Picking Interesting Frames in Streaming Video

Christopher Canel, Thomas Kim, Giulio Zhou, Conglong Li, Hyeontaek Lim,
David G. Andersen, Michael KaminskyT, Subramanya R. Dulloor’
Carnegie Mellon University; ' Intel Labs

1 INTRODUCTION

As video camera deployments proliferate in the smart cities of the
future [2], software systems are faced with the increasing challenge
of determining which segments of data are relevant. For resource-
constrained edge nodes, limited network bandwidth back to the
datacenter prevents sending entire video streams.

This paper presents a new application-independent interesting
frame (IF) detection algorithm for identifying relevant frames in
streaming video. We envision this IF detector as a preprocessing
step in a larger video analytics pipeline where the expensive com-
putation occurs later (similar to the way Bloom filters can guard
expensive data structures). Given a target frame rate (or, equiva-
lently, a target bandwidth), the algorithm decides which frames are
the most generally interesting and therefore should be processed by
downstream applications or forwarded to the datacenter. We decide
how “interesting” a frame is based on its semantic difference from
other frames. The IF detection algorithm uses a hierarchy of filters
to trade off between end-to-end latency and aggressive decimation.
The algorithm strives to maximize the semantic diversity of the
selected frames. Compared to simply choosing frames at a fixed
interval, the IF detector better handles bursty events in the stream.

This algorithm leverages the fact that many (though certainly not
all) video analytics applications can tolerate some latency [7]. Many
of these applications have latency tolerances of seconds to minutes
(E.g., a “real-time” traffic measurement system can run several tens
of seconds behind realtime with limited impact to users). The IF
detector is therefore safe to accumulate the incoming video in a
buffer and periodically run its algorithm over a window of frames.

A defining feature of our algorithm is that it selects exactly the
desired number of interesting frames, creating a uniform output
framerate from a nonuniform stream of interesting frames. This is
in contrast to a more dynamic algorithm that adjusts the number
of selected frames based on the content of the video. We designed
the IF detector to produce a uniform output framerate to facilitate
provisioning compute resources for maximum utilization by pre-
venting bursty frame delivery. We push the configuration of the
selectivity to the higher-level applications or the resource control
layer, which are free to adjust it dynamically if necessary.

Because the IF detector operates on semantic information, it is
suited to a larger range of videos (E.g., streams where the camera
moves) than pixel-level difference detectors, such as those used
in NoScope [3]. The algorithm does not rely on hand-tuned fea-
tures, like [4], or require online [9] or offline [4, 8] training. Instead,
semantic information is extracted by a pre-trained DNN. There-
fore, the IF detector can be applied to larger deployments without
the need for specialized tuning for each camera. Our streaming
detection algorithm differs from most typical video summariza-
tion [4, 5, 8] work in that supporting aggressive decimation is a
first class priority, as opposed to forming a representative “story”.

2 FINDING INTERESTING FRAMES

Extracting Semantic Content. We extract semantic content
from incoming frames by evaluating a Deep Neural Network (DNN)
and selecting the output from one of the later max-pooling layers
as a feature vector. These feature vectors form the basis of the IF
detector algorithm. For our experiments, we used the MobileNet [1]
architecture, trained on ImageNet [6], and extracted the activa-
tions of the “pool6” layer, producing 1024-value feature vectors.
Evaluating the DNN is the most computationally intensive phase.

Selecting an appropriate DNN and feature vector representation
is key to the IF detector’s generality. We selected MobileNet, a
classification network, for our experiments because we found that it
was sensitive to content changes while being relatively lightweight.
Importantly, the IF detector is agnostic to both the network and the
feature vector representation. If the network is not sensitive to the
events that an application is interested in, then a different network
or feature vector encoding can be used. More advanced methods
for computing the feature vectors are the focus of ongoing work.

Detection Algorithm. Incoming frames are accumulated in a
frame buffer until the buffer is full, at which time all of the frames
are passed to the detection algorithm and the buffer is cleared.
Consider all of the frames as a field of points in N-dimensional
space, where N is the length of a feature vector. The location of
each frame is given by its feature vector. Let each of these points
be a node in a directed, acyclic graph (DAG). Label each node by
its frame index. For a node with frame index i, create a directed
edge pointing from node i to node j for all nodes j where j > i.
In other words, each frame has an edge pointing to every future
frame. Weight these edges by the distance between frames i and
Jj in that N-dimensional space. This encodes semantic difference
information in the structure of the DAG (Le., dissimilar frames thus
have higher-weight edges connecting them) and is the core of the
semantic content comparison. For our prototype, we used Euclidean
distance as our similarity metric, but other distance metrics (E.g.,
cosine distance) may be appropriate as well.

Now, the task of finding the k most interesting frames reduces
to the problem of finding the longest k-node path in this DAG. In-
tuitively, the longest path consists of the frames that are maximally
different, and therefore the most interesting. Our IF detection algo-
rithm adds the last interesting frame from the previous buffer to the
graph and uses it as the source of the path, so the algorithm solves
for the longest (k + 1)-node path starting with the last interesting
frame. Importantly, the frame at which the path ends is not fixed.

Since the graph is a DAG, this algorithm is computationally
feasible. For a buffer size of B frames, the algorithmic complexity
of our dynamic programming solution for finding the longest path
consisting of k nodes is O(kB?), with a space complexity of O(B? +
kB). Our implementation is a modification of the Floyd—Warshall
algorithm for finding the all-pairs shortest paths in a graph.

SysML’18, February 15-16, 2018, Stanford, CA

Canel, et al.

Varying Buffer Size, with 3 Levels and Selectivity of 0.25 Varying Selectivity, with 3 Levels and Buffer Size of 64 frames
Frames 12l[*= Fpetector |] 1.2} %< IFDetector | .|
- A A Uniform Sampling g A A Uniform Sampling
o
. i B 1.0 S 1.0
Feature _|, | Frame |, | Detection Inferesting 8 2
1 J53
Vectors l Buffer I Algorithm ' (fne-grained) O gg Qg
7 2
‘5 1=}
| & 06) e Sh Bos
Interestin s °
L o et §os
B g
. 8 ©
Interesting 0.2k o] L 02
Level 2 Frames
(-grained) 00 0,
"o g o 2 &
(a) Buffer Size (frames) Selectivity
(b) (©

Figure 1: System architecture and detection accuracy when varying the buffer size and selectivity.

Although this algorithm succeeds in its requirement of achieving
exactly the desired reduction factor, the characteristics of the results
depend on the buffer size. The algorithm selects exactly the desired
number of interesting frames from each buffer. If the content of
the video stream is such that one buffer contains no truly interest-
ing frames and the next buffer contains only interesting frames,
then the algorithm would output first k boring frames and then k
interesting frames. Therefore, using a large buffer size causes the
IF detection algorithm to select more globally-interesting frames,
whereas a small buffer results in very localized results. The optimal
size depends on the “stability” of the video stream. However, using
a very large buffer has significant latency and memory overheads
due to the polynomial complexity of the longest path algorithm.

Hierarchical Architecture. To mitigate the algorithm’s over-
heads and support aggressive decimation, we build a hierarchy of
IF detectors, each with a smaller buffer than when using a single,
monolothic IF detector. When the buffer at level i reaches capacity,
the IF detection algorithm executes and places the detected frames
in the buffer for level i + 1. Assuming that each level uses the same
selectivity d and buffer size B, an h-level hierarchy can accomplish
an effective selectivity of d" while only storing B X h frames. The
total CPU cost of all levels of the IF detection hierarchy will scale
as O(hkB?). Increasing h has a linear effect on CPU usage, which is
preferable to the quadratic effect of scaling the buffer size. Figure 1a
shows a three-level hierarchy.

This hierarchical design is also attractive because it enables
the IF detection algorithm to consider frames from extremely large
segments of the video stream. Whereas lower levels of the hierarchy
find interesting frames at a very fine granularity, the higher levels
operate at a very coarse granularity. When the highest level in
the hierarchy executes detection, it has a visibility of (1/ d)h_1 X
B frames. As a concrete example, a four-level hierarchy with a
buffer size of 1000 and a selectivity of 0.1 would choose the 100
most interesting frames from almost 9.3 hours (at 30 fps) of video
while storing only 4,000 frames in memory. The non-hierarchical
version would need to buffer 1,000,000 frames to achieve the same
visibility. Comparisons show that the hierarchical design selects
similar frames to a single, monolithic buffer.

Furthermore, applications are not restricted to using interesting
frames from only the highest level in the hierarchy. By pulling from

all intermediate IF detectors simultaneously, applications have a
choice of prioritizing latency or achieving an aggressive selectivity.

3 PRELIMINARY EVALUATION

Performance. The IF detector’s running time depends primarily
on the length of the frame buffer, but the algorithm runs only once
each time the buffer fills. For typical buffer sizes—fewer than 1000
frames—the IF detector’s processing time is small. (Larger buffers
are not required with the hierarchical design.) For example, running
the detection algorithm on a buffer of 1000 frames takes, per frame,
approximately 16% of the time to evaluate the full DNN.

Accuracy. To evaluate the quality of the frames that our algo-
rithm selects, we manually annotated the events in several minutes
of video from a stationary camera overlooking a railway. We con-
sider an event boundary to be when a train enters or leaves the
frame, so the ground truth events look like “train”, “no train”, “train”,
etc. Our metric is the fraction of these events from which at least
one frame is selected, and for this preliminary evaluation we com-
pare against frame filtering through uniform sampling. However,
not all of the IF detector levels fill for every configuration: aggres-
sive selectivities or large buffer sizes might require hundreds of
thousands to millions of frames for the buffers to fill and trigger a
detection. To determine the results of the uniform sampling algo-
rithm, we treated the last frame that traversed the IF detector as
the endpoint of the experiment, then selected from that region the
same number of frames as the IF detector using a uniform stride.

Figures 1b and 1c demonstrate that for various buffer sizes and
selectivities, the IF detector consistently achieves superior shot
coverage compared to uniform sampling. These experiments use
a three-level hierarchy. The IF detector is sensitive to the large
semantic difference that is a train entering or leaving because those
events trigger a larger disturbance in the feature vectors than most
of the ambient motion in the scene. In Figure 1b, the reason that the
ratio of shots detected decreases as the buffer size increases is that
other action in the scene (E.g., cloud activity) causes a large change
in the feature vectors. With large buffers, the IF detector focuses
on the other changes, instead of the presence of a train. This can
be remedied by using a DNN or feature vector representation that
is more in tune with the specific application, or by using smaller
buffers, thereby forcing the detected frames to be more evenly
temporally distributed.

Picking Interesting Frames in Streaming Video

REFERENCES

[1] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04861 (2017). http://arxiv.org/abs/1704.04861

[2] THS 2017. Top Video Surveillance Trends for 2017. https://cdn.ihs.com/www/pdf/
TEC-Video-Surveillance-Trends.pdf. (2017).

[3] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.
NoScope: Optimizing Deep CNN-Based Queries over Video Streams at Scale.
PVLDB 10, 11 (2017), 1586-1597.

[4] Yong Jae Lee, Joydeep Ghosh, and Kristen Grauman. 2012. Discovering Important
People and Objects for Egocentric Video Summarization. In Proceedings of the
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

[5] Zheng Lu and Kristen Grauman. 2013. Story-Driven Summarization for Egocentric
Video. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR ’13).

[6] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211-252.

[7] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J. Freedman. 2017. Live Video Analytics at Scale
with Approximation and Delay-Tolerance. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 17).

[8] Ke Zhang, Wei-Lun Chao, Fei Sha, and Kristen Grauman. 2016. Video Summariza-

tion with Long Short-Term Memory. In 2016 European Conference on Computer

Vision (ECCV ’16).

Bin Zhao, Li Fei-Fei, and Eric P. Xing. 2011. Online Detection of Unusual Events in

Videos via Dynamic Sparse Coding. In Proceedings of the IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR).

[9

SysML’18, February 15-16, 2018, Stanford, CA

http://arxiv.org/abs/1704.04861
https://cdn.ihs.com/www/pdf/TEC-Video-Surveillance-Trends.pdf
https://cdn.ihs.com/www/pdf/TEC-Video-Surveillance-Trends.pdf

	1 Introduction
	2 Finding Interesting Frames
	3 Preliminary Evaluation
	References

