
Dynamic Stem-Sharing for Multi-Tenant Video Processing
Angela Jiang, Christopher Canel, Daniel Wong, Michael Kaminsky, Michael A. Kozuch,

Padmanabhan Pillai, David G. Andersen, Gregory R. Ganger

Carnegie Mellon University, Intel Labs

1 INTRODUCTION
Video cameras are ubiquitous, and their outputs are increasingly

analyzed by sophisticated, online DNN inference-based applica-

tions. The ever-growing capabilities of video and image analysis

techniques create new possibilities for what may be gleaned from

any given video stream. Consequently, most raw video streams will

be processed by multiple analysis pipelines. For example, a parking

lot camera might be used by three different applications: reporting

open parking spots, tracking each car’s parking duration for billing,

and recording any fender benders.

In this paper, we focus on shared processing on edge devices; pro-

cessing video near the camera addresses issues such as bandwidth,

intermittent connectivity (e.g., in drones), and real-time require-

ments, but leads to resource limitations. Thus, optimal video appli-

cation performance requires tuning to the resources available [13, 2,

14, 4, 7]. However, application developers may be unable to predict

easily what resources will be available when the application is de-

ployed, particularly in “multi-tenant” environments where the set

of concurrently deployed applications may vary. Instead, individual

application developers typically develop their models in isolation,

assuming either infinite resources or a predetermined set of static

resources. When a number of such individually-tailored models are

run concurrently, resource competition forces the video stream to

be analyzed at a lower frame rate— leading to unsatisfactory results

for the running applications, as frames are dropped and events in

those frames are missed.

The Mainstream video processing system enables efficient ex-

ecution of multiple independently-developed and incrementally-

deployed video analysis applications on a given video stream. Main-

stream shares execution of concurrent DNNs, yet does not rely

on applications’ DNNs to be trained collectively. Therefore, Main-

stream provides collaborative execution, even when development

and training data are not centralized in one organization.

Dynamic Model Selection and Stem Sharing. Mainstream

moves the final DNN model selection step from application devel-

opment time to deployment time, when the hardware resources and

concurrent application mix are known. By doing so, Mainstream

can select the best DNN for the resources available. Moreover, it

can coordinate the selections to share DNN “stems”, where doing so

leads to greater aggregate application quality by reducing aggregate

computational load.
1
For a given input, the shared stem need only

be executed once [4]. While a less specialized DNN may provide

worse accuracy than a fully-specialized DNN, it allows for stem-

sharing with concurrent applications, leading to lower resource

contention. Thus, constraining concurrent analytics applications to

1
Common DNN stems arise when application developers use transfer learning and fine

tuning [9, 12, 8, 10] to speed model development and address training data limitations,

wherein only a subset of a previously-trained DNN’s layers are re-trained (fine-tuned)

to the new application’s task—the common non-retrained layers of two applications

would be a shared stem.

share parts of their machine learning models can actually improve

the overall accuracy of a mix of applications.

To enable the selection of DNNmodels at deployment time, Main-

stream requires an additional step in the application development

process. Currently, developers experiment with different model

types, hyperparameters, and degrees of re-training/fine-tuning to

find the best choice for an assumed resource allocation, discarding

the trained DNNmodels not chosen. With Mainstream, a number of

candidateDNNmodels are kept and provided to the runtime system.

In particular, for a given base model (e.g., InceptionV3 trained on

ImageNet), candidate DNNs with different numbers of re-trained

layers are provided. This allowsMainstream to select at deployment

time— for a set of concurrent applications— the amount of stem

sharing that maximizes application quality within the resource

availability. At the same time, it avoids requiring that developers

yield control over their training data and processes, as would be

necessary for joint training of a multi-task DNN.

Experiments with a Mainstream deployment show that through

its dynamic selection of shared stems, Mainstream delivers as much

as a 93% higher F1-score, relative to the common approach of using

fully-independent per-application DNNs (No-sharing) and up to

61% higher F1-score than a static approach of retraining only the

last DNN layer and sharing all others (Max-sharing).

2 DESIGN OF MAINSTREAM
Mainstream consists of three components: M-Trainer, M-Planner,

and M-Runner. To provide dynamism, M-Trainer trains a variety of

models, each with different amounts of sharing. These are stored,

so at runtime, as resource availability fluctuates, Mainstream can

adapt the amount of sharing between applications.

2.1 Decentralized Training
Fine-tuning Networks. Developing a new DNN model by fine-

tuning an existing “pre-trained” DNN model is a practical alterna-

tive to training from scratch. During fine-tuning, a subset of the

pre-trained model weights (layers near the DNN input) are held

frozen and not permitted to change. The remaining free parameters

are then retrained for the given task with a new dataset. Fine-tuning

by using one of a few popular neural networks is standard practice

to reduce training time. However, this technique also provides an

opportunity for sharing computation: given two models fine-tuned

from the same base model, whatever layers were held frozen during

training will have the same weights, will produce identical results

for a given frame, and can be shared at inference time. Thus, models

need not be jointly trained, they may be fine-tuned independently

using the same base DNN model.

AdaptiveControl of the SharingOpportunity. Figure 1 shows
the relationship between specialization and Top-1 accuracy for

three different DNN architectures and three classification tasks.

1



SysML’18, February 15–16, 2018, Stanford, CA Jiang, et al.

0 20 40 60 80 100
% of layers that are unspecialized

0.0

0.2

0.4

0.6

0.8

1.0
To

p-
1 

A
cc

ur
ac

y

Flowers-ResNet50
Paris-ResNet50
Cats-ResNet50
Flowers-InceptionV3
Paris-InceptionV3
Cats-InceptionV3
Flowers-MobileNets-224
Paris-MobileNets-224
Cats-MobileNets-224

Figure 1: Per-frame classification accuracy vs. (Potential) sharing
for three different DNN networks (ResNet50 [5], InceptionV3 [11],
and MobileNets [6]), each fine-tuned with three different data sets
extracted from the ImageNet [3] database. The base DNNmodel was
also trained using ImageNet. Note that approximately 80% of the
model may remain unspecialized without significantly affecting ac-
curacy; in other words, 80% of the computation may be shared.

As more of the network is specialized, Top-1 accuracy increases,

but less sharing is enabled. M-Trainer cannot anticipate how much

sharing M-Scheduler will recommend. Therefore, M-Trainer trains

several model candidates, each with a different number of layers

held frozen. These models are stored so that at deployment time,

M-Scheduler can determine the optimal degree of sharing to use.

Training SDK.M-Trainer is responsible for generating the mod-

els and metadata needed to deploy an application to M-Scheduler.

To retain the privacy of users’ data, M-Trainer is designed as an

SDK that may be run under the developer’s control. For a given

task, M-Trainer generates a Model Set of trained model candidates

in the context of some base model (e.g., InceptionV3 pre-trained

with ImageNet). For each base model, M-Trainer has a set of branch-
points (essentially layer numbers) to which the application DNN

model will be fine-tuned to generate a model candidate. For a model

candidate trained via a branchpoint at layer l , the layers from 0

to l will represent the (unspecialized) stem which may be shared

with other tasks. Additionally, for each candidate in the Model Set,

M-Trainer estimates the accuracy of that model using an input vali-

dation set. The Model Set and corresponding accuracies constitute

the M-Package.
Training Costs. For each application, M-Trainer trains multiple

models. While training a model from scratch can be expensive, fine-

tuning is less costly. In our study, M-Trainer creates Model Sets

with 15 model candidates in 8 hours on a single GPU.

2.2 Dynamic Scheduling
During scheduling, M-Scheduler must choose a model candidate

from each application’s M-Package to implement that task. Each

candidate corresponds to a particular accuracy and degree of shar-

ing, and more sharing enables a higher frame rate of analysis, which

in turn leads to better end-to-end application quality. M-Scheduler

chooses the various model candidates to produce an overall sched-

ule that optimizes some objective function (e.g., maximize average

F1-score across applications).

2 3 4 5 6 7 8 9 10
Number of concurrent apps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

No Sharing

Max Sharing

Mainstream

Figure 2: Mainstream improves application quality (average F1-
score) relative to both (a) no sharing between applications (No-
sharing) and (b) sharing all layers but the last one (Max-sharing).

The optimal schedule is dictated by the set of applications to be

scheduled and the resources available.M-Schedulermodels resource

usage with a latency-based cost. Specializing more layers in an

application incurs a cost but improves utility. Using observations

from earlier rounds of deployment, M-Scheduler determines the

“cost budget” (ameasure of the available resources) and uses a greedy

approach to find the optimal schedule that fits within this budget.

While the space of possible schedules is combinatorically large, M-

Scheduler efficiently navigates it with a cost-benefit-based heuristic.

M-Scheduler starts with the least costly schedule: Max-sharing

(applications share all but the last layer). It continually refines

this schedule by making one application share fewer resources (use

more fine-tuned layers) until there are no more objective-improving

moves, or no more moves that are feasible under the cost budget.

3 EVALUATION
We evaluate our system on a a near-edge compute node shared by

up to 10 independent DNN-based video processing applications,

and we find that Mainstream improves result quality relative to

both the predominant No-sharing and hypothetical Max-sharing

approaches. See Fig. 2.

Benefit to F1-Score. The tested applications use image classi-

fiers to detect events on a 14FPS video stream.M-Plannermaximizes

application quality (end-to-end F1-score measured as harmonic

mean of event precision and event recall) by varying the amount of

sharing. As applications are added, resource contention increases—

forcing Mainstream to pick a different balance between accuracy

and frame rate. Mainstream delivers as much as a 93% higher F1-

Score than No-sharing and asmuch as 61% higher thanMax-sharing.

No-sharing exhibits low recall due to its low throughput (approx.

1.4FPS for 10 apps)—the system has fewer opportunities to detect

the event. Max-sharing has higher throughput (over 12FPS for 10

apps) but a worse recall due to low model accuracy (70% lower than

fully-tuned). Mainstream strikes a balance between accuracy and

frame rate depending on load (choosing 8.7FPS with an accuracy

18% lower than fully-tuned for 10 apps). Overall, Mainstream is

able to efficiently use limited edge compute resources by sharing

computation among multiple concurrent DNN tasks, yet allows

these tasks to be independently developed, trained, and deployed.

2



Dynamic Stem-Sharing for Multi-Tenant Video Processing SysML’18, February 15–16, 2018, Stanford, CA

REFERENCES
[1] G. Ananthanarayanan, P. Bahl, P. Bodík, K. Chintalapudi, M. Philipose, L.

Ravindranath, and S. Sinha. 2017. Real-time video analytics: the killer app for

edge computing. Computer, 50, 10, 58–67. issn: 0018-9162. doi: 10.1109/MC.

2017.3641638.

[2] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gon-

zalez, and Ion Stoica. 2017. Clipper: a low-latency online prediction serving

system. In 14th USENIX symposium on networked systems design and implemen-
tation (NSDI 17). USENIX Association, Boston, MA. isbn: 978-1-931971-37-9.

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/

crankshaw.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A

Large-Scale Hierarchical Image Database. In Cvpr09.
[4] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, Alec Wol-

man, and Arvind Krishnamurthy. 2016. MCDNN: An Approximation-Based

Execution Framework for Deep Stream Processing Under Resource Constraints.

In Conference mobisys’16 the 14th annual international conference on mobile
systems, applications, and services (MobieSys ’16). ACM.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the ieee conference on computer
vision and pattern recognition, 770–778.

[6] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:

efficient convolutional neural networks for mobile vision applications. Corr,
abs/1704.04861. http://arxiv.org/abs/1704.04861.

[7] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, andMatei Zaharia. 2017.

Noscope: optimizing neural network queries over video at scale. In Proceedings
of the vldb endowment, vol. 10, no. 11.

[8] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. 2014. Learning

and transferring mid-level image representations using convolutional neural

networks. In The ieee conference on computer vision and pattern recognition
(cvpr). (June 2014).

[9] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.

2014. CNN features off-the-shelf: an astounding baseline for recognition. In

IEEE conference on computer vision and pattern recognition, CVPR workshops
2014, columbus, oh, usa, june 23-28, 2014, 512–519. doi: 10.1109/CVPRW.2014.131.

http://dx.doi.org/10.1109/CVPRW.2014.131.

[10] Karen Simonyan and Andrew Zisserman. 2014. Two-stream convolutional

networks for action recognition in videos. In Advances in neural information
processing systems, 568–576.

[11] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and

Zbigniew Wojna. 2015. Rethinking the inception architecture for computer

vision. Corr, abs/1512.00567. arXiv: 1512.00567. http://arxiv.org/abs/1512.00567.
[12] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How trans-

ferable are features in deep neural networks? In Proceedings of the 27th interna-
tional conference on neural information processing systems (NIPS’14). MIT Press,

Montreal, Canada, 3320–3328. http://dl.acm.org/citation.cfm?id=2969033.

2969197.

[13] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,

Paramvir Bahl, and Michael J. Freedman. 2017. Live Video Analytics at Scale

with Approximation and Delay-Tolerance. In 14th USENIX symposium on net-
worked systems design and implementation (NSDI 17) (NSDI ’17). Boston, MA,

16 pages.

[14] Shlomo Zilberstein. 1996. Using anytime algorithms in intelligent systems. In

Ai magazine, 17(3):73-83.

3

http://dx.doi.org/10.1109/MC.2017.3641638
http://dx.doi.org/10.1109/MC.2017.3641638
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
http://arxiv.org/abs/1704.04861
http://dx.doi.org/10.1109/CVPRW.2014.131
http://dx.doi.org/10.1109/CVPRW.2014.131
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://dl.acm.org/citation.cfm?id=2969033.2969197
http://dl.acm.org/citation.cfm?id=2969033.2969197

	1 Introduction
	2 Design of Mainstream
	2.1 Decentralized Training
	2.2 Dynamic Scheduling

	3 Evaluation

