 45% compared to
BSP on Cluster-B.

Due to space constraints we do not present end-to-end
training results forAlexNet [26] andResNet-50 [16]mod-
els. Experiments with these models on Cluster-B showed
that PipeDream provides a 1.21x and 6.78x throughput
improvement for ResNet-50 and AlexNet respectively,
compared to 8 machine data-parallel BSP.

11



0
0.2
0.4
0.6
0.8

1

0 20 40 60 80 100

To
p-

1 
Ac

cu
ra

cy

Time (in hours)

1 Worker 8 BSP 8 PipeDream

(a) VGG16

0
0.2
0.4
0.6
0.8

1

0 10 20 30 40

To
p-

1 
Ac

cu
ra

cy

Time (in hours)

1 Worker 8 BSP 8 PipeDream

(b) Inception-v3
Figure 11: Accuracy vs. time for VGG16 and Inception-v3 with 8 machines on Cluster-B
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Figure 12: Accuracy vs. time for different configurations for
VGG16 on Cluster-A with 4 and 16 workers.

Effect of varying number of machines. With an in-
crease in the number of machines, the communication
overhead also increases for all models (as shown in Fig-
ure 1). Figure 12 compares the accuracy vs. training
time for VGG16, using 4 and 16 machines in Cluster-A,
for BSP and PipeDream. As expected, BSP scales poorly
with increasing number of machines. With 4, 8, and 16
machines, BSP offers speedups of only 1.47×, 2.35×, and
3.28×, respectively, compared to single machine training.
In contrast, PipeDream offers speedups of 3.14×, 7.04×,
and 9.86× with 4, 8, and 16 machines compared to train-
ing on a single machine. Notably, PipeDream with 4
machines is almost as good as BSP with 16 machines.
Comparison to asynchronous parallel (ASP). To re-

duce communication overhead in data-parallel training,
we experimented with running four machine data-parallel
with ASP synchronization. Unlike BSP, which synchro-
nizes the parameter data after every mini-batch, ASP has
no synchronization, and the workers use the most re-
cent parameter data available. Figure 12 also shows
the accuracy vs. time curve for ASP with 4 machines
in Cluster-A. Due to ASP’s poor statistical efficiency,
PipeDream reaches a 48% accuracy 7.4x faster than ASP
data-parallel, even though ASP has no communication
overhead.
Training a Recurrent Neural Network. VGG16

and Inception-v3 are Convolutional Neural Networks
(CNNs), used for tasks such as image classification. We
also evaluate PipeDream’s performance on the S2VT
model, which is a sequence-to-sequence recurrent neural
network that generates descriptive captions for videos.
For many recurrent neural networks consisting of LSTM
layers, BSP data-parallel training scales poorly. For
S2VT, BSP with 4 machines reduces training time by
only 1.1x compared to single machine training. This is

because with 4 machines, the communication overhead
for S2VT on Cluster-A is 70%. PipeDream reduces the
communication overhead by 95% compared to BSP, in
turn slashing training time by 3.34× compared to single
machine training (3.01× compared to BSP).

5.3 Value of Data Parallelism in stages
Figure 13 plots the reduction in training time com-

pared to single machine training for three parallelization
approaches: 1) simple model parallelism (no pipelin-
ing or data parallelism), 2) pipeline parallelism without
data parallelism (no stage replication), and 3) PipeDream
(combined model parallelism, pipelining and data par-
allelism). The figure shows these results for training
VGG16 using 4 and 8 machines on Cluster-A.
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Figure 13: Model Parallelism vs. Pipeline Parallelism vs.
PipeDream for VGG16 on Cluster-A

Model Parallelism. Simple model parallelism uses
only onemachine at any point in time, and hence is slower
than the single machine configurations. We also im-
plement model-parallel configurations in Tensorflow [1],
which does not support pipelining but implements model
parallelism as described in this paper; we observe similar
performance drop-offs.

Straight Pipelines. Combining model parallelism
with pipelining results in straight pipeline configurations
(no data parallelism compared to PipeDream). Straight
pipeline configurations greatly reduce training time com-
pared to single machine training—2.56× and 3.49× with
4 and 8 machines, respectively. In fact, these im-
provements are better than data parallel training, which
achieves corresponding speedups of 1.47× and 2.35×
compared to single machine training.

Pipeline Parallelism. PipeDream’s pipeline paral-
lelism provides the biggest reductions in training time—
3.14× and 7.04× with 4 and 8 machines compared to
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single machine training. These results demonstrate that
a combination of pipelining, model parallelism and data
parallelism achieve faster training than either model par-
allelism, model parallelism with pipelining, or data par-
allelism.

6 Conclusion
Pipeline-parallel DNN training addresses the commu-

nication overheads that bottleneck data-parallel training
of very large DNNs. PipeDream automatically partitions
and aggressively pipelines DNN training across worker
machines. Compared to state-of-the-art approaches,
PipeDream is up to 5× faster in “time to target accu-
racy” for experiments with five different DNNs on two
different clusters.
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