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ABSTRACT

Public cloud providers offer a diverse collection of storage types and

configurations with different costs and performance SLAs. As a con-

sequence, it is difficult to select themost cost-efficient allocations for

storage backends, while satisfying a given workload’s performance

requirements, when moving data-heavy applications to the cloud.

We present Mimir, a tool for automatically finding a cost-efficient

virtual storage cluster configuration for a customer’s storage work-

load and performance requirements. Importantly, Mimir considers

all block storage types and configurations, and even heterogeneous

mixes of them. In our experiments, compared to state-of-the-art

approaches that consider only one storage type, Mimir finds con-

figurations that reduce cost by up to 81% for real-application-based

key-value store workloads.

CCS CONCEPTS

• Information systems→ Cloud based storage.
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1 INTRODUCTION

Companies are increasingly moving data-heavy applications to the 
cloud, often replicating on-premises implementations of integrated 
data processing and storage backend systems on cloud instances.
While researchers have introduced and studied effective approaches 
for auto-selecting cost-optimized VM instances for computation

work [1, 8, 12, 37, 41], less attention has been paid to storage se-
lection. For cold storage, there is usually a clear option (e.g., S3 in
AWS or Blob Storage in Azure). For performant storage needs, how-
ever, the set of block storage volume types is increasingly diverse
in storage characteristics, SLAs and cost structures. Selecting the 
most cost-effective virtual storage cluster (VSC) configuration for a
given data-heavy application deployment is likely beyond all but 
the most expert user.

Commonly, storage backends (e.g., distributed file systems, key-
value stores) are built for use with block storage volumes providing
traditional SSD or HDD interfaces. Selecting storage hardware for
on-premises deployments is challenging [2, 3, 43], given the wealth 
of options. The challenge in cloud deployments is similarly difficult,

but differently so because of cloud SLA and cost structures. Using
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Figure 1: No volume type is most cost-efficient for every

workload, and a mix of volume types may be the most cost-

effective option. MR-A, MR-D, and CRM-based workloads re-

spectively represent high-throughput, low-throughput, and

mixed workloads, and the detailed workload characteristics

are described in §5.

AWS as a concrete example, there are three block storage volume

types: local-SSD associated with a compute instance, remote-SSD

that can be attached to any VM instance, and remote-HDD that

can be attached to any compute instance. Making matters worse,

each type has multiple options with different costs and different

SLA structures regarding cost as a function of performance and

capacity required. For example, options include charging per-GB

with a fixed budget of IOPS per-GB, providing a specific capacity

and performance for a given cost, or charging for a performance

budget of MiB/s per-TB. Each customer is best served by a different

option, and the most cost-effective may be a mix of options.

Figure 1 illustrates the need to consider many volume types and

configurations in selecting a VSC configuration. For each of the

three workloads on a distributed storage backend, it shows the

cost for the best VSC configuration choice under each of three

constraints: considering only local-SSD volume types, only remote

storage (EBS) volume types, and arbitrary mixes of both volume

types. The most cost-effective configuration is used in each case. We

note that: (1) the best single-type choice differs across workloads,

and (2) cost is sometimes minimized by mixing volume types.

This paper presents Mimir, a tool for finding a cost-effective

set of instances, volume types and volume configurations for a

distributed storage backend used by a data-heavy application work-

load. Given high-level workload specifications and performance

requirements, as might be produced by profiling an operational

version of the system (whether on-premises or using an over-

provisioned manual configuration), Mimir considers potentially

heterogeneous VSC configurations as shown in Figure 1.

Mimir casts VSC configuration selection as an optimization prob-

lem, like most prior tools for automated resource selection. Central

to how Mimir achieves its goals is predicting the resources required

for the given workload, including both the I/O throughput of the

access pattern and the compute and memory needs of the storage
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software. Using predicted resource requirements and analytically-

formulated price-performance costmodels of public cloud resources,

Mimir determines cost-efficient VSC configurations using dynamic

programming. This is in contrast to predicting workload perfor-

mance for a specific instance type like previous works [1, 24, 30],

which allows Mimir to explore heterogeneous VSC configuration

options, and find good VSC configurations for workloads composed

of multiple access patterns.

Mimir focuses on cost-efficient resource selection for given work-

load characteristics and requirements, and shows that such resource

selection must consider diverse volume types and configurations

to minimize costs. In some cases, the workload characteristics and

requirements can be determined just once for a stable workload or

when provisioning for peak requirements. In other cases, adjust-

ing allocated resources dynamically to match observed variations

in the workload can bring further cost benefits. For such cases,

Mimir can be used as the resource selection component (replacing

less-effective traditional selection components) in a system that

monitors the workload variations, intermittently invokes Mimir to

suggest new VSC configurations, and enacts configuration changes

(and data movement) if the project savings exceeds the cost of

changing.

To evaluate Mimir, we used Apache BookKeeper as the dis-

tributed storage backend driven by each of two key-valueworkloads

based on discussions with engineers of a top customer relationship

management (CRM) service and six workloads based on key-value

workloads described by Meta [9]. Our results show significant cost

savings arising from Mimir’s approach and its ability to consider

diverse volume types. For example, compared to a state-of-the-art

approach considering only EBS volume type and configurations,

Mimir reduces cost by up to 81%.More generally, Mimir consistently

and quickly finds cost-effective VSC configurations.

Contributions. We make four primary contributions: (1) We

show that finding cost-optimal VSC configurations requires consid-

ering diverse volume types and configurations. (2) We describe the

architecture and algorithms that allow Mimir to find cost-effective

VSC configurations for a distributed storage backend. (3)We demon-

strate that Mimir can effectively explore AWS’s diverse block stor-

age offerings, reducing cost by up to 81% relative to state-of-the-art

approaches. (4) We experimentally demonstrate that Mimir can be

used as part of a dynamic reconfiguration system to reduce cost by

74% for diurnal workloads.

2 CLOUD STORAGE CONFIGURATION

CHALLENGES

This section motivates the need for tools like Mimir that automate

the configuration of virtual storage clusters in public clouds. First,

we examine the diversity in performance and cost characteristics

of different cloud storage volume types, which complicate manual

configurations (§2.1). Second, we examine how the characteristics

of cloud storage volume types affect the cost of deploying a scalable

storage service in the public cloud (§2.2).

2.1 Public Cloud Storage Characteristics

It is crucial to understand the characteristics of public cloud storage

types in order to configure storage systems atop virtual storage

(a) by I/O unit size (b) by read ratio

Figure 2: Performance characteristics of public cloud storage

volume types by (a) I/O unit size and (b) workload read ratio.

In (a), both volume types have throughput limits defined by

AWS (horizontal lines), and we used a read-only workload.

cluster in a cost-efficient manner. Mimir formulates the price and

performance cost model with the analyzed storage characteristics

in this section.

One of the public cloud storage types we use to build volumes

in this paper is block storage, such as AWS Elastic Block Store [40],

Azure Disk Storage [32], and GCE Persistent Disk [17]. On AWS,

there are five different block storage types: local NVMe SSD, remote

SSD (gp2, io1), and remote HDD (st1, sc1). Local SSD is served as

an SSD locally attached to some instance types, such as i3, c5d,

and m5d. It delivers high performance with low latency, but the

attached volume capacity is fixed, and it can be an expensive option

for data that does not require high throughput. Unlike local SSD,

users can attach remote storage volumes (EBS) to the machines they

need. The performance of remote storage types is defined as SLAs

by the public cloud providers. Though AWS has recently introduced

support for EBS Multi-Attach, allowing a single io1 volume to be

attached to multiple instances, in this paper, we assume that a single

EBS volume can only be attached to one instance since this service

is currently available in a limited number of regions and works only

for io1 volumes. For instance, AWS currently offers gp2 volumes at

3 IOPS per GiB of provisioned capacity, while it provides 40 MiB/s

per TiB of provisioned capacity for st1 volumes.

Figure 2 illustrates the characteristics of 1 TiB of gp2 volume

and 1 TiB of st1 volume, in which the performance of each volume

is 3000 IOPS and 40 MiB/s, respectively, and local SSD attached

at i3.xlarge. We generated the test workloads with the fio bench-
mark [6] varying the access pattern (random/sequential), read ratio,

and I/O unit size. For Figure 2(a), we used a read-only workload to

evaluate the performance characteristics.

Figure 2(a) shows how the performance characteristics according
to the I/O unit size and access pattern are different for each storage
type. Because gp2 performance is defined in IOPS, as the I/O unit

size increases, the throughput of gp2 also increases up to 250 MiB/s,

which is the maximum single gp2 volume throughput limited by

SLA. In the case of st1, performance is defined in MiB/s, but shows

lower throughput for the workloads with random access patterns

and I/O units less than 1 MiB [39]. st1 has a throughput limit at

40 MiB/s for 1 TiB st1 volume, in which the limit can be up to

500 MiB/s for the larger st1 volume. The performance of gp2 is the

same for both random and sequential data access patterns, while st1
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shows better performance for sequential data access than random

access.

Figure 2(b) shows how read ratio affects each volume type’s
throughput differently. Throughput of EBS volumes is not affected

by the read ratio of the storage workload, as the read ratio is not

included in their performance SLAs. The local SSD, however, shows

much higher throughput than EBS, and the throughput is affected

by the read ratio, while it is not affected by the I/O unit size for

requests larger than 32KB.

We have measured the local SSD performance of all the machines

we used as candidates of the cost-optimal VSC. The local SSD

performance profiling is not a consuming process in terms of time

or cost because profiling needs only be performed once. There are

other volume types (io1, sc1) we also considered, but we omit

them for brevity.

2.2 Apache BookKeeper Use Case

Next, we give a motivating example demonstrating the potential

savings of careful machine configuration for an application. Inspired

by discussions with engineers from a large customer relationship

management (CRM) company shifting from on-premises to cloud,

we look at Apache BookKeeper. Apache BookKeeper [21] is a stor-

age system designed for high scalability, fault-tolerance, and low

latency. It stores data as streams of log entries in sequences called

ledgers, and the ledgers become immutable once the ledger is closed.

The primary data access pattern of Apache BookKeeper’s storage

server is sequential writes and random reads.

We can reduce cost by exploiting heterogeneous resource alloca-

tions. Figure 3 shows resource utilization of Apache BookKeeper’s

storage server running on i3.2xlarge, with a 1.9 TiB local SSD. The

workload is write-only and requires 1.8 TiB of data capacity and

360 MiB/s of write throughput at the beginning. After 40 seconds,

we increase both requirements by 30%, so the workload’s required

throughput per TiB remains the same.

For the first 40 seconds, 67% of CPU is idle on average while

the storage bandwidth of the local SSD is fully utilized. After 40

seconds, the simplest way to satisfy both increased requirements is

to provision another i3.2xlarge which doubles the cost. As Figure 3

shows, however, attaching a 600GiB EBS volume to the original

instance instead of provisioning a new instance allows us to store

30%more data while paying only 12% additional cost. It also reduces

the cost per data size by 15%, and this heterogeneous allocation

allows the workload to utilize 15% more idle computing power.

Therefore, it is crucial to accurately predict how many resources

(e.g., CPU, memory, storage bandwidth, etc.) are required for the

given workload characteristics to configure cost-efficient heteroge-

neous virtual storage clusters (§4.3). Also, though we restrict to a

single instance type and one workload characteristic in this exam-

ple, if we consider more instance types andworkload characteristics,

the gain from the heterogeneity compared to the homogeneous

allocation increases (§5.4).

3 PRIORWORK

In this section, we discuss previous research on the automatic pro-

visioning of public cloud resources and predicting application per-

formance on virtual machines in public clouds.

Figure 3: Reducing the cost per data size by exploiting hetero-

geneousmachine allocation.When a storage server uses only

local SSD, CPU is underutilized. Attaching an EBS volume

can store 30% more data, paying only 12% additional cost.

Configuring storage and VMs in public cloud.Many previ-

ous works [8, 27, 36, 45, 48] aim to optimize virtual cluster configura-

tion in public clouds for various workloads. Some studies [1, 24, 25]

find near-optimal cloud storage and VM configuration for data ana-

lytics workloads, guaranteeing performance and minimizing cost.

However, the workloads we target have different nature from the

data analytics workloads, e.g., workloads are long-running rather

than transient and cannot classify data into input/output and in-

termediate data, which are common in data analytics applications.

Therefore, our research cannot be solved in the same way as previ-

ous studies. For example, in the case of data analytics workloads,

to reduce the overall cost, the trade-off between using expensive

resources for a short duration or simply using cheaper resources

should be considered, but our problem does not have this nature.

OptimusCloud [30] jointly optimizes database and VM config-

urations to find cost-efficient VSC configurations for distributed

databases. We consider OptimusCloud as the state-of-the-art to

compare with Mimir, but OptimusCloud only considers the EBS

volume type, which we show could be a costly configuration com-

pared to a VSC using both local SSD and EBS volume types (§5.4).

Performance prediction on VMs. Numerous previous sys-

tems [7, 10, 13, 14, 31, 33–35] studied themethod of predicting work-

load performance on VMs. PARIS [47] uses hybrid offline/online

data collection and trains a random forest model to predict the work-

load performance on VMs. Ernest [44] predicts the performance

of large-scale data analytics workloads using statistical modeling.

Auto-configuration systems [24, 30] also predict the workloads’

performance on VMs using machine learning techniques, such as

collaborative filtering and gradient boosting tree.

In contrast, our approach predicts resources required for the

given workload performance instead of predicting workload perfor-

mance on VMs. By predicting resource requirements and knowing

the performance SLAs given by the cloud providers, we mathemati-

cally formulate a linear programming problem to find the cheapest

VSC configuration that has the necessary resources. Still, we can

use similar data profiling techniques and prediction approaches

that previous works proposed, such as gradient boosting tree.

4 MIMIR DESIGN

Figure 4 shows the workflow of Mimir. First, Mimir takes as in-

put information about multiple workloads’ characteristics (§4.1).

Storage systems can store data for different workloads, and each

workload can have a different data access pattern, such as the

data request rate, data access locality, and read/write request ratio.
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Figure 4: Mimir’s workflow for optimizing the price of pub-

lic cloud resources. Mimir profiles the given workloads and

learn how many resources (e.g., CPU, memory) are required.

The VSC Cost optimizer uses this trained module and cost

model of public cloud resources to find the cost-efficient VSC

configuration.

Then, our Resource profiler profiles each workload and collects data

on how many resources are required to run each workload cost-

efficiently on the machines in the cloud (§4.2). Using the collected

data, the Resource predictor learns how to convert each workload

specification into the right size of the container to run (§4.3). As

demonstrated in §2.2, the heterogeneous single machine configura-

tion is important for the entire VSC’s cost-efficiency, and in Mimir,

to leverage the heterogeneous single machine configuration, we

run multiple storage servers on a single machine by deploying each

server in a Docker container, which guarantees the isolation of

allocated resources for each storage server. Lastly, the VSC Cost
optimizer uses the Resource predictor and the cost model of public

cloud resources to find the cost-efficient VSC configuration of the

distributed storage system (§4.4). We assume that the workload

characteristics can be profiled (or are known) by Mimir users, and

Mimir uses the profiled information as input to its optimization

process. One advantage of this design is that any storage system

capable of measuring the necessary resource utilization that Mimir

uses for optimization can employ Mimir as a resource auto-selector.

In our evaluation, we evaluate Mimir only on Apache BookKeeper,

but we left extending our evaluation to other storage systems as a

future work.

4.1 Input: profiled workload characteristics

Mimir takes workload specifications as input. Table 1 shows the

five attributes we use to describe workload characteristics in Mimir.

They are divided into two categories: performance requirements

and data access patterns.

Data capacity and data request rate are the attributes of the

performance requirements that should be satisfied for the given

workloads. Performance requirements are also used as profiling

knobs and are proportional to the size of workload fraction, i.e., a
subset of data and data accesses to the subset of data. For example,

if a user defines a workload with 1 TiB of data capacity and 10K

QPS (queries per second) of data request rate, we expect 3K QPS is

required for the 300 GiB of the given workload’s data. This can be

achieved by load balancing for a clustered storage system, which

has been extensively studied [11, 23, 29].

The attributes of the data access pattern describe the behavior

of the workloads: temporal/spatial data access locality, read/write

Figure 5: Cost-efficient container sizes for the same workload

with different memory sizes. The resource profiler profiles

each workload with different memory sizes to collect differ-

ent resource/performance demands.

ratio, and distribution of object size stored in the storage backend.

Unlike performance requirements, Mimir expects the attributes to

remain the same for workload fractions and uses this assumption

in Resource profiler to generate a set of workload fractions to pro-

file. As future work, Mimir will monitor the actual characteristics

of the workload fraction on runtime and give feedback to these

assumptions.

Several studies [30, 38] have supported the elastic rightsizing

of cloud resources by predicting workload characteristics or in a

reactive manner. But elasticity is orthogonal to our work. Instead,

we focus on finding the potentially heterogeneous cost-efficient

VSC configuration for the mixture of static workloads with differ-

ent characteristics. Still, we show the extensibility of our tool for

dynamic workloads in §5.6.

4.2 Resource profiler

Mimir’s goal is to allocate sufficient resources per storage server

container (ContainerSpec) to satisfy the provided workload per-

formance requirements, while remaining frugal to reduce costs.

However, many factors make it challenging to compute the right

size of ContainerSpec for the arbitrary workload specification ana-

lytically. Read/write amplification inherent in the storage servers

depends on the implementation and data access pattern; memory

size of the storage servers and read/write ratio of workloads affect

the necessary storage throughput and computing power to meet

the performance requirements. None of these factors can be pre-

cisely formulated without the storage system experts and should

be reformulated for every storage system to be used. Instead of for-

mulating the cost-efficient size of ContainerSpec, Mimir, therefore,

profiles and collects data using the Resource profiler and predicts

the optimal size of containers using the Resource predictor trained
with the collected data.

Resource profiler overview.The Resource profiler runs a storage
workload with the given workload characteristics on a benchmark

machine to collect the data of the cost-efficient size of Container-
Specs. When profiling, Mimir uses the performance requirement

attributes as knobs to get multiple data points. The attributes of

ContainerSpec we use are: the number of CPUs, memory size, stor-

age bandwidth, storage capacity, and network bandwidth. To get

enough profiling data, we chose i3.4xlarge of AWS as the benchmark

machine, which has the local SSD with the highest single-storage

performance (1900GB NVMe SSD), and sufficient memory and com-

puting resources to profile our evaluation workloads.

There are multiple suitable ContainerSpecs for a single workload
specification. For example, a read-intensive workload with a high
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Type Attribute Description Units

Performance requirement

(Profiling knobs)

data capacity total size of data stored in the storage system GB

data request rate rate of read and write requests arrive at the storage system QPS

Data access pattern

data request size mean or distribution of the requested data size Byte

read/write ratio ratio of the read and write request rates

access locality pattern of data access locality

Table 1: The workload characteristic attributes. The performance requirement attributes are the knobs used by Mimir in

profiling to get multiple profile data points, while the data access pattern attributes are not changed.

Algorithm 1 Profiling logic of the Resource profiler

1: W : Input workload characteristic

2: BM: Benchmark machine

3: procedure Profile(𝑊 )

4: p←MeasureMaxPerformance(W, BM)

5: S←WorkloadFractionSetToProfile(W, p)
6: D← {}
7: for wf in S do
8: u←MeasureResourceUtilization(wf, BM)

9: while ¬ IsContainerRightSize(wf, u) do
10: u← UpdateContainerSpec(wf, u)
11: end while

12: D[wf]← u
13: end for

14: return D
15: end procedure

degree of data access locality requires less storage volume perfor-

mance and computing power with a larger memory size because

of memory caching. Figure 5 shows how different the required

resources are according to the memory size, even for the same

workload specification. Thus, the Resource profiler tests different
memory sizes to account for multiple ContainerSpecs during opti-
mization.

Resource profiler logic. The Resource profiler first measures

the maximum performance p of the workload on the benchmark

machine with the given data access pattern (Algorithm 1, Line 4).

Then, it generates a set of N different workload fractions (i.e., work-
loads with 1/𝑁 ∗ 𝑝, 2/𝑁 ∗ 𝑝, ..., 𝑁 /𝑁 ∗ 𝑝 performance requirements

and given data access pattern) to be profiled (Algorithm 1, Line 5).

We used 𝑁 = 10 in our experiments. For each workload fraction, Re-
source profiler finds the right container size (Algorithm 1, Line 7-13).

It first measures the average resource utilization while running the

workload fraction on the benchmark machine. However, the con-

tainer allocated with the average resource utilization may not meet

the performance requirements, or it may have been allocated more

resources than necessary. So, it iteratively updates the candidate

container size by measuring the storage server performance and

resource utilization in the container until it finds the cost-efficient

container size. Detailed rules for this iterative updates are described

below.

Rules for updating ContainerSpec. If the current container
size satisfies the workload requirements and the average utiliza-

tion values of some resources are less than the over-provisioning

threshold (we used 80%), it is considered those resources are allo-

cated more than necessary. So the profiler reduces their resource

allocations. If it does not satisfy the workload requirements, Mimir

increases the allocation of the resources with the average utilization

higher than the under-provisioning threshold (we used 90%), judg-

ing them as bottleneck resources. We used docker stats, iostat, and
sysfs network interface statistics to measure CPU, storage/network

bandwidth utilizations.

The thresholds we use in this logic can control the cost-efficiency

of the container sizes that Mimir selects for the storage servers.

For example, if we use a small over-provisioning threshold, Mimir

is likely to allocate more resources to the storage servers than

they actually require, and vice versa. If we use a smaller under-

provisioning threshold, the storage server configuration is more

tolerant to a slight increase in workload performance requirements.

4.3 Resource predictor

Based on the data profiled by the Resource profiler, Mimir predicts

the cost-efficient size of containers for the given workload charac-

teristic. Currently, Mimir provides an implementation using inter-

polation, but other prediction models, such as a gradient boosting

tree [15], could be used instead.

The Resource profiler profiled N different workload fractions,
in which each requires the performance of the 𝑖/𝑁 × 𝑝 (where

𝑖 = 1 · · ·𝑁 and 𝑝 is the maximum performance on the benchmark

machine). Thus, the ContainerSpecs for the workload requiring per-

formance less than 𝑝 can be computed using interpolation. As we

noted, we use the large enough instance types as a benchmark

machine (i.e., the machine that can profile up to large 𝑝) in order to

use the interpolation for the workload fractions that require high
performance.

The interpolation approach allows accurate prediction of the

right size of the ContainerSpecs as the Resource profiler profiles

enough data. However, this approach requires a profiling step when

the new workload comes in, which requires additional profiling

time and cost, although it is cheaper than the cost savings by our

tool as we evaluate in §5.7.

4.4 VSC Cost optimizer

Mimir uses dynamic programming (DP) to minimize the cost of

the virtual storage cluster while satisfying the performance re-

quirements. Figure 6 shows an example of how we use recur-

sion in the DP problem (OptCluster) and solve the base cases

(OptSingleMachine) using a mixed-integer programming. First,

the OptCluster breaks the problem of finding the cost-efficient

VSC configuration that can run the entire workload into the smaller

problems of finding the ones that can run the workload frac-
tions. In order to solve the base cases of the DP problem, the

OptSingleMachine searches for the cost-efficient resource config-

uration of a single machine that can execute each workload fraction.
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Figure 6: Example of the VSC Cost optimizer’s optimization algorithm. It uses dynamic programming to break the optimization

problem into smaller problems (OptCluster), and mixed-integer programming to solve the base cases (OptSingleMachine).

Algorithm 2 Optimization algorithm of VSC Cost optimizer

1: 𝑊 : Profiled workload characteristics

2: procedure OptCluster(𝑊 )

3: 𝑆 ←WorkloadFractionPairs(𝑊 )

4: 𝑐 ←∞
5: for Pair<𝑊1,𝑊2> in 𝑆 do

6: 𝑡 ← OptCluster(𝑊1) + OptCluster(𝑊2)

7: 𝑐 ←min(𝑡 , 𝑐)
8: end for

9: returnmin(c, OptSingleMachine(𝑊 ))

10: end procedure

11:

12: procedure OptSingleMachine(𝐹 )
13: 𝐷 ←WorkloadFractionPartitions(𝐹 )
14: 𝑐 ←∞
15: for 𝑑 in 𝐷 do

16: 𝑆 ← ResourcePredictor(𝑑)
17: 𝑐 ←min(MIPSolver(𝑆), 𝑐)
18: end for

19: return 𝑐
20: end procedure

Algorithm 2 is the pseudocode of the VSC Cost Optimizer. We first

explain it using a single workload W as input and then expand to

using a mixture of workloads as input (§4.5).

Recursion: OptCluster.Mimir first defines the workload frac-
tion unit (𝑊𝑓 ) of the given workload W, the smallest unit of the

workload data stored in the same storage volume. Multiple work-
load fraction units can be stored in the same volume, but a single

unit cannot be split. The size of𝑊𝑓 provides the trade-off between

the search space size and the optimality of the solution. We em-

pirically evaluated the trade-off and found that using the data size

between 50-100 GiB for𝑊𝑓 is generally good in our experiments,

e.g., Mimir uses 100 GiB of data size and 1K QPS as𝑊𝑓 for the

workload requires 3 TiB of storage capacity and 30K QPS.

The VSC Cost optimizer uses DP because the optimization prob-

lem has optimal substructure property and overlapping subprob-

lems: if we found the cost-optimal VSC configuration, then any sub-
cluster of the VSC must have the cost-optimal VSC configuration for
the workload fraction running on that subcluster.

Based on this property, we can argue that the cost-optimal VSC

configuration for𝑊 is the one that is the cheapest combination of

two clusters that one cluster is the cost-optimal for certain amount

of workload fraction and the other cluster is again the cost-optimal

for the remaining workload fraction (Algorithm 2, Line 5-9):

OptCluster(𝑊 ) = OptCluster(𝑁 ×𝑊𝑓 ) = min(
{OptCluster(𝑖 ×𝑊𝑓 ) + OptCluster((𝑁 − 𝑖) ×𝑊𝑓 )}

𝑖=⌊𝑁 /2⌋
𝑖=1 ,

OptSingleMachine(𝑁 ×𝑊𝑓 ))

OptCluster function can be called recursively, until the input

of OptCluster becomes𝑊𝑓 , and Mimir uses memoization for the

computational efficiency (Figure 6, Step 1). Note that if the cost-

optimal VSC configuration has a single machine, we should find

the single machine configuration (OptSingleMachine), which is

explained below.

Base case: OptSingleMachine. To compute the base cases of

the DP problem,OptSingleMachine finds the cost-efficient config-

uration of a single machine for the given workload fraction (𝑘 ×𝑊𝑓 ).

1○Within a single machine, there are Partition(𝑘) different ways
of distributing the data in storage volumes, where Partition(𝑛)
equals the number of possible partitions of n (Figure 6, Step 2-

1). For each partition, 2○Mimir generates a set of ContainerSpecs
by predicting them for each workload fraction in the partition us-

ing the Resource predictor (Figure 6, Step 2-2). As each set has the

resource requirements of the workload fractions, 3○ Mimir uses

mixed-integer programming (MIPSolver) to minimize the price of

a single machine under the resource and the performance require-

ment constraints (Figure 6, Step 2-3):

27



Mimir: Finding Cost-efficient Storage Configurations in the Public Cloud SYSTOR ’23, June 5–7, 2023, Haifa, Israel

minimize

𝑀𝑎𝑐ℎ𝑖𝑛𝑒,𝑆𝑡𝑜𝑟𝑎𝑔𝑒
Machine[Price] +

∑︁
𝑖

Storage[i][Price]

subject to

∑︁
𝐶𝑆

CS[CPU,Mem,...] ≤ Machine[CPU,Mem,...]∑︁
𝐶𝑆∈𝑆𝑡𝑜𝑟𝑎𝑔𝑒 [𝑖 ]

CS[Storage BW] ≤ Storage[i][BW]

Lastly, 4○ OptSingleMachine selects the partition with the

smallest return value of MIPSolver as the cost-efficient configura-

tion of a single machine (Figure 6, Step 2-4).

4.5 VSC Cost optimizer: multiple workloads

When the input has more than one workload, running the opti-

mization algorithm using all workloads as input at once can find

more (or at least the same) cost-efficient results than using separate

virtual storage clusters together after finding the cost-efficient VSC

configuration for each, because the search space of the former is

the superset of one of the latter. For multiple workloads as input,

Mimir can use the same optimization algorithm described in §4.4.

However, as the number of workloads increases, the complexity of

the search space becomes infeasible.

The time complexity (TC) of the recursive loop for the set of

workloads {𝑊𝑖 }, where each workload𝑊𝑖 can be divided into 𝑁𝑖 ×
𝑊𝑓𝑖 , is proportional to the multiplication of 𝑁𝑖 .

TC of the recursive loop ∝∏
𝑖
𝑁𝑖

The time complexity of finding the solution for the base cases

is proportional to the multiplication of two values: the number of

possible partitions of k, which is proportional to the exponential

function of the square root of k [4], and the optimization time of

the MIPSolver.

TC of solving base case ∝ 𝑎
√
𝑘 ×𝑇MIPSolver (a>1)

Since the total time complexity is the product of these two TCs, it

increases exponentially with the number of workloads considered,

in which it becomes impractical to use the optimizer evenwhen only

three workloads are given as input to the optimizer. To make the

time complexity feasible, we use systematic sampling and pairwise
workload optimization.

Systematic sampling: In OptSingleMachine, instead of comput-

ing MIPSolver for all the possible partitions, Mimir samples some

of the partitions and find the minimum among them. We used sys-

tematic sampling rather than random sampling because the order

of the partitions we generated has a property that the adjacent

partitions tend to have similar configurations. So selecting every

𝑛th partition allows the Mimir to explore various configurations.

Pairwise workload optimization: As the complexity of the search

space increases exponentially with the number of workloads, Mimir

runs the optimization algorithm for up to two workloads at once for

all pairwise workload combinations. For example, if there are six

different workloads as input, rather than giving six of them at once

to the optimization function, run pairwise optimization

(6
2

)
times

and find the total cost-efficient VSC configuration using them.

Both approaches provide the trade-off between the optimization

execution time and the solution’s optimality. We could not directly

evaluate the trade-off because the search space is infeasible without

these approaches. But, we show that Mimir can find cheaper VSC

configuration using these approaches when multiple workloads are

considered as an optimization input (§5.4). We also evaluate how

fast our approach finds a cost-efficient VSC configuration compared

to the naive search algorithm (§5.7).

5 EVALUATION

This section evaluates Mimir using a CRM-based benchmark and

Meta’s RocksDB key-value workloads [9]. We first describe our

experimental setup (§5.1), evaluation benchmarks (§5.2), and base-

lines to which we compare Mimir (§5.3). We evaluate Mimir to

answer the following questions:

• Can Mimir find a cost-efficient VSC to satisfy the require-

ments of different workloads? (§5.4)

• How effective are key Mimir aspects, including how closely

it fits containers to workloads and how important its data

partitioning search is? (§5.5)

• Can Mimir be used as part of dynamic resizing? (§5.6)

• How significant are Mimir’s overheads? (§5.7)

5.1 Experimental setup

We evaluated Mimir in AWS EC2 US-East-1. We used 55 different in-

stance types for the candidate instance types of a VSC configuration.

The candidate instance types include all categories of AWS instance

types (except ones with GPUs): “general purpose” instances (m5,

m5d) and those “optimized” for compute (c4, c5, c5d), memory (r5,

r5d), and storage (i3). For the candidate storage types, we used local

SSD (i.e., the SSD in i3, c5d, r5d) and EBS volume types (gp2, io1,

st1, sc1). We ran our optimization algorithm on a Xeon E5-2670

2.60GHz CPU with 64 GiB DDR3 RAM, using Gurobi 9.0.1 [18]. We

used Apache BookKeeper 4.11.0 as the storage backend where our

key-value workloads were run.

5.2 Benchmarks

We evaluated Mimir using two benchmarks (Table 2) on top of

Apache BookKeeper: a CRM-based benchmark and a set of work-

loads similar to the Meta RocksDB key-value workloads described

in the paper [9].

Our CRM-based benchmark (CRM) is comprised of two work-

loads: high-throughput workload (CRM-H) and low-throughput

workload (CRM-L). We synthetically generated the CRM-based

benchmark based on the discussion with engineers from one of the

CRM companies. We used 64 KB of entry size (i.e., data request size)

and 2 MB of ledger size, which are the average values the company

uses in its BookKeeper storage cluster. Most of their workloads are

read-heavy, so the workloads we generated are read-only work-

loads that read data randomly. For the performance requirements,

CRM-H and CRM-L require 200 MiB/s and 50 MiB/s per TiB of data

capacity, respectively, and both have 3 TiB of data. We selected

these performance requirements to evaluate how well Mimir finds

the cost-efficient VSC configuration for the workloads that have

different throughput requirements. The CRM-based benchmark

also represents key-value workloads that have large value sizes

which are common in real-world [5, 20, 26, 28].

Meta presented detailed characteristics of key-value work-

loads [9] in their storage cluster, which uses RocksDB as their

28



SYSTOR ’23, June 5–7, 2023, Haifa, Israel
Hojin Park, Gregory R. Ganger, George Amvrosiadis

Carnegie Mellon University

Benchmark Workload Capacity Req. rate (QPS) Req. size Read req. ratio Access locality

CRM-based

benchmark

H (High-xput workload) 3 TiB 9600 64 KB 1.0

Random access

L (Low-xput workload) 3 TiB 2400 64 KB 1.0

Meta

RocksDB

benchmark

(MR)

A (Object in [9]) 3 TiB 40K 120 B 0.86

Same as

described in [9]

B (Object_2ry in [9]) 200 GiB 20K 3 B 0.0

C (Assoc in [9]) 600 GiB 80K 17 B 0.81

D (Assoc_2ry in [9]) 400 GiB 40K 5 B 0.0

E (Assoc_count in [9]) 800 GiB 100K 20 B 0.29

F (Non_SG in [9]) 800 GiB 160K 19 B 0.14

Table 2: Benchmarks used to evaluate Mimir. CRM-based benchmark consists of a throughput-intensive (CRM-H) and a capacity-

intensive workload (CRM-L). Meta RocksDB benchmark consists of 6 real-world workloads [9].

backend storage engine. Among the three production use cases

they described, we selected UDB to evaluate Mimir. Because UDB

has six workloads that have different characteristics to each other,

we can evaluate Mimir for a complicated realistic benchmark. To

evaluate UDB-like workload on Apache BookKeeper, we imple-

mented our own benchmark (MR) on BookKeeper that has similar

characteristics as Meta described. Our benchmark has the same

data size distribution, data access locality and count distribution,

and average Put/Get request ratio. We used the same distributions

presented by Meta, which are General Pareto Distribution [19] for

value size distribution and a power model for access count distribu-

tion. We implemented only Put and Get operations, as semantics

of other RocksDB operations deviate significantly from available

operations in BookKeeper.

5.3 Resource selection baselines

We compare Mimir to three baselines. Whereas Mimir considers

all instance and storage types listed in §5.1, when selecting VSC re-

sources, each baseline considers only a subset, and the comparisons

show the significance of considering heterogeneous VSC configu-

rations for cost-efficiency.

i3.xlarge-only. The simplest way to configure a VSC on the

public cloud is to select one instance type and decide the number of

instances to provision from measured storage server performance

on the selected instance type. However, since this approach has

only a single dimension (i.e., the number of machines) in the search

space, it ignores too many potential solutions. In our evaluation, we

used i3.xlarge, because it is categorized as a storage-optimized

instance and provides high-performance local SSD.

Mimir-LocalOnly. Another way to configure the VSC is to use

only instance types that have local SSDs, including some compute

or memory optimized instance types, such as m5d, c5d and r5d.
Local SSD provides high storage performance, but can be costly and

may provision more IOPS than necessary. We call this constraint

Mimir-LocalOnly, because we apply all the Mimir’s optimizations

to finding the cost-efficient VSC configuration (including mixes of

instance types) but limit it to considering only local SSD volumes.

Mimir-EBSonly/OptimusCloud-like. Here, VSCs can only

use EBS volumes. EBS volumes can persist data independently

from the instance status, and users can provision the volume ca-

pacity as much as they need. However, if the workload requires

high-performance, it can be more expensive than local SSD. As

we explained in Section 3, OptimusCloud [30] restricts the vol-

ume type to EBS volumes because of their persistent nature, but

Figure 7: The cost-efficiency analysis of the optimization

results of the two benchmarks, CRM and MR. Mimir finds the

most cost-efficient VSC configuration compared to the other

baselines.

our results show that this approach is often much more costly.

Like Mimir-LocalOnly, this baseline uses all of Mimir’s optimiza-

tions while only considering EBS volumes. We use the terms

Mimir-EBSonly and OptimusCloud-like interchangeably.

5.4 Cost-efficiency analysis of Mimir

Observation 1: Mimir finds 2-5.3× cheaper VSC configuration com-
pared to the OptimusCloud-like, because different workloads prefer
different storage types to store data cost-efficiently.

Figure 7 shows price comparison of the optimization results

with Mimir and other baselines for CRM and MR, in which each

benchmark is a mix of two and six distinct workloads respectively.

Mimir finds cheaper VSC than the other baselines and it is up to

5.3× cheaper than the OptimusCloud-like. In both benchmarks,

Mimir-LocalOnly finds more cost-efficient VSC configurations

than OptimusCloud-like. However, it does not mean that every

workload data in the benchmarks is more cost-efficient to be stored

in local SSD than EBS volume.

Figure 8 shows the storage preference of each workload of CRM
and MR. First, CRM-H is the workload that requires high-performance

of the storage system. Thus, Mimir finds the VSC configuration that

only uses local SSD for the cost-efficient solution. On the other hand,

if only EBS volumes are used to store data that requires high storage

performance, it should provision much larger storage capacity than

it needs to get enough volume IOPS. For example, the cost-efficient

VSC configuration of CRM-H searched by Mimir-EBSonly uses 15
TiB of gp2 volumes to store only 3 TiB of data to get enough IOPS. It

costs 2.5× higher price compared to the result of Mimir-LocalOnly
or Mimir with no resource constraint.
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Figure 8: The cost-efficiency analysis of the optimization results of theworkloads of the two benchmarks, CRM and MR. Throughput-
intensive workloads (e.g., CRM-H, MR-A,C,E,F) prefer local SSD as its storage type. In contrast, other workloads (e.g., CRM-L, MR-B,D)
that do not require high throughput prefer EBS volume to local SSD. An i3 instance type is a costly option for some workloads

(e.g., MR-B,D,E,F), even if it is categorized as storage optimized instance.

In contrast, CRM-L is the workload that does not require high-

performance (i.e., capacity-intensive workload). So local SSD is

an expensive storage type to store data of CRM-L, as it underuti-
lizes storage bandwidth of local SSD. The throughput of gp2 (i.e.,
3 IOPS per provisioned GiB) is enough to support the workload.

Figure 8 shows that the cost-efficient VSC configuration optimized

by Mimir-LocalOnly costs 1.7× higher price than the one with

Mimir-EBSonly.
MR workloads with different characteristics also show dif-

ferent preferences on the volume type. MR-A,C,E,F require

4.13×, 8.3×, 4.2×, 3.6× higher price with Mimir-EBSonly than

Mimir-LocalOnly, respectively, while MR-B,D require 1.1×, 1.3×
higher price with Mimir-LocalOnly. As Table 2 indicates, MR-B,D
need lower data request rate and smaller data request size than the

other workloads, which makes both workloads well suited to EBS

volume type.

Observation 2: Considering diverse instance types and heteroge-
neous VSC configurations is crucial for cost-efficiency.

Not only the volume type, but also the instance type is an im-

portant factor that affects the price of the virtual storage cluster.

For example, MR-F workload requires the second highest storage

system throughput per GiB of data among the workloads of MR,
and Mimir-LocalOnly finds more cost-efficient VSC configuration

compared to the Mimir-EBSonly. However, i3.xlarge, a storage
optimized instance type, is costly option for the MR-F workload

(i3.xlarge-only). Instead, Mimir and Mimir-LocalOnly find the

cost-efficient VSC configuration that uses c5d instance type, in

which c5d is a compute-optimized instance type that has a small

capacity of SSD. This is because the storage server for MR-F needs

high computing power (i.e., CPU-intensive) as the workload re-

quires high data request rate. Similarly, MR-B,D,E prefer m5d or

c5d to i3 instance type.

Observation 3: Considering two workloads together in the opti-
mization algorithm can save cost up to 10.3% compared to using two
clusters optimized for each.

Lastly, we evaluate the pairwise workload optimization of the

MR’s workloads. We ran the VSC Cost optimizer for the
(6
2

)
number

of pairwise combinations of the MR’s workloads. Table 3 shows the
selected combinations of theworkloads thatminimize the total price

Optimal Cost/Hour 𝑊1 𝑊2 𝑊1 +𝑊2 Gain

𝑊1 = MR-A,𝑊2 = MR-D $1.86 $0.46 $2.32 0%

𝑊1 = MR-B,𝑊2 = MR-E $0.33 $1.8 $1.91 10.3%

𝑊1 = MR-C,𝑊2 = MR-F $2.25 $2.09 $4.21 3%

Table 3: Pairwise workload optimization of MR benchmark.

Mimir finds 10.3% cheaper VSC configuration when it opti-

mizes for both workloads at once.

of the virtual storage cluster when the cluster should support all

the workloads. (MR-B, MR-E) pair yields the highest financial gains,
10.3% lower price, when Mimir considers them together to optimize

the VSC configuration. MR-B and MR-E are cost-efficient when data

is stored in EBS volume and local SSD, respectively. Thus, Mimir

finds the VSC configuration that remote EBS volumes for MR-B are

attached to the machines for MR-E that have local SSDs. In this way,

the cost of provisioning instances for MR-B could be saved. (MR-A,
MR-D) pair also have the same property (i.e., they prefer different

volume types), but there is no financial gain as no computing power

left in the machines of MR-A to support additional workloads in

the same machine. By the pairwise workload optimization, Mimir

could save total 4% additional cost compared to using six individual

VSCs optimized for each workload.

Despite the large search space for the resource heterogeneity and

numerous factors to consider (e.g., complex workload and storage

characteristic, many price and performance SLAs), Mimir could

find the cost-efficient VSC configuration.

5.5 Deep dive into Mimir component

effectiveness

In this section, we first evaluate two components of Mimir: Resource
profiler and Resource predictor. And then, we demonstrate how

important finding good data partitioning is in finding cost-efficient

VSC configurations.

Observation 4: Mimir selects a cost-efficient container size to run
the storage server for the given workload characteristics. Workloads
tested utilize at least 83% of allocated resources.

We evaluate how the ContainerSpec profiled by the Resource pro-
filer fits for the given workload. Figure 9 shows the example of
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Figure 9: The resource utilization of MR-A’s workload frac-
tion. The storage server utilizes 85% of the vCPU and storage

read throughput (green line) of the allocated resources (red

line). If any resource allocation reduces to the next smaller

ContainerSpec (blue line), the server cannot satisfy the per-

formance requirements.

Workload

Avg % error of the interpolation predictor

CPU Read xput. Write xput. Net

MR-A 4.0% 1.1% 7.4% 2.0%

MR-B 2.4% 6.1% 8.4% 1.8%

MR-C 3.1% 0.8% 4.8% 1.1%

MR-D 5.9% 7.7% 1.4% 1.1%

MR-E 2.5% 0.6% 2.7% 1.0%

MR-F 12.9% 2.5% 4.5% 5.1%

Table 4: Percent error of the ContainerSpec prediction using

interpolation. The interpolation predicts the cost-efficient

container size with small percent errors.

how the container with the size of profiled ContainerSpec works for
the workload fraction of MR-A. Data access pattern of the workload
fraction we tested is the same as the one of the original workload,

and the performance requirements in this example are 6K QPS of

data request rate and 450 GiB of data capacity. The ContainerSpec
profiled for this workload fraction is 4.1 vCPU and 166 MB/s read

throughput of the storage volume. To evaluate, we ran a docker

container with the profiled amount of resources and measured the

CPU and storage throughput of the storage server running on the

docker container. As Figure 9 shows, the storage server utilizes

85% of both allocated computing power and storage throughput.

We confirmed that the storage server running on the same con-

tainer (i.e., container with 4.1 vCPU and 166 MB/s read throughput)

satisfies the workload requirements, but the storage server on the

next smaller container (i.e., container with 3.7 vCPU and 150 MB/s

read throughput) following our container size update algorithm

(§4.2) cannot meet the performance requirements. We also checked

that even a container lack of a single resource failed to satisfy the

performance requirements. We ran the same experiment on 300

ContainerSpecs we profiled and all the results showed the resource

utilization higher than 83% of the resources allocated according to

the profiled ContainerSpecs.

Observation 5: Mimir can predict the cost-efficient container size
using interpolation with less than 13% error.

Next, we evaluate our Resource predictor using interpolation to

see how accurately it predicts the right size of ContainerSpec. As a
dataset, we use the ContainerSpecs that are profiled by the Resource
profiler for the six workloads of MR.

Figure 10: Violin plot of MR-F showing the distribution of the

cost-efficient VSC configuration price for all possible data

partitions. A tiny portion of data partitions can find the near

cost-efficient VSC configuration.

As Mimir profiles multiple data points with different perfor-

mance requirements for each workload, we used the profiled data

as a test dataset to evaluate. For instance, the maximum data re-

quest rate we measured for the MR-Aworkload on i3.4xlargewith
memory-to-data ratio of 1:16 is 20K QPS. For the measured maxi-

mum data request rate and 𝑁 = 10 (in §4.2) we used, the Resource
profiler profiled the right size of 10 different ContainerSpecs for
the workload fractions of MR-A with the performance requirements

of 2K QPS, 4K QPS, ..., 20K QPS. So we evaluate how close the

profiled ContainerSpec for 4K QPS to the interpolation result of

two ContainerSpecs for 2K QPS and 6K QPS. Table 4 shows at most

12.9% error for predicting the cost-efficient container size of MR’s
six workloads.

Observation 6: The cost-efficient VSC configuration varies greatly
depending on how data is distributed. Only 2.4% of data partitions
Mimir explored could result in a VSC configuration cheaper than 1.3×
of the minimum cost.

Exploring data partitioning options is an important aspect of

Mimir’s success. Here data partitioning means how we split the

data to be stored in the storage cluster, in which each split is stored

in a single storage. For example, consider a workload𝑊 that defines

itsworkload fraction unit (𝑊𝑓 ) as 1/4 of the original size. Then, there

are five different partitions of𝑊 , which are {4𝑊𝐹 }, {3𝑊𝐹 ,𝑊𝐹 }, {2𝑊𝐹 ,

2𝑊𝐹 }, {2𝑊𝐹 ,𝑊𝐹 ,𝑊𝐹 }, and {𝑊𝐹 ,𝑊𝐹 ,𝑊𝐹 ,𝑊𝐹 }. Any data partitioning

can be used, but we show that only tiny percentage of the possible

data partitions can lead to cost-efficient VSC configuration. In this

evaluation, we fixed the number of machines to use and ran the

optimization algorithm of Mimir for each data partition. So we

could compare theminimumprice of VSC configuration of each data

partition in that the algorithm finds the cheapest VSC configuration

of each data partition.

Figure 10 is a violin plot of MR-F showing the distribution of the

cost-efficient VSC configuration price for each data partition with

a fixed number of machines. Mimir finds the most cost-efficient

VSC configuration with 6 nodes at the price of 2.09$/hr. For 6

nodes, out of 6043 possible data partitions, only two data partitions

could be used for the VSC configuration cheaper than 1.1× of the

minimum price, which is 2.3$/hr, i.e., if we distribute data using

one of the remaining 6041 data partitions, we cannot find any VSC

configuration that is cheaper than 1.1× of the minimum price.

Even for 1.2× and 1.3× of the minimum price, only 24 and 144

data partitions can be used for the VSC configuration cheaper than
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Figure 11: Using Mimir for dynamic MR benchmark. With

dynamic re-configuration, between 8-24hr each day, one can

save 32% price compared to using static VSC configuration

for the peak performance requirements.

the respective prices. In other words, only 2.4% of all possible data

partitions can unearth the VSC configuration cheaper than 1.3× of

the minimum cost.

As we demonstrated, although there are many data partitions

and only a few of them can find near cost-efficient VSC configura-

tions, Mimir successfully finds the most cost-efficient one using its

optimization algorithm.

5.6 Mimir in dynamic workloads

Observation 7: If Mimir is used by an auto-scaler to select VSC con-
figurations at changepoints in a dynamic workload, it can reduce daily
VSC price by 74% compared to using OptimusCloud-like resource
selection.

In this evaluation, we describe how Mimir can be used by an

auto-scaling system for dynamic workloads, showing that hetero-

geneity is still important to find cost-efficient VSC configurations.

We used the MR benchmark for the evaluation, but unlike our other

experiments, each workload has the diurnal pattern of data request

rate described in the corresponding paper [9]. As described earlier,

Mimir is a resource selector, not an adaptive auto-scaler, so it would

fit as a component of an auto-scaling system that identifies change-

points and dynamically reconfigures as indicated by the selector.

Here, we simulate the change of VSC price computed by Mimir’s

VSC cost optimizer were used in such an auto-scaler.

The solid lines in Figure 11(a) illustrate each workload’s data

request rate over time generated by the dynamic MR benchmark.

MR-A, MR-C, MR-D, and MR-F have strong diurnal patterns, and MR-B
and MR-E are static and bursty, respectively. The dashed lines in

Figure 11(b) are the predicted data request rates learned from the

previous day’s historical data – the workload behavior of day(i +
1) is predicted based on that of day(i) – using the SARIMAX [42]

forecasting model. We focus on evaluating the cost-efficiency of

Mimir’s optimization results for the predicted workload characteris-

tics in dynamic workloads and showing that such optimizationmust

consider diverse storage types and configurations at any phase of

dynamic workloads to minimize costs. So evaluating the accuracy

Figure 12: Daily VSC prices for running clusters with static

and dynamic configurations. Even if the cost for changing

VSC configuration is considered, Mimir is effective as a re-

source auto-selector for dynamic VSC reconfiguration:Mimir

can save 21% daily cost.

of the workload prediction model is out of the scope of this study,

and other prediction models [16, 22, 30, 46] can be used instead of

SARIMAX.

Based on the predicted workload behavior, we can plan ahead

for the dynamic change of the VSC configuration. We spot 0 and

8 o’clock every day as the change points and used the maximum

data request rates between 0-8 hr and 8-24 hr as the performance

requirement constraints for each period during the three days we

predict the workload behavior.

Figure 11(c) shows the change of VSC price if VSC configura-

tions are adaptively reconfigured using Mimir’s resource selections.

Using Mimir as a resource auto-selector, the optimal VSC price

reduces by 32% during 8-24 hr compared to the one during 0-8 hr.

One reason for the cost reduction is that some workloads, such

as MR-C, that prefer local SSDs during 0-8 hr do not require high

throughput storage volumes during 8-24 hr and use EBS volumes

instead, which are cheaper storage volumes. Another reason is that

the computing power required by some workloads, such as MR-F,
decreases during 8-24 hr, so fewer machines are used.

We evaluate the cost-benefit analysis by comparing the financial

benefit gained by using a cheaper configuration during 8-24 hr

with the cost need to be paid for the extra resources during the

reconfiguration, i.e., both old and new storage clusters should be

running while transferring the data. Figure 12 shows the daily cost

comparison between running a cluster with a static configuration

that satisfies peak performance requirements for a day and running

a cluster that changes its configuration at 0 and 8 o’clock. Using

Mimir, the data transfer takes 48 and 38 minutes for the reconfigu-

ration at 0 and 8 o’clock, respectively, which incurs $7.7 additional

costs for running the extra cluster while transferring data. Even

considering such cost, there is still a 16% gain for changing the VSC

configuration based on the Mimir’s optimization results compared

to running a static cluster.

Mimir finds more cost-efficient VSC configurations than base-

lines, saving 8-74% of daily VSC price compared to using the base-

lines to select auto-scaling system resources.

5.7 Profiling and optimization overheads

Observation 8: Total time and cost overheads incurred by Mimir

for MR benchmark are 4.5 hours and $14.1, which are one-time costs

for each optimization round, and time overhead can be further

shortened if necessary.
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Wemeasured howmuch time and cost overheadMimir incurs for

a single optimization round of the MR benchmark. Profiling step of

the Resource profiler and optimization step of the VSC Cost optimizer
mainly induce the overheads.

To profile the six workloads of the MR benchmark, for each work-

load, we used one i3.4xlarge instance for a storage server and two

c5.2xlarge instances for a workload generator. Each workload took

2.8 hours on average, and it costs $14.1 by exploiting the low price

of the spot instances. Also, users can further reduce the total profil-

ing time as much as they want for no extra cost just by using more

machines because Mimir can profile different workload fractions si-
multaneously as those profiling jobs are independent to each other,

i.e., the profiling processes can be parallelized.

To evaluate the time overhead of our optimization algorithm of

the VSC Cost optimizer, we used three local machines described in

§5.1. We ran

(6
2

)
number of pairwise workload optimizations and it

took 1.7 hours in total to find a VSC configuration that costs $8.4/hr.

To evaluate how fast our algorithm can find the cost-efficient VSC

configuration, we compared it with an algorithm that does not use

dynamic programming but use only a mixed-integer programming

solver, i.e., instead of breaking the optimization problem into smaller

problems as we described in §4.4. We used the same three machines

and pairwise workload optimization in this case as well. Without

dynamic programming, it failed to find a feasible solution until

30 hours; after 30 hours, the cost-efficient VSC configuration it

found costs $10.1/hr; even after 50 hours, the VSC configuration it

found costs $9.6/hr, which is still 14% more expensive than Mimir’s

approach.

6 CONCLUSION

Mimir finds cost-efficient virtual storage cluster (VSC) configura-

tions for distributed storage backends. Given workload information

and performance requirements, Mimir predicts resource require-

ments and explores the complex, heterogeneous set of block storage

offerings to identify the lowest-cost VSC configuration that satisfies

the customer’s need. Experiments show that no single allocation

type is best for all workloads and that a mix of allocation types is

the best choice for some workloads. Compared to a state-of-the-art

approach, Mimir finds VSC configurations that satisfy requirements

at up to 81% lower cost for static workloads and 74% lower daily

VSC price for dynamic workloads.
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