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Abstract

This paper makes a case for a new cross-layer interface, Ex-
pressive Memory (XMem), to communicate higher-level pro-
gram semantics from the application to the system software
and hardware architecture. XMem provides (i) a flexible and
extensible abstraction, called an Atom, enabling the application
to express key program semantics in terms of how the program
accesses data and the attributes of the data itself, and (ii) new
cross-layer interfaces to make the expressed higher-level infor-
mation available to the underlying OS and architecture. By
providing key information that is otherwise unavailable, XMem
exposes a new, rich view of the program data to the OS and
the different architectural components that optimize memory
system performance (e.g., caches, memory controllers).

By bridging the semantic gap between the application and
the underlying memory resources, XMem provides two key ben-
efits. First, it enables architectural/system-level techniques to
leverage key program semantics that are challenging to pre-
dict or infer. Second, it improves the efficacy and portability of
software optimizations by alleviating the need to tune code for
specific hardware resources (e.g., cache space). While XMem
is designed to enhance and enable a wide range of memory
optimizations, we demonstrate the benefits of XMem using two
use cases: (i) improving the performance portability of software-
based cache optimization by expressing the semantics of data
locality in the optimization and (ii) improving the performance
of OS-based page placement in DRAM by leveraging the seman-
tics of data structures and their access properties.

1. Introduction

Traditionally, the key interfaces between the software stack
and the architecture (the ISA and virtual memory) have been
primarily designed to convey program functionality to en-
sure the program is executed as required by software. An
application is converted into ISA instructions and a series of
accesses to virtual memory for execution in hardware. The
application is, hence, stripped down to the basics of what is
necessary to execute the program correctly, and the higher-
level semantics of the program are lost. For example, even
the simple higher-level notion of different data structures in a
program is not available to the OS or hardware architecture,
which deal only with virtual/physical pages and addresses.
While the higher-level semantics of data structures may be
irrelevant for correct execution, these semantics could prove
very useful to the system for performance optimization.
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There is, in other words, a disconnect or semantic gap be-
tween the levels of the computing stack when it comes to
conveying higher-level program semantics from the appli-
cation to the wide range of system-level and architectural
components that aim to improve performance. While the
implications of the disconnect are far-reaching, in this work,
we narrow the focus to a critical component in determining
the overall system efficiency, the memory subsystem. Modern
systems employ a large variety of components to optimize
memory performance (e.g., prefetchers, caches, memory con-
trollers). The semantic gap has two important implications:

Implication 1. The OS and hardware memory subsystem
components are forced to predict or infer program behavior
when optimizing for performance. This is challenging be-
cause: (i) each component (e.g., L1 cache, memory controller)
sees only a localized view of the data accesses made by the
application and misses the bigger picture, (ii) specialized hard-
ware may be required for each component optimizing for
memory, and (iii) the optimizations are typically only reactive
as the program behavior is not known a priori.

Implication 2. Software is forced to optimize code to the
specifics of the underlying architecture (e.g., by tuning tile
size to fit a specific cache size). Memory resource availability,
however, can change or be unknown (e.g., in virtualized envi-
ronments or in the presence of co-running applications). As
a result, software optimizations are often unable to make ac-
curate assumptions regarding memory resource availability,
leading to significant challenges in performance portability.

The challenges of predicting program behavior and hence
the benefits of knowledge from software in memory system
optimization are well known [1-22]. There have been numer-
ous hardware-software cooperative techniques proposed in
the form of fine-grain hints implemented as new ISA instruc-
tions (to aid cache replacement, prefetching, etc.) [1-13], pro-
gram annotations or directives to convey program semantics
and programmer intent [3, 14-17], or hardware-software co-
designs for specific optimizations [18-22]. These approaches,
however, have two significant shortcomings. First, they are
designed for a specific memory optimization and are limited
in their implementation to address only challenges specific
to that optimization. As a result, they require changes across
the stack for a single optimization (e.g., cache replacement,
prefetching, or data placement). Second, they are often very
specific directives to instruct a particular component to be-
have in a certain manner (e.g., instructions to prefetch spe-
cific data or prioritize certain cache lines). These specific



directives create portability and programmability concerns
because these optimizations may not apply across different
architectures and they require significant effort to understand
the hardware architecture to ensure the directives are useful.

Our Goal. In this work, we ask the question: can we design
a unifying general abstraction and a cohesive set of interfaces
between the levels of the system stack to communicate key pro-
gram semantics from the application to all the system-level
and architectural components? In response, we present Ex-
pressive Memory (XMem), a rich cross-layer interface that
provides a new view of the program data to the entire system.
Designing XMem in a low-overhead, extensible, and general
manner requires addressing several non-trivial challenges
involving conflicting tradeoffs between generality and over-
head, programmability and effectiveness (§2.2). In this paper,
we provide a first attempt at designing a new end-to-end
system to achieve our goal while addressing these challenges.

Expressive Memory comprises two key components:

(1) The Atom. We introduce a new hardware-software
abstraction, the atom, which is a region of virtual memory
with a set of well-defined properties (§3.1). Each atom maps
to data that is semantically similar, e.g., a data structure, a tile
in an array, or any pool of data with similar properties. Pro-
grams explicitly specify atoms that are communicated to the
OS and hardware. Atoms carry program information such as:
(i) data properties (e.g., data type, sparsity, approximability),
(ii) access properties (e.g., access pattern, read-write charac-
teristics), and (iii) data locality (e.g., data reuse, working set).
The atom can also track properties of data that change during
program execution.

(2) System and Cross-layer Interfaces. Figure 1
presents an overview of this component: (i) The interface to
the application enables software to explicitly express atoms
via program annotation, static compiler analysis, or dynamic
profiling @; (ii) The XMem system enables summarizing,
conveying, and storing the expressed atoms @; (iii) The in-
terface to the OS and architectural components (e.g., caches,
prefetchers) provides key supplemental information to aid
optimization @. This interface enables any system/architec-
tural component to simply query the XMem system for the
higher-level semantics attached to a memory address @.
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Figure 1: XMem: the system and interfaces.

Use Cases. XMem is designed to be a general interface
to aid a wide range of memory optimizations. In this paper,

we first demonstrate the benefits of XMem in enhancing the
portability of software-based cache optimizations (§5). The
effectiveness of such optimizations (e.g., cache tiling [60-66])
is highly susceptible to changes in cache space availability:
If the available cache space at runtime is less than what the
program was optimized for, cache thrashing often ensues.
We demonstrate that by leveraging data locality semantics
(working set size and data reuse), we can enhance and coordi-
nate the cache management and prefetching policies to avoid
cache thrashing and ensure high hit rates are retained, thereby
improving the portability of the optimization. We demon-
strate that when software optimizations inaccurately assume
available cache space, XMem reduces the loss in performance
from 55% in the baseline system to 6% on average. Second, we
demonstrate the performance benefits of intelligent OS-based
page placement in DRAM by leveraging knowledge of data
structures and their access semantics (§6). XMem improves
performance by (i) isolating regular data structures with high
row buffer locality in separate banks and (ii) spreading out
irregular data structures across many banks/channels to max-
imize parallelism. Our experimental evaluation demonstrates
an 8.5% average performance improvement (up to 31.9%) over
state-of-the-art techniques.

More generally, Table 1 presents nine example memory
optimizations and the benefits XMem can provide over prior
works that propose these optimizations in a specialized man-
ner. XMem’s benefits arise in three ways. First, it provides a
unifying, central interface for a wide range of optimizations
that use many of the same semantics. Second, it partitions
data into pools of semantically-similar data. This enables
using different policies (e.g., cache policies, compression al-
gorithms) for different pools of data. Third, it enhances op-
timizations by providing higher-level semantics that (i) are
unavailable locally to each component at runtime (e.g., dis-
tinguishing between data structures, data properties), (ii) are
challenging to accurately infer (e.g., working set size, data
reuse) or (iii) require profiling/monitoring to determine (e.g.,
read-only/read-write, private/shared data characteristics).

This paper makes the following contributions:

« This work is the first attempt to design a holistic and general
cross-layer interface to communicate higher-level program
semantics to the different system and architectural compo-
nents in order to enable more effective memory optimiza-
tions in modern CPUs.

« To this end, we introduce XMem, which comprises a new
software-hardware abstraction—the Atom—and a full end-
to-end system design. XMem (i) is general and flexible
enough to cover a wide range of program semantics and
use cases, (ii) is completely decoupled from system function-
ality and affects only performance not correctness, (iii) can
react to phase changes in data properties during execution,
and (iv) has a low-overhead implementation.

« We quantitatively demonstrate the benefits of using XMem
to (i) improve the portability of software-based cache opti-
mizations by leveraging data locality semantics and (ii) en-
hance OS-based DRAM placement by leveraging semantics
of data structures and their access properties. We highlight
seven other use cases (Table 1).



Table 1: Summary of the example memory optimizations that XMem aids.

Example Benefits of XMem

Memory Example semantics provided by
optimization XMem (described in §3.3)

Cache (i) Distinguishing between data
management structures or pools of similar data;

(ii) Working set size; (iii) Data reuse

Enables: (i) applying different caching policies to different data structures or pools of data;
(ii) avoiding cache thrashing by knowing the active working set size; (iii) bypassing/prioritizing
data that has no/high reuse. (§5)

Page placement

(i) Distinguishing between data

Enables page placement at the data structure granularity to (i) isolate data structures that have
high row buffer locality and (ii) spread out concurrently-accessed irregular data structures
across banks and channels to improve parallelism. (§6)

Enables using a different compression algorithm for each data structure based on data type and
data properties, e.g., sparse data encodings, FP-specific compression, delta-based compression

Enables (i) highly accurate software-driven prefetching while leveraging the benefits of hard-
ware prefetching (e.g., by being memory bandwidth-aware, avoiding cache thrashing); (ii) using
different prefetcher types for different data structures: e.g., stride [33], tile-based [20], pattern-
based [34-37], data-based for indices/pointers [38,39], etc.

(i) Helps avoid cache thrashing by knowing working set size [44]; (ii) Better DRAM cache
management via reuse behavior and access intensity information.

Enables (i) each memory component to track how approximable data is (at a fine granularity)
to inform approximation techniques; (ii) data placement in heterogeneous reliability memo-

in DRAM structures; (ii) Access pattern;
e.g., [23,24] (iii) Access intensity
Cache/memory (i) Data type: integer, float, char;
compression (ii) Data properties: sparse, pointer,
e.g., [25-32] data index for pointers [27].
Data (i) Access pattern: strided, irregular,
prefetching irregular but repeated (e.g., graphs),
e.g., [33-36] access stride; (ii) Data type: index,
pointer
DRAM cache (i) Access intensity; (ii) Data reuse;
management (iii) Working set size
e.g. [40-46]
Approximation (i) Distinguishing between pools of
in memory similar data; (ii) Data properties:
e.g., [47-53] tolerance towards approximation ries [54].

Data placement:

NUMA systems
e.g., [55,56]

(i) Data partitioning across threads (i.e.,
relating data to threads that access it);
(ii) Read-Write properties

Reduces the need for profiling or data migration (i) to co-locate data with threads that access it
and (ii) to identify Read-Only data, thereby enabling techniques such as replication.

Data placement:

hybrid
memories
e.g., [16,57,58]

(i) Read-Write properties
(Read-Only/Read-Write); (ii) Access
intensity; (iii) Data structure size;
(iv) Access pattern

Avoids the need for profiling/migration of data in hybrid memories to (i) effectively manage the
asymmetric read-write properties in NVM (e.g., placing Read-Only data in the NVM) [16,57];
(ii) make tradeoffs between data structure "hotness" and size to allocate fast/high bandwidth
memory [14]; and (iii) leverage row-buffer locality in placement based on access pattern [45].

(i) Enables using different cache policies for different data pools (similar to [15]); (ii) Reduces
the need for reactive mechanisms that detect sharing and read-write characteristics to inform

Managing (i) Distinguishing pools of similar data;
NUCA systems (i) Access intensity; (iii) Read-Write or
e.g., [15,59] Private-Shared properties cache policies.

2. Goals and Challenges
2.1. Key Requirements

There are several key requirements and invariants that
drive the design of the proposed system:

(i) Supplemental and hint-based. The new interface
should not affect functionality or correctness of the program
in any way—it provides only supplemental information to help
improve performance. This reduces the necessity of obtaining
precise or detailed hints, and system implementation can be
simpler as information can be conveyed/stored imprecisely.

(ii) Architecture agnosticism. The abstraction for ex-
pressing semantics must be based on the application charac-
teristics rather than the specifics of the system, e.g., cache
size, memory banks available. This means that the program-
mer/software need not be aware of the precise workings of
the memory system resources, and it significantly alleviates
the portability challenges when the programmer/software
optimizes for performance.

(iii) Generality and extensibility. The interface should
be general enough to flexibly express a wide range of pro-
gram semantics that could be used to aid many system-level
and architectural (memory) optimizations, and extensible to
support more semantics and optimizations.

(iv) Low overhead. The interface must be amenable to an

implementation with low storage area and performance over-
heads, while preserving the semantics of existing interfaces.

2.2. Challenges

Current system and architectural components see only a
description of the program’s data in terms of virtual/physical
addresses. To provide higher-level program-related semantics,
we need to associate each address with much more informa-
tion than is available to the entire system today, addressing
the following three challenges:

Challenge 1: Granularity of expression. The granular-
ity of associating program semantics with program data is
challenging because the best granularity for expressing pro-
gram semantics is program dependent. Semantics could be
available at the granularity of an entire data structure, or
at much smaller granularities, such as a tile in an array. We
cannot simply map program semantics to every individual vir-
tual address as that would incur too much overhead, and the
fixed granularity of a virtual page may be too coarse-grained,
inflexible and challenging for programmers to reason about.

Challenge 2: Generality vs. specialization. Our archi-
tecture-agnosticism requirement implies that we express
higher-level information from the application’s or the pro-
grammer’s point of view—without any knowledge/assump-
tions of the memory resources or specific directives to a hard-



ware component. As a consequence, much of the conveyed
information may be either irrelevant, too costly to manage ef-
fectively, or too complex for different hardware components to
easily use. For example, hardware components like prefetch-
ers are operated by simple hardware structures and need only
know prefetchable access patterns. Hence, the abstraction
must be (i) high-level and architecture-agnostic, so it can be
easily expressed by the programmer and (ii) general, in order
to express a range of information useful to many components.
At the same time, it should be still amenable to translation
into simple directives for each component.

Challenge 3: Changing data semantics. As the pro-
gram executes, the semantics of the data structures and the
way they are accessed can change. Hence, we need to be
able to express dynamic data attributes in static code, and
these changing attributes need to be conveyed to the run-
ning system at the appropriate time. This ensures that the
data attributes seen by the memory components are accu-
rate any time during execution. Continual updates to data
attributes at runtime can impose significant overhead that
must be properly managed to make the approach practical.

3. Our Approach: Expressive Memory

We design Expressive Memory (XMem), a new rich cross-
layer interface that enables explicit expression and availabil-
ity of key program semantics. XMem comprises two key
components: (i) a new hardware-software abstraction with a
well-defined set of properties to convey program semantics
(§3.1-83.3) and (ii) a rich set of interfaces to convey and store
that information at different system/memory components
(§3.4-83.5). We describe how our key design choices for both
components address the above challenges in §3.2 and §3.4.

3.1. The Atom Abstraction

We define a new hardware-software abstraction, called an
Atom, that serves as the basic unit of expressing and convey-
ing program semantics to the system and architecture. An
atom forms both an abstraction for information expressed as
well as a handle for communicating, storing, and retrieving
the conveyed information across different levels of the stack.
Application programs can dynamically create atoms in the
program code, each of which describes a specific range of
program data at any given time during execution. The OS
and hardware architecture can then interpret atoms specified
in the program when the program is executed.

There are three key components to an atom: (i) Attributes:
higher-level data semantics that it conveys; (ii) Mapping: the
virtual address range that it describes; and (iii) State: whether
the atom is currently active or inactive.

3.2. Semantics and Invariants of an Atom

We define the invariants of the atom abstraction and then
describe the operators that realize the semantics of the atom.
+ Homogeneity: All the data that maps to the same atom
has the same set of attributes.

+ Many-to-One VA-Atom Mapping: At any given time,
any virtual address (VA) can map to at most one atom. Hence,
the system/architecture can query for the atom (if any) asso-

ciated with a VA and thereby obtain any attributes associated
with the VA, at any given time.

« Immutable Attributes: While atoms are dynamically cre-
ated, the attributes of an atom cannot be changed once created.
To express different attributes for the same data, a new atom
should be created. Atom attributes can, hence, be specified
statically in the program code. Because any atom’s attributes
cannot be updated during execution, these attributes can be
summarized and conveyed to the system/architecture at com-
pile/load time before execution. This minimizes expensive
communication at runtime (Challenge 3).

« Flexible mapping to data: Any atom can be flexibly and
dynamically mapped/unmapped to any set of data of any
size. By selectively mapping and/or unmapping data to the
same atom, an atom can be mapped to non-contiguous data
(Challenge 1).

+ Activation/Deactivation: While the attributes of an atom
are immutable and statically specified, an atom itself can
be dynamically activated and deactivated in the program.
The attributes of an atom are recognized by the system only
when the atom is currently active. This enables updating
the attributes of any data region as the program executes:
when the atom no longer accurately describes the data, it
is deactivated and a new atom is mapped to the data. This
ensures that the system always sees the correct data attributes
during runtime, even though the attributes themselves are
communicated earlier at load time (Challenge 3).

To manipulate the three components (Attributes, Mapping,
and State), there are three corresponding operations that
can be performed on an atom via a corresponding library
call (§4.1.1): (i) CREATE an atom, providing it with immutable
statically-specified attributes; (ii) MAP/UNMAP an atom to/from
a range of data; and (iii) ACTIVATE/DEACTIVATE an atom to
dynamically tell the memory system that the attributes of the
atom are now (in)valid for the data the atom is mapped to.

Figure 2 depicts an overview of the atom operators. Atoms
are first created in the program with statically-specified at-
tributes @. During memory allocation (e.g., malloc), data
structures are allocated ranges of virtual memory. After allo-
cation, atoms with the appropriate attributes can be flexibly
mapped to the corresponding VA range that each atom de-
scribes @. Once the mapped atom is activated, all the system
components recognize the attributes as valid ®. Data can be
easily remapped to a different atom that describes it better as
the program moves into a different phase of execution (using
the MAP operator @), or just unmapped @ when the atom no
longer accurately describes the data. The MAP/UNMAP opera-
tor can be flexibly called to selectively map/unmap multiple
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Figure 2: Overview of the three atom operators.



data ranges to/from the same atom at any granularity. The
ACTIVATE/DEACTIVATE operator dynamically validates/inval-
idates the atom attributes relating to all data the atom is
mapped to. §3.5.2 describes XMem’s low-overhead imple-
mentation of these operators.

3.3. Attributes of an Atom and Use Cases

Each atom contains an extensible set of attributes that
convey the key program semantics to the rest of the system.
Table 1 lists example use cases for these attributes. The three
classes of attributes (to date) are:

(1) Data Value Properties: An expression of the at-
tributes of the data values contained in the data pool mapped
to an atom. It is implemented as an extensible list using a
single bit for each attribute. These attributes include data
type (e.g., INT32, FLOAT32, CHAR8) and data properties (e.g.,
SPARSE, APPROXIMABLE, POINTER, INDEX).

(2) Access Properties: This describes three key charac-
teristics of the data the atom is mapped to:

o AccessPattern: This attribute defines the PatternType,
currently either REGULAR (with a specific stride that is also
specified), IRREGULAR (when the access pattern is repeat-
able within the data range, but with no repeated stride, e.g.,
graphs), or NON_DET (when there is no repeated pattern).

« RWChar: This attribute describes the read-write character-
istics of data at any given time, currently either READ_ONLY,
READ_WRITE, or WRITE_ONLY. It could also be extended to in-
clude varying degrees of read-write intensity, and include
shared/private information.

« AccessIntensity: This attribute conveys the access fre-
quency or “hotness” of the data relative to other data at any
given time. This attribute can be provided by the program-
mer, compiler, or profiler. It is represented using an 8-bit
integer, with 0 representing the lowest frequency. Higher
values imply an increasing amount of intensity relative to
other data. Hence, this attribute conveys an access intensity
ranking between different data mapped to different atoms.

(3) Data Locality: This attribute serves to express soft-
ware optimizations for cache locality explicitly (e.g., cache
tiling, stream buffers, partitions, etc.). The key attributes in-
clude working set size (which is inferred from the size of data
the atom is mapped to) and reuse, for which we use a simple
8-bit integer (0 implying no reuse and higher values implying
a higher amount of reuse relative to other data).

Note that the atom abstraction and its interface do not a
priori limit the program attributes that an atom can express.
This makes the interface flexible and forward-compatible
in terms of extending and changing the expressed program
semantics. The above attributes have been selected for their
memory optimization benefits (Table 1) and ready translation
into simple directives for the OS and hardware components.

3.4. The XMem System: Key Design Choices

Before we describe XMem’s system implementation, we
explain the rationale behind the key design choices.
+ Leveraging Hardware Support: For the XMem design,
we leverage hardware support for two major reasons. First, a
key design goal for XMem is to minimize the runtime over-

head of tracking and retrieving semantics at a fine gran-
ularity (even semantics that change as the program exe-
cutes). We hence leverage support in hardware to effi-
ciently perform several key functionalities of the XMem sys-
tem—mapping/unmapping of semantics to atoms and activat-
ing/deactivating atoms at runtime. This avoids the high over-
head of frequent system calls, memory updates, etc. Second,
we aim to enable the many hardware-managed components
in the memory hierarchy to leverage XMem. To this end, we
use hardware support to efficiently transmit key semantics
to the different hardware components.

« Software Summarization and Hardware Tracking:
Because the potential atoms and their attributes are known
statically (by examining the application program’s CREATE
calls), the compiler can summarize them at compile time,
and the OS can load them into kernel memory at load time.
The program directly communicates an atom’s active status
and address mapping(s) at runtime (via MAP and ACTIVATE
calls) with the help of new instructions in the ISA (§4) and
hardware support. This minimizes expensive software in-
tervention/overhead at runtime. In other words, the static
CREATE operator is handled in software before program ex-
ecution and the dynamic MAP and ACTIVATE operators are
handled by hardware at runtime.

+ Centralized Global Tracking and Management: All
the statically-defined atoms in the program are assigned a
global Atom ID (within a process) that the entire system rec-
ognizes. Tracking which atoms are active at runtime and
the inverse mapping between a VA and atom ID is also cen-
tralized at a global hardware table, to minimize storage and
communication cost (i.e., all architectural components access
the same table to identify the active atom for a VA).

« Private Attributes and Attribute Translation: The
atom attributes provided by the application may be too com-
plex and excessive for easy interpretation by components
like the cache or prefetcher. To address this challenge (Chal-
lenge 2), when the program is loaded for execution or after a
context switch, the OS invokes a hardware translator that con-
verts the higher-level attributes to sets of specific primitives
relevant to each hardware component and the optimization
the component performs. Such specific primitives are then
saved privately at each component, e.g., the prefetcher saves
only the access pattern for each atom.

3.5. XMem: Interfaces and Mechanisms

Figure 3 depicts an overview of the system components to
implement the semantics of XMem.
3.5.1. Programmer/Application Interface. The applica-
tion interface to XMem is via a library, XMemLib (@). An
atom is defined by a class data structure (§4.1.1) that de-
fines the attributes of the atom and the operator functions
(CREATE, MAP/UNMAP, and ACTIVATE/DEACTIVATE). An atom
and its static attributes can be instantiated in the program
code (CREATE) by the programmer, autotuner, or compiler.
3.5.2. System/Architecture Interface. XMemLib communi-
cates with the OS and architecture in the following two ways.

First, at compile time, the compiler summarizes all the
atoms in the program statically and creates a table for atom
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attributes, indexed by atom ID. During run time, the same
static atom can have many instances (e.g., within a for loop
or across multiple function calls). All of the calls to create the
same atom will, however, be mapped to the same static atom
(and Atom ID). This is possible because atom attributes are
immutable. However, the address mapping of each atom is
typically not known at compile time because virtual address
ranges are only resolved at runtime. The compiler creates
a table of all the atoms in the program along with the atom
attributes. This table is placed in the atom segment of the
program object file (@). When the program is loaded into
memory for execution by the OS, the OS also reads the atom
segment and saves the attributes for each atom in the GLOBAL
ATTRIBUTE TABLE (GAT®), which is managed by the OS
in kernel space. The OS also invokes a hardware translator
(®) that converts the higher-level attributes saved in the
GAT to sets of specific hardware primitives relevant to each
hardware component, and saves them in a per-component
PRIVATE ATTRIBUTE TABLE (PAT ®), managed in hardware
by each component.

Second, at run time, XMem operators, in the form of func-
tion calls in XMemLib, are translated into ISA instructions
that inform the system and architecture of the atoms’ activa-
tion/deactivation and mapping. Conceptually, the MAP/UNMAP
operator (®) is converted into ISA instructions that update
the ATOM ADDRESS MAP (AAM@), which enables looking up
the atom ID associated with a physical address (PA). We use
the PA to index the AAM instead of the VA to simplify the ta-
ble design (§4.2). The ACTIVATE/DEACTIVATE operator (©) is
converted into ISA instructions that update an atom’s active
status in the ATOM STATUS TABLE (AST®). The AST and
AAM are managed by the Atom Management Unit (AMU @).
Because tables with entries for each PA are infeasible, we use
simple mechanisms to avoid them. These mechanisms, and
the functioning and implementation of these hardware and
software components, are described in §4.2.

Flexibility and Extensibility. The system/architecture
interface ensures that the ISA and the microarchitecture need
only implement the three operators, but does not dictate what
application attributes can be conveyed. The attributes are
stored in the binary as a separate metadata segment with a
version identifier to identify the information format. The in-
formation format can be enhanced across architecture gener-
ations, ensuring flexibility and extensibility, while the version
identifier ensures forward/backward compatibility. Any fu-
ture architecture can interpret the semantics and older XMem
architectures can simply ignore unknown formats.

w of the components.
4. XMem: Detailed Design

We now detail the design and implementation of the inter-
faces and components in XMem. We describe the application,
OS, and architecture interfaces (§4.1), the key components of
XMem (§4.2), the use of XMem in virtualized environments
(§4.3), and the overheads of our design (§4.4).

4.1. The Interfaces

4.1.1. Application Interface. The primary interface be-
tween XMem and the application is XMemLib, a library
that provides type definitions and function calls for atoms.
XMemLib includes an atom class definition with the attributes
described in §3.3. XMemLib provides three types of XMem
operations on atoms in the form of function calls. These oper-
ations are the interface to manipulate the attributes, mappings
and state of an atom. Table 2 summarizes the definition of all
the functions (also discussed below):

(1) CREATE: The function CreateAtom creates an atom with
the attributes specified by the input parameters, and returns
an Atom ID. Multiple invocations of CreateAtom at the same
place in the program code always return the same Atom ID
(without reinvoking the function).

(2) MAP/UNMAP: These functions take an Atom ID and an
address range as parameters, and invoke corresponding ISA
instructions to tell the Atom Management Unit (AMU) to up-
date the Atom Address Map (§4.2). We create multiple func-
tions so that we can easily map or unmap multi-dimensional
data structures (e.g., 2D/3D arrays). For example, Atom2DMap
maps/unmaps a 2D block of data of width sizeX and height
sizeY, in a 2D data structure that has a row length lenX.

(3) ACTIVATE/DEACTIVATE: The functions AtomActivate
and AtomDeactivate serve to (de)activate the specified atom
at any given time. They invoke corresponding ISA instruc-
tions that update the Atom Status Table (§4.2) at run time.
4.1.2. Operating System Interface. XMem interfaces with
the OS in two ways. First, the OS manages the Global
Attribute Table (GAT) (§4.2), which holds the attributes
of all the atoms in each application. Second, the OS can
optionally query for the static mapping between VA ranges
and atoms through an interface to the memory allocator. This
interface ensures that the OS knows the mapping before the
virtual pages are mapped to physical pages, so that the OS
can perform static optimizations, such as memory placement
based on program semantics. Specifically, we augment the
memory allocation APIs (e.g., malloc) to take Atom ID as a
parameter. The memory allocator, in turn, passes the Atom
ID to the OS via augmented system calls that request virtual



Table 2: The XMem operators and corresponding XMemLib functions and ISA instructions (sizes/lengths in bytes).

XMem Op  XMemLib Functions (Application Interface) XMem ISA Insts (Architecture Interface)

CREATE AtomID CreateAtom(data_prop, access_pattern, reuse, rw_characteristics) No ISA instruction required
AtomMap(atom_id, start_addr, size, map_or_unmap) ATOM_MAP AtomID, Dimensionality

MAP/UNMAP  Atom2DMap(atom_id, start_addr, lenX, sizeX, sizeY, map_or_unmap) ATOM_UNMAP AtomID, Dimensionality
Atom3DMap(atom_id, start_addr, lenX, lenY, sizeX, sizeY, sizeZ, Address ranges specified in AMU-specific registers
map_or_unmap)

ACTIVATE/ AtomActivate(atom_id) ATOM_ACTIVATE AtomID

DEACTIVATE AtomDeactivate(atom_id) ATOM_DEACTIVATE AtomID

pages. The memory allocator maintains the static mapping
between atoms and virtual pages by returning virtual pages
that match the requesting Atom ID. The compiler converts
the pair A=malloc(size); AtomMap(atomID,A,size);
into this augmented API: A=malloc(size,atomID);
AtomMap(atomID,A,size);. This interface enables the
OS to manipulate the virtual-to-physical address mapping
without extra system call overheads.

4.1.3. Architecture Interface. We add two new ISA instruc-
tions to enable XMem to talk to the hardware at run time:
(i) ATOM_MAP/ATOM_UNMAP tells the Atom Management Unit
(AMU) to update the address ranges of an atom. When this
instruction is executed, the parameters required to convey the
address mapping for the different mapping types (Table 2) are
implicitly saved in AMU-specific registers and accessed by the
AMU. To map or unmap the address range to/from the specified
atom, the AMU asks the Memory Management Unit (MMU) to
translate the virtual address ranges specified by ATOM_MAP to
physical address ranges, and updates the Atom Address Map
(AAM) (§4.2). (ii) ATOM_ACTIVATE/ATOM_DEACTIVATE causes
the AMU to update the Atom Status Table (AST) to acti-
vate/deactivate the specified atom.

4.2. System Design: Key Components

The system/architecture retrieves the data semantics asso-
ciated with each memory address in three steps: (i) determine
to which atom (if any) a given address maps; (ii) determine
whether the atom is active; and (iii) retrieve the atom at-
tributes. XMem enables this with four key components:

(1) Atom Address Map (AAM): This component deter-
mines the latest atom (if any) associated with any PA. Be-
cause the storage overhead of maintaining a mapping table
between each address and Atom ID would be prohibitively
large, we employ an approximate mapping between atoms
and address ranges at a configurable granularity. The system
decides the smallest address range unit the AAM stores for each
address-range-to-atom mapping. The default granularity is 8
cache lines (512B), which means each consecutive 512B can
map only to one atom. This design significantly reduces the
storage overhead as we need only store one Atom ID for each
512B (0.2% storage overhead assuming an 8-bit Atom ID). We
can reduce this overhead further by increasing the granular-
ity or limiting the number of atoms in each application. For
instance, if we support only 6-bit Atom IDs with a 1KB ad-
dress range unit, the storage overhead becomes 0.07%. Note
that because XMem provides only hints to the system, our
approximate mapping may cause optimization inaccuracy
but it has no impact on functionality and correctness.

To make it easy to look up the Atom ID for each address,
the AAM stores the Atom IDs consecutively for all the physical
pages. The index of the table is the physical page index and
each entry stores all Atoms IDs in each page. In the default
configuration, each of the Atom IDs require 8B of storage per
page (8 bits times 8 subpages). With this design, the OS or the
hardware architecture can simply use the physical address
that is queried as the table index to find the Atom ID.

We use the PA instead of the VA to index this table because
(i) there are far fewer PAs compared to VAs and (ii) this
enables the simplified lookup scheme discussed above.

(2) Atom Status Table (AST): We use a bitmap to store the
status (active or inactive) of all atoms in each application. Be-
cause CreateAtom assigns atom IDs consecutively starting at
0, this table is efficiently accessed using the atom ID as index.
Assuming up to 256 atoms per application (all benchmarks
in our experiments had under 10 atoms, all in performance-
critical sections), the AST is only 32B per application. The
Atom Management Unit (AMU) updates the bitmap when an
ATOM_(DE)ACTIVATE instruction is executed.

(3) Attribute Tables (GAT and PAT) and the Attribute
Translator: As discussed in §3.4, we store the attributes of
atoms in a Global Attribute Table (GAT) and multiple
Private Attribute Tables (PAT).GAT is managed by the
OS in kernel space. Each hardware component that benefits
from XMem maintains its own PAT, which stores a translated
version of the attributes (an example of this is in §5). This
translation is done by the Attribute Translator, a hardware
runtime system that translates attributes for each component
at program load time and during a context switch.

(4) Atom Management Unit (AMU): This is a hardware
unit that is responsible for (i) managing the AAM and AST and
(ii) looking up the Atom ID given a physical address. When
the CPU executes an XMem ISA instruction, the CPU sends
the associated command to the AMU to update the AAM (for
ATOM_MAP or ATOM_UNMAP) or the AST (for ATOM_ACTIVATE).
For higher-dimensional data mappings, the AMU converts the
mapping to a linear mapping at the AAM granularity and broad-
casts this mapping to all the hardware components that re-
quire accurate information of higher-dimensional address
mappings (see §5 for an example).

A hardware component determines the Atom ID of a spe-
cific physical address (PA) by sending an ATOM_LOOKUP re-
quest to the AMU, which uses the PA as the index into the AAM.
To avoid memory accesses for all the ATOM_LOOKUP requests,
each AMU has an atom lookaside buffer (ALB), which caches
the results of recent ATOM_LOOKUP requests. The functionality
of an ALB is similar to a TLB in an MMU, so the AMU accesses



the AAM only on ALB misses. The tags for the ALB are the
physical page indexes, while the data are the Atom IDs in the
physical pages. In our evaluation, we find that a 256-entry
ALB can cover 98.9% of the ATOM_LOOKUP requests.

4.3. XMem in Virtualized Environments

Virtualized environments employ virtual machines (VMs)
or containers that execute applications over layers of oper-
ating systems and hypervisors. The existence of multiple
address spaces that are seen by the guest and host operating
systems, along with more levels of abstraction between the
application and the underlying hardware resources, makes
the design of hardware-software mechanisms challenging.
XMem is, however, designed to seamlessly function in these
virtualized environments, as we describe next.

XMem Components. The primary components of XMem
include the AAM, AST, the PATs, and the GAT. Each of these
components function with no changes in virtualized envi-
ronments: (i) AAM: The hardware-managed AAM, which maps
physical addresses to atom IDs, is indexed by the host phys-
ical address. As a result, this table is globally shared across
all processes running on the system irrespective of the pres-
ence of multiple levels of virtualization. (ii) AST and PATs: All
atoms are tracked at the process level (irrespective of whether
the processes belong to the same or different VMs). The per-
process hardware-managed tables (AST and PATs) are reloaded
during a context switch to contain the state and attributes
of the atoms that belong to the currently-executing process.
Hence, the functioning of these tables remains the same in the
presence of VMs or containers. (iii) GAT: The GAT is software-
managed and is maintained by each guest OS. During context
switches, a register is loaded with a host physical address
that points to the new process’ GAT and AST.

XMem Interfaces. The three major interfaces (CREATE,
MAP/UNMAP, and ACTIVATE/DEACTIVATE) require no changes
for operation in virtualized environments. The CREATE opera-
tor is handled in software at compile time by the guest OS and
all created atoms are loaded into the GAT by the guest OS at
program load time. The MAP/UNMAP operator communicates
directly with the MMU to map the host physical address to
the corresponding atom ID using the XMem ISA instructions.
The ACTIVATE/DEACTIVATE operator simply updates the AST,
which contains the executing process’ state.

Optimizations. OS-based software optimizations (e.g.,
DRAM placement in §6) require that the OS have visibility
into the available physical resources. The physical resources
may however be abstracted away from the guest OS in the
presence of virtualization. In this case, the resource allocation
and its optimization needs to be handled by the hypervisor
or host OS for all the VMs that it is hosting. To enable the
hypervisor/host OS to make resource allocation decisions,
the guest OS also communicates the attributes of the appli-
cation’s atoms to the hypervisor. For hardware optimiza-
tions (e.g., caching policies, data compression), the hardware
components (e.g., caches, prefetchers) retrieve the atom at-
tributes for each process using the AAM and PATs. This is
the same mechanism irrespective of the presence of virtual-
ization. These components use application/VM IDs to dis-

tinguish between addresses from different applications/VMs
(similar to prior work [67] or modern commercial virtualiza-
tion schemes [68,69]).

4.4. Overhead Analysis

The overheads of XMem fall into four categories: memory
storage overhead, instruction overhead, hardware area over-
head, and context switch overhead, all of which are small (the
technical report has a more detailed discussion [70]):

(1) Memory storage overhead. The storage overhead
comes from the tables that maintain the attributes, status,
and mappings of atoms (AAM, AST, GAT, and PAT). As §4.2
discusses, the AST is very small (32B). The GAT and PAT are
also small as the attributes of each atom need 19B, so each
GAT needs only 2.8KB assuming 256 atoms per application.
AAM is the largest table in XMem, but it is still insignificant as
it takes only 0.2% of the physical memory (e.g., 16MB on a
8GB system), and it can be made even smaller by increasing
the granularity of the address range unit (§4.2).

(2) Instruction overhead. There are instruction over-
heads when applications invoke the XMemLib functions to
create, map/unmap, activate/deactivate atoms, which execute
XMem instructions. We find this overhead negligible because:
(i) XMem does not use extra system calls to communicate
with the OS, so these operations are very lightweight; (ii) the
program semantics or data mapping do not change very fre-
quently. Among the workloads we evaluate, an additional
0.014% instructions on average (at most, 0.2%) are executed.

(3) Hardware area overhead. XMem introduces two ma-
jor hardware components, Attribute Translator and AMU.
We evaluate the storage overhead of these two components
(including the AMU-specific registers) using CACTI 6.5 [71]
at 14 nm process technology, and find that their area is 0.144
mm?, or 0.03% of a modern Xeon E5-2698 CPU.

(4) Context switch overhead. XMem introduces one ex-
tra register for context switches—it stores the pointer to AST
and GAT (stored consecutively for each application) in the
AMU. AAM does not need a context-based register because it
is a global table. The OS does not save the AMU-specific
registers for MAP/UNMAP (Table 2) as the information is saved
in the AAM. One more register adds very small overhead (two
instructions, < 1 ns) to the OS context switch (typically 3-5
us). Context switches also require flushing the ALBs and
PATSs. Because these structures are small, the overhead is also
commensurately small (~700 ns).

5. Use Case 1: Cache Management

5.1. Overview

Cache management is a well-known complex optimiza-
tion problem with substantial prior work in both software
(e.g., code/compiler optimizations, auto tuners, reuse hints)
and hardware (advanced replacement/insertion/partitioning
policies). XMem seeks to supplement both software and hard-
ware approaches by providing key program semantics that are
challenging to infer at runtime. We discuss XMem’s benefits
for cache management in Table 1. As a concrete end-to-end
example, we describe and evaluate how XMem enhances dy-



namic policies to improve the portability and effectiveness
of static software-based cache optimizations under varying
cache space availability (as a result of co-running applications
or unknown cache size in virtualized environments).

Many software techniques statically tune code by sizing the
active working set in the application to maximize cache local-
ity and reuse—e.g., hash-join partitioning [72] in databases,
cache tiling [60-66] in linear algebra and stencils, cache-
conscious data layout [73] for similarity search [74]. Static
code optimization, however, makes assumptions regarding
cache space availability when tuning code and hence imposes
significant challenges in portability when the cache space
availability is unknown or dynamically changing. Dynamic
approaches to address this problem [75-78] have three major
shortcomings. They (i) require using sophisticated software
frameworks that use runtime systems to change code during
execution, (ii) are highly specialized towards certain applica-
tion classes, and (ii) are limited to codes that can be easily
altered at runtime without losing correctness.

XMem improves the portability and effectiveness of static
optimizations when resource availability is unknown by con-
veying the optimization intent to hardware—i.e., XMem con-
veys which high-reuse working set (e.g., tile) should be kept
in the cache. It does not dictate exactly what caching policy
to use to do this. The hardware cache leverages the conveyed
information to keep the high-reuse working set of each ap-
plication in the cache by prioritizing such data over other
low-reuse data. In cases where the active working set does
not fit in the available cache space, the cache mitigates thrash-
ing by pinning part of the working set and then prefetches
the rest based on the expressed access pattern.

5.2. Mechanism

(1) Expressing key working sets. As cache optimiza-
tions typically partition key data structures (e.g., the hash
table in hash-join, tiles in arrays) to fit the caches, they simply
need to use XMemLib to map the active high-reuse partitions
(e.g., tiles) of key data structures to an atom that specifies a
high reuse value and the access pattern. When the program
is done with one partition, it unmaps the current partition
and maps the next partition to the same atom.

(2) Optimization algorithm. Based on each active
atom’s size and reuse value, the cache decides the insertion
and prefetching policy for each atom. We use a simple and
practical greedy algorithm that the cache control logic runs,
to decide which data to pin in the cache and what data to
prefetch. The algorithm takes the active atoms in all the cores
(each time there is a change in active atoms), and sorts the
atoms based on the reuse values. Starting from the atom with
the highest reuse, the cache decides if it has enough space to
keep the data specified by each atom. When the total data
size kept in the cache reaches the pinning size limit (we use
75% of the cache size so the cache still has space to handle
other data), the algorithm stops and returns the list of atoms
to be pinned. The cache inserts these atoms with the highest
priority, and uses the default low-priority insertion policy for
all other data. Any cache miss for a pinned atom (e.g., due to
interference by a co-running application) triggers prefetching

for the atom according to the expressed access pattern.

(3) Support in cache controllers. To keep the pinned
atoms in the cache as long as possible, the cache controller
inserts these atoms with the highest priority, and inserts
all other data with the default insertion policy. When the
highest-priority cache lines fill 75% of the ways, all cache lines
are inserted with the default insertion policy. When the list
of active atoms changes (e.g., as a result of an UNMAP), only
then does the cache age (reduce priority of) the high-priority
lines so they can be evicted by the default replacement policy.

(4) Support in prefetchers. The prefetcher uses a PAT
(§4.2) to keep the access pattern (stride) and address ranges
for all pinned atoms. When an access to one of these atoms
misses the cache, it prefetches the next cache line(s) based on
the access pattern.

5.3. Evaluation Methodology

We model and evaluate XMem using zsim [79] with a
DRAMSim2 [80] DRAM model. Table 3 summarizes the main
simulation parameters. We use the Polybench suite [81], a
collection of linear algebra, stencil, and data mining kernels.
We use PLUTO [64], a polyhedral locality optimizer that uses
cache tiling to statically optimize the kernels. We evaluate
kernels that can be tiled within three dimensions and a wide
range of tile sizes (from 64B to 8MB), ensuring the total work
is always the same. We run the kernels to completion.

Table 3: Simulation configuration for Use Case 1.

3.6 GHz, Westmere-like [82] OOO, 4-wide issue,

CPU 128-entry ROB, 32-entry LQ and SQ

L1 Cache 32KB Inst and 32KB Data, 8 ways, 4 cycles, LRU

L2 Cache 128KB private per core, 8 ways, 8 cycles, DRRIP [83]

L3 Cache 8MB (1MB/core, partitioned), 16 ways, 27 cycles, DRRIP
Prefetcher ~ Multi-stride prefetcher [33] at L3, 16 strides

DRAM DDR3-1066, 2 channels, 1 rank/channel, 8 banks/rank,

17GB/s (2.1GB/s/core), FR-FCFS [84], open-row policy [85]

5.4. Evaluation Results

Overall performance. To understand the cache tiling chal-
lenge, in Figure 4, we plot the execution time of 12 kernels,
which are statically compiled with different tile sizes. For each
workload, we show the results of two systems: (i) Baseline,
the baseline system with a high-performance cache replace-
ment policy (DRRIP [83]) and a multi-stride prefetcher [33] at
L3; and (ii) XMem, the system with the aforementioned cache
management and prefetching mechanisms.

For the Baseline system, execution time varies signifi-
cantly with tile size, making tile size selection a challenging
task. Small tiles significantly reduce the reuse in the applica-
tion and can be on average 28.7% (up to 2x @) slower than the
best tile size. Many optimizations, hence, typically size the tile
to be as big as what can fit in the available cache space [65,78].
However, when an optimization makes incorrect assumptions
regarding available cache space (e.g., in virtualized environ-
ments or due to co-running applications), the tile size may
exceed the available cache space. We find that this can lead to
cache thrashing and severe slowdown (64.8% on average, up
to 7.6x @), compared to the performance with an optimized
tile size. XMem, however, significantly reduces this slowdown
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Figure 6: XMem’s speedup over Baseline with different
memory bandwidth availability.

from cache thrashing in the largest tile sizes to 26.9% on av-
erage (up to 4.6x ®). XMem’s large improvement comes from
accurate pinning (that retains part of the high-reuse working
set in the cache) and more accurate prefetching (that fetches
the remaining working set).

Performance portability. To evaluate portability benefits
from the reduced impact of cache thrashing in large tile sizes,
we run the following experiment. For each workload, we
pick a tile size optimized for a 2MB cache, and evaluate the
same program binary on a 2MB cache and 2 smaller caches
(IMB and 512KB). Figure 5 depicts the maximum execution
time among these three cache sizes for both Baseline and
XMem, normalized to Baseline with a 2MB cache. When
executing with less cache space, we find that XMem increases
the execution time by only 6%, compared to the Baseline’s
55%. Hence, we conclude that by leveraging the program
semantics, XMem greatly enhances the performance portability
of applications by reducing the impact of having less cache
space than what the program is optimized for.

Effect of prefetching and cache management. We eval-
uate two design points of XMem to see the effect of different
components: (i) XMem-Pref, the system that employs XMem-
based prefetching (using DRRIP for cache management) and
achieves similar performance to software prefetching [86];
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(ii) XMem, the system that employs XMem for both cache
management and prefetching. Figure 6 shows the speedup
of these two design points over the respective Baseline for
the largest tile sizes across three memory bandwidth con-
figurations (2 GB/s, 1 GB/s, 0.5 GB/s per core). We see that
both cache management and prefetching contribute to perfor-
mance improvement. On average, XMem performs better than
XMem-Pref by 13%, 19.5%, 31% with different memory band-
width availability (2 GB/s, 1 GB/s and 0.5 GB/s, respectively).
When the available memory bandwidth decreases, the gap be-
tween these two designs increases because reducing memory
traffic is vital when memory bandwidth is scarce. XMem’s
program-semantics-aware data pinning reduces memory traf-
fic by keeping high-reuse data in the caches. We conclude that
coordinating prefetching and cache management, by leverag-
ing knowledge of program semantics, enables efficient use of
memory resources to improve overall system performance.

6. Use Case 2: Data Placement in DRAM

We describe a software-only use case that can be im-
plemented without any of XMem’s hardware components.
XMem enables more intelligent data placement in DRAM
by leveraging knowledge of: (i) the key data structures in
the program and their access semantics, obtained from the
application and (ii) the underlying resources (e.g., number of
banks, channels), obtained from the system.

6.1. Overview

Off-chip main memory (DRAM) latency is a major per-
formance bottleneck in modern CPUs [87-91]. The perfor-
mance impact of this latency is in large part determined by
two factors: (i) Row Buffer Locality (RBL) [92,93]: how often
requests access the same DRAM row in a bank consecutively.
Consecutive accesses to the same open row saves the long
latency required to close the already-open row and open the
requested row. (ii) Memory Level Parallelism (MLP) [91,94]:
the number of concurrent accesses to different memory banks
or channels. Serving requests in parallel overlaps the latency
of the different requests. A key factor that determines the
DRAM access pattern—and thus RBL and MLP—is how the
program’s data is mapped to the DRAM channels, banks, and
rows. This data placement is controlled by (i) the OS (via
the virtual-to-physical address mapping) and (ii) the memory
controller (via the mapping of physical addresses to DRAM
channels/banks/rows).
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To improve RBL and MLP, prior works use both the OS
(e.g., [23,24,95-105]) and the memory controller (e.g., [106—
112]) to introduce randomness in how data is mapped to the
DRAM channels/banks/rows or partition banks/channels be-
tween different threads or applications. While effective, these
techniques are unaware of the different semantics of data
structures in an application, and hence suffer from two short-
comings. First, to determine the properties of data, an appli-
cation needs to be profiled before execution or pages need
to be migrated reactively based on runtime behavior. Sec-
ond, these techniques apply the same mapping for all data
structures within the application, even if RBL and MLP vary
significantly across different data structures.

XMem enables distinguishing between data structures and
provides key access semantics to the OS. Together with the
knowledge of the underlying banks, channels, ranks, etc. and
other co-running applications, the OS can create an intelligent
mapping at the data structure granularity. Based on the data
structure access patterns, the OS can (i) improve RBL by
isolating data structures with high RBL from data structures
that could cause interference if placed in the same bank and
(ii) improve MLP by spreading out accesses to concurrently-
accessed data structures across multiple banks and channels.

6.2. Mechanism & Algorithm

The mechanism to support this use case involve three steps.
First, the OS obtains the attributes of program data struc-
tures by reading the atom segment when loading the program
(§3.5.2). Second, based on the program semantics of all co-
running applications, the OS decides how to map atoms to
DRAM channels and banks (described next). Third, the OS
leverages XMem’s OS interface to obtain the Atom ID mapped
to different virtual address ranges (§4.1.2), and manipulates
the virtual-to-physical address mapping to place data at spe-
cific DRAM banks and channels.

The OS employs an algorithm (described in detail in our
technical report [70]) that takes the atom attributes as input,
and outputs the bank and channel mapping for each atom.
The algorithm first isolates the data structures with high RBL,
while ensuring that their access frequencies are high enough
that allocating a bank for them does not reduce the overall
MLP. The algorithm then spreads out all other data structures
to the unallocated banks to maximize MLP.

6.3. Evaluation Methodology

We use zsim [79] and DRAMSim2 [80] with the parameters
summarized in Table 3. We strengthen our baseline system in
three ways: (i) We use the best-performing physical DRAM
mapping, among all the seven mapping schemes in DRAM-
Sim2 and the two proposed in [106, 107], as our baseline;
(ii)) We randomize virtual-to-physical address mapping, which
is shown to perform better than the Buddy algorithm [23];
(iii) For each workload, we enable the L3 prefetcher only
if it improves performance. We evaluate a wide range of
workloads from SPEC CPU2006 [113], Rodinia [114], and
Parboil [115] and show results for 27 memory intensive work-
loads (with L3 MPKI > 1). We run all applications to comple-
tion or for 10 billion instructions, whichever comes first.
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6.4. Evaluation Results

We evaluate three systems: (i) Baseline, the strengthened
baseline system (§6.3); (ii) XMem, DRAM placement using
XMem (§6.2); (iii) an ideal system that has perfect RBL, which
represents the best performance possible by improving RBL.
Figure 7 shows the speedup of the last two systems over
Baseline. Figure 8 shows the corresponding memory read
latency, normalized to Baseline. We make two observations.
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Figure 8: Normalized read latency with XMem-based
DRAM placement.

First, XMem-based DRAM placement improves perfor-
mance across a range of workloads: by 8.5% on average over
Baseline, up to 31.9%. It is a significant improvement as the
absolute upper-bound for any DRAM row-buffer optimization
is 24.4% (Ideal). Among the 27 workloads, only 5 workloads
do not see much improvement—they either (i) have less than
3% headroom to begin with (sc and histo) or (ii) are domi-
nated by random accesses (mcf, xalancbmk, and bfsRod).

Second, the performance improvement of XMem-based
DRAM placement comes from the significant reduction in
average memory latency, especially read latency, which is
usually on the critical path. On average, XMem reduces read
latency by 12.6%, up to 31.4%. Write latency is reduced by
6.2% (not shown).

We conclude that leveraging both the program semantics
provided by XMem and knowledge of the underlying DRAM
organization enables the OS to create intelligent DRAM map-
pings at a fine (data structure) granularity, thereby reducing
memory latency and improving performance.

7. Related Work

To our knowledge, this is the first work to design a holistic
and general cross-layer interface to enable the entire system
and architecture to be aware of key higher-level program
semantics that can be leveraged in memory optimization. We
now briefly discuss closely related prior work.

Expressive programming models and runtime sys-
tems. Numerous software-only approaches tackle the dis-
connect between an application, the OS, and the underlying



memory resources via programming models and runtime
systems that allow explicit expression of data locality and
independence [116-127] in the programming model. This
explicit expression enables the programmer and/or runtime
system to make effective memory placement decisions in a
NUMA system or produce code that is optimized to effectively
leverage the cache hierarchy. These approaches have several
shortcomings. First, they are entirely software-based and are
hence limited to using the existing interfaces to the architec-
tural resources. Second, unlike XMem, which is general and
only hint-based, programming model-based approaches re-
quire rewriting applications to suit the model, while ensuring
that program correctness is retained. Third, these systems
are specific to an application type (e.g., operations on tiles,
arrays). XMem is a general interface that is not limited to any
programming language, application, or architecture. These
approaches are orthogonal to XMem, and XMem can be built
into them to enable a wider range of memory.

The Locality Descriptor [128] is a cross-layer abstraction
to express data locality in GPUs. This abstraction is similar
in spirit to XMem in bridging the semantic gap between
hardware and software. However, the Locality Descriptor is
primarily designed to convey locality semantics to leverage
cache and NUMA locality in GPUs. XMem aims to convey
general program semantics to aid memory optimization. This
goal imposes different design challenges, requires describing a
different set of semantics, and requires optimizing a different
set of architectural techniques, leading to a very different
cross-layer design for the abstraction.

Leveraging hints, annotations, and software man-
agement for memory optimization. A large body of prior
work aims to leverage the benefits of static program informa-
tion in the form of hints, annotations, or directives in memory
optimization. These include (i) hint-based approaches, such
as software prefetch instructions [129] and cache bypass/in-
sertion/eviction hints [1-13, 130]; (ii) hardware-software
cooperative prefetch techniques [18-22, 38, 131-134] that
use compiler analysis or annotations to inform a hardware
prefetch engine; and (iii) program annotations to place data
in heterogeneous memories (e.g., [14,17,54]). XMem differs
from these works in several ways. First, many of these ap-
proaches seek to inform hardware components with specific
directives that override dynamic policies by enforcing static
policies. This loss in dynamism introduces challenges when
the workload behavior changes, the underlying architecture
changes or is unknown (portability), or in the presence of
co-running applications [15, 135, 136]. XMem does not di-
rect policy at any component but only provides higher-level
program semantics. The memory components can use this
information to supplement their dynamic management poli-
cies. Second, the approaches are specific to an optimization
(e.g., prefetching, cache insertion/eviction). XMem provides
a general interface to communicate program semantics that
can be leveraged by many system/architectural components.

The closest work to ours is Whirlpool [15], which provides
a memory allocator to statically classify data into pools. Each
pool is then managed differently at runtime to place data effi-
ciently in NUCA caches. Whirlpool is similar to XMem in the
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ability to classify data into similar types and in retaining the
benefits of dynamic management. However, XMem is (i) more
versatile, as it enables dynamically classifying/reclassifying
data and expressing more powerful program semantics than
just static data classification and (ii) a general and holistic
interface that can be used for a wide range of use cases, in-
cluding Whirlpool itself. Several prior works [137-143] use
runtime systems or the OS to aid in management of the cache.
These approaches are largely orthogonal to XMem and can
be used in conjunction with XMem to provide more benefit.
Tagged Architectures. Prior work associate software-
defined metadata with each memory location in the form
of tagged/typed memory [144-147]. These approaches are
typically used for fine-grained memory access protection,
debugging, etc., and usually incur non-trivial performance/s-
torage overhead. In contrast, XMem aims to deliver general
program semantics to many system/hardware components
to aid in performance optimization with low overhead. To
this end, XMem is designed to enable a number of features
and benefits that cannot be obtained from tagged/typed ar-
chitectures: (i) a flexible abstraction to dynamically describe
program behavior with XMemLib; and (ii) low-overhead inter-
faces to many hardware components to access the expressed
semantics. PARD [67] and Labeled RISC-V [148] are tagged
architectures that enable labeling memory requests with tags
to applications, VMs, etc. These tags are used to convey an
application’s QoS, security requirements, etc., to hardware.
XMem is similar in that it provides an interface to hardware
to convey information from software. However, unlike these
works, we design a new abstraction (the atom) to flexibly
express program semantics that can be seamlessly integrated
into programming languages, systems, and modern ISAs. The
atom has a low-overhead implementation to convey software
semantics to hardware components dynamically and at flex-
ible granularities. XMem can leverage tagged architectures
to communicate atom IDs to hardware components. Hence,
PARD and Labeled RISC-V are complementary to XMem.

8. Conclusion

This paper makes the case for richer cross-layer interfaces
to bridge the semantic gap between the application and the
underlying system and architecture. To this end, we intro-
duce Expressive Memory (XMem), a holistic cross-layer in-
terface that communicates higher-level program semantics
from the application to different system-level and architec-
tural components (such as caches, prefetchers, and memory
controllers) to aid in memory optimization. XMem improves
the performance and portability of a wide range of software
and hardware memory optimization techniques by enabling
them to leverage key semantic information that is otherwise
unavailable. We evaluate and demonstrate XMem’s benefits
for two use cases: (i) static software cache optimization, by
leveraging data locality semantics, and (ii) OS-based page
placement in DRAM, by leveraging the ability to distinguish
between data structures and their access patterns. We con-
clude that XMem provides a versatile, rich, and low overhead
interface to bridge the semantic gap in order to enhance mem-
ory system optimization. We hope XMem encourages future



work to explore re-architecting the traditional interfaces to
enable many other benefits that are not possible today.
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