
Reducing Replication Bandwidth for
Distributed Document Databases

Lianghong Xu� Andrew Pavlo� Sudipta Sengupta† Jin Li† Gregory R. Ganger�

Carnegie Mellon University�, Microsoft Research†

Abstract
With the rise of large-scale, Web-based applications, users

are increasingly adopting a new class of document-oriented

database management systems (DBMSs) that allow for rapid

prototyping while also achieving scalable performance. Like

for other distributed storage systems, replication is impor-

tant for document DBMSs in order to guarantee availability.

The network bandwidth required to keep replicas synchro-

nized is expensive and is often a performance bottleneck. As

such, there is a strong need to reduce the replication band-

width, especially for geo-replication scenarios where wide-

area network (WAN) bandwidth is limited.

This paper presents a deduplication system called sDedup
that reduces the amount of data transferred over the network

for replicated document DBMSs. sDedup uses similarity-
based deduplication to remove redundancy in replication

data by delta encoding against similar documents selected

from the entire database. It exploits key characteristics of

document-oriented workloads, including small item sizes,

temporal locality, and the incremental nature of document

edits. Our experimental evaluation of sDedup with three

real-world datasets shows that it is able to achieve up to

38× reduction in data sent over the network, significantly

outperforming traditional chunk-based deduplication tech-

niques while incurring negligible performance overhead.

1. Introduction
Document-oriented databases are becoming more popular

due to the prevalence of semi-structured data. The docu-

ment model allows entities to be represented in a schema-

less manner using a hierarchy of properties. Because these

DBMSs are typically used with user-facing applications, it

is important that they are always on-line and available. To

ensure this availability, these systems replicate data across

nodes with some level of diversity. For example, the DBMS

could be configured to maintain replicas within the data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SoCC ’15, August 27-29, 2015, Kohala Coast, HI, USA
© 2015 ACM. ISBN 978-1-4503-3651-2/15/08. . . $15.00
DOI: http://dx.doi.org/10.1145/2806777.2806840

Figure 1: Compression ratios for Wikipedia – The four bars

represent compression ratios achieved for the Wikipedia dataset

(see Section 5) for four approaches: (1) standard compression on

each oplog batch (4 MB average size), (2) traditional chunk-based

dedup (256 B chunks), (3) our system that uses similarity-based

dedup, and (4) similarity-based dedup combined with compression.

center (e.g., nodes on different racks, different clusters) or

across data centers in geographically separated regions.

Such replication can require significant network band-

width, which becomes increasingly scarce and expensive

the farther away the replicas are located from their pri-

mary DBMS nodes. It not only imposes additional cost on

maintaining replicas, but can also become the bottleneck for

the DBMS’s performance if the application cannot tolerate

significant divergence across replicas. This problem is es-

pecially onerous in geo-replication scenarios, where WAN

bandwidth is expensive and capacity grows relatively slowly

across infrastructure upgrades over time.

One approach to solving this problem is to compress the

operation log (oplog) that is sent from the primary DBMS

nodes to the replicas for synchronization. For text-based

document data, simply running a standard compression li-

brary (e.g., gzip) on each oplog batch before transmission

will provide approximately a 3× compression ratio. But

higher ratios are possible with deduplication techniques that

exploit redundancy with data beyond a single oplog batch.

For a workload based on Wikipedia, as shown in Fig. 1,

an existing deduplication approach achieves compression

up to 9× while our proposed similarity-based deduplication

scheme is able to compress at 38×. Moreover, these ratios

can be combined with the 3× from compression, yielding

∼120× reduction for our proposed approach.

Most deduplication systems [20, 22, 29, 39, 41, 47] tar-

get backup streams for large-scale file systems and rely

upon several properties of these workloads. Foremost is that

backup files are large and changes affect an extremely small

portion of the data. This argues for using large chunks to

 222

#Primaries Direction Consistency Update Form

CouchDB single/multi push/pull async/sync doc revisions

MongoDB single pull async/sync oplogs

RavenDB single/multi push async doc revisions

RethinkDB single push async/sync change feeds

Table 1: Key replication features of four document DBMSs.

avoid the need for massive dedup indices; the trad-dedup

bar in Fig. 1 ignores this issue and shows the result for a

256 B chunk size. With a typical 4 KB chunk size, trad-

dedup achieves a 2.3× compression ratio. Second, these sys-

tems assume that good chunk locality exists across backup

streams, such that chunks tend to appear in roughly the

same order in each backup cycle. This allows for efficient

prefetching of dedup metadata during the deduplication and

reconstruction processes.

In our experience, the workloads for document database

applications do not exhibit these characteristics. Instead of

large blocks of data corresponding to the same entity (e.g.,

backup stream), documents are small, with an average size

less than 100 KB [3]. The replication streams do not exhibit

much chunk locality. They instead have temporal locality
where frequent updates to specific documents happen within

a short interval of time. The scope of these modifications is

small relative to the original size of the document but often

distributed throughout the document. As we will show in

this paper, these differences make traditional deduplication

approaches a poor match for document DBMSs.

We present the design and implementation of a dedupli-

cation system, called sDedup, that exploits the characteris-

tics of document databases. Unlike many traditional dedu-

plication systems that employ dedicated servers, sDedup is

a lightweight module that can be integrated into the replica-

tion framework of an existing DBMS with minimal software

complexity. sDedup achieves an excellent compression ratio

while imposing negligible impact on performance and mem-

ory overhead. It uses consistent sampling of chunk hashes

combined with a fast and compact Cuckoo hash table to re-

duce the metadata needed to keep track of documents in the

corpus. sDedup uses a source document cache and a vari-

ant of the xDelta algorithm [30] to minimize the CPU and

I/O overhead in delta compressing similar documents. This

approach, called similarity-based deduplication, does not re-

quire exact duplicates to eliminate redundancies.

This paper makes three contributions: Foremost, to the

best of our knowledge, we are the first to use similarity-

based deduplication techniques to reduce the replication

bandwidth in a distributed DBMS. Second, we present the

general-purpose end-to-end workflow of sDedup, as well

as design choices and optimizations that are important for

using inline deduplication in document databases. Third,

we integrate sDedup into the replication framework of the

MongoDB DBMS [2]; our evaluation shows that it achieves

higher compression rates and less memory overhead than the

chunk-based deduplication approach, while having almost

no impact on the DBMS’s runtime performance.

The rest of this paper is organized as follows. Sec-

tion 2 provides an overview of why existing approaches

to reducing replication bandwidth are insufficient for doc-

ument DBMSs. Section 3 describes the sDedup deduplica-

tion workflow. Section 4 details sDedup’s implementation

and integration into a document DBMS. Section 5 evalu-

ates sDedup on real-world datasets and explores sensitivity

to key configuration parameters. We present a survey of re-

lated work in Section 6 and conclude in Section 7.

2. Background and Motivation
This section discusses replication mechanisms of document

databases in general, why reducing network bandwidth us-

age for DBMS replication is desirable, and motivates the

need for an approach using similarity-based deduplication.

2.1 Replication in Document Databases

Distributed document DBMSs exploit replication to enhance

data availability. The design and implementation details of

the replication mechanisms vary for different systems; we

summarize the key replication features for the leading docu-

ment DBMSs in Table 1. Depending on the application’s de-

sired trade-off between the complexity of conflict resolution

and the peak write throughput, there can be a single or mul-

tiple primary nodes that receive user updates. Replica syn-

chronization can be initiated by either the primary (push) or

the secondary nodes (pull). How often this synchronization

should occur depends on the application’s “freshness” re-

quirement of the reads that the secondary nodes serve, and/or

how up-to-date the replica should be upon failover, and is

specified by the consistency model. Application of updates

to secondary nodes can happen either in real-time with the

user update (sync), or be delayed by some amount (async).

Document database replication involves propagating

replication data from the primary to the secondary nodes in

the form of document updates. A common way of doing this

is by sending over the database’s write-ahead log, also some-

times referred to as its operation log (oplog), from the pri-

mary to the secondary. The secondary node then replays the

log to update the state of its copy of the database. We show

in Section 4.1 that sDedup can be integrated to a DBMS’s

replication framework with minimal software complexity.

2.2 Network Bandwidth for Replication

The network bandwidth needed for replica synchronization

is directly proportional to the volume and rate of updates

happening at the primary. When the network bandwidth is

not sufficient, it can become the bottleneck for replication

performance and even end-to-end client performance for

write-heavy workloads.

The data center hierarchy provides increasingly diverse

levels of uncorrelated failures, from different racks and clus-

ters within a data center to different data centers. Placing

replicas at different locations is desirable for increasing the

availability of cloud services. But network bandwidth is

 223

more restricted going up the network hierarchy, with WAN

bandwidth across regional data centers being the most costly,

limited, and slow-growing over time. Reducing the cross-

replica network bandwidth usage allows services to use more

diverse replicas at comparable performance without needing

to upgrade the network.

All major cloud service providers have to deal with WAN

bandwidth bottlenecks. Some real-world examples include

the MongoDB Management Service (MMS) [3] that pro-

vides continuous on-line backups using oplog replication

and Google’s B4 Software Defined Network system [26].

More generally, there are many applications that replicate

email, message board, and social networking application

data sets. All of these systems have massive bandwidth re-

quirements that would significantly benefit from lower net-

work bandwidth usage.

2.3 The Need for Similarity-based Deduplication

There has not been much previous work on network-level

deduplication in the database community. There are three

reasons for this: first, database objects are small compared to

files or backup streams. Thus, deduplication may not provide

a good compression ratio without maintaining excessively

large indexes. Second, for relational DBMSs, especially for

those using column-based data stores, simple compression

algorithms are good enough to provide a satisfactory com-

pression ratio. Third, the limitation of network bandwidth

had not been a critical issue before the advent of replicated

services in the cloud (especially geo-replication).

We contend that the emergence of hierarchical data center

infrastructures, the need to provide increased levels of reli-

ability on commodity hardware in the cloud, and the popu-

larity of document-oriented databases has changed the op-

erational landscape. More of the data that is generated with

today’s applications fits naturally or can be converted to doc-
uments, the central concept in a document-oriented database.

Document-oriented databases allow greater flexibility to or-

ganize and manipulate these datasets, mostly represented in

the form of text data (e.g., wiki pages, emails, blogs/forums,

tweets, service logs). Even small updates to text data can-

not be easily expressed as incremental operations. As a re-

sult, a document update typically involves reading the cur-

rent version and writing back a highly similar document.

Newly created documents may also be similar to earlier doc-

uments with only a small fraction of the content changed.

Such redundancy creates great opportunity in data reduction

for replication.

Past work has explored different ways of removing re-

dundant data for various applications. These techniques are

generally categorized into compression and deduplication.

We explain below why similarity-based deduplication is the

most promising approach for document databases.

Compression alone is insufficient: Updates in replicated

databases are sent in batches to amortize the cost of trans-

mission over the network. In order to keep the secondary

nodes reasonably up-to-date so that they can serve client

read requests for applications that require bounded-staleness

guarantees, the size of the oplog batch is usually on the order

of MBs. At this small size, the oplog batch mostly consists of

updates to unrelated documents, thus intra-batch compres-

sion yields only a marginal reduction.

To demonstrate this point, we loaded a Wikipedia dataset

into a modified version of MongoDB that compresses the

oplog with gzip. We defer the discussion of our experimental

setup until Section 5. The graph in Fig. 1 shows that com-

pression only reduces the amount of data transferred from

the primary to the replicas by 3×. Further reduction is possi-

ble using a technique from the file system community known

as deduplication, but this technique has different drawbacks

in the document database context.

Limitation of chunk-identity based deduplication:
Deduplication is a specialized compression technique that

eliminates duplicate copies of data. It has some distinct ad-

vantages over simple compression techniques, but suffers

from high maintenance costs. For example, the “dictionary"

in traditional deduplication schemes can get large and thus

require specialized indexing methods to organize and access

it. Each indexed item in the dictionary is a relatively large

byte block (KBs), whereas for simple compression it is usu-

ally a short string (bytes).

A traditional file deduplication scheme [33, 36, 47] works

as follows. An incoming file (corresponding to a document

in the context of document DBMSs) is first divided into

chunks using Rabin-fingerprinting [37]; Rabin hashes are

calculated for each sliding window on the data stream, and

a chunk boundary is declared if the lower bits of the hash

value match a pre-defined pattern. The average chunk size

can be controlled by the number of bits used in the pattern.

Generally, a match pattern of n bits leads to an average chunk

size of 2n B. For each chunk, a collision-resistant hash (e.g.,

SHA-1) is calculated as its identity, which is then looked up

in a global index table. If a match is found, then the chunk

is declared a duplicate. Otherwise, the chunk is considered

unique and is added to the index (and underlying data store).

There are two key aspects of document databases that dis-

tinguish them from traditional backup or primary storage

workloads. First, most duplication exists among predomi-

nantly small documents. These smaller data items have a

great impact on the choice of chunk size in a deduplication

system. For primary or backup storage workloads, where

most deduplication benefits come from large files ranging

from 10s of MBs to 100s of GBs [22, 32, 45], using a

chunk size of 8–64 KB usually strikes a good balance be-

tween deduplication quality and the size of chunk metadata

indexes. This does not work well for database applications,

where object sizes are mostly small (KBs). Using a large

chunk size may lead to a significant reduction in deduplica-

tion quality. On the other hand, using a small chunk size and

 224

Figure 2: Distribution of document modifications for Wikipedia.

Figure 3: Comparison between chunk-identity-based and

document-similarity-based deduplication approaches.

building indexes for all the unique chunks imposes signif-

icant memory and storage overhead, which is infeasible for

an inline deduplication system. sDedup uses a small (config-

urable) chunk size of 256 B or less, and indexes only a subset

of the chunks that mostly represent the document for pur-

poses of detecting similarity. As a result, it is able to achieve

more efficient memory usage with small chunk sizes, while

still providing a high compression ratio.

The second observation is that updates to document

databases are usually small (10s of bytes) but dispersed

throughout the document. Fig. 2 illustrates this behavior

by showing the distribution of modification offsets in the

Wikipedia dataset. Fig. 3 illustrates the effect of this behav-

ior on the duplicated regions identified for the similarity-

based and chunk-based deduplication approaches. For the

chunk-based approach, when the modifications are spread

over the entire document, chunks with even slight modifica-

tions are declared as unique. Decreasing the chunk size alle-

viates this problem, but incurs higher indexing overhead. In

contrast, sDedup is able to identify all duplicate regions with

the same chunk size. It utilizes a fast and memory-efficient

similarity index to identify similar documents, and uses a

byte-by-byte delta compression scheme on similar document

pairs to find the duplicate byte segments.

We focus on textual data because it is emblematic of doc-

ument DBMS workloads. It is important to note, however,

that our approach is applicable to non-textual data as well.

Specifically, given a target object, the same dedup index in

sDedup can be used to identify similar objects in the corpus.

Nevertheless, whether or not to perform delta compression

largely depends on the characteristics of the target work-

loads. While delta compression is a good choice for rela-

tively small semi-structured data (like text) with dispersed

modifications, it might not be best for large BLOBs with

sparse changes due to the greater I/O and computation over-

heads that could be involved. In this scenario, as discussed

above, the chunk-based deduplication approach may suffice

to provide a reasonably good compression ratio.

Figure 4: sDedup Workflow and Data Structures – A target

(input) document is converted to a delta-encoded form in three

steps. On the left are the two disk-resident data stores involved in

this process: the dedup metadata container (see Section 4.2) and the

original document database.

3. Dedup workflow in sDedup
We now describe the workflow of sDedup, our similarity-

based deduplication system. It differs from chunk-based

deduplication systems that break the input data-item into

chunks and find identical chunks stored anywhere else in the

data corpus (e.g., the original database). sDedup’s workflow

has three steps: (1) finding documents in the corpus that are

similar to the target document, (2) selecting one of the sim-

ilar documents to use as the deduplication source, and (3)

performing differential compression of the target document

against the source document. Fig. 4 illustrates the data struc-

tures and actions involved in transforming each target docu-

ment into a delta-encoded representation. The remainder of

this section describes this process in further detail.

3.1 Finding Candidate Source Documents

sDedup’s approach to finding similar documents in the cor-

pus is illustrated in Algorithm 1. The target document is

first divided into variable-sized data chunks using the Rabin

fingerprinting algorithm [37] that is commonly used in tra-

ditional deduplication approaches. For each chunk, sDedup

computes its unique 64-bit hash using MurmurHash [4].1 It

then computes a sketch of the target document composed of

1 We use MurmurHash instead of the stronger 160-bit cryptographic SHA-1 hash

used in traditional deduplication because we only use these hashes to identify similar

documents rather than for chunk-level deduplication. This reduces the computation

overhead at the cost of a higher hash collision rate, but it does not impair correctness

since we perform delta compression in the final step.

 225

Algorithm 1 Finding Similar Documents

1: procedure FINDSIMILARDOCS(tgtDoc)

2: i ← 0

3: sketch ← empty
4: candidates ← empty
5:

6: dataChunks ← RABINFINGERPRINT(tgtDoc)
7: chunkHashes ← MURMURHASH(dataChunks)
8: uniqueHashes ← UNIQUE(chunkHashes)
9: sortedHashes ← SORT(uniqueHashes)

10: sketchSize ← MIN(K,sortedHashes.size())
11: while i < sketchSize do
12: f eature ← sortedHashes[i]
13: sketch.append(f eature)
14: simDocs ← INDEXLOOKUP(f eature)
15: candidates.append(simDocs)
16: i ← i+1

17: end while
18: for each f eature in sketch do
19: INDEXINSERT(f eature, tgtDoc)
20: end for
21: return candidates
22: end procedure

a subset of its chunk hashes. The sketch consists of the top-

K hash values (which we call features) sorted in a consistent

manner, such as by magnitude.2 This consistent sampling

approach has been shown to be an effective way to charac-

terize a data-item’s content in a small bounded space [35].

Next sDedup checks to see whether each feature exists

in its internal feature index (see Section 4.2). If a document

has at least one feature in common with the target document,

it is considered “similar” and added to the list of candidate

sources. The feature index stores at most K entries for each

document in the corpus (one for each feature). As a result,

the size of this index is smaller than the corresponding in-

dex for traditional deduplication systems, which must have

an entry for every unique chunk in the system. The value

of K is a configurable parameter that trades off resource us-

age for similarity metric quality. Generally, a larger K yields

better similarity coverage, but leads to more index lookups

and memory usage. In practice, a small value of K is good

enough to identify moderately similar pairs with a high prob-

ability [35]. For our experimental analysis, we found K = 8

is sufficient to identify similar documents with reasonable

memory overhead. We explicitly evaluate the impact of this

parameter on sDedup’s performance in Section 5.5.

3.2 Selecting the Best Source Document

After sDedup identifies a list of candidate source documents,

it next selects one of them to use. If no similar documents

are found, then the target document is declared unique and

thus is not eligible for encoding. Algorithm 2 describes the

mechanism sDedup uses to choose the best source document

out of a number of similar documents. Fig. 5 provides an

example of this selection process.

The system first assigns each candidate an initial score,

which is the number of similarity features that the candidate

2 For documents with less than K chunks, the sketch size is less than K.

Algorithm 2 Selecting the Best Match

1: procedure SELECTBESTMATCH(candidates)

2: scores ← empty
3: maxScore ← 0

4: bestMatch ← NULL
5: for each cand in candidates do
6: if scores[cand] exists then
7: scores[cand]← scores[cand]+1

8: else
9: scores[cand]← 1

10: end if
11: end for
12: for each cand in scores.keys() do
13: if cand in srcDocCache then
14: scores[cand]← scores[cand]+ reward
15: end if
16: if scores[cand]> maxScore then
17: maxScore ← scores[cand]
18: bestMatch ← cand
19: end if
20: end for
21: return bestMatch
22: end procedure

has in common with the target document. It then ranks all

the source candidates by this score from high to low. To

break ties, newer documents get higher ranks. This decision

is based on the empirical observation that newer documents

are usually better choices.

While most previous similarity selection methods [12, 15,

25, 29, 39] rank similar objects merely by similarity proper-

ties, sDedup takes into consideration the end-to-end system

constraints and gives preference to documents residing in the

source document cache (see Section 4.3). After the initial

ranking, the base score is adjusted upward by a reward (two,

by default) if the candidate is present in the cache. This in-

dicates that sDedup does not need to retrieve the document

from corpus database for delta compression. Although this

reward may result in a less similar document being selected,

it improves the hit ratio of the source document cache and

thus reduces the I/O overhead to retrieve the source doc-

ument. We call this technique “cache-aware selection” and

evaluate its effectiveness in Section 5.5.

3.3 Delta Compression

In the final step, sDedup delta compresses the target docu-

ment against the selected source document. The system first

checks its internal document cache for the source document;

on miss, it retrieves the document from the database. sDedup

uses only one source document for delta compression. We

found that using more than one is not only unnecessary (i.e.,

it does not produce a better compression), but also greatly

increases the overhead. In particular, we found that fetching

the source document from the corpus is the dominating fac-

tor in this step, especially for the databases with small docu-

ments. This is the same reasoning that underscores the bene-

fits of sDedup over chunk-based deduplication: our approach

only requires one fetch per target document to reproduce the

original target document, versus one fetch per chunk.

 226

Figure 5: Example of Source Document Selection – The top two

(K = 2) hashes of the target document are used as the features of

its sketch (41, 32). The numbers in the documents’ chunks are the

MurmurHash values. Documents with each feature are identified

and initially ranked by their numbers of matching features. The

ranking increases if the candidate is in sDedup’s cache.

The delta compression algorithm used in sDedup is sim-

ilar to rsync [44] and based on xDelta [30], but reduces

the computation overhead with minimal compression loss.

sDedup first calculates hash values for a sliding window on

the source document in a manner similar to Rabin finger-

printing. It then builds a temporary index that maps the hash

values to the offsets within the source document. To reduce

the overhead of building this index, sDedup uses fixed sam-

pling to index only offsets at fixed intervals. Because the

matching granularity is at the byte level, the compression

loss is negligible when the sampling interval is much smaller

than the document size.

After sDedup builds its source index, it calculates the

hash for each offset of the target document using the same

sliding-window approach and looks up the hash in the source

index. When no match is found, the sliding window moves

forward by one byte and calculates the hash for the next off-

set. Otherwise, sDedup compares the source and target doc-

uments from the matching points byte-by-byte in both for-

ward and backward directions. This process continues until

it finds the longest match on both ends, which determines

the boundaries between unique and duplicate segments. The

next index lookup skips the offsets covered by the duplicate

segments and starts from the beginning of the new segment.

The encoded output is a concatenated byte stream of all

unique segments and an ordered list of segment descriptors,

Figure 6: Integration of sDedup into a document DBMS.

each specifying the segment type and offset in the source

document or the unique bytes. The sDedup instance on the

secondary node decompresses the message by iterating over

the segment descriptors and concatenating the duplicate and

unique segments to reproduce the original document.

4. Implementation
We next describe the implementation details of sDedup, in-

cluding how it fits into the replication frameworks of docu-

ment DBMSs, as well as the internals of its indexing mech-

anisms and the source document cache.

4.1 Integration into Document DBMSs

sDedup is a lightweight module that can be integrated into

the replication frameworks of existing DBMSs. While the

implementation details vary for different systems, we il-

lustrate the integration using a typical setting with single-

master, push-based, asynchronous replication that propa-

gates updates in the form of oplogs, as shown in Fig. 6. We

then describe how such integration is generally applicable to

other replication settings with slight modifications.

An oplog is maintained at the primary and secondary

nodes for replication and recovery. Each client write request

is applied to the primary node’s local database and appended

to its oplog. Each oplog entry includes a timestamp and a

payload that contains the inserted/modified documents. The

primary pushes updates to the secondaries periodically or

when the size of unsynchronized oplog entries exceeds a

given threshold. The updates consist of a batch of oplog

entries with timestamps later than the last synchronization

checkpoint. Normally these entries are sent in their native

form. When a secondary receives the updates, it appends the

oplog entries to its local oplog, so that its oplog replayer can

apply them to the local copy of the database.

With sDedup, before an oplog entry is queued up in a

batch to be sent, it is first passed to the deduplication sub-

system and goes through the steps described in Section 3.

If the entry is marked for deduplication, then it is appended

to the batch as a special message the sDedup receiver on the

secondary knows how to interpret. When the secondary node

receives the encoded data, it reconstructs each entry into the

original oplog entry and appends it to its local oplog. At this

point the secondary oplog replayer applies the entry to its

database just as if it was a normal operation. Thus, sDedup

 227

is not involved in the critical write path of the primary and is

only used to reduce the replication bandwidth instead of the

storage overhead of the actual database.

sDedup’s replication protocol is optimistic in that it as-

sumes that the secondary will have the source document for

each oplog entry available locally. When this assumption

holds, no extra round trips are involved. In the rare cases

when it does not (e.g., a source document on the primary

gets updated before the corresponding oplog entry is dedu-

plicated), the secondary sends a supplemental request to the

primary to fetch the original unencoded oplog entry, rather

than the source document. This eliminates the need to re-

construct documents when bandwidth savings are not being

realized. In our evaluation in Section 5 with the Wikipedia

dataset, we observe that only 0.05% of the oplog entries in-

cur a second round trip during replication.

We next describe sDedup’s protocol for other replication

mechanisms. When there are multiple primary servers, each

of them maintains a separate deduplication index. The index

is updated when a primary either sends or receives updates

to/from the other replicas. Eventually all the primaries will

have the same entries in their deduplication indexes through

synchronization. When secondaries independently initiate

synchronization requests (pull), the primary does not add an

oplog entry’s features to its index until all secondaries have

requested that entry. Because the number of unsynchronized

oplog entries is normally small, the memory overhead of

keeping track of the secondaries’ synchronization progress

is negligible. sDedup supports both synchronous and asyn-

chronous replication because it is orthogonal to the consis-

tency setting. We show in Section 5 that sDedup has little im-

pact on performance with eventual consistency or bounded-

staleness. For applications needing strict consistency where

each write requires an acknowledgement from all replicas,

sDedup currently imposes a minor degradation (5–15%) on

throughput. In practice, however, we believe that strict con-

sistency is rarely used in geo-replication scenarios where

sDedup provides the most benefits.

4.2 Indexing Documents by Features

An important aspect of sDedup’s design is how it finds

similar documents in the corpus. Specifically, given a feature

of the target document, sDedup needs to find the previous

documents that contain that feature in their sketches. To

do this efficiently, sDedup maintains a special index that is

separate from the other indexes in the database.

To ensure fast deduplication, sDedup’s feature lookups

must be primarily in-memory operations. Thus, the size of

the index is an important consideration since it consumes

memory that could otherwise be used for database indexes

and caches. A naïve indexing approach is to store an entry

that contains the document’s “dedup metadata” (including

its sketch and database location) for each feature. In our

implementation, the database location for each document is

encoded with a 52 B database namespace ID and a 12 B

document ID. Combined with the 64 B sketch, the total size

of each dedup metadata entry is 128 B.

To reduce the memory overhead of this feature index,

sDedup uses a two-level scheme. It stores the dedup meta-

data in a log-structured disk container and then uses a vari-

ant of Cuckoo hashing [34] to map features to pointers into

the disk container. Cuckoo hashing allows multiple candi-

date slots for each key, using a number of different hashing

functions. This increases the hash table’s load factor while

bounding lookup time to a constant. We use 16 random hash-

ing functions and eight buckets per slot. Each bucket con-

tains a 2 B compact checksum of the feature value and a 4 B

pointer to the dedup metadata container. As a result, sDedup

only consumes 6 B per index entry.

For each feature in the target document’s sketch, the

lookup and insertion process works as follows. First, the sys-

tem calculates a hash of the feature starting with the first

(out of 16) Cuckoo hashing function. The candidate slot in

the Cuckoo hash table is obtained by applying a modulo op-

eration to the lower-order bits of the hash value; the higher-

order 16 bits of the hash value is used as the checksum for the

feature. Then, the checksum is compared against that of each

occupied bucket in the slot. If a match is found, then sDedup

retrieves the dedup metadata using the pointer stored in the

matched bucket. If the document’s dedup metadata contains

the same feature in its sketch, it is added to the list of similar

documents. The lookup then continues with the next bucket.

If no match is found and all the buckets in the slot are oc-

cupied, the next Cuckoo hashing function is used to obtain

the next candidate slot. The lookup process repeats and adds

all matched documents to the list of similar documents un-

til it finds an empty bucket, which indicates that there are

no more matches. At this point, an entry for the feature is

inserted into the empty bucket. If no empty bucket is found

after iterating with all 16 hashing functions, we randomly

pick a victim bucket to make room for the new feature, and

re-insert the victim into the hash table as if it was new.

The size and load on the Cuckoo hash table can be further

reduced by specifying an upper bound on the number of

similar documents stored for any given feature. For instance,

with a setting of four, lookup for a given feature stops once it

finds a fourth match. In this case, insertion of an entry for the

target document will require first removing one of the other

four matches from the index. We found that evicting the

least-recently-used (LRU) document for the given feature

is the best choice. Because the LRU entry could be early

in the lookup process, all of the matching entries would be

removed and reinserted as though they were new entries.

sDedup uses a small dedup metadata cache to reduce

the number of reads to the on-disk dedup metadata con-

tainer [20, 39]. The container is divided into contiguous

64 KB pages, each containing 512 dedup metadata entries.

Upon checksum matches, sDedup fetches an entire page of

dedup metadata into the cache and adds it to a LRU list of

 228

cache pages. The default configuration uses 128 cache pages

(8 MB total). This cache eliminates most disk accesses to the

metadata container for our experiments, but more sophisti-

cated caching schemes and smaller pages could be beneficial

for other workloads.

The combination of the compact Cuckoo hash table and

the dedup metadata cache makes feature lookups in sDedup

fast and memory-efficient. We show in Section 5 that the

indexing overhead is small and bounded in terms of CPU

and memory usage, in contrast to traditional deduplication.

4.3 Source Document Cache

Unlike chunk-based deduplication systems, sDedup does not

rely on having a deduplicated chunk store, either of its own

or as the document database implementation. Instead, it di-

rectly uses a source document from the database and fetches

it whenever needed in delta compression and decompres-

sion. Querying the database to retrieve documents, however,

is problematic for both deduplication and real clients. The

latency of a database query, even with indexing, could be

higher than that of a direct disk read, such as is used in

some traditional dedup systems. Worse, sDedup’s queries

to retrieve source documents will compete for resources

with normal database queries and impact the performance

of client applications.

sDedup uses a small document cache to eliminate most of

its database queries. This cache achieves a high hit ratio by

exploiting the common update pattern of document database

workloads. First, good temporal locality exists among simi-

lar documents. For example, updates to a Wikipedia article

or email in the same thread tend to group within a short time

interval. Second, a newer version of a document usually ex-

hibits higher similarity to future updates than an older ver-

sion, because most document updates happen to the imme-

diate previous version instead of an older version. Based on

these observations, in many cases, it suffices to only retain

the latest version of the document in the cache.

Cache replacement occurs when sDedup looks for a

source document in its cache. Upon a hit, the document is

directly fetched from the document cache, and its cache en-

try is replaced by the target document. Otherwise, sDedup

retrieves the source document using a database query and

insert the target document into the cache. In either case, the

source document is not added to the cache because it is older

and expected to be no more similar to future documents than

the target document. When the size of the cache is reached,

the oldest entry is evicted in a LRU manner.

sDedup also uses a source document cache on each sec-

ondary node to reduce the number of database queries during

delta decompression. Because the primary and secondary

nodes process document updates in the same order, as speci-

fied in the oplog, their cache replacement process and cache

hit ratio are almost identical.

Microsoft Stack
Wikipeda Exchange Exchange

Document Size (bytes) 15875 9816 936

Change Size (bytes) 77 92 79

Change Distance (bytes) 3602 1860 83

of Changes per Doc 4.3 5.3 5.8

Table 2: Average characteristics of three document datasets.

5. Evaluation
This section evaluates sDedup using three real-world

datasets. For this evaluation, we implemented both sDedup

and traditional deduplication (trad-dedup, see Section 2.3)

in the replication component of MongoDB v2.7. The re-

sults show that sDedup significantly outperforms traditional

deduplication in terms of compression ratio and memory us-

age, while providing comparable processing throughput.

Unless otherwise noted, all experiments use a non-

sharded MongoDB installation with one primary, one sec-

ondary, and one client node. Each node has four CPU cores,

8 GB RAM, and 100 GB of local HDD storage. We disabled

MongoDB’s full journaling feature to avoid interference.

5.1 Data Sets

We use three datasets representing different document

database applications: collaborative text editing (Wikipedia),

on-line forums (Stack Exchange), and email (Microsoft Ex-

change). Table 2 shows some key characteristics of these

datasets. The average document size ranges from 1–16 KB,

and most changes modify less than 100 B.

Wikipedia: The full revision history of every article in

the Wikipedia English corpus [9] from January 2001 to Au-

gust 2014. We extracted a 20 GB subset via random sam-

pling. Each revision contains the new version of the article

and metadata about the user that made the change (e.g., user-

name, timestamp, comment). Most duplication comes from

incremental revisions to pages, and each revision is inserted

into the DBMS as a new document.

Stack Exchange: A public data dump from the Stack

Exchange network [8] that contains the full history of user

posts and associated information such as tags and votes.

Most duplication comes from users revising their own posts

and from copying answers from other discussion threads.

We extracted a 10 GB subset (of 100 GB total) via random

sampling. Each post, revision, etc. is inserted into the DBMS

as a new document.

Microsoft Exchange: A 4.3 GB sample of email blobs

from a cloud deployment. Each blob contains the text mes-

sage, thread ID, and metadata such as sender and receiver

IDs. Duplication mainly exists in message forwarding and

replies that contain content of previous messages. We were

not granted direct access to the user email data, allowing

only limited experimentation.

5.2 Compression Ratio

This section evaluates the compression ratios achieved by

sDedup and trad-dedup. Each dataset is loaded into a DBMS

 229

4KB 1KB 256B 64B
Chunk size

1

5

10

15

20

25

30

35

40

45

C
o
m

p
re

s
s
io

n
 r

a
ti

o

9.9

26.3

38.4 38.9

2.3
4.6

9.1

15.2

sDedup

trad-dedup

(a) Wikipedia

4KB 1KB 256B 64B
Chunk size

1.0

1.5

2.0

2.5

3.0

3.5

C
o
m

p
re

s
s
io

n
 r

a
ti

o

1.0
1.2

1.3

1.8

1.0 1.0
1.1

1.2

sDedup

trad-dedup

(b) Stack Exchange

4KB 1KB
Chunk size

1.0

1.5

2.0

2.5

3.0

3.5

C
o
m

p
re

s
s
io

n
 r

a
ti

o

1.9

2.9

1.3

1.6

sDedup

trad-dedup

(c) Microsoft Exchange

Figure 7: Compression Ratio – An evaluation of the compression achieve for the different datasets with varying chunk sizes.

4KB 1KB 256B 64B
Chunk size

0

100

200

300

400

500

600

700

800

900

In
d
e
x
 m

e
m

o
ry

 u
s
a
g
e
 (

M
B

)

34.1 47.9 57.3 61.080.2
133.0

272.5

780.5sDedup

trad-dedup

(a) Wikipedia

4KB 1KB 256B 64B
Chunk size

0

500

1000

1500

2000

2500

3000

3500

In
d
e
x
 m

e
m

o
ry

 u
s
a
g
e
 (

M
B

)

83.9 115.4 228.4
414.3302.0

439.8

899.2

3082.5
sDedup

trad-dedup

(b) Stack Exchange

4KB 1KB

Chunk size

0

10

20

30

40

50

60

70

80

In
d
e
x
 m

e
m

o
ry

 u
s
a
g
e
 (

M
B

)

5.3 7.4

19.1

63.7
sDedup

trad-dedup

(c) Microsoft Exchange

Figure 8: Indexing Memory Overhead – A comparison of the amount of memory used to track the internal deduplication indexes.

instance as fast as possible, and the replication bandwidth

is measured. The compression ratio is computed as the dif-

ference between the amount of data transferred from the

primary to the secondary when the DBMS does and does

not use oplog deduplication, without additional compression

(e.g., gzip). As shown in Fig. 1, using gzip reduces the data

size by another 3× for each approach.

Fig. 7a shows the results for the Wikipedia dataset, for

each of the four chunk sizes (from 4 KB to 64 B). The

Y-axis starts from one, which corresponds to the baseline

of no deduplication. With a typical chunk size setting of

4 KB, trad-dedup only achieves a compression ratio of 2.3×.

sDedup achieves a compression ratio of 9.9×, because it

identifies byte-level duplicate regions between similar doc-

uments via delta compression. When the chunk size is de-

creased to 1 KB, both compression ratios improve. sDedup

improves more, however, because finding more similar doc-

uments enables greater deduplication than just identifying

more duplicate chunks. When the chunk size is further de-

creased to 256 B, sDedup is still better, achieving a com-

pression ratio of 38.4× as compared to 9.1× with trad-

dedup. The improvement for sDedup is smaller, because it

approaches the upper bound of the potential data reduction

for the Wikipedia dataset. Further decreasing the chunk size

provides little additional gain for sDedup but is beneficial for

trad-dedup. Recall, however, that trad-dedup index memory

grows rapidly with smaller chunk sizes, while sDedup’s does

not; Section 5.3 quantifies this distinction.

Fig. 7b shows the compression ratios for the Stack Ex-

change dataset. The documents in this dataset are smaller

than in Wikipedia (see Table 2), and posts are not revised as

frequently, affecting the absolute compression ratios of the

two approaches. But, the relative advantage of sDedup over

trad-dedup still holds for all chunk sizes.

Fig. 7c shows the compression ratios for the Microsoft

Exchange dataset (we could only obtain results for 1 KB

and 4 KB chunk sizes). This dataset exhibits less duplication

than Wikipedia, because the number of email exchanges per

thread is smaller than the number of revisions per article.

sDedup still provides a higher compression ratio than trad-

dedup at all chunk sizes. When the chunk size is 1 KB,

sDedup reduces the data transferred by 65%.

5.3 Indexing Memory Overhead

Memory efficiency is a key factor in making inline dedu-

plication practical. sDedup achieves this goal by consistent

sampling of chunk hashes and use of a compact Cuckoo hash

table. The index memory usage for each document is at most

48 B (K = 8), regardless of its size or number of chunks. In

comparison, trad-dedup indexes every unique chunk, using

the 20 B SHA1-hash as the checksum. Thus, it consumes

24 B of index memory for each chunk. In addition, as de-

scribed in Section 4, both approaches use small caches for

dedup metadata (∼8 MB) and source documents (∼32 MB)

to reduce I/O overhead.

Fig. 8 shows the index memory usage corresponding to

the experiments in Fig. 7. sDedup consistently uses less

memory; the difference is largest for the small chunk sizes

that provide the best compression ratios. Using a small

chunk size does not explode sDedup’s memory usage, be-

cause it uses only the top-K index entries per document.

Conversely, trad-dedup’s memory usage grows rapidly as

chunk size decreases, because the number of unique chunks

increases proportionally. For Wikipedia (Fig. 8a), with an

average chunk size of 64 B, trad-dedup consumes 780 MB

memory for deduplication indexes, which is more than 12×

 230

50 100 150 200 250 300 350 400
Inserted documents (thousand)

0

50

100

150

200

250

C
o
m

p
re

s
s
io

n
 r

a
ti

o

Failure point

Normal

Failure

Figure 9: Failure Recovery – Measuring how quickly sDedup

recovers after the primary fails.

higher than sDedup. This shows that using small chunk sizes

is impractical for trad-dedup. When chunk size is 256 B,

sDedup achieves 4× higher compression ratio than trad-

dedup while using only 1/5 the index memory. Fig. 8b and

Fig. 8c show similar results for the Stack Exchange and Mi-

crosoft Exchange datasets.

5.4 Failure Recovery

When a primary node fails, a secondary node is elected to

become the new primary. Because the dedup index is main-

tained on the original primary, the new primary needs to

build its own index from scratch as new documents are in-

serted. To evaluate sDedup’s performance in presence of a

primary node failure,3 we use a 80 GB Wikipedia dataset

sorted by revision timestamp to emulate the real-world write

workload. We load the dataset into a primary with two sec-

ondaries and stop (fail) the primary after 200k insertions.

Fig. 9 shows the compression ratios achieved by sDedup

in the normal and failure cases with a moving average of

2000 inserted documents. The compression ratio decreases

significantly at the failure point, because the documents that

would originally be selected as similar candidates can no

longer be identified due to loss of the in-memory deduplica-

tion index. The compression ratio up returns to normal rea-

sonably quickly (after ∼50k new document insertions). This

is because most updates are to recent documents, so that the

effect of missing older documents in the index fades rapidly.

When the primary node restarts due to a normal adminis-

trative operation, sDedup can rebuild its in-memory dedupli-

cation index (on the original primary) to minimize the loss of

compression ratio. sDedup achieves this by first loading the

log-structured dedup metadata using a sequential disk read,

and then replaying the feature insertions for each document

in the oplog. The rebuild process finishes quickly (less than

three seconds for 200k documents), after which sDedup be-

haves as if no restart occurred.

5.5 Tuning Parameters

sDedup has two primary tunable parameters, in addi-

tion to the chunk size explored above, that affect perfor-

mance/memory trade-offs: sketch size and source document

3 Failure on a secondary node has no effect on the compression ratio, because only the
primary maintains the deduplication index.

1 2 4 8 16
Sketch size

0

10

20

30

40

50

C
o
m

p
re

s
s
io

n
 r

a
ti

o Chunk size
64B

1KB

4KB

Figure 10: Sketch Size – The impact of the sketch size on the

compression ratio for the Wikipedia dataset.

cache size. This section quantifies the effects of these param-

eters and explains how we select default values.

Sketch size: As described in Section 3.1, a sketch con-

sists of the top-K features. Fig. 10 shows the compression

ratio achieved by sDedup as a function of the sketch size

(K). For the smaller chunk sizes (≤ 1 KB) that provide the

best compression ratios, K should be 4–8 to identify the best

source documents. K > 8 provides minimal additional ben-

efit, while increasing index memory size, and K = 8 is the

default configuration used in all other experiments. Larger

chunk sizes, such as 4 KB, do not work well because there

are too few chunks per document, and increasing the sketch

size only helps slightly.

Source document cache size: sDedup’s source docu-

ment cache reduces the number of database queries issued

to fetch source documents. To evaluate the efficacy of this

cache, as a function of its size, we use a snapshot of the

Wikipedia dataset that contains the revisions for all arti-

cles on a randomly selected day in September 2009, which

is ∼3 GB. We replay the revisions in timestamp order as

document insertions into MongoDB, starting with a cold

cache, and report the steady-state hit rates with and without

sDedup’s cache-aware selection technique (see Section 3.2).

Fig. 11 shows the hit rate of the document cache as a

function of the cache size. Even without cache-aware se-

lection, the source document cache is effective in removing

many database queries due to temporal locality in the doc-

ument updates. Enabling cache-aware selection provides an

additional ∼10% hits (e.g., 50% hit rate instead of 40%) for

all cache sizes shown. For example, with a relatively small

cache size of 2000 entries (∼32 MB, assuming average doc-

ument size of 16 KB) the hit ratio is ∼75% without and

∼87% with cache-aware selection. So, the number of cache

misses is cut in half. We use a cache size of 2000 entries

for all other experiments, providing a reasonable balance be-

tween performance and memory usage.

5.6 Processing Throughput

This section evaluates sDedup’s throughput and impact on

the overall DBMS insertion throughput, showing that it does

not hurt performance when bandwidth is plentiful and sig-

nificantly improves performance when it is not.

 231

10
0

10
1

10
2

10
3

10
4

10
5

Cache size (number of entries)

0

20

40

60

80

100

H
it

 r
a
ti

o
 (

%
)

w/o cache-aware selection

with cache-aware selection

Figure 11: Source Document Cache Size – The efficacy of the

source document cache and the cache-aware selection optimization.

Figure 12: Deduplication Time Breakdown – Time breakdown

of deduplication steps as individual refinements are applied.

Deduplication throughput: Fig. 12 shows the time re-

quired to insert the same 3 GB Wikipedia snapshot used in

Section 5.5, using stacked bars to show the contribution of

each step described in Section 3. The three bars show the

benefits of adding each of sDedup’s two most significant

speed optimizations: sampling source index in delta com-

putation and adding a source document cache. The default

configuration uses both of the optimizations.

With no optimizations, sDedup spends most of the time

fetching source documents from the DBMS and performing

delta compression. The unoptimized delta compression step

is slow because it builds an index for each offset in the

source document. sDedup addresses this issue by sampling

only a small subset of the offsets, at a negligible cost in

compression ratio. With a sampling ratio of 1
32 , the time

spent on delta compression is reduced by 95%, which makes

fetching source documents from the database the biggest

contributor. By using a small source document cache of 2000

entries, sDedup reduces the source fetching time by ∼87%,

which corresponds to the hit rate observed in Section 5.5.

Impact on insertion throughput: Ideally, using sDedup

should have no negative impact on a DBMS’s performance,

even when it is not needed because network bandwidth be-

tween primary and secondary is plentiful. Fig. 13 shows

MongoDB’s aggregate and real-time insertion throughput

for the 3 GB Wikipedia snapshot and the Stack Exchange

dataset, inserted as fast as possible with and without sDedup.

The results show that sDedup does not greatly reduce

write throughput, because of its resource-efficient design

and implementation. We focus on write throughput, because

sDedup is not involved for read queries.

Wikipedia Stack Exchange
0

5

10

15

20

In
s
e
rt

io
n
 t

h
ro

u
g
h
p
u
t

(M
B

/s
)

15.1

9.2

15.2

9.3

with sDedup w/o sDedup

0

5

10

15

20

Wikipedia

0 50 100 150 200
Run time (seconds)

0

5

10

15

20

Stack Exchange

Figure 13: Impact on Insertion Throughput – The aggregate and

real-time insertion throughput with and without sDedup.

Figure 14: Insertion Throughput under Limited Bandwidth.

Performance with limited bandwidth: When network

bandwidth is restricted, such as for WAN links, remote repli-

cation can throttle insertion throughput and reduce end-user

performance. sDedup improves the robustness of a DBMS’s

performance in the presence of limited network bandwidth.

To emulate an environment with limited bandwidth, we

use a Linux traffic control tool (tc) to configure the maxi-

mum outbound network bandwidth on the primary server.

The experiments load the Wikipedia snapshot into the

DBMS as fast as possible and enforce replica synchroniza-

tion every 1000 document insertions.

Fig. 14 shows the DBMS’s insertion rate as a function of

available network bandwidth. Without sDedup, the required

replication bandwidth is equal to the raw insertion rate, re-

sulting in significant throttling when bandwidth is limited.

With sDedup, on the other hand, the DBMS is able to de-

liver full write performance even with limited network band-

width, because less data is transferred to the secondary.

5.7 Sharding

This section evaluates the performance of sDedup in a

sharded cluster, in which data is divided among multiple

primary servers that each has a corresponding secondary.

Each primary/secondary pair runs an independent instance

of sDedup. For experiments with sharding, we use the 20 GB

Wikipedia dataset and shard documents on article ID (like

the Wikipedia service). To accommodate MongoDB’s ca-

pacity balancing migrations, we modified sDedup to remove

the assumption that the source document can always be

found on the primary node. When it cannot, because it was

migrated, sDedup simply deletes it from the dedup index and

treats the target document as unique.

 232

Number of shards 1 3 5 9

Compression ratio 38.4 38.2 38.1 37.9

Table 3: Compression ratio with sharding.

Table 3 shows the compression ratio as a function of the

number of shards. The compression ratio is not significantly

affected, because Wikipedia documents with the same article

ID go to the same server and most duplication comes from

incremental updates to the same article. This indicates that

sDedup is robust and still works in sharded deployments.

6. Related Work
We are not aware of any previous work that uses deduplica-

tion to reduce replication bandwidth for DBMSs. The com-

mon practice is to use compression. We have shown that

deduplication reduces data more than compression in doc-

ument databases, and the two can be combined for greater

reduction. This section surveys related work in storage dedu-

plication, similarity search, and delta compression.

There are two high-level approaches for detecting du-

plicate data. The first looks for exact matches on the unit

of deduplication. Deduplication granularity can be a whole

file [10, 23] or a data chunk [18, 21, 22, 29, 33, 36,

47]. Deduplication techniques based on variable-sized data

chunks usually provide the best compression ratio due to

their resistance to boundary-shifting [24], but at the cost of

slightly higher computation overhead in chunking. Such sys-

tems build an index of chunk hashes (using SHA-1) and

consult it for detecting duplicate chunks. The second ap-

proach looks for similar units (chunks or files) and dedu-

plicates them. There are two methods to deduplicate simi-

lar objects. The first [14, 29, 35] divides similar objects into

smaller sub-chunks and eliminates exact matches using sub-

chunk hashes. Some previous work [12, 39] uses the sec-

ond method to delta compress objects and stores the encoded

data. In these systems, if the source data chunk is stored in

the encoded form, it might require one or multiple decod-

ing stages to reconstruct the original content before it can be

used for delta compression. sDedup does not store encoded

data on persistent storage and thus has no such overhead.

sDedup’s target workload differs significantly from that

of previous deduplication systems focused on backup [21,

29, 47] or primary storage [1, 5–7, 11, 22, 41]. For these

workloads, more than 90% of duplication savings come from

unmodified data chunks in large files on the order of MBs

to GBs [32, 45], so typical chunk sizes of 4-8 KB work

well. For user files, even whole-file deduplication may elim-

inate more than 50% of redundancy [22, 32]. sDedup is

optimized for small documents with dispersed changes, for

which chunk-based deduplication does not yield satisfactory

compression ratios unless using small chunk sizes. How-

ever, as shown in Section 5.3, this incurs significant indexing

memory overhead. Instead, sDedup finds a similar document

and uses document-level delta compression to remove dupli-

cation with low memory and computation costs.

There has been much previous work in finding similar

objects in large repositories. The basic technique of identi-

fying similar files by maximizing Jaccard coefficient of two

sets of polynomial-based fingerprints is pioneered by Man-

ber [31]. Spring et al. [40] use this technique to identify re-

peated byte ranges on cached network packets to reduce the

redundant network traffic. Broder [16, 17] extends this ap-

proach to group multiple fingerprints into super-fingerprints.

A super-fingerprint match indicates high probability of sim-

ilarity between objects, so that the algorithm may scale to

very large files. Kulkarni et al. [27] adapt this method and

combine it with compression and delta encoding to improve

efficiency. Several other systems [14, 29, 35] take an alterna-

tive approach using a representative subset of chunk hashes

(IDs) as the feature set. sDedup uses a similar approach to

extract features by sampling top-K chunk IDs, but only uses

them to identify similar documents rather than for chunk-

level deduplication. We defer it as an interesting future work

to explore using the super-fingerprints-based approach for

finding similar documents in sDedup.

Delta compression has been used to reduce network traf-

fic for file transfer or synchronization. Most of this work

assumes that previous versions of the same file are explic-

itly identified by the application, and duplication happens

only among prior versions of the same file [42, 44]. When

the underlying DBMS is not told about versioning, or du-

plication exists across different documents, sDedup is still

able to identify a similar document from the data corpus and

therefore is a more generic approach. TAPER [25] reduces

network transfer for synchronizing file system replicas by

sending delta encoded files. It identifies similar files by com-

puting the number of matching bits on the Bloom filters gen-

erated with the chunk hashes in the respective files.

Delta compression has been widely studied. Notable ex-

amples are general-purpose algorithms based on the Lempel-

Ziv [48], such as vcdiff [13], xDelta [30], and zdelta [43].

Specialized schemes can be used for specific data formats

(e.g., XML) to improve compression quality [19, 28, 38, 46].

The delta compression algorithm used in sDedup is based on

the xDelta algorithm for identifying byte-level duplication

between two binary objects.

7. Conclusion
sDedup is a similarity-based deduplication system that ad-

dresses the network bandwidth problem for replicated doc-

ument databases. It exploits key characteristics of document

database workloads to achieve excellent compression ra-

tios while being resource efficient. Experimental results with

three real-world datasets show that sDedup is able to achieve

up to two orders of magnitude reduction in data sent over

the network, significantly outperforming traditional chunk-

based deduplication approaches in terms of compression ra-

tio and indexing memory usage while imposing negligible

performance overhead.

 233

Acknowledgements: We thank Sanjeev Mehrotra for

helping with the data chunking portion of the system and for

useful discussions. We thank Andrei Marinescu for suggest-

ing a motivating scenario from Microsoft Exchange cloud

deployment and for providing the Exchange dataset. We

thank our shepherd, Fred Douglis, and the anonymous re-

viewers for helpful feedback on the paper. We also thank

the members and companies of the PDL Consortium (in-

cluding Actifio, Avago, EMC, Facebook, Google, Hewlett-

Packard Labs, Hitachi, Huawei, Intel, Microsoft, NetApp,

Oracle, Samsung, Seagate, Symantec, Western Digital) for

their interest, insights, feedback, and support. This research

was sponsored in part by Intel as part of the Intel Science and

Technology Center for Cloud Computing (ISTC-CC) and by

MongoDB Incorporated. Experiments were enabled by gen-

erous hardware donations from Intel and NetApp.

References
[1] Linux SDFS. ���������������	
.

[2] MongoDB. ����
���������
�����	
.

[3] MongoDB Monitoring Service. �����
���������
����
���.

[4] MurmurHash. �����
��������
��
������������
��	��	����.

[5] NetApp Deduplication and Compression. �����������
��������	�������������	����������������.

[6] Ocarina Networks. �������	��������	������.

[7] Permabit Data Optimization. ������	���������.

[8] Stack Exchange Data Archive. �����
���	�������	
�
�������������������
�.

[9] Wikimedia Downloads. �����
�������������������	
.

[10] Windows Storage Server. �����������	����������������
���	�	��

������ !"�#$%�����.

[11] ZFS Deduplication. ���
���	��������������������	��
&��'�����.

[12] L. Aronovich, R. Asher, E. Bachmat, H. Bitner, M. Hirsch,

and S. T. Klein. The design of a similarity based dedupli-

cation system. In Proceedings of SYSTOR 2009: The Israeli
Experimental Systems Conference, page 6. ACM, 2009.

[13] J. Bentley and D. McIlroy. Data compression using long

common strings. In Data Compression Conference, 1999.
Proceedings. DCC’99, pages 287–295. IEEE, 1999.

[14] D. Bhagwat, K. Eshghi, D. D. Long, and M. Lillibridge.

Extreme binning: Scalable, parallel deduplication for chunk-

based file backup. In Modeling, Analysis & Simulation
of Computer and Telecommunication Systems, 2009. MAS-
COTS’09. IEEE International Symposium on, pages 1–9.

IEEE, 2009.

[15] D. Bhagwat, K. Eshghi, and P. Mehra. Content-based doc-

ument routing and index partitioning for scalable similarity-

based searches in a large corpus. In Proceedings of the 13th
ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 105–112. ACM, 2007.

[16] A. Broder. On the resemblance and containment of docu-

ments. Compression and Complexity of Sequences, 1997.

[17] A. Broder. Identifying and filtering near-duplicate documents.

11th Annual Symposium on Combinatorial Pattern Matching,

2000.

[18] A. Clements, I. Ahmad, M. Vilayannur, and J. Li. Decentral-

ized Deduplication in SAN Cluster File Systems. In USENIX
ATC, 2009.

[19] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes

in xml documents. In Data Engineering, 2002. Proceedings.
18th International Conference on, pages 41–52. IEEE, 2002.

[20] B. Debnath, S. Sengupta, and J. Li. Chunkstash: Speeding up

inline storage deduplication using flash memory. In USENIX
Annual Technical Conference, 2010.

[21] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,

P. Strzelczak, J. Szczepkowski, C. Ungureanu, , and M. Wel-

nicki. HYDRAstor: a Scalable Secondary Storage. In FAST,

2009.

[22] A. El-Shimi, R. Kalach, A. K. Adi, O. J. Li, and S. Sengupta.

Primary data deduplication-large scale study and system de-

sign. In USENIX Annual Technical Conference, 2012.

[23] EMC Corporation. EMC Centera: Content Addresses Storage

System, Data Sheet, April 2002.

[24] K. Eshghi and H. K. Tang. A framework for analyzing and

improving content-based chunking algorithms. 2005.

[25] N. Jain, M. Dahlin, and R. Tewari. Taper: Tiered approach for

eliminating redundancy in replica synchronization. In FAST,

2005.

[26] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al. B4: Experi-

ence with a globally-deployed software defined wan. In ACM
SIGCOMM Computer Communication Review, volume 43,

pages 3–14. ACM, 2013.

[27] P. Kulkarni, F. Douglis, J. D. LaVoie, and J. M. Tracey. Redun-

dancy elimination within large collections of files. In Usenix
Annual Technical Conference, 2004.

[28] E. Leonardi and S. S. Bhowmick. Xanadue: a system for

detecting changes to xml data in tree-unaware relational

databases. In Proceedings of the 2007 ACM SIGMOD interna-
tional conference on Management of data, pages 1137–1140.

ACM, 2007.

[29] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar,

G. Trezise, and P. Camble. Sparse indexing: Large scale, in-

line deduplication using sampling and locality. In FAST, 2009.

[30] J. P. MacDonald. File system support for delta compression.

Master’s thesis, University of California, Berkeley, 2000.

[31] U. Manber et al. Finding similar files in a large file system.

In Proceedings of the USENIX Winter 1994 Technical Confer-
ence, 1994.

[32] D. T. Meyer and W. J. Bolosky. A study of practical dedupli-

cation. In FAST, 2011.

[33] A. Muthitacharoen, B. Chen, and D. Mazières. A low-

bandwidth network file system. In SOSP, 2001.

[34] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51(2):122–144, 2004.

 234

[35] H. Pucha, D. G. Andersen, and M. Kaminsky. Exploiting

similarity for multi-source downloads using file handprints.

In NSDI, 2007.

[36] S. Quinlan and S. Dorward. Venti: A new approach to archival

storage. In FAST, 2002.

[37] M. O. Rabin. Fingerprinting by random polynomials.

[38] S. Sakr. Xml compression techniques: A survey and compar-

ison. Journal of Computer and System Sciences, 75(5):303–

322, 2009.

[39] P. Shilane, M. Huang, G. Wallace, and W. Hsu. Wan-

optimized replication of backup datasets using stream-

informed delta compression. In FAST, 2012.

[40] N. T. Spring and D. Wetherall. A protocol-independent

technique for eliminating redundant network traffic. ACM
SIGCOMM Computer Communication Review, 30(4):87–95,

2000.

[41] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti. id-

edup: Latency-aware, inline data deduplication for primary

storage. In FAST, 2012.

[42] T. Suel and N. Memon. Algorithms for delta compression

and remote file synchronization. Lossless Compression Hand-

book, 2002.

[43] D. Trendafilov, N. Memon, and T. Suel. zdelta: An efficient

delta compression tool. Technical Report TR-CIS-2002-02,
Polytechnic University, 2002.

[44] A. Tridgell. Efficient algorithms for sorting and synchroniza-

tion. In PhD thesis, Australian National University , 2000.

[45] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone,

M. Chamness, and W. Hsu. Characteristics of backup work-

loads in production systems. In FAST, 2012.

[46] Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-diff: An effective

change detection algorithm for xml documents. In Data En-
gineering, 2003. Proceedings. 19th International Conference
on, pages 519–530. IEEE, 2003.

[47] B. Zhu, K. Li, and R. H. Patterson. Avoiding the disk bottle-

neck in the data domain deduplication file system. In FAST,

2008.

[48] J. Ziv and A. Lempel. A universal algorithm for sequential

data compression. IEEE Transactions on information theory,

23(3):337–343, 1977.

 235

