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Abstract—Analysis of large-scale simulation output is a core

element of scientific inquiry, but analysis queries may experience

significant I/O overhead when the data is not structured for

efficient retrieval. While in-situ processing allows for improved

time-to-insight for many applications, scaling in-situ frameworks

to hundreds of thousands of cores can be difficult in practice.

The DeltaFS in-situ indexing is a new approach for in-situ

processing of massive amounts of data to achieve efficient point

and small-range queries. This paper describes the challenges

and lessons learned when scaling this in-situ processing function

to hundreds of thousands of cores. We propose techniques for

scalable all-to-all communication that is memory and bandwidth

efficient, concurrent indexing, and specialized LSM-Tree formats.

Combining these techniques allows DeltaFS to control the cost of

in-situ processing while maintaining 3 orders of magnitude query

speedup when scaling alongside the popular VPIC particle-in-cell

code to 131,072 cores.

I. INTRODUCTION

Exascale platforms are poised to set new records for
performance, memory capacity, and storage throughput. To
use them efficiently, systems software is expected to scale
to unprecedented levels of concurrency alongside scientific
applications that will generate larger and more detailed output
than they do today [1, 2]. The resulting datasets will require
scalable analysis codes to unlock the scientific insight buried
within the data. In-situ processing, the process of coupling
analysis or indexing codes with running scientific simulations,
promises to improve the quality and resolution of scientific
data analysis. However, scaling in-situ codes alongside scien-
tific applications presents significant performance challenges.
This paper presents the challenges and lessons learned when
modifying the DeltaFS distributed filesystem for more scalable
in-situ performance [3]. Our contribution is a set of techniques
forming the underpinning of DeltaFS’ scalable in-situ indexing
capability. We target scientific applications that run across
hundreds of thousands of cores and need fast point and
small-range queries. While the techniques we present are
optimized for scalable in-situ indexing, they may prove useful
for scaling other types of in-situ processing codes and for High
Performance Computing (HPC) systems software in general.

Scientific applications generate output by periodically halt-
ing computation and persisting memory contents to storage
[4]. Platforms such as Trinity [5] at Los Alamos National
Lab (LANL) provide petabytes of RAM, and this process
is expected to be time-consuming and blocked on storage,
leaving idle CPU cycles. Our in-situ technique, embedded in-
situ indexing, is designed to use these idle CPU cycles to
dynamically reorganize and index data as it is streamed to

storage. Processing data across large numbers of idle comput-
ing and network resources enables the calculation of efficient
indexes. However, embedded in-situ processing presents the
additional challenge of scaling directly within the application.

Traditional post-processing programs use a machine’s en-
tire memory to achieve scaling to large numbers of cores,
whereas embedded in-situ processing codes must achieve
scale while minimizing their memory footprint. An in-situ
function co-located with an application must additionally avoid
impacting the application’s runtime by only scavenging idle
resources and disrupting performance as little as possible.
Our experiments use Vector Particle-In-Cell (VPIC) [6], a
highly scalable particle simulation code developed at LANL,
to perform large-scale simulations with a shared scientific goal
of performing trajectory analysis across a small subset of one
trillion particles. Our techniques allow VPIC particles to be
efficiently indexed and queried fast even at extreme scale.

While updating DeltaFS for a more scale-out implemen-
tation, our first set of challenges were related to achiev-
ing efficient data shuffling under intense memory pressure.
This pressure stems from the fact that scientific applications
typically use almost all available memory. We have found
data shuffling to be imperative in constructing an optimized
storage layout for efficient data analysis, however DeltaFS
must reorganize data with a small memory footprint on each
of the application’s compute nodes. Limited memory greatly
complicates latency hiding for all-to-all communication and
requires sophisticated management of buffering throughout our
system. We achieve scalable data reorganization through an
efficient in-situ pipeline that simultaneously enables scalable
network communication (Section III) and efficient I/O to the
underlying storage (Section IV-D).

Our second set of challenges were specific to constructing
an efficient indexing mechanism that generates more optimized
storage layouts for fast point and small-range queries. To dra-
matically improve time-to-insight, scientific data often requires
a different set of indexing techniques than is commonly used in
popular key-value stores [7, 8]. This is especially true when
the indexing code is co-scheduled with the application and
is under intense memory pressure. We describe a customized
LSM-Tree [9] format that achieves fast queries at the read path
while not requiring the write path code to consume excessive
I/O bandwidth for storage reorganization (Section IV-A and
IV-B). In addition, we show an analysis format that enables
both high degrees of parallelism and fast lookups into logged
data structures (Section IV-C).
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Fig. 1. Indexing during post-processing is time-consuming for applica-

tions with intensive post-hoc analysis. In-transit indexing avoids post-

processing but requires extra resources to process data in-situ. Instead,

embedded in-situ indexing uses spare resources on the compute nodes of

an application to perform data indexing.

II. BACKGROUND AND RELATED WORK

Many scientific applications are time-based simulations that
run in timesteps. In many scenarios simulation state is period-
ically saved to storage for post-analysis. To operate efficiently,
applications minimize their time spent writing state to storage
in order to maximize time spent in simulation [4].

To reduce simulation I/O time it is important to fully utilize
the underlying storage bandwidth. For simulations whose state
involves lots of small objects [10, 11], the simulation state is
most efficiently persisted when these small objects are batched
together and appended to storage using large sequential writes
[12]. As data is not always appended in the optimal order for
post-analysis queries [13], a separate post-processing step is
often used to reorder or index the data after a simulation to
enable fast queries [10, 14, 15], as illustrated in Figure 1.

Because post-processing rereads data from storage after
each simulation, it has become increasingly inefficient as the
compute-I/O gap grows. Reading is even slower when post-
processing is performed on a separate, smaller cluster (e.g.,
one dedicated to data analytics) due to often reduced band-
width to the underlying storage. Fast burst-buffer storage exists
[16–18], but its limited capacity cannot always absorb the
entire simulation output. For large simulations a considerable
amount of data is still read from regular storage.

One way to reduce post-processing is to build data indexes
dynamically as data is written to storage. This is known as in-
situ indexing and is typically achieved by adding additional
nodes to a job to stage data so data indexes can be computed
asynchronously (i.e., in-transit) while the original simulation
proceeds to its next timestep [19–24]. As shown in Figure 1,
one drawback to this approach is the extra job nodes that must
be dedicated to perform the index calculation.

To avoid dedicating nodes for indexing, our previous work,
the DeltaFS Indexed Massive Directory [3], uses only idle
computing resources on the compute nodes of a job to per-
form the indexing calculation. Idle resources are temporarily
available because the scientific application is effectively forced
to pause its computation during its I/O phases [18]. In this
paper we use the term embedded in-situ indexing to refer to
the scenario where only idle job resources are used.

Parallel Scientific App

… …
App Code

DeltaFS In-situ 
Indexing

FIFOShuffle 
Send

fwrite()

FIFO Shuffle
Recv

Shared Underlying Storage

Per-Partition LSM Data Log

App
Proc

WriteBuffer
e.g. 1-2% mem

1
2

3

LSM Index 

Fig. 2. DeltaFS in-situ indexing is library code linked into the processes

of a parallel job. Data written by the job is first partitioned and shuffled

to the process responsible for it (Step 1). Then, the data is received at

the other end (Step 2), and indexed using a modified LSM-Tree (Step 3).

Our previous implementation achieved effectiveness at mod-
est scale (4,000 processes) [3]. Achieving similar efficiency at
larger scales required several code changes. Before we discuss
our techniques and lessons learned, this section presents an
overview of our system as proposed previously [3], discusses
related work, and reviews our previous results.

A. DeltaFS In-Situ Indexing API and Semantics
DeltaFS in-situ indexing is library code embedded inside

the distributed processes of a parallel scientific application. An
important reason for designing DeltaFS in-situ indexing as an
embedded library is to remove the bottlenecks of traditional
HPC storage systems and to leverage the idle CPU cycles and
fast interconnection networks available on the compute nodes
of a parallel job for the computation of data indexes [25, 26].
We assume that the underlying storage is a bottleneck and that
the application does not overlap its I/O with the simulation’s
timesteps so spare computing resources are available during
the simulation’s I/O phases [4].

By indexing data in-situ, our goal is to completely bypass,
or drastically reduce, data post-processing for certain classes
of post-analysis queries. Our in-situ indexing implementation
consists of a data shuffling component and a data indexing
component. Data produced by a job is shuffled within the job
according to a user-supplied data partitioning function such
as a hash function. Each job process manages a partition and
indexes the partition’s data using a customized LSM-Tree [9]
introduced in Section IV. Indexed data is written to storage
as per-partition log files [27]. The entire process is illustrated
in Figure 2. The process is currently optimized for point and
small-range queries. In the rest of our descriptions, we focus
on LANL’s VPIC application as an example [6].

VPIC is a scalable particle simulation code used at LANL.
In a VPIC simulation, each simulation process manages a
region of cells in the simulation space through which particles
move. Every few timesteps the simulation stops and each
simulation process writes a per-process file containing the state
of all the particles currently managed by the process. State for
each particle is 48 bytes. Large-scale VPIC simulations have
been conducted with trillions of particles, generating terabytes
of data for each recorded timestep [28, 29].
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Fig. 3. Unmodified VPIC writes one file per process without performing

any in-situ processing. To index VPIC particles with DeltaFS, we modify

VPIC to write the state of each particle into an Indexed Massive Directory

using particle IDs as the filenames. Dynamically created directory indexes

keyed on filenames allow us to quickly retrieve per-particle information

right after a simulation. Indexed particle data is packed and stored by

DeltaFS as large per-partition log objects in the underlying storage.

VPIC domain scientists are often interested in some prop-
erty (e.g., trajectories) of a tiny subset of particles with specific
characteristics (e.g., high energy). While the identities of these
particles (i.e., particle IDs) can be known at the end of a sim-
ulation, reading back the trajectories of these particles is like
finding a needle in a haystack. Because particle state is written
out-of-order, without post-processing a complete scan of the
simulation output is needed to recall per-particle information.
To avoid such scans, DeltaFS dynamically partitions particles
and creates an index for each partition that maps particle IDs to
particle data locations. As DeltaFS indexes data in-situ, per-
particle information can be easily queried by particle ID at
each data partition right after a simulation without requiring
the data to be further post-processed.

In this example, retrieving the state of a particle at a specific
timestep represents a point query, and retrieving the trajectory
of a particle over a range of timesteps represents a small-range
query. The range is small as simulations rarely persist massive
numbers of timesteps [4]. To use DeltaFS in-situ indexing, one
first creates an Indexed Massive Directory.

INDEXED MASSIVE DIRECTORIES are a special type of
directory that can be dynamically created inside a DeltaFS
namespace. While at their simplest these directories contain
a massive number of typically tiny files, each such directory
is effectively a distributed key-value store packing and storing
data in an underlying object store. Filenames are keys. File
contents are opaque values. Keys are inserted by creating new
files. Values are appended to these files. Each directory is in-
dependently partitioned and indexed, both keyed on filenames.
File contents are stored in one or more per-partition log files
in the underlying storage, similar to PLFS [27].

To index particles, VPIC creates a file for each particle using
the ID of the particle as the filename. As directory indexes
are built on filenames (i.e. particle IDs), per-particle state is
effectively indexed and can be quickly located. To retrieve per-
particle information, a reader program uses a POSIX-like API
provided by DeltaFS to access and open the corresponding
particle file. Internally, DeltaFS uses its directory indexes to

locate file data. This data locating process is transparent to the
reader program. File data, which is opaque to DeltaFS, is read
by the reader program and interpreted by it as particle data.

Figure 3 compares the file-per-process model used by the
original VPIC with the new file-per-particle model enabled
by DeltaFS. Unmodified VPIC simulations write their output
to an underlying storage [30–33] using one file per process.
Without post-processing, retrieving the trajectory of a specific
particle requires reading the entire simulation output (upwards
of TBs of data). With DeltaFS, VPIC stores data within
an Indexed Massive Directory. Because data is dynamically
partitioned and indexed, locating a particle’s trajectory after a
simulation requires reading only the smaller indexes from a
single directory partition (typically only MBs of data) [3].

B. Related Work
Byna et al. have published the largest petascale particle

simulations using VPIC [10, 28, 29]. With two trillion particles
and 2000 time steps of simulation the authors produced 350
TBs of data (including checkpoints) and detail the series of
optimizations required to use a single shared HDF5 file output
model. Some of the difficulties encountered while analyzing
the resulting particle outputs motivated the creation of the
DeltaFS embedded in-situ indexing pipeline for VPIC.

Rich in-transit data processing capabilities are provided by
multiple middleware libraries such as PreDatA [20], GLEAN
[21, 34], NESSIE [35], and DataSpaces [22]. These systems
all use auxiliary nodes to provide analysis tasks. Similarly,
systems such as Damaris [36] and Functional Partitioning
[37] co-schedule analysis, visualization, and de-duplication
tasks on compute nodes, but require dedicated cores. DeltaFS
embeds indexing computation directly within the application
processes and performs the processing during the application’s
regular output methods.

The GoldRush runtime [38] provides an embedded in-situ
analytics capability by scheduling analysis tasks during idle
periods in simulations using an OpenMP threaded runtime.
The analysis tasks leverage the FlexIO [39] capability within
ADIOS [40] to create shared memory channels for generat-
ing analysis tasks inputs to execute during idle periods of
application execution. The embedded in-situ framework within
DeltaFS instead co-schedules analysis tasks (i.e. partitioning
and indexing) with the application’s I/O output phase. While
Goldrush is extremely effective at scavenging idle resources
within the OpenMP runtime model, DeltaFS instead focuses
on co-scheduling analysis tasks for single-threaded bulk-
synchronous applications.

The SENSEI in-situ analysis framework [41] provides a
generic library capable of running computationally efficient
in-situ tasks on dedicated or shared resources. Their studies
included instrumenting a variety of codes and mini-apps.
Additionally, they concluded that most in-situ analysis tasks
require little memory overhead. DeltaFS is able to use only
3% of the system memory to do effective latency hiding for
in-situ operations even though the analysis requires shuffling
and indexing the entire output dataset.



FastQuery [14, 15], a popular indexing and query library for
scientific data, uses parallel, compressed bitmap indexes sim-
ilar to the bitmap indexing described by FastBit [42], and has
been deployed as part of in-situ indexing service to accelerate
subsequent reads [43]. DeltaFS creates a similar compressed
bitmap index following the shuffle phase to quickly filter
subsequences from within a partition. By customizing a bitmap
index for partitioned particle data, DeltaFS is able to reduce
the overall index size and reduce storage overhead.

Many systems have proposed variants of LSM-Trees to
improve performance. WiscKey [44] reduces the I/O amplifi-
cation associated with compaction by storing keys and values
separately and only performing compaction on the keys. Both
Monkey [45] and SlimDB [46] use analytical models to gener-
ate optimized filter layouts that balance per-filter performance
with available memory. LSM-Trie [47] uses an incremental
compaction scheme [48] to reduce compaction overhead, and
uses clustered indexes to improve query performance. VT-
Tree [49] uses a customized compaction procedure that avoids
re-sorting in-order data. The DeltaFS’s custom LSM-Tree
implementation presented in this paper is inspired by these
reorganizations, particularly the LSM-Trie, though DeltaFS is
primarily optimized for point and small-range queries.

The distributed data partitioning and indexing capability of
MDHIM [50] is similar to that of DeltaFS, though there are
several key differences. First, DeltaFS uses an LSM-Tree that
is more optimized for small value retrieval and in-situ scenar-
ios. Second, DeltaFS uses a POSIX-like file system abstraction
while MDHIM uses a key-value store abstraction. Finally,
MDHIM relies on MPI for inter-process communication while
DeltaFS uses Mercury RPC [51, 52] to run seamlessly across
platforms supporting different network transports [53–55].

C. Previous Results
This section reviews our previous experimental results [3].

Our previous experiments were performed on LANL’s Trinitite
cluster, a smaller clone of the Trinity machine used for testing
and debugging. Each Trinity or Trinitite compute node has
32 CPU cores and 128GB RAM. For each experiment we
ran a real VPIC configuration both with and without DeltaFS.
For VPIC baseline runs, the simulation wrote one output file
per simulation process. For DeltaFS runs, the VPIC simula-
tion wrote into an Indexed Massive Directory, with DeltaFS
dynamically partitioning and indexing the data, and writing
the results as parallel logs. Both the data partitioning and
the indexing were keyed on particle IDs, and the data was
partitioned by a hash function [56]. Our largest simulation
simulated 48 billion particles across 3,096 processes.

Across all runs, simulation data was first written to a burst-
buffer storage tier and was later staged out to an underlying
Lustre file system. We kept the compute node to burst-buffer
node ratio fixed at 32 to 1. Each Trinity or Trinitite burst-buffer
node can absorb data at approximately 5.3GB per second.

After each simulation, queries were executed directly from
the underlying file system with each query targeting a random
particle and reading all of its data. Particle data was written

out over time as the simulation ran through timesteps. Each
simulation was configured to output all particle data for 5
of those timesteps. To retrieve the trajectory of a particle,
the VPIC baseline reader always reads the entire simulation
output and each query was repeated only 1 or 2 times. DeltaFS
handles queries more efficiently so all DeltaFS queries were
repeated 100 times. Each query started with a cold data cache.
The average query latency was reported. While DeltaFS used
a single CPU core to execute queries, the baseline reader used
the number of simulation processes to read data in parallel.

Figure 4(a) shows the read performance. While the baseline
reader used all the CPU cores to run queries, a single-core
DeltaFS reader was still up-to 5,112x faster. This is because
without an index for particles, the baseline reader reads all
the particle data so its query latency is largely bounded by the
underlying storage bandwidth. As DeltaFS builds indexes in-
situ, it is able to quickly locate per-particle information after
a simulation and maintain a low query latency (within 300ms
in these experiments) as the simulation scales.

Figure 4(b) shows the I/O overhead DeltaFS adds to the
simulation’s I/O phases for building the data indexes. Part of
the overhead comes from writing the indexes in addition to
the original simulation output. The rest is due to the reduced
I/O efficiency resulting from DeltaFS performing the in-situ
indexing work. DeltaFS has large but decreasing overheads for
the first 5 runs. This is because those jobs are not large enough
to saturate the burst-buffer storage, so the system is dominated
by the extra work DeltaFS performs to build the indexes. For
bigger runs the jobs start to bottleneck on the storage and we
see a DeltaFS slowdown of approximately 15%.

As will be discussed in Section III, because our previ-
ous implementation required excessive memory for efficient
communication to achieve data partitioning and indexing, it
was unable to scale beyond thousands of processes. This
paper shows techniques to overcome this limitation. To further
improve performance, Section IV discusses additional LSM-
Tree techniques we used to enable data to be more efficiently
indexed and queried. Critically, none of the application facing
interfaces described previously [3] required any changes to
scale DeltaFS to hundreds of thousands of processes.

III. STREAMING DATA SHUFFLING

Recall from Section II-A that our goal is to efficiently
speed up post-analysis queries while drastically reducing post-
processing. To achieve this, DeltaFS features an in-situ index-
ing pipeline consisting of a data shuffling component and a
data indexing component. This section shows techniques for
this data shuffling component which was limiting the system’s
scalability. We address data indexing in Section IV.

To improve data placement, DeltaFS implements an all-to-
all shuffle to dynamically partition data across all DeltaFS
instances running inside the distributed processes of a parallel
application [3]. As illustrated in Figure 2, each piece of data
written into the DeltaFS pipeline is assigned a destination
according to a data partitioning function. According to the
destination the data is buffered at one of the sender queues
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Fig. 4. Results from our previous VPIC simulation runs using the

old DeltaFS code on LANL’s Trinitite cluster. Our biggest job used 99

compute nodes, 3,096 CPU cores, and simulated 48 billion particles. While

the baseline VPIC reader used all the CPU cores to search particles in

parallel, all DeltaFS queries were executed on a single CPU core.

bound to each peer shuffle receiver. When a queue is full,
all data in the queue is sent as a single large message to the
destination. Each DeltaFS instance is both a shuffle sender
and a shuffle receiver. Because data belonging to each data
partition is sent to and indexed by a single receiver, DeltaFS
is able to efficiently answer queries by looking only at the
indexes and data stored by one of its receivers [57–59].

With this paper targeting point and small-range queries, we
have chosen to partition data using hash functions. This section
mainly focuses on the inter-process communication needed for
distributing the data to achieve proper partitioning. We show
techniques for scalable all-to-all communication and measure
their effectiveness in DeltaFS.

A. Partitioning streaming data by shuffling

LESSON 1: Shuffling data in-situ is important for limiting
query accesses to a small subset of data, and performing it
efficiently requires deep message buffering.

To quickly shuffle data, we need to efficiently support all-to-
all communication for both small- and large-scale simulations.
But even with modern HPC interconnects [60], the cost of
large-scale all-to-all communication can be high if frequent
communication consists of small payloads that prevent us
from fully utilizing the network’s bandwidth. To hide network
latency, we buffer adequate data (e.g., 32KB) before sending it
to a remote process. To further increase efficiency, we perform
network operations asynchronously.

RESULTS. Figure 5(a) compares the efficiency of DeltaFS
shuffling under different buffer configurations. Data shuffling
in DeltaFS is built atop the Mercury RPC library [51, 52]. Us-
ing an 1KB buffer size results in only about 30% utilization of
bandwidth to storage, while in contrast, larger buffer sizes like
4KB and 32KB result in significantly higher levels of storage
bandwidth utilization. The results highlight the importance of
deep message buffering on the overall efficiency of an in-situ
indexing pipeline that requires dynamic data placement.

B. Scalable all-to-all communication via multi-hop routing

LESSON 2: All-to-all communication is necessary to dy-
namically partition data through shuffling, and multi-hop
routing can allow that to happen at scale while dramatically
reducing communication state per core.
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Fig. 5. DeltaFS data shuffling performance from real VPIC simulation

jobs on LANL’s Trinitite hardware. The largest job used 96 compute

nodes, 3,072 cores, and simulated 48 billion particles.

While deep message buffering helps alleviate the cost of
remote communication, the memory cost required to enable
it can be prohibitively high. Having each process maintain a
direct connection to all other processes requires each connec-
tion to buffer multiple kilobytes in order to achieve efficient
transfers. As a result, for large-scale simulations comprising
hundreds of thousands of processes, the total memory required
for buffering at each process quickly rises to gigabytes making
this approach infeasible. This was the primary reason our early
implementation could not scale, as reviewed in Section II.

One way to limit memory consumption is to route messages
via multiple hops. This is achieved by forwarding each mes-
sage through one or more intermediate shuffle processes before
sending the message to its final destination. By merging and
sharing communication routes, each process is able to maintain
fewer peer connections, and each process’s write-back buffers
can be filled more quickly. This better bounds the total amount
of buffer memory needed at each shuffle process.

As shown in Figure 6, our current multi-hop routing imple-
mentation consists of 3 hops. To send a message our protocol
first forwards the message to a local representative process
on the original sender node (i.e., the node containing the
source process), and then to a remote representative on the
receiver node, which then forwards the message to the final
destination. If a message is sent to a process on the same
node, the inter-node communication step is bypassed. To re-
duce communication cost the intra-node communication steps
are performed through shared memory. To further improve
performance, our implementation has each process on a node
act as a representative for a subset of the remote nodes. This
reduces the connection state per representative, and distributes
communication load evenly among all local processes.

Figure 6 shows an example of three-hop routing with 4
nodes and 16 shuffle processes. Each process is both a shuffle
sender and a shuffle receiver. On each node, 3 processes are
selected to act as the local representatives for one remote node
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each. Thus, each process only needs to maintain 3 local con-
nections and at most 1 remote connection. In contrast, direct
communication would require that each process maintains 15
connections. Given M nodes and N cores per node, three-hop
routing only requires M/N remote connections per process on
average, while direct all-to-all routing would require M ⇥N .
We consider this N2 reduction important, because it suggests
that if the number of cores per node increases faster than
the number of nodes in a cluster, the amount of required
communication state is further reduced. We expect this to
be the case in the future, as higher counts of lightweight or
specialized cores become more widespread.

RESULTS. Figure 5(c) compares the total amount of per-
process memory that is needed for maintaining the buffer space
for direct and 3-hop communication (assuming 32KB buffers
per connection). Because each Trinitite compute node has 32
CPU cores (N = 32 cores per node), a 3-hop configuration is
able to shuffle data using 1,024x fewer remote connections
(N2 reduction) than its 1-hop counterpart. While the per-
process memory usage for direct 1-hop communication grows
to gigabytes as the simulation scales, less than 16MB of
memory is needed in the 3-hop case even for the largest
simulation configuration with 256K processes and 8K nodes.

The cost of reduced per-process communication state is the
increased work each process has to do to deliver messages.
Figure 5(b) compares the system utilization of DeltaFS under
direct 1-hop communication, 3-hop communication, as well as
a special configuration where data shuffling is omitted (namely
indexing only). Despite the higher CPU usage 3-hop runs had,
3-hop routing didn’t significantly reduce the overall efficiency
of the in-situ indexing pipeline. Given excess CPU cycles are
available, 3-hop routing seems to only slightly increase the
total I/O time, as shown in Figure 5(d). Overall, the cost of 3-
hop routing is small, especially in comparison to the memory
savings it provides compared to direct 1-hop communication.
On Trinitite, the total CPU utilization is low for all three types
of runs, leaving headroom for other computationally intensive
classes of in-situ processing.

IV. STREAMING DATA INDEXING

While shuffling data to partitions limits query accesses to
a small subset of data, building data indexes at each data
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Fig. 7. Unmodified LSM-Trees use background compactions to bound

read latency. Each compaction merges multiple sorted data subsequences

into a single, longer subsequence. In the above example, before com-

paction, searching key K5 needs to check subsequence C, B, and A.

After compaction, only subsequence C and D will need to be checked.

partition further speeds up query processing. To achieve this
DeltaFS implements a customized LSM-Tree [9] that packs
small scientific objects into large log objects for efficient writ-
ing while simultaneously enabling such data to be efficiently
queried. This section describes our techniques and compares
DeltaFS with traditional LSM-Tree implementations.

To better interact with storage, LSM-Trees index data by
dividing it into subsequences, and then individually sorting
these subsequences according to a user-specified key [9]. As
illustrated in Figure 7, data inserted into an LSM-Tree is first
written to a small in-memory write buffer. Once the buffer is
full, buffered data is sorted and appended to storage as a sorted
run of data blocks. These sorted data blocks then form a data
subsequence. A special index block is created for each such
subsequence to remember the subsequence’s key range. While
LSM-Trees have been widely used [8, 50, 61–65], managing
data as an embedded library presents unique challenges.

First, an embedded library may only use a small portion
of the compute node’s memory that the application is willing
to relinquish. Consequently, there is often limited space in
memory that may be used to coalesce or index data. Second,
to minimize interference an embedded library must be ready to
yield the CPU and the network when the application restarts its
own computation. This limits the total amount of background
work the library is able to perform. As embedded I/O libraries
can differ drastically from traditional long-running I/O services
deployed on dedicated cluster nodes, this section examines and
evaluates the way DeltaFS adapts to this unique environment.

A. Fast data access without LSM-Tree compaction

LESSON 3: Partitioned streaming data indexing allows for
fast point and small-range queries without requiring post-write
data reorganization operations such as log compaction.

Recall from Figure 7 that data subsequences generated by
LSM-Trees are sorted separately so their key ranges overlap.
As such, finding a data element may require checking every
subsequence at a certain data partition and reading lots of data.
To bound read latency, unmodified LSM-Trees use background
compactions to incrementally merge new data subsequences
into older data subsequences [8, 9, 66]. As shown in Figure 7,
by reducing the total number of data subsequences, running
compactions allows data to be queried more efficiently.

With each compaction reading multiple data subsequences,
sorting, and rewriting the same data into a longer subsequence
(essentially a merge sort over a subset of data subsequences),
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Fig. 8. Results from VPIC simulations on LANL’s Trinitite cluster with

DeltaFS (deltafs-imd) or LevelDB (ldb) indexing the data. We include

LevelDB measurements that perform both shuffle and compaction (sh),

and those that do a shuffle without compaction (sh+nocomp).

compactions can easily consume a large amount of storage
bandwidth for reading and rewriting previous data. As storage
is typically a bottleneck during application I/O, running back-
ground compaction operations would significantly increase the
total I/O time, especially when the application dumps massive
amounts of data [28, 29]. Moreover, with embedded in-situ
processing sufficient CPU cycles to perform the compaction
are not always available on compute nodes [38]. Since com-
paction overwhelms the underlying storage, DeltaFS avoids it
and instead uses filters [67] and parallel reads [44] to achieve
fast queries. We discuss these concepts in Section IV-C.

RESULTS. Figure 8 measures the overhead of compaction.
Since DeltaFS avoids compaction, we compare DeltaFS with
LevelDB [66, 68], a general-purpose LSM-Tree implementa-
tion widely used by many HPC storage systems [50, 61, 62, 69,
70]. The LevelDB’s LSM-Tree implementation performs com-
paction. By default, LevelDB allocates an 8MB in-memory
space to buffer incoming data. To compare with LevelDB, we
configure DeltaFS to match LevelDB’s memory usage.

Our experiments used 32 Trinitite compute nodes and one
burst-buffer node. We ran VPIC simulations, where data was
dynamically partitioned and indexed either by DeltaFS as
parallel logs, or by LevelDB using LevelDB’s own data
formats [68]. We discuss DeltaFS’s data formats in the next
section. In both cases, data is partitioned by DeltaFS using the
all-to-all shuffle mechanism discussed in the previous section
(LevelDB does not shuffle data). All data is written to the
burst-buffer storage. After each simulation, data is flushed
to the underlying Lustre file system for queries. Each query
selects a random particle and reads all of its data. We report the
average query latency out of 100 such queries, all performed
on cold cache.

We compare DeltaFS (deltafs-imd) with two LevelDB
configurations: LevelDB with an all-to-all shuffle provided
by DeltaFS (ldb+sh), and LevelDB with DeltaFS shuffle
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Fig. 9. In LSM-Trees, each data subsequence consists of a sorted run

of data blocks, an index block, and optionally a filter block. The index

block stores the locations of the data blocks. To optimize storage accesses,

DeltaFS stores indexes and filters in a single per-partition index log for

fast retrieval, and stores all data blocks in a per-partition data log to

avoid creating lots of small data objects in the underlying storage.

but additionally modified to not perform any compaction
(ldb+sh+nocomp). Figure 8(a) shows the total I/O time as
a function of the total particle data dumped by a simulation.
Due to compaction, LevelDB’s total I/O time is substantially
higher than both DeltaFS and the LevelDB with compaction
disabled. To examine the compaction cost, Figure 8(b) shows
the I/O amplification of each simulation trial. I/O amplification
measures the ratio of the total amount of data written to and
read from the storage, to the total amount of new information
persisted. As shown in Figure 8(b), this ratio is 1 if there
is no compaction (each write writes new information), and
increases significantly if one compacts (due to repeated reads
and rewrites). To conclude, because the underlying storage
bandwidth available to an application is typically not provi-
sioned to absorb each piece of data multiple times, indexing
through compaction (i.e., post-write storage reorganization) is
almost always problematic for embedded in-situ indexing.

Figure 8(c) shows the time it takes to query a particle trajec-
tory. Since data is partitioned, each query hits one partition.
Within each partition, LevelDB with compaction (ldb+sh)
answers queries significantly faster than LevelDB with no
compaction (ldb+sh+nocomp). This is because compaction
bounds the total number of places a query needs to check so
data can be found with fewer storage lookups. While DeltaFS
does not perform compaction, it answers queries almost as
fast as the LevelDB that performs compaction (ldb+sh).
This is because DeltaFS performs more aggressive packing
to control the size and the number of the storage objects it
creates so each query touches less objects. This allows data
to be searched more efficiently, as our next section discusses.
LevelDB performs less packing so its queries tend to touch
more objects, as shown in Figure 8(d).

B. Maximizing storage throughput via data packing

LESSON 4: Packing index data based on expected query
types allows storage bandwidth to be more fully utilized for
subsequent queries.

To ease compaction [71], LSM-Tree implementations typ-
ically store data subsequences in separate files [68]. While
this layout allows each subsequence to be added and deleted
independently, potentially lots of files are going to be created
in the underlying storage [30], causing considerable metadata



overhead. Moreover, because indexes associated with different
data subsequences are stored with subsequence data in separate
files, they are read individually using non-contiguous read
operations. This further increases the time spent reading data
to satisfy queries [8, 47]. As reading indexes is costly, LSM-
Tree implementatons typically cache a subset of indexes in
memory to avoid reading them repeatedly [62, 66, 68]. But
post-hoc queries typically start with a cold cache, and may not
possess sufficient locality to benefit from caching generally.

Since DeltaFS avoids compaction, it uses a more specialized
storage layout similar to PLFS [27] with clustered indexes,
as shown in Figure 9. Recall from Figure 7 that data subse-
quences are independently constructed, and each consists of
an index block and a sorted run of data blocks. While these
blocks are traditionally stored in per-subsequence files [68],
DeltaFS remaps these blocks into two types of log files: one
per-partition data log holding all the data blocks, and one per-
partition index log holding all the index blocks. This creates
fewer files in the underlying storage, and allows per-partition
indexes to be bulk retrieved using large sequential reads.

RESULTS. Figure 10 shows the benefits of DeltaFS’s spe-
cialized storage layout by comparison with LevelDB. In each
read experiment, a random VPIC particle is selected and its
trajectory over time is read. In the smallest configuration, each
such trajectory contains 1 timestep. In the largest configura-
tion, each contains 5 timesteps. All queries were executed on
a single CPU core. Each query was repeated 100 times, all
with cold data caches. We report the average query latency.

We compare DeltaFS with LevelDB (ldb+sh+nocomp).
This section focuses on the results in the absence of Bloom
filters (bf). We discuss Bloom filters in Section IV-C. Fig-
ure 10(a) shows the query speedup of DeltaFS and LevelDB
against the VPIC baseline reader. By partitioning and indexing
data, LevelDB answers queries up to 20x faster than the
baseline reader, while using only a single core to execute the
queries. With a better storage layout, DeltaFS is up to 310x
(or 910x with Bloom filters) faster than the baseline reader.
This speedup is less than what we reported early [3] because
the total amount of particle data generated in this experiment
is smaller than that of our earlier results.

Figure 10(b) shows the total number of underlying storage
files created by each DeltaFS and LevelDB process. Because
DeltaFS remaps data and data indexes into per-partition log
objects, the total number of files created by each process in
the underlying storage is fixed and does not increase with
the simulation size. LevelDB creates a file in the underlying
storage for every few megabytes of VPIC’s output, so the total
number of such files increases linearly with the simulation.

Different storage layouts have profound impact on query
processing, as shown in Figure 10(c), 10(d), and 10(e). Be-
cause LevelDB does not cluster indexes, a large number of
random storage reads are executed in order to collect necessary
indexes before data can be located and fetched. As a result,
LevelDB’s query process was dominated by random index
reads, causing it to experience much higher query latency.

C. Using filters and parallelism to accelerate queries

LESSON 5: Sorting data post-write is unnecessary, and
we can use parallelism and filters to overcome the lack of
contiguity in data storage.

While clustered per-partition indexes can be efficiently
retrieved, our coarse-grained indexes cannot precisely locate
each data element. To explain this with an example, consider
each data subsequence as all the word-definition pairs within
an English dictionary (e.g. Webster’s). The dictionary is sorted
alphabetically and has an index showing the first word of each
page. In this case, the index describes where to find a word
but it cannot indicate whether a word exists in the dictionary.
One needs to check a specific page (i.e., a specific data block)
in order to make sure. In our case, without compaction there
are potentially many data subsequences (English dictionaries)
within each data partition. To find a specific data element (an
English word), all these subsequences will have to be checked,
one-by-one, until the target data element is found.

To avoid reading many data subsequences, a Bloom filter
[67] is created for each subsequence and is stored with the
subsequence’s indexes. Each Bloom filter is a probabilistic
data structure capable of checking whether a data element may,
or must not, exist in a data subsequence. With Bloom filters,
potentially many data subsequences can be skipped that are
known to not contain a certain data element. This bounds the
total number of data lookups each query has to perform. The
cost of adding Bloom filters is the extra I/O that is needed to
persist filter information, which is typically small (about 3-4%
in our experiments) in comparison to the total data size.

To answer queries even faster, DeltaFS reads data elements
in parallel. For trajectory reads this means reading multiple
data points in time concurrently. DeltaFS achieves this by
sending multiple asynchronous reads to the underlying storage.
The cost of sending multiple reads in parallel is the increased
memory for buffering and sorting partial results, which can be
bounded by setting a maximum query concurrency level.

RESULTS. Figure 10(e) shows the average query latency
for both DeltaFS and LevelDB runs. Because DeltaFS sends
multiple read requests in parallel, its query latency increases
slowly with the size of the query (from reading 1 timestep to
5 timesteps). While using Bloom filters substantially reduced
the query latency for DeltaFS, for LevelDB the reduction was
largely offset by the excessive random storage reads LevelDB
had to perform to readback the filters during the execution of
each of its queries. Since LevelDB does not cluster its filters,
using Bloom filters only reduces its query performance.

D. Avoiding computation and communication bottlenecks

LESSON 6: Overlapping data shuffling and computation
with storage I/O allows one to more fully utilize available
storage write bandwidth.

An important goal in our work is to ensure that any
communication or computation we perform does not prevent
full utilization of the available storage bandwidth and avoids
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Fig. 10. Results from real VPIC simulations on LANL’s Trinitite cluster

comparing VPIC (baseline), DeltaFS (deltafs-imd), and LevelDB (ldb)’s

performance in handling small-range queries. While VPIC queries were

executed on 1,024 CPU cores, all DeltaFS and LevelDB queries were

executed on a single CPU core. A single-core DeltaFS reader may send

multiples read requests in parallel.

extending the simulation’s I/O phase significantly. One chal-
lenge we faced was trying to maintain a steady data flow in the
communication between the shuffle component that partitions
the data and the indexing component that indexes data. The
indexing component uses a background thread for indexing
and writing data to the underlying storage, but originally the
background RPC thread used by the shuffle component was
coded such that it directly inserted data into the indexing
component as part of its message handling procedure. As
storage is usually slower than the network, insertions made
by the RPC thread into the indexing component were often
blocked waiting for the storage to finish writing and allow
new insertions. Blocking the RPC thread prevented timely
handling of important network events, including forwarding
messages to other processes and sending replies. Delaying both
forwarding and replies caused back-pressure that unnecessarily
slowed progress. To alleviate this inefficiency, a delivery queue
was added between the shuffle and indexing components, as
shown in Figure 11. Messages received by the background
RPC thread are first put into this delivery queue. A separate
delivery thread is responsible for inserting data into the index-
ing component. This ensures that the RPC thread is always
available to service network requests.

Another source of inefficiency was the lack of parallelism
in our indexing component. Early implementations had data
indexing and storage I/O serialized within a single background
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Fig. 11. Updated DeltaFS in-situ indexing pipeline design with a new

delivery queue structure, and a multi-way indexing mechanism. The

original pipeline design is shown in Figure 2.

thread. As a result, this indexing component would switch
between data indexing and storage I/O, creating a series of
gaps between I/O operations. These gaps generate idle I/O
periods, under utilizing the underlying storage. To prevent
such gaps, we changed our implementation to have multiple
sub-partitions so that each sub-partition can be indexed inde-
pendently, as shown in Figure 11. We refer to this as multi-
way data indexing. It allows data in one sub-partition to be
indexed while data in another sub-partition is being written to
the storage. Thus, at the time an I/O operation is completed,
the data for the next I/O operation is already indexed so it can
be written to storage immediately. This prevents I/O gaps and
allows us to approach full bandwidth utilization.

RESULTS. Figure 10(f) shows the importance of overlap-
ping indexing computation with storage I/O. DeltaFS achieves
this through multi-way data indexing. Results show that with-
out such optimization (1-way indexing) DeltaFS loses up to
10% I/O efficiency. Such reduction increases as compute to
burst-buffer ratio decreases (i.e., as there is more burst-buffer
bandwidth available to a parallel scientific job).

V. FINAL SCALING RESULTS

To show the performance of DeltaFS enabled by our new
techniques, we did the same experiments as described in
Section II-C but this time with a much larger scale on LANL’s
Trinity machine instead of the Trinitite. Our biggest run used
131,072 CPU cores, 4,096 Trinity compute nodes, simulated
2 trillion particles, and generated 470TB of data. Recall from
Section II-C that we ran a real VPIC configuration both with
and without DeltaFS for each experiment. For VPIC baseline
runs, the simulation wrote one file per process. For DeltaFS
runs, the simulation wrote into an Indexed Massive Directory.
Across all runs, simulation data was first written to a burst-
buffer storage tier and was later staged out to the Trinity’s
underlying Lustre file system. The compute node to burst-
buffer node ratio was fixed at 32 to 1.

Recall also from Section II-C that after each simulation,
queries were executed from the underlying Lustre file system
and each query targets a random particle and reads all of its
data. On Trinity, each DeltaFS query was repeated 1,000 times,
all starting with a cold data cache. We report the median query
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Fig. 12. Results from real VPIC simulation jobs on LANL’s Trinity

hardware. Our biggest job used 4,096 compute nodes, 131,072 CPU cores,

simulated 2 trillion particles, and wrote 96TB of data per timestep. While

our baseline VPIC reader used all the CPU cores to search particles in

parallel, all DeltaFS queries were executed on a single CPU core.

latency. Each VPIC baseline query reads the entire simulation
output and was repeated up-to 2 times. DeltaFS queries were
executed on a single CPU core while baseline queries used
the number of simulation processes to search particles.

Figure 12(a) shows the read performance. On Trinity, a
single-core DeltaFS reader answers queries up-to 1,740x faster
than the VPIC baseline reader that uses all the CPU cores.
Again, this is because without an index, finding each particle’s
trajectory requires reading all the particle data so the baseline
query time is bounded by the underlying storage bandwidth.
Because the underlying Lustre file system on Trinity has higher
bandwidth, the slowdown of VPIC is less on Trinity than
that on Trinitite as we reported previously in Section II-C.
DeltaFS builds particle indexes in-situ, so it can locate per-
particle information much more quickly and keeps query
latency within 500ms. The latency was higher on Trinity than
on Trinitite because Trinity is a much larger cluster with more
concurrent jobs so the Lustre on Trinity tends to be busier.

With techniques discussed in this paper, DeltaFS is able to
scale much further than its previous implementation. As shown
in Figure 12(b), on Trinity DeltaFS reliably built data indexes
with up-to 131,072 CPU cores. While in the beginning the
jobs were too small to saturate the burst-buffer storage, starting
from the sixth run the jobs began to bottleneck on the storage,
and we see a modest DeltaFS slowdown of about 10%. This
is less than that of our previous implementation, which had
a slowdown of about 15%. For the last 2 runs, the job sizes
are deliberately increased to demonstrate the limitations of our
scaling techniques. At 131,072 processes the increased all-to-
all communication overhead due to data shuffling had caused
the overall I/O overhead DeltaFS added to the simulation to
increase from 10% to 35%, suggesting more techniques are
needed for more efficient data movement to better support in-
situ processing beyond hundreds of thousands of cores.

VI. CONCLUSION

In this paper we described a set of techniques that enable
the scaling of DeltaFS to more than a hundred thousand pro-
cesses. The lessons we learned designing and applying these
techniques can be used to address scalability challenges in a
variety of in-situ and analytics middleware. We categorized our
techniques as providing either improvements to the scalable
shuffling of data or improving the efficiency of data indexing.

Latency hiding and efficient bandwidth utilization are crit-
ical for scalable shuffling. Our analysis shows that careful
buffer management is the key to keeping latency low and band-
width high. Buffers must be large enough to make efficient use
of the network without being so large as to waste memory. In
our configuration 32KB buffers are sufficient, but we anticipate
that larger buffers may be required with lightweight cores. To
slow the increase in the number of buffers as the system scales
we introduced our 3-hop all-to-all communication technique.
By limiting the number of off-node connections per process,
we believe the applicability of the 3-hop technique will in-
crease for supercomputer platforms if intra-node parallelism
increases faster than inter-node parallelism.

Our indexing techniques demonstrate that on-disk data reor-
ganization (e.g. compaction) is not necessary if the dominant
access regimes are point and small-range queries. In particular,
clustered indexes can be efficiently constructed and accessed
on modern HPC platforms, and coarse-grain subsequence fil-
ters are able to balance efficient searching with optimal storage
system access. We also note the importance of effectively
overlapping communication and indexing with storage access,
ensuring that the storage system is idle as little as possible
during the output phase.

More generally, we believe embedded in-situ indexing pro-
vides a compelling advantage in its ability to scavenge tem-
porarily available resources to improve the efficiency of post-
hoc analysis. Although embedded in-situ processing introduces
scalability challenges, we believe that these challenges are
manageable. The techniques described in this paper demon-
strate efficient scaling to a hundred thousand processes. We
believe that additional techniques exist to improve embedded
in-situ scaling even further. In addition to further scaling
techniques, it is clear to us that improving the performance of
queries when partitioning functions cannot provide an evenly
balanced distribution is important to furthering the adoption
of our techniques. Support for multiple simultaneous indexes
to enable multivariate analysis is also important to diverse
types of scientific analysis. Adding this capability to our
embedded in-situ pipeline will enable new classes of scientific
applications to leverage DeltaFS.
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