Distribution-based cluster scheduling

Jun Woo Park

CMU-CS-19-107
May 2019

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Gregory R. Ganger, Chair
Phillip B. Gibbons
George Amvrosiadis
Michael Kozuch, Intel Labs

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright (©) 2019 Jun Woo Park

This research was sponsored by the National Science Foundation under grant number I1IS-1409802, the U.S. Army
Research Office under grant number DAAD190210389, Intel ISTC-CC, Intel Big Data, Intel ISTC-VCC, and a
Samsung Scholarship.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Planning under uncertainty, Cluster Scheduling, Cloud Computing

For Sun Hee, Toffee, Coco, and the yet-to-be-born member of the family.

v

Abstract

Modern computing clusters support a mixture of diverse activities, ranging from
customer-facing internet services, software development and test, scientific research,
and exploratory data analytics. Many schedulers exploit knowledge of pending jobs’
runtimes and resource usages as a powerful building block but suffer significant
performance penalty if such knowledge is imperfect. This dissertation demonstrates
that schedulers that rely on information about job runtimes and resource usages can
more robustly address imperfect predictions by looking at likelihoods of possible
outcomes rather than single point expected outcomes.

This dissertation presents a workload analysis and two case studies of scheduling
systems: 3Sigma and DistSched. Characterization of real workloads revealed that
there exists inherent variability in the job runtimes and resource usage that cannot
be captured by single point estimates. An evaluation of a history-based runtime
predictor with four different traces demonstrates it is not trivial to obtain perfect
runtime predictions in real workloads, especially if the predictor is provided with
insufficient information. 3Sigma is a scheduler that leverages distributions of the
relevant runtime histories rather than just a point estimate derived from it. By
leveraging distribution and mis-estimate mitigation mechanisms, 3Sigma is able to
make more robust scheduling decisions and outperform state-of-the-art scheduling
systems that only rely on limited or no runtime knowledge. DistSched is a scheduler
that leverages distribution of the resource usage (cpu, memory, and cpu-time) and
account for the risk of contention to make robust scheduling decisions. The evaluation
of DistSched demonstrates that leveraging full history and mitigation mechanisms
allows the scheduler to more robustly address the imperfect predictions and perform
almost as good as the hypothetical system equipped with perfect knowledge of
runtime and resource usage.

vi

Acknowledgments

I have met and got help from so many people during the course of my Ph.D. study
and I owe my success in completing the program and getting the degree to them.

The most important person I need to attribute is my advisor Greg Ganger. Through
his directions and help, I was able to grow as a researcher. He is the person who
made my ramblings to become well-baked goods. Many of the ideas present in the
dissertation wouldn’t exist without his guidance. I feel very fortunate to be advised
by him and he will always be my role model going forward.

The next person in line is Michael Kozuch, who I consider as an unofficial co-
advisor. He and I worked together on most projects since I started working with Greg
and his feedback was equally crucial in developing ideas present in this dissertation.

I would also like to thank the rest of the members of my thesis committee, Phil
Gibbons and George Amvrosiadis, for their valuable insights and feedback.

Throughout the course of my Ph.D., I have collaborated with many different
people and appreciated insightful discussion with them. I am very fortunate to work
with Alexey Tumanov and Timothy Zhu who were the students who started the
original cluster scheduling project, who have helped me to get up to speed with the
cluster scheduling research. Angela Jiang and I worked together a lot in the estimator
part, both in JamaisVu and eventually in 3Sigma.

The Parallel Data Laboratory (PDL) is an absolutely fabulous group of faculty and
students. The amount of feedback and suggestions we get from the weekly meetings,
annual retreats, and visit days and the amount of support and opportunities we get just
by being part of the group is unfathomable. I specially thank Bill Courtright, Garth
Gibson, Majd Sakr, and Andy Pavlo, as well as students, Abutalib Aghayev, Joy
Arulraj, Rachata Ausavarungnirun, Ben Blum, Christopher Canel, Andrew Chung,
Henggang Cui, Chris Fallin, Aaron Harlap, Kevin Hsieh, Saurabh Kadekodi, Rajat
Kateja, Jin Kyu Kim, Michael Kuchnik, Hyeontaek Lim, Charles McGuffey, Jinliang
Wei, and Daniel Wong.

I also appreciate the support from an amazing group of staff at PDL: Karen
Lindenfelser for streamlining administrative affairs and organizing PDL events, Joan
Digney for helping us tremendously in making impressive posters, Chuck Cranor,
Chad Dougherty, Mitch Franzos, Jason Boles, and Xiaolin Zang for providing wonder-
ful technical support for the PDL computing resources. I also appreciate the support
from the staffs of the Computer Science Department, notably Deb Cavlovich who
wields magical powers to make things work and allowed us to focus solely on our
research and the Ph.D. program. They have made my research and life as a graduate
student a lot easier.

I also want to thank my friends and colleagues. I thank my colleagues at Computer
Science Department, Kiryong Ha, Junchen Jiang, Hanbyul Joo, Gunhee Kim, Jisu
Kim, Soonho Kong, Euiwoong Lee, Jay-yoon Lee, Seunghak Lee, Mu Li, Vittorio
Perera, Kijung Shin, and Manzil Zaheer for providing valuable insights and feedback.
I also thank my friends for emotional support and being part of my memorable time in
Pittsburgh. There are too many to list, but to name a few, I would like to thank Se-Joon

Chung, SooHyun Jeon, Minkyung Kang, Dachyeok Kim, Dohyeon Kim, Chloe Kim,
Jihee Kim, Joshua Kwangho Kim, Taekyun Kim, Gihyuk Ko, Kate Seokjeong Lee,
Kiwan Maeng, Shane Moon, Soojin Moon, Diana Nam, and Daegun Won. I also
thank my friends from elsewhere, Ilhwang Cha, Dongho Chang, Donghyun Choi,
Han Choi, Sungkwon Hong, Daniel Kim, Hojin Kim, Jaechwan Kim, Eunsoo Lee,
Jangjik Lee, Sanghyun Lee, Changho Oh, and Alex Park.

I also thank the members of the PDL Consortium: Alibaba, Amazon, Datrium,
Dell EMC, Facebook, Google, Hewlett Packard Enterprise, Hitachi Ltd., IBM Re-
search, Intel Corporation, Micron, Microsoft Research, NetApp, Inc., Oracle Corpo-
ration, Salesforce, Samsung Semiconductor Inc., Seagate Technology, Two Sigma,
Veritas and Western Digital for their interest, insights, feedback, and support. I
also would like to thank Los Alamos National Laboratory and Two Sigma for their
data, feedback, and support. This research was sponsored by the National Science
Foundation under grant number IIS-1409802, the U.S. Army Research Office under
grant number DAAD190210389, Intel ISTC-CC, Intel Big Data, Intel ISTC-VCC,
and a Samsung Scholarship. Besides the scholarship, I am especially grateful to
the staff of the Samsung Scholarship, Yongnyun Kim, Junghyun Kim, Seyoung Na,
Jiyeon Park, and Hyunmo Yoo for their support.

Lastly, I want to thank my wife, my closest friend, who I met during early days
of my grad school and who was always with me including the brightest and darkest
times of my Ph.D. program. I also thank my parents, my brother, Toffee, and Coco
for supporting me during the study.

viil

Contents

1 Introduction

1.1
1.2
1.3

Thesis Statement
Contributions
Outline

2 Background

2.1
2.2
2.3
24

Resource consolidation
Cluster scheduling with job information . .
Predicting job information
Workloads used in this dissertation
24.1 Googlecluster
24.2 Two Sigmaclusters
24.3 LANL Mustang cluster
244 LANL OpenTrinity supercomputer

3 Diversity of cluster workloads

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8
3.9

Dataset information
Job characteristics
Workload heterogeneity
Resource utilization
Failure analysis
A case study on plurality and diversity . . .
3.6.1 JVuPredict background
3.6.2 Evaluationresults
On the importance of trace length
Relatedwork
Conclusion

4 3Sigma: a runtime distribution based scheduler

4.1

4.2

Background and related work
4.1.1 Runtime variation and uncertainty .
4.1.2 Mis-estimate mitigation strategies .
4.1.3 Distribution-based scheduling . . .

Distribution-based Scheduling 0L

1X

11
12
12
15
17
19
23
23
24
26
27
27

4.2.1 Valuation of scheduling options 34

4.2.2 Expected resource consumption e e .. 35
4.3 Design and implementation 35
4.3.1 Generating runtime distributionso 36
4.3.2 Handling imperfect distributions 37
4.3.3 Scheduling algorithm, 38
44 Evaluation e e e 43
4.4.1 Experimental setup 43
4.42 End-to-end performance 46
443 Attributionofbenefit L 48
4.44 Distribution-based scheduling benefits 48
4.4.5 Sensitivity analyseso 49
4.4.6 Scalability 51
4.5 Summary e e e e e 51
DistSched: a resource-runtime distribution based scheduler 53
5.1 Background 54
5.1.1 Predictability 55
5.1.2 Mitigation Strategies e e e e e e 56
5.1.3 0 AsSsumptionso ... e e 57
5.2 Resource distribution-based scheduling 58
5.2.1 Valuation of scheduling options 59
5.2.2 Scheduling challenges 60
5.2.3 Greedy scheduling algorithm 62
5.3 Implementationo e e 64
53.1 DSPredicClh v i e 65
5.3.2 Mis-estimate mitigation strategies 65
54 Evaluation L 66
54.1 Experimentalsetup 66
5.4.2 End-to-end performance, 69
5.4.3 Benefitattribution L 71
5.4.4 Sensitivity to the clustersize 73
5.4.5 Schedulerscalability, 73
5.5 Summary ... e e 74
Conclusion 77
6.1 Futurework 77
6.1.1 Making better use of current resource observation 78
6.1.2 Exploiting patterns of resource usage 78
6.1.3 Dependency-aware scheduling 78
6.1.4 Public Cloud or Hybrid Cloud environments 78
6.1.5 Greedy scheduling algorithms 78
6.1.6 Utility functions 79
6.1.7 Adapting to drift and trend in the history 79

Bibliography

X1

81

Xii

List of Figures

3.1
3.2
3.3

34

3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1

4.2

CDF of job sizes based on allocated CPU cores.
CDF of the durations of individual jobs.
Hourly job submission rates for a given day. The lines represent the median, while
the shaded region shows the distance between the 25" and 75 percentiles.
Hourly task placement requests for a given day. The lines represent the median,
while the shaded region shows the distance between the 25 and 75" percentiles.
CDF of job interarrival times.
CDF of the number of tasks perjob.
Breakdown of the total number of jobs, as well as CPU time, by job outcome. . .
CDFs of job sizes (in CPU cores) for unsuccessful and successful jobs.
Success rates for jobs grouped by CPU hours.
Accuracy of JVuPredict predictions of runtime estimates, for all four traces. . . .
Is a month representative of the overall workload? The boxplots show distribu-
tions of the average job inter-arrival period (left) and duration (right) per month,
normalized by the trace’s overall average. Boxplot whiskers are defined at 1.5
times the distribution’s Inter-Quartile Range (standard Tukey boxplots).

Comparison of 3Sigma with three other scheduling approaches w.r.t. SLO (deadline)
miss rate, for a mix of SLO and best effort jobs derived from the Google cluster trace [72]
on a 256-node cluster. (Details in §4.4.1) 3Sigma, despite estimating runtime distribu-
tions online with imperfect knowledge of job classification, approaches the performance
of a hypothetical scheduler using perfect runtime estimates (PointPerfEst). Full
historical runtime distributions and mis-estimation handling helps 3Sigma outperform
PointRealEst, a state-of-the-art point-estimate-based scheduler (detailed in §4.1.2).
The value of exploiting runtime information, when done well, is confirmed by comparison
to a conventional priority-based approach (Prio).

Analyses of cluster workloads from three different environments: (a) Distribution of
job runtimes (b) Distribution of Coefficient of Variation for each subset grouped by
user id (c) Distribution of Coefficient of Variation for each subset grouped by amount
of resources requested (d) Histogram of Estimate Errors comparing runtime estimates
from the state-of-the-art JVuPredict predictor and actual job runtimes. Estimate Error
values computed by %ﬁ‘ct“dl x 100. Each datapoint is a bucket representing values
within 5% of the nearest decile. The “tail” datapoint includes all estimate errors > 95%.
Cluster:SC. Workload:Google_E2E, TwoSigma_E2E, MUSTANG_E2E

Xiil

4.3

4.4
4.5

4.6

4.7

4.8

4.9

4.10

Example curves for estimating utility for a given job. Each job is associated with a
utility function (a) describing its value as a function of completion time. 3ocPredict
produces a PDF (b) describing potential runtimes for the job. 36'Sched combines them to
compute expected utility (c) for the job as a function of its start time. [Note the different
x-axes for (a), (b), and (c).] As described in §4.3.2, the overestimate handling technique
involves modifying the utility function (a) associated with the job with an extended
version illustrated in (d). L L e e e e

End-to-end system integration.

Job D is an SLO job with a 15min deadline. Job BE is a BE job. Left column: job
runtimes ~ U (0, 10) (scenariol). Right column: job runtimes ~ U (2.5,7.5) with the same
U =5 (scenario 2). (a) and (b): The final order that yields maximal utility. The intensity
of the black represents the expected resource consumption at the start of each slot (from
100% certainty (darkest) to 25% certainty (lightest), in 25% decrements for the scenario
1 and a 50% decrement for the scenario 2. (¢) and (d): Inverse CDF (1 — CDF (t)), the
probability of D (blue) and BE (red) jobs completing before ¢, which is also the probability
of still using the resource at that time. (e) and (f): SLO job’s expected utility, set to the
probability of the job’s completion by the deadline at each start time in this example (note:
x-axis is different from other subfigs).o

Compares the performance of 3Sigma with other systems in the real cluster. 3Sigma
constantly outperforms PointRealEst and Prio on SLO miss-rate and Goodput
while nearly matching PointPerfEst. Cluster:RC256. Workload:E2E

Compares the performance of 3Sigma with other systems under workloads from different
environments in simulated cluster. 3Sigma constantly outperforms PointRealEst and
Prio on SLO miss rate and Goodput while nearly matching PointPerfEst. The
Google workload is Shr variant of E2E. Cluster:SC256. Workload:E2E, TwoSigma_E2E,
MUSTANG.E2E o e

Attribution of Benefit. The lines representing 3Sigma with individual techniques
disabled— demonstrating that all are needed to achieve the best performance. The
workload is E2E with a constant deadline slack. Cluster:SC256 Workload:DEADLINE-#n
where n € [20,40,60,80,100,120,140,160,180]

3Sigma’s performance when artificially varying runtime distribution shift (x-axis) and
width (Coefficient of Variation curves). The runtime distribution provided to the scheduler
is ~ A (U = job_runtime x (1+ 155),0 = job_runtime x CoV'). Each trace consists of
jobs that are either within 10% accuracy or under- or over-estimates jobs. The group of
jobs achieves a target average artifical shift. (c) shows the breakdown of these job types
for each artificial shift value. Distribution-based schedulers always outperforms the point
estimate-based scheduler. Tighter distributions perform better than wider distribution
with a smaller artificial shift, but wider distributions are better with a larger artificial shift.
The workload is 2 hrs in length. Cluster:SC256. Workload:E2E

3Sigma outperforms others on SLO misses for a range of loads, matching PointPerfEst
closely. All systems prioritize SLO jobs by sacrificing BE jobs when load spikes. Clus-
ter:SC256, Workload: E2E-LOAD-¢ where ¢ € [1.0,1.2,1.4,1.6]

X1V

36

4.11 3Sigma outperforms others on SLO Misses for a range of runtime variability. 3Sigma
matches PointPerfEst in terms of SLO misses at the sacrifice of Best Effort goodput.
Cluster:SC256. Workload:E2E-SAMPLE-n where n € [5,10,25,50,75,100]

4.12 3Sigma scalability as a function of job submission per hour. Cluster: GOOGLE, Work-
load: SCALABILITY-n where n € [2000,3000,4000]

5.1 Compares the user provided CPU request amount to the actual average CPU usage
of the jobs in the Google trace. (a) Only 20% of jobs are within 2X error range
and 74% of jobs are over-estimated. (b) Further examination of over-estimates
shows that a significant portion is significantly over-estimated.

5.2 Histogram of Precent Estimate Errors comparing estimates from the 3o Predict
modified to provide estimates for CPU, Memory, CPU-time, Memory-time. Esti-

mate Error values computed by %ﬁcmal Each datapoint is a bucket repre-
senting values within 5% of the nearest decile. The tail” datapoint inclues all
estimate errors > 95%. oL

5.3 Compares the estimate accuracy of jobs in first week and last week of the Google
trace for Runtime, CPU, Memory, and CPU-time. Estimate accuracy is improved
over time for all metrics, except for CPU-time.

5.4 Histogram of Percent Estimate Errors comparing runtime estimates computed
from different predictors. ”"Runtime” estimates are the runtime estimate from
3oPredict, while other estimates are computed by dividing CPU-time estimate
from 3oPredict by the respective CPU values.

5.5 Compares the performance of Dist with other systems in the simulated cluster.
Dist outperforms Point on SLO miss-rate and SLO Goodput while nearly
matching Point and Request on BE Goodput and BE Latency.

5.6 Compares the amount of resource contention as Dist and other systems sched-
ule jobs in the cluster. Dist outperforms Point on SLO miss-rate and SLO
Goodput while nearly matching Point on BE Goodput and BE Latency.

5.7 Compares the performance of Dist with the systems with individual features
disabled in the simulated cluster. L L.

5.8 Compares the amount of resource contention as Dist with the systems with
individual features disabled. oL o oo

5.9 Compares the performance of Dist with other systems in the simulated cluster.
Dist consistently outperforms Point on SLO miss-rate and SLO Goodput
while nearly matching Point and Request on BE Goodput and BE Latency.

5.10 Compares the amount of resource contention as Dist and other systems sched-
ule jobs in the cluster. Dist outperforms Point on SLO miss-rate and SLO
Goodput while nearly matching Point on BE Goodput and BE Latency.

XV

75

76

XVi

List of Tables

2.1

3.1

4.1
4.2

Hardware characteristics of the clusters analyzed in this chapter. For the Google
trace [72], (*) signifies a resource has been normalized to the largest node. 8

Summary of the characteristics of each trace. Note that the Google workload

appearstobe anoutlier. L L 12
Scheduler approaches compared. L. 44
Absolute performance difference between real and simulation experiments. Work-

load:E2E. 47

XVil

XViil

Chapter 1

Introduction

Modern computing clusters support a mixture of diverse activities, ranging from customer-
facing internet services, software development and test, scientific research, and exploratory data
analytics [8, 72]. The role of the cluster schedulers is to map these tasks to the heterogeneous
resources available in the cluster. They face a daunting task of efficiently matching the pending
job according to their scheduling preferences (in terms of the resource and deadlines) while
minimizing the completion latency and maximizing the cluster efficiency.

Many recent schedulers exploit knowledge of pending jobs’ runtimes and resource usages as a
powerful building block [24, 54, 88]. Using estimates of runtime and resource usage, a scheduler
can pack jobs aggressively into its resource plan [24, 54, 88, 92], such as allowing a latency
sensitive job to start before a high-priority batch job as long as the batch job will meet its deadline.
The knowledge enables the scheduler to consider whether it is better to wait for a job’s preferred
resources to be freed or to start the job right away on sub-optimal resources [13, 88]. Knowledge
of job runtime and resource usage leads to more robust scheduling decisions than using simple
scheduling algorithms that cannot leverage this information.

In most cases, estimates come from the observation of similar jobs (e.g., from the same user
or past instances from the same periodic job script) run in the past. A point runtime estimate (e.g.,
mean or median) is derived from the relevant subset of the history and used by the scheduler. If
such estimates are accurate, schedulers relying on them outperform those using other approaches.
Previous research [40, 88] suggests that these schedulers are robust to a reasonable degree of
estimation error (e.g., up to 50%).

However, analyses of workloads from real clusters show that the actual estimate errors span
much larger ranges than those previously explored. Analyses of user-provided resource requests
in the Google cluster trace [72] show only 20% of the estimates are within a factor of two of the
actual average resource usage, and a significant portion (74%) of jobs are over-estimated with the
majority being off by more than an order of magnitude. Applying a state-of-the-art ML-based
predictor [87] to three real-world traces shows good estimates in general (77%-92% are within a
factor of two of the actual runtime and most much closer), but a significant percentage (8%-23%)
of estimates are not within that range, and some are off by more than an order of magnitude
(Chapters 4 and 5). Even very effective predictors suffer from inaccuracies and outliers because
there is significant inherent variability in multi-purpose cluster workloads.

The impact of inaccurate point estimates on scheduler performance is significant. Testing with

1

real estimate profiles reveals that a scheduler relying on such estimates performs much worse with
real estimate error profiles as compared to having perfect estimates. The point-estimate based
scheduler makes less informed decisions and struggles to handle difficult-to-estimate runtimes
and resource usages.

The scheduler is often too optimistic and starts jobs with under-estimated runtimes later than it
should, and it is often too conservative and neglects to schedule jobs that are predicted to not finish
on time, even if the cluster resources are available. Effects of inaccurate resource usage estimates
are more severe. The scheduler often packs too many tasks in the same machine, triggering
resource contention in the machine, and it is often too hesitant in scheduling tasks resulting in low
cluster utilization. Knowing only the point estimate, e.g. an average of a job runtime or resource
usage, the scheduler cannot reason about the outcomes that may be significantly different from
the average.

Instead, this dissertation proposes and evaluates systems that can leverage full distributions
(e.g., the histogram of observed runtimes or resource usages) rather than single point estimates. A
distribution provides much more information (e.g., variance, possible multi-modal behaviors, etc.)
and enables the scheduler to make more robust decisions. By considering the range of possible
runtimes or resource usages for a job, and their likelihoods, the scheduler can explicitly consider
various potential outcomes from each possible scheduling option and select an option based on
optimizing the expected outcome.

1.1 Thesis Statement

This dissertation explores the following thesis statement.

Schedulers that rely on information about job runtimes and resource usages can ad-
dress imperfect predictions with up to 75% fewer deadline misses and 36% greater SLO
goodput by looking at likelihoods of possible outcomes rather than single point expected
outcomes.

The dissertation will provide the following evidence to support the thesis statement.

¢ Diversity of cluster workloads [8] (Chapter 3)

This chapter presents an analysis of the private and HPC cluster traces that spans job
characteristics, workload heterogeneity, resource utilization, and failure rates and contrast
findings with the Google cluster trace characteristics. The analysis shows that the private
cluster workloads, consisting of data analytics jobs expected to be more closely related to
the Google workload, display more similarity to the HPC cluster workloads, suggesting
that additional traces should be considered when evaluating the generality of new research.
Characterization of real workloads also revealed that there exists inherent variability in
the job runtimes and resource usage that cannot be captured by single point estimates. An
evaluation of a history-based runtime predictor with four different traces demonstrates it is
not trivial to obtain perfect runtime predictions in real workloads, especially if the predictor
is provided with insufficient information.

¢ 3Sigma: a runtime distribution based scheduler [69] (Chapter 4)
Knowing how long each job will execute enables a scheduler to more effectively pack

2

jobs with diverse time concerns (e.g., deadline vs. the-sooner-the-better) and placement
preferences on heterogeneous cluster resources. But, existing schedulers use single-point
estimates, and this chapter shows that they are fragile in the face of real-world estimate
error profiles. Instead of reducing relevant history to a single point, 3Sigma schedules jobs
based on full distributions of relevant runtime histories and explicitly creates plans that
mitigate the effects of anticipated runtime uncertainty. Experiments with workloads show
that 3Sigma achieves 75% fewer deadline misses and 36% greater SLO goodput compared
to a state-of-the-art scheduler that uses point estimates from a state-of-the-art predictor; in
fact, the performance of 3Sigma approaches the end-to-end performance of a scheduler
based on a hypothetical, perfect runtime predictor.

¢ DistSched: a resource-runtime distribution based scheduler (Chapter 5)

An accurate knowledge of each job’s resource usage benefits schedulers as the knowledge
allows schedulers to safely pack jobs more tightly, increasing the cluster utilization while
minimizing performance jitter due to resource contention. Most systems rely on user-
provided estimates as a source of the knowledge, but an analysis of the Google cluster
trace shows only a few jobs have an accurate estimate. Cluster administrators use various
heuristics to tackle issues arising from the mis-estimates, but these are only a partial
solution. This chapter describes DistSched, a resource-runtime distribution based scheduler
and explores how lessons learned from 3Sigma apply to the problem of imperfect estimates
arising from resource usage uncertainty. By leveraging distributions of resource usage from
the relevant history, taking advantage of much richer information, and utilizing mitigation
mechanisms, the resource-runtime distribution based scheduler can make robust decisions
to mitigate the effects of resource uncertainty. Experiments with a subset of the Google
cluster trace show that the resource-runtime distribution based scheduler achieves 49%
fewer deadline misses and 5% greater SLO goodput compared to point-estimate based
schedulers that depend on point estimates from a history-based predictor or user-provided
resource requests and approaches the performance of a hypothetical system that uses a
perfect runtime predictor.

1.2 Contributions

This dissertation makes the following contributions:
Diversity of cluster workloads [8]:
¢ [t presents an analysis of the private and HPC cluster traces that spans job characteristics,
workload heterogeneity, resource utilization, and failure rates and contrast findings with the
Google cluster trace characteristics.

e [t characterizes real workloads from three different environments revealing that there exists
inherent variability in the job runtimes and resource usages that cannot be captured by
single point estimates.

¢ [t reports on an evaluation of a history-based runtime predictor with four different traces
demonstrating that it is not trivial to obtain perfect runtime predictions in real workloads,
especially if the predictor is provided with insufficient information.

3Sigma [69]:
e It describes a scheduler, called 3Sigma, that looks at runtime distributions instead of a point
runtime estimate and can much more robustly address imperfect runtime predictions.

¢ It demonstrates that a runtime distribution of a job can be estimated from the history of
jobs run in the past and shows that estimated distributions are effective for the workloads
studied.

¢ [t reports on large-scale experiments showing that 3Sigma is viable in practice, outperforms
point-estimate based schedulers, and approaches the performance of a hypothetical system
that has perfect knowledge of job runtimes.

DistSched:

¢ [t describes a scheduler that looks at resource usage distributions instead of point estimates,
as well as its mitigation mechanisms, demonstrating that such a scheduler can much more
robustly address imperfect predictions.

¢ [t demonstrates that a distribution of the resource usage of a job can be estimated from the
relevant part of the job history and shows that estimated distributions are effective for the
workloads studied.

¢ It reports on the results of experiments with the Google cluster trace demonstrating the
efficacy of the distribution-based scheduling approach in coping with resource usage
uncertainty.

1.3 Outline

The remainder of the dissertation is organized as follows. Chapter 2 motivates our work with more
background on resource consolidation, cluster scheduling with job information, predicting job
information, and the workloads discussed in the dissertation. Chapter 3 describes the workload
analysis [8] comparing the Google trace with the private and HPC cluster traces. Chapter 4
describes 3Sigma [69], my scheduler that leverages distributions of the relevant runtime histories
rather than just a point estimate derived from it. Chapter 5 describes DistSched, my scheduler
that can leverage distribution of the resource usage (cpu, memory, and cpu-time) and account the
risk of contention to make robust scheduling decisions. Chapter 6 concludes the dissertation and
discusses future research directions.

Chapter 2

Background

Cluster schedulers are typically a component of the cluster orchestration system (e.g. YARN [89],
Kubernetes [14], etc.) that manages the lifecycle of the cluster resources and jobs running in the
system. In this model, users submit job specifications consisting of one or more tasks to the cluster
manager, often times with the resource requirements (e.g. how much cpu and memory is needed
and how long will it use these resources). The scheduler decides when and which machine to run
each task of the job. Each task will execute within a container for resource isolation and security.
Cluster scheduling enjoys a long history of research, but increasing cluster consolidation and
the emergence of a diverse mix of workload types stimulates a continuous stream of new innova-
tions. This chapter describes the additional background and research related to the dissertation.

2.1 Resource consolidation

Increasing amount of applications are now hosted on data-centers, both in public clouds [4, 5, 6]
and private in-house data-centers with frameworks [3, 14, 46, 89]. By consolidating different
types of workloads to the same shared data-centers, cluster administrators expect a lower total
cost of ownership through economies of scale. It also offers flexibility for the users as they can
leverage the same environment to launch different types of jobs ranging from batch analytics to
long running services.

However, resource consolidation also presents a set of new challenges to cluster schedulers.

1) To support diverse types of workloads, data-centers are increasingly becoming heteroge-
neous. Even if a data-center is newly constructed, it may consist of machines with different
hardware configurations. The variety will only increase over time as new types of machines are
introduced to the clusters [12, 72]. Hardware accelerators such as FGPAs [1, 2] or TPUs [53]
are now commonplace. Schedulers need to efficiently map pending work to the heterogeneous
resources so as to satisfy their diverse scheduling concerns.

2) Low utilization is a major challenge for cloud facilities [17, 28, 60, 61, 72], even for
clusters that encourage sharing of the resources across different workloads. This is mainly due to
a disparity between user resource requests and actual resource usage, which recent research efforts
try to alleviate through workload characterization and aggressive consolidation [28, 57, 58].

3) Aggressive packing to achieve high utilization does not work well with latency-critical

5

services due to interference [57]. To ensure minimal interference, applications are typically
profiled and classified according to historical data [28, 57].

As a result, existing scheduling systems for traditional compute clusters fail to perform
well [88, 92] and rely on more sophisticated scheduling algorithms.

2.2 Cluster scheduling with job information

Modern schedulers use the knowledge of pending jobs’ runtime and resource usage as a pow-
erful building block. Accurate job runtime and resource usage information can be exploited to
significant benefit in at least four ways at schedule-time.

1) Cluster workloads are increasingly a mixture of business-critical production jobs and best-
effort engineering/analysis jobs. The production jobs, often submitted by automated systems [50,
83], tend to be resource-heavy and to have strict completion deadlines [24, 54]. The best-effort
jobs, such as exploratory data analytics and software development/debugging, while lower priority,
are often latency-sensitive. Given runtime estimates, schedulers can more effectively pack jobs,
simultaneously meets more deadlines for production jobs and reducing average latency for best-
effort jobs [24, 54, 88].

2) Datacenter resources are increasingly heterogeneous, and some jobs behave differently
(e.g., complete faster) depending upon which machine(s) they are assigned to. Maximizing cluster
effectiveness in the presence of jobs with such considerations can be more effective when job
runtimes are known [13, 88, 101].

3) Many parallel computations can only run when all tasks comprising them are initiated
and executed simultaneously (gang-scheduling) [65, 68]. Maximizing resource utilization while
arranging for such bulk resource assignments is easier when job runtimes are known.

4) Resource under-utilization can be alleviated through workload characterization and aggres-
sive consolidation [28, 57, 58]. Given accurate knowledge of job resource usage, schedulers can
control performance variation due to resource contention to meet jobs’ performance service-level
objectives [28, 33].

2.3 Predicting job information

Most systems [14, 46, 89] now expect users to provide resource requirements when a job is
submitted to the system. In some environments, especially HPC and grid computing environments,
users are expected to provide runtime information explicitly. Naturally, the quality of such
user-provided information varies widely, and automated approaches to generating predictions is
desirable. Different strategies for the prediction can be used based on the amount of assumption
or knowledge about the workload.

Some techniques [24, 25, 52, 54, 56, 91] are designed for explicitly repeating jobs, such as in
a scripted simulation parameter sweep or regular post-processing of an output file. In this scenario,
each such job is a recurrence of a nearly identical job with known historical information.

Performance modeling based white-box techniques can be used if the structure of each job
is known in advance. For example, Jockey [33] and Perforator [70] leverage job structure and

6

combine it with profiling for accurate predictions. MapReduce’s map-shuffle-reduce structure
is well-understood and lends itself to analytical performance models, such as ARIA [94] and
Parallax [64]. Similarly, Apollo [13], Ernest [90], SLAOrchestrator [67], and Islam et al. [51] rely
on leveraging job structure knowledge to estimate job runtimes and resource usage.

Lastly, some predictors use black-box techinques to address jobs that do not arrive with explicit
recurrence nor performance models. In the absence of any other information, Harchol-Balter and
Downey [43] or Kairos [27] assumes the job is half-way completed. Other predictors [23, 81, 87]
assume, even in multi-purpose clusters for a diverse array of activities, most jobs will be similar
to some subset of previous jobs. These systems identify and determine an estimate (e.g., mean or
median) from the relevant part of the history. The assumptions made by the systems discussed in
this dissertation (Chapters 4 and 5) fall in this category.

2.4 Workloads used in this dissertation

Despite the intense activity in the areas of cloud and job scheduling research, publicly available
cluster workload datasets remain scarce. The three major dataset sources today are: the Google
cluster trace [72] collected in 2011, the Parallel Workload Archive [32] of High Performance
Computing (HPC) traces collected since 1993, and the SWIM traces released in 2011 [21]. Of
these, the Google trace has been used in more than 450 publications making it the most popular
trace by far.

This dissertation introduces four new traces: two from the private cloud of Two Sigma, a
hedge fund, and two from HPC clusters located at the Los Alamos National Laboratory (LANL)'.
The Two Sigma traces are the longest, non-academic private cluster traces to date, spanning 9
months and more than 3 million jobs. The two HPC traces I introduce are also unique. The first
trace, LANL Mustang, spans the entire 5-year lifetime of a general-purpose HPC cluster, making
it the longest public trace to date, while also exhibiting shorter jobs than existing public HPC
traces. The second trace, LANL OpenTrinity, originates from the 300,000-core current flagship
supercomputer at LANL, making it the largest cluster with a public trace, to my knowledge.

I evaluate the systems in the dissertation using some of the workloads as appropriate. Specif-
ically, 3Sigma is evaluated using the Google, Two Sigma, and Mustang cluster traces. The
OpenTrinity cluster trace is not used for evaluation as it has demonstrated low predictability
(Sec. 3.6.2), potentially caused by the shorter duration of the trace or inconsistency in the work-
load during the OpenScience configuration period. DistSched is only evaluated using the Google
cluster workload, because the other traces do not contain resource utilization information that is
crucial for simulating the workload for experiments.

The hardware configuration of each cluster is shown in Table 2.1. Rest of this section discusses
each cluster is in more detail.

2.4.1 Google cluster

In 2012, Google released a trace of jobs that ran in one of their compute clusters [72]. It is
a 29-day trace consisting of 672074 jobs and 48 million tasks, some of which were issued

IThe LANL traces were released and are available to the public at http: //www.pdl.cmu.edu/ATLAS

7

http://www.pdl.cmu.edu/ATLAS

Platform ‘ Nodes‘ CPUS‘ RAM ‘ Length

LANL . 9408 32 | 128GB | 3 months
OpenTrinity
LANL 1600 24 | 64GB | 5 years
Mustang
TwoSigma A 872 24 | 256GB

. 9 months
TwoSigma B 441 24 | 256GB
Google B 6732 | 0.50* | 0.50*
Google B 3863 | 0.50* | 0.25%
Google B 1001 | 0.50* | 0.75*
Google C 795 | 1.00* | 1.00%*

* *

Google A 126 | 0.25 0.25 29 days
Google B 52 | 0.50*% | 0.12*
Google B 5] 0.50*% | 0.03*
Google B 51| 0.50*% | 0.97*
Google C 3| 1.00* | 0.50%*
Google B 1| 0.50*% | 0.06*

Table 2.1: Hardware characteristics of the clusters analyzed in this chapter. For the Google trace [72], (*)
signifies a resource has been normalized to the largest node.

through the MapReduce framework, and ran on 12583 heterogeneous nodes in May 2011. The
workload consists of both long-running services and batch jobs [95]. Google has not released
the exact hardware specifications of each cluster node. Instead, as shown in Table 2.1, nodes are
presented through anonymized platform names representing machines with different combinations
of microarchitectures and chipsets [98]. Note that the number of CPU cores and RAM for each
node in the trace have been normalized to the most powerful node in the cluster. In the analysis,
I estimate the total number of cores in the Google cluster to be 106544. I derive this number
by assuming that the most popular node type (Google B with 0.5 CPU cores) is a dual-socket
server, carrying quad-core AMD Opteron Barchelona CPUs that Google allegedly used in their
data-centers at the time [44]. Unlike previous workloads, jobs can be allocated fractions of a CPU
core [78].

2.4.2 Two Sigma clusters

The private workload traces I introduce originate from two datacenters of Two Sigma, a hedge
fund firm. The workload consists of data analytics jobs processing financial data. A fraction of
these jobs are handled by a Spark [84] installation, while the rest are serviced by home-grown
data analytics frameworks. The dataset spans 9 months of the two data-centers’ operation starting
in January 2016, covering a total of 1313 identical compute nodes with 31512 CPU cores and
328TB RAM. The logs contain 3.2 million jobs and 78.5 million tasks, collected by an internally-
developed job scheduler running on top of Mesos [46]. Because both datacenters experience the
same workload and consist of homogeneous nodes, I collectively refer to both data sources as the
TwoSigma trace and analyze them together.

2.4.3 LANL Mustang cluster

Mustang was an HPC cluster used for capacity computing at LANL from 2011 to 2016. Capacity
clusters such as Mustang are architected as cost-effective, general-purpose resources for a large
number of users. Mustang was largely used by scientists, engineers, and software developers
at LANL and it was allocated to these users at the granularity of physical nodes. The cluster
consisted of 1600 identical compute nodes, with a total of 38400 AMD Opteron 6176 2.3GHz
cores and 102TB RAM.

The Mustang dataset covers the entire 61 months of the machine’s operation from October
2011 to November 2016, which makes this the longest publicly available cluster trace to date. The
Mustang trace is also unique because its jobs are shorter than those in existing HPC traces. Overall,
it consists of 2.1 million multi-node jobs submitted by 565 users and collected by SLURM [76],
an open-source cluster resource manager. The fields available in the trace are similar to those in
the TwoSigma trace, with the addition of a time budget field per job, that if exceeded causes the
job to be killed.

2.4.4 LANL OpenTrinity supercomputer

In 2018, OpenTrinity is the largest supercomputer at LANL and it is used for capability com-
puting. Capability clusters are a large-scale, high-demand resource introducing novel hardware
technologies that aid in achieving crucial computing milestones, such as higher-resolution climate
and astrophysics models. OpenTrinity’s hardware was stood up in two pre-production phases
before being put into full production use and the trace was collected before the second phase
completed. At the time of data collection, OpenTrinity consisted of 9408 identical compute nodes,
a total of 301056 Intel Xeon E5-2698v3 2.3GHz cores and 1.2PB RAM, making this the largest
cluster with a publicly available trace by number of CPU cores.

The OpenTrinity dataset covers 3 months from February to April 2017. During that time,
OpenTrinity was operating in OpenScience mode, i.e., the machine was undergoing beta testing
and was available to a wider number of users than after it receives its final security classification. I
note that OpenScience workloads are representative of a capability supercomputer’s workload, as
they occur roughly every 18 months when a new machine is introduced, or before an older one is
decommissioned. The dataset, which I will henceforth refer to as OpenTrinity, consists of 25237
multi-node jobs issued by 88 users and collected by MOAB [7], an open-source cluster scheduling
system. The information available in the trace is the same as that in the Mustang trace.

10

Chapter 3

Diversity of cluster workloads

Despite intense activity in the areas of cloud and job scheduling research, publicly available
cluster workload datasets remain scarce. The three major dataset sources today are: the Google
cluster trace [72] collected in 2011, the Parallel Workload Archive [32] of High Performance
Computing (HPC) traces collected since 1993, and the SWIM traces released in 2011 [21]. Of
these, the Google trace has been used in more than 450 publications making it the most popular
trace by far. Unfortunately, this 29-day trace is often the only one used to evaluate new research.
By contrasting its characteristics with newer traces from different environments, I have found that
the Google trace alone is insufficient to accurately prove the generality of a new technique.

The goal is to uncover overfitting of prior work to the characteristics of the Google trace. To
achieve this, my first contribution is an analysis examining the generality of workload characteris-
tics derived from the Google trace, when four new traces are considered. Overall, I find that the
private Two Sigma cluster workloads display similar characteristics to HPC, despite consisting of
data analytics jobs that more closely resemble the Google workload. Table 3.1 summarizes all
my findings. For those characteristics where the Google workload is an outlier, I have surveyed
the literature and list affected prior work. In total, I surveyed 450 papers that reference the
Google trace study [72] to identify popular workload assumptions, and I constrast them to the Two
Sigma and LANL workloads to detect violations. I group the findings into four categories: job
characteristics (Section 3.2), workload heterogeneity (Section 3.3), resource utilization (Section
3.4), and failure analysis (Section 3.5).

The findings suggest that evaluating new research using the Google trace alone is insufficient
to guarantee generality. I further present a case study on the importance of dataset plurality and
diversity when evaluating new research. For demonstration I use JVuPredict, the job runtime
predictor of the JamaisVu scheduling system [87]. Originally, JVuPredict was evaluated using only
the Google trace [87]. Evaluating its performance with the fo