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Abstract

Administration tasks increasingly dominate the total cost
of ownership of database management systems. A key task,
and a very difficult one for an administrator, is to justify up-
grades of CPU, memory and storage resources with quanti-
tative predictions of the expected improvement in workload
performance. Current database systems are not designed
with such prediction in mind and hence offer only limited
help to the administrator. This paper proposes changes to
database system design that enable a Resource Advisor to
answer “what-if” questions about resource upgrades. A
prototype Resource Advisor built to work with a commer-
cial DBMS shows the efficacy of our approach in predicting
the effect of upgrading a key resource — buffer pool size —
on OLTP workloads in a highly concurrent system.

1. Introduction

Administering database management systems (DBMS)
is a complex and increasingly expensive task, and there is
a pressing need for greater automation in this area [7, 13].
A key aspect of DBMS administration is resource provi-
sioning: given a hardware budget, an administrator must
decide whether and in what proportion to invest in faster
processors, additional memory, or larger and faster disks.
DBMS running transactional workloads serve as back ends
to a variety of enterprises such as e-commerce, banking, and
travel reservation systems, essentially determining the ap-
plication’s response time [19]. Accurate database resource
provisioning is thus vital to ensuring quality of service in
these enterprises.
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Such enterprises typically hire human experts who use
experience and rules of thumb [12] to decide whether ac-
quiring more resources will improve performance. The cost
of hiring experts for resource provisioning decisions is high
for large enterprises and practically prohibitive for the large
number of small businesses using DBMS as back ends.
Even experts find it difficult to quantify the expected ben-
efit of a resource upgrade, an especially challenging task
for highly concurrent OLTP (On-Line Transaction Process-
ing) workloads whose behavior at any point in time is the
combined effect of many concurrent transactions. The net
effect is that DBMS are often over-provisioned.

In this paper we argue that the DBMS itself should pro-
vide automated answers to “what-if” questions about its
resources by predicting the effect of proposed upgrades
on both aggregate and per-transaction performance. To
gain insights on the system changes required for such self-
predictability, we have build a prototype Resource Advisor
for a recent unreleased version of Microsoft’s SQL Server
DBMS. The Resource Advisor answers what-if questions
such as “How would performance be affected if I doubled
the amount of memory on this server?” with quantitative
answers such as “throughput will increase by 40%, the re-
sponse time of ‘new order’ type transactions will decrease
by 80%, and the CPU will become the new bottleneck.” Al-
though many aspects of database performance have been in-
dividually studied in great detail, we believe this is the first
attempt to automatically answer such high-level questions
through an architecture that integrates live system tracing
with hardware resource models and performance prediction.

One resource of great interest for performance predic-
tion is the main memory buffer pool used for caching
data retrieved from disk, often an important performance
limiting factor [5, 9, 11]. Its effect on performance is
workload-specific, non-linear, and hard to predict using
rules of thumb. Although the Resource Advisor is designed
to answer “what-if”" questions about CPU and storage as
well, our prototype implementation and evaluation focus on
buffer pool size as the variable resource.

The contributions of this paper are as follows:
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e We show the feasibility of answering “what-if” ques-
tions through a prototype implementation and evalua-
tion of a Resource Advisor for a commercial DBMS.

e We present a modular architecture for the Resource
Advisor, and identify the key components required
for effective self-prediction: low-level instrumenta-
tion, end-to-end transaction tracing, and parametrized
models of hardware resources.

e We demonstrate the additional benefits of our end-to-
end tracing technique in visualizing and understanding
system performance.

Our design and implementation are validated through de-
tailed experiments showing that the Resource Advisor ac-
curately predicts changes in OLTP workload performance
across large changes in available main memory resources.
When available memory is doubled, for instance, the Re-
source Advisor predicts the resulting throughput to within
7% or better. The Resource Advisor also correctly tracks
the trend in transaction response time across a range of
memory sizes spanning more than an order of magnitude.

2. Motivation and design

Large commercial databases are complex systems that
depend on several physical resources such as the back
end storage system, volatile main memory and CPUs. A
database administrator (DBA) must decide on a good ini-
tial configuration of these resources, and then continuously
monitor the system for new bottlenecks and changes in
workload. There are two nightmare scenarios that every
DBA faces. First, when clients complain that their work-
load performance does not meet service-level agreements,
she needs to pinpoint the source of the problem. Second,
a fixed budget is allocated to buying new hardware dur-
ing periodic system upgrades. Which resources should the
DBA upgrade and how can she quantify the effect on work-
load performance? From talking to administrators of real
database systems, it is clear that they do not have the right
tools to handle these scenarios.

The most common solution — over-provisioning all the
resources that might impact performance — is wasteful and
can be prohibitively expensive. A second approach is to
monitor performance using the aggregate counters provided
by most commercial DBMS [14, 21, 22]. Such per-resource
counters provide a narrow view of the system and do not
identify the global bottlenecks. (If the observed disk queues
are long, should we buy more memory or faster disks?) Ad-
ditionally, aggregate statistics do not offer any insights into
response time, since they do not distinguish between back-
ground and foreground (““critical-path”) resource usage. Fi-
nally, to determine the effect of a change in the available re-
sources the DBA must still constructively interpret the per-
formance implications of 400+ counters.
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Figure 1. Resource Advisor components.

The key to optimal price/performance is the ability to
answer “what-if”” questions: given a system with some re-
sources, to predict its performance with a different set of
resources. The Resource Advisor’s goal is to automati-
cally answer such questions with point predictions (“what
will happen to response time if I double the current mem-
ory?’) as well as trend forecasting (‘“what is the shape of
the memory-response time curve?”’). A second goal is to
provide detailed information about current system perfor-
mance, allowing the DBA to query and visualize any aspect
of performance or resource usage at any level of detail.

We expect that the Resource Advisor would be part of the
DBMS software at the server site, continuously collecting
trace information and maintaining a summary of workload
resource demand based on recent behavior. At any point,
the DBA could propose a resource upgrade and receive a
quantitative prediction of the expected performance.

2.1. Design principles

Our design incorporates several insights we have had
into enabling a DBMS to identify resource bottlenecks and
predict the impact of upgrades. First, DBAs are rarely able
to precisely characterize or model the application workload,
which in any case will change over time. This means that
resource advice should be based on continuous monitoring
of a live system running a real application workload.

Second, OLTP performance in particular depends on the
interaction between multiple DB components concurrently
executing transactions of different types. Thus it is insuf-
ficient to track aggregate resource utilization statistics: we
must frace system behavior in sufficient detail to compute
the resources used by each transaction, and the order in
which they were used.

Third, it is essential to separate demand from service.
The former refers to the resource demands placed by the
workload on the system, independent of the underlying



Event Type Arguments Description

Control Flow StartRequest SQL transaction begins
EndRequest SQL transaction ends
EnterStoredProc prochame Stored procedure invocation
ExitStoredProc procname Stored procedure completion

CPU scheduling SuspendTask taskid Suspend user-level thread
ResumeTask taskid Resumes user-level thread
Thread/CSwitchin cpuid, systid Schedule kernel thread
Thread/CSwitchOut | cpuid, systid Deschedule kernel thread

Buffer pool activity | BufferGet pageid Get reference to a buffer page (blocking)
BufferAge pageid Reduce the “heat” of a page
BufferTouch pageid Increase the “heat” of a page
BufferDirty pageid Mark a page as dirty
BufferReadAhead startpage, numpages | Prefetch pages (non-blocking)
BufferEvict pageid Evict a page to the free pool
BufferNew pageid Allocate a new page from the free pool

Disk I/0 DisklO startpage, numpages | Asynchronously read/write pages
DiskIOComplete startpage, numpages | Signal read/write completion

Table 1. Events used by the Resource Advisor

hardware. The latter refers to the way these resource de-
mands are scheduled by the available hardware resources.
To answer “what-if” questions about resource changes, we
must distinguish workload characteristics from hardware-
dependent measurements.

Finally, we advocate that each individual resource man-
ager (CPU scheduler, buffer manager, I/O scheduler) in the
system be self-predicting, with the ability to answer hy-
pothetical questions about its behavior under different re-
source regimes. The designers of these components are in
the best position to incorporate predictive models that cor-
rectly reflect their scheduling algorithms, eviction policies,
etc. Since current DBMS lack such models, our prototype
Resource Advisor includes simple CPU, buffer pool, and
disk models: our aim here is to validate the overall frame-
work rather than to develop new modeling techniques.

2.2. Prototype architecture

Based on the above design principles, we have built
a prototype Resource Advisor for SQL Server: Figure 1
shows its high-level architecture. Event traces are gener-
ated by the instrumented DBMS, and can be consumed on-
line or written to disk for offline analysis. Demand ex-
traction then separates out the hardware-independent as-
pects of the resource demand. This resource demand can
then be visualized in various ways, and is also fed into
workload-independent, parametric resource models which
predict throughput and response time for hypothetical re-
source configurations.

3. Resource Monitoring

This section describes the instrumentation required in a
self-predicting DBMS to provide fine-grained, end-to-end
traces of transaction resource demands; the extraction of ag-
gregate and per-transaction demand traces; and their use in
performance visualization. Section 4 describes their use in
answering “what-if” questions.

3.1. Instrumentation

We have instrumented a private copy of the SQL Server
source code to track the use of CPU, memory, and I/O
resources. Each instrumentation point generates an event
with associated parameters related to resource usage; these
events are processed in time order by the Resource Advisor
components to generate performance predictions. Events
are inserted in the DBMS source code as calls to C func-
tions, whose implementations are automatically generated
from a high-level definition of the interface between the
DBMS and the Resource Advisor. Each event is automati-
cally annotated with the user and kernel thread IDs and then
posted through Event Tracing for Windows (ETW) [20],
a low-overhead tracing infrastructure in Windows Server
2003. ETW timestamps and orders the events using an
accurate, high-resolution timer such as the processor cycle
counter, and flushes event buffers in the background.

Currently we trace events relating to transaction control
flow, buffer pool activity, disk I/O, and thread scheduling
(Table 1). Although the exact interface and instrumenta-
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The figure shows a timeline view of the resource demands and performance of a single OLTP transaction, extracted from a highly concurrent
workload. The view was automatically generated by the Resource Advisor, and only the annotations in large bold font were added by hand.
Due to space constraints, we only show an initial portion of the transaction. On the bottom three timelines, we can see when the transaction

was being executed by a system thread, when the I/O system was busy

processing this transaction’s requests, and when the CPU was busy.

The “thread” timeline also shows events occurring in the transaction execution path. Some of these events correspond to Disk 1/0 requests,

which are shown in the top 5 timelines.

Figure 2. Timeline view of a single transaction from an OLTP workload

tion points will depend on the particular DBMS, this list of
events represents the information that any DBMS will need
to monitor for effective self-prediction. We are extending
the instrumentation and modeling to include locking activ-
ity, which can have a significant impact on response time.

3.2. Demand trace extraction

A live system trace is the combined effect of workload
demand and resource availability. From it, the Resource
Advisor extracts a demand trace that represents workload
behavior in a hardware-independent way. This is then used
to represent workload behavior when modeling the effect
of changing the hardware resources. The demand trace in-
cludes a buffer reference trace, which contains the resource-
independent aspects of buffer pool activity: demand ac-
cesses, readaheads, buffer touches, buffer dirties, and new
page creations. It does not include buffer evictions or I/O
events, which depend on the buffer pool size. The demand
trace also includes the CPU cycles used in executing work-
load transactions, computed by tracking the active threads
within the DBMS using the scheduler context switch events.

The demand trace contains the interleaved demands of
many concurrently executing transactions as well as back-
ground tasks such as buffer pool management. From it the
Resource Advisor extracts per-transaction demand traces:

these provide information about resource usage on each
transaction’s critical path, essential to predicting response
time. Given the thread events and request markers, it as-
cribes each event and each cycle of computation to exactly
one transaction or background task. It then groups trans-
actions according to stored procedure invocation: for ex-
ample, a TPC-C “new order” transaction invokes the stored
procedure tpcc_neworder exactly once.

3.3. Virtual performance counters

In addition to its use in answering “what-if” questions,
detailed end-to-end tracing provides a wealth of informa-
tion about current system performance, which can be rep-
resented in a variety of ways to help DBAs understand sys-
tem behavior. Once we have a workload trace, we can eas-
ily construct new performance views as needed. Figure 3
shows one such view: a stack depth analysis [18] of buffer
cache locality by transaction type. In addition to summary
views, it is often instructive to examine in detail the behav-
ior of a single transaction. For example, “timeline views”
such as Figure 2 can be automatically generated from the
per-transaction traces.
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Figure 3. Stack depth visualization

4. Answering ‘“what-if”’ questions

The Resource Advisor’s primary function is, based on
a workload demand trace, to answer “what-if” questions
about system performance in a hypothetical hardware con-
figuration. This section describes the performance met-
rics of interest — throughput and response time — and the
operational formulas used to predict them. The inputs to
these formulas are provided by the resource models, which
predict the behavior of the CPU, storage, and buffer pool
managers when resources change. The storage and buffer
pool models are described in detail as they are affected by
changes in buffer pool size, the resource that we vary in the
experimental validation.

4.1. Performance metrics

The throughput of a DBMS running some workload is
the number of transaction requests satisfied per second. It
depends not only on server performance but also on the
client request rate. If the client workload is closed-loop,
each concurrent user has at most one outstanding transac-
tion at any time, and waits for some think time between
transactions. In an open-loop workload, request rate is inde-
pendent of response time. Saturation throughput is the max-
imum achievable server throughput, when either the CPU or
the I/O system is fully utilized.

Thus, the interesting metrics to predict are:

1. closed-loop throughput with a given think time

2. saturation throughput

3. response time
This work is concerned with server performance. Thus, “re-
sponse time” consists only of the time between the server
receiving a transaction request and sending out a response
after committing or aborting the transaction. All delays ex-
ternal to the server process — client-side processing, net-
work queuing, etc. are considered to be part of “think
time” from the server’s point of view.

4.2. Throughput prediction

To predict the throughput of a workload, the Resource
Adpvisor first identifies the bottleneck or throughput-limiting
resource. The expected server throughput 7" will be that of
the bottleneck resource, the lowest of:

® Tinazy/io: Storage subsystem’s service rate for the /O

request stream from the buffer pool manager.

® Thaz/cpyu: processor’s execution rate for the work-

load’s computational demands.

® Tnaz/workload: client request rate

Taz/io 18 computed as as nmltm' Here n;, is the av-
erage number of I/O requests per transaction predicted by
the buffer pool model (Section 4.4). t;, is the average I/O
service time predicted by the storage model (Section 4.5).

Trnaz/cpu is computed as ﬁ, where tcpy is the av-
erage amount of CPU time used per transaction. The Re-
source Advisor currently assumes that this is inversely pro-
portional to processor speed and independent of other hard-
ware parameters.

Tnaz/workload 18 the request rate T' for an open loop,
or thﬁ for a closed loop where N, ers is the number of
concurrent users and t;;;, 1S the mean think time. The
DBA must specify whether the expected workload is an
open or a closed loop, and also the associated rate param-
eters (1", Nysers, and typn%); these can be different from
those of the currently observed workload, allowing “what-
if” queries about changes in workload request rate and con-
currency as well as resource changes.

4.3. Response-time prediction

Unlike throughput, response time depends not only on
overall resource usage but also on the length of the crit-
ical path (Section 3.2). In general, predicting response
time when resources change would require us to model the
scheduling interactions between concurrent transactions.
We avoid this hard problem by using an analytic approxi-
mation for OLTP workloads, which gives promising results
despite its simplicity.

While throughput is by definition an aggregate work-
load measure, response time can also be measured for each
transaction individually or aggregated by transaction cat-
egory, where different categories may have very different
response-time characteristics. The Resource Advisor cur-
rently categorizes transactions according to the stored pro-
cedures invoked and predicts the mean response time for
each category. Depending on the DBMS and workload,
many factors can contribute to response time, notably lock-
ing [6, 19]. Currently we only predict delays due to wait-
ing/executing on hardware resources (CPU and I/O).

For each transaction type X, the Resource Advisor com-
putes the critical-path CPU time per transaction and scales



it using the CPU model. I/O blocking time is proportional
to the number of blocking 1/Os per transaction (predicted
by the buffer pool model) and to the average delay per I/O
including queuing delay. Delay per I/O is assumed to be in-
versely proportional to storage system idleness, and storage
system utilization proportional to the total amount of I/O
traffic. Thus the predicted mean response time for transac-
tion type X is

1-U]
tx = t/X/cpu + bX/iOdgol_[]ﬁ

ion/
io

where the primed variables are measured from the live sys-
tem trace and the unprimed variables are predictions for the
hypothetical case. ty ... di,, Uj,, and nj, are the mean
critical-path computation time for type X, the mean delay
per blocking I/O, the I/O subsystem utilization, and the av-
erage number of I/Os per transaction across all types. The
buffer pool model provides bx/;, and n;,: the predicted
number of blocking I/Os per transaction of type X and the
predicted number of I/Os per transaction across all types.

4.4. Buffer pool model

In the above analyses, the throughput and response time
predictions depend on the amount of I/O generated per
transaction. I/O is generated due to buffer cache misses and
dirty page evictions, which depend on the buffer pool size
and also on the buffer management strategies used by the
DBMS, especially the cache eviction policy [11]. The pro-
totype Resource Advisor uses a cache simulator specific to
the DBMS under study, with a globally shared buffer cache
and an LFU eviction policy. Our model assumes that the
sequence of buffer references, as well as memory alloca-
tions for purposes other than caching disk pages (temporary
objects or working memory), is independent of the underly-
ing buffer pool size. We have confirmed these assumptions
through code inspection and experimentation.

The Resource Advisor makes three simplifications in
modeling the real buffer manager. First, it only models the
I/Os to the main database tables, assuming the most com-
mon DB configuration where the recovery log is on a sepa-
rate disk and is not the performance-limiting factor. Second,
it ignores the opportunistic writeback of dirty pages by the
DBMS, which occurs only when the I/O subsystem is idle
and does not affect the analysis of I/O as a performance-
limiting factor. Finally, the DBMS replenishes a small free
buffer pool in the background whereas the simulator evicts
pages strictly on demand, a negligible difference given that
during steady-state operation the free pool is very small rel-
ative to the total memory.

4.5. Storage model

The storage model predicts the performance of the I/O
request stream predicted by the buffer pool model. It uses an
analytic model [24] based on the Shortest Seek Time First
(SSTF) scheduling algorithm used by almost all modern
disk device drivers. It assumes that the I/O request stream
is random, with little or no spatial locality, a good fit for
highly concurrent workloads such as OLTP with many in-
dependent requests, especially as the buffer cache absorbs
much of the locality in the access pattern. If data pages are
distributed across disks, the Resource Advisor separates out
the I/O requests by disk and analyzes each disk individually
as a potential bottleneck. It does not currently model more
complex storage schemes such as mirroring or RAID, but
such models can easily be plugged in to the framework.

The SSTF model predicts the mean I/O service time t;,
as a function of the known disk parameters such as num-
ber of cylinders, seek times, etc. and also of the mean I/O
queue length q,,.. The queue length is an input to the model
and must be predicted, since it can depend on the resource
availability. For example, larger buffer pools generate fewer
buffer cache misses, which leads to fewer outstanding 1/Os
per user and hence shorter queues. We use

Nnonblockin
(% +1)

Gave = (Nusers -
Nblock:ing

Ncpu - tthinkT
The first term represents the average number of user con-
nections blocked in I/O at any given time, and the second
represents the average number of outstanding I/Os for each
such connection. N, sers and ¢y, are the number of user
connections and the mean think time, both workload pa-
rameters specified by the DBA. N, is the expected num-
ber of running or runnable transaction threads, which for
our non-preemptive CPU scheduler is the number of proces-
sors in the system. The ratio %ﬁ’;g of non-blocking
I/Os (readaheads and writebacks) to blocking I/Os (demand
reads) is predicted by the buffer pool model.

These equations give us the I/O service time t;, as a
function of the transaction rate T". For a closed-loop, I/O-
bound workload, the transaction rate in turn is a function
of t;, (Section 4.2). The Resource Advisor solves the mu-
tual equations numerically using an iterative computation.
Section 5 shows that this simple model of queue length,
combined with the analytic storage model, accurately tracks
the changes in I/O subsystem performance with changes in
buffer pool size.

5. Evaluation

In evaluating the Resource Advisor, the high-level ques-
tion to be answered is:
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Figure 4. 1/Os per transaction for SAT

Given a live system running a workload, can the Re-
source Advisor efficiently and accurately predict the per-
formance of the same workload with different resources?

In this evaluation, we answer this question for an OLTP
workload with the varying resource being buffer pool size,
i.e. memory availability. We break down our earlier ques-
tion into four sub-questions, and answer each in turn:

e For a closed-loop workload, can the Resource Advisor

predict throughput at different buffer pool sizes?

e Given a non-saturation workload, can it predict satu-
ration throughput at different buffer pool sizes? More
generally, can it predict the effect of changes in work-
load request rate, or from an open to a closed loop?

e Given a non-saturation workload, can it predict re-
sponse time at different buffer pool sizes?

e What are the runtime overheads and other costs of de-
ploying the Resource Advisor?

5.1. Workloads and experimental setup

Our evaluation uses two variants of a TPC-C [25] work-
load, which differ only in the transaction request rate:

e SAT is a closed-loop saturation workload. Each user
operates in a closed loop with near-zero think time,
placing the server under heavy load.

e OPEN is an open-loop non-saturation workload with a
low, constant transaction rate such that the server al-
ways has significant amounts of idle time.

All the experiments used a single instance of SQL Server
running on Windows Server 2003 on a single 2.7 GHz Intel
Xeon processor. The 10GB database was stored on a single
80 GB Western Digital WDCS800JB disk, with the transac-
tion log and event trace log on two additional disks. Our
aim was not to obtain optimal performance from the DBMS
server, but to predict the change in performance when re-
sources change. Thus, we opted for simplicity rather than
careful tuning of the hardware and DBMS configuration.
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Figure 5. I/O service time for SAT

Our stress client simulates 200 independent user connec-
tions to the server, runs on a single 2.8 GHz Intel Pentium
processor, and is connected to the server by a 100 Mbps eth-
ernet switch. Each workload run consists of at least 5000
transactions and is preceded by a warm-up phase of at least
30000 transactions. Each run is repeated with buffer pool
sizes of 64 MB, 128 MB, 256 MB, 512 MB, and 1024 MB.
The CPU and disks were unchanged in all cases.

The aim of each experiment is to validate the Resource
Advisor’s answer to a “what-if”” question against the mea-
sured result of carrying out the hypothetical change. Of the
many “what-if” questions a DB administrator might ask, we
chose two typical ones related to buffer pool memory:

e What will the performance be if I double the memory?

e What is the trend as I continue to add memory?

These questions are answered by evaluating two predictors:

e DOUBLE predicts performance when the buffer pool

size is doubled. It predicts the performance at 128 MB
from the trace at 64 MB, at 256 MB from 128 MB, etc.

e TREND predicts performance over the entire range

of buffer pool sizes, based on traces from the lowest-
memory configuration (64 MB).

5.2. Closed-loop throughput prediction

This experiment evaluates the accuracy of DOUBLE and
TREND in predicting the throughput of SAT. We evaluate
the accuracy of each individual prediction component as
well as the final result. The results are based on 5 identical
runs at each configuration, showing the mean and standard
deviation of both the measured and the predicted values.

Our first step is to evaluate the accuracy of the buffer
pool model. The predicted value is the number of I/Os
generated per transaction, which determines the I/O-bound
throughput 7', 4, /:,- Figure 4 shows the predicted and ac-
tual I/Os per transaction. Figure 5 then shows how well the
storage model predicts the I/O service time. Note that our
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model correctly tracks the slight increase in service time
due to decreasing queue lengths.

Given the I/O request stream and service time, the Re-
source Advisor predicts throughput using the analysis of
Section 4.2. Figure 6 shows the accuracy of this predic-
tion. Note that throughput was I/O-bound at all buffer pool
sizes except at 1024 MB, when it becomes client-bound,
i.e. limited by workload think time. In all cases, the pre-
dictor correctly identifies the bottleneck, and we see that
TREND tracks the performance curve, while DOUBLE pre-
dicts throughput to within 7% or better.

5.3. Saturation throughput prediction

The previous experiment showed that that the Resource
Advisor can predict throughput across changes in buffer
pool size. Often we also want to predict the effect of
changes in request rate. In this experiment, we predict
the throughput of the high-rate, closed-loop SAT workload
(characterized by its known think time) based on a trace of
the low-rate open-loop OPEN workload. This tests the fol-
lowing capabilities of the Resource Advisor:

e Predicting saturation throughput: as SAT is a satura-
tion workload in all but the 1024 MB case, correctly
predicting its throughput corresponds to correctly pre-
dicting saturation throughput. At 1024 MB, it corre-
sponds to correctly predicting that the bottleneck will
move outside the server.

e Predicting across arrival patterns: SAT and OPEN
differ in their request rates as well as their rate mod-
els (closed vs. open). Predicting the performance of
one by observing the other will show that our models
can predict across changes in request rate as well as
arrival pattern.

e Demand extraction: the throughput prediction is based
on the assumption that the demand trace captures all
relevant features of the workload and is independent

-
N
L

-
o
L

——SAT
—=— OPEN
-+- DOUBLE
—=—TREND

Transactions/second
o (-]
|

ES
L

N
L

0 200 400 600 800 1000 1200
Buffer pool size (MB)

Figure 7. Throughput of SAT (from OPEN)

of server load. This is validated by using the demand
trace of OPEN to predict performance under the very
different load regime of SAT.

Figure 7 shows the measured throughput of SAT, the
DOUBLE and TREND predictions for SAT based on a sin-
gle run of OPEN, and the throughput of OPEN itself. Al-
though SAT and OPEN behave very differently, the Re-
source Advisor correctly infers the former by observing the
latter: DOUBLE predicts the saturated throughput to within
10% or better and correctly identifies the client as the bot-
tleneck for the 1024 MB case.

5.4. Open-loop response time prediction

Recall from Section 4.3 that the Resource Advisor
groups transactions by type. This lets us measure and pre-
dict mean response time by transaction type, since different
transaction types have very different critical paths. We pre-
dicted the mean response time for each of the five TPC-C
transaction types, with prediction errors of DOUBLE vary-
ing from 33%—-68%. Although this appears large, it is im-
portant to note that the underlying variation in response time
is also large: in 19 of 20 cases, the error was smaller than
the observed standard deviation. This indicates that there is
little room for further improvement in predicting mean re-
sponse time. Instead, the focus should be on predicting the
frequency distribution of response times.

Prediction error is also small compared to the change in
response time as memory size is increased. Across the full
range of memory sizes measured, response time of all five
transaction type changes by more than an order of magni-
tude. Our predictions accurately follow this trend for all five
transaction types. Figure 8 shows this result graphically for
the “new order” type.
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Figure 8. Response time in OPEN

5.5. Resource Advisor overheads

Figure 9 shows the runtime overheads of the Resource
Advisor: the amount of trace data generated and the CPU
consumed per transaction. The overhead per transaction is
higher at lower buffer pool sizes: there are more I/O events
to process, as well as more background events since trans-
action execution times are lengthened.

The worst-case CPU overhead is 6.2%, for an unop-
timized C# implementation of the Resource Advisor run-
ning online. With offline operation, this is reduced to 1.2%
for tracing and logging. The trace data rate is a modest
0.44 MB/s in the worst case, whether for online consump-
tion or logging to disk. These overheads could be reduced
further with a more optimized implementation, and by using
a sampling approach rather than always-on tracing.

A potential concern with self-prediction is the amount of
effort required to add it to an existing DBMS. We advocate
that future DBMS designs incorporate self-prediction as a
goal from the beginning; however, our experience is that
this capability can also be added to legacy code with a mod-
est amount of work. Instrumentation of the DBMS required
only 189 additional lines of code in 6 source files. The rest
of the Resource Advisor runs as a stand-alone program, and
is also modest in size: 1150 lines of code.

6. Related work

Much research has identified buffer memory as a key re-
source for database throughput and response time [9, 11]
and proposed various techniques to optimize or adapt mem-
ory usage: for example, by dynamically limiting the work-
ing memory allocated per query [5]. The Resource Advisor
complements this work by predicting the behavior of the
buffer manager at different memory sizes, given the mem-
ory allocation and buffer references made by higher layers.
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Figure 9. Overhead of event logging

Our buffer model is based on cache simulation, an old
and well-studied idea [10, 18]. An alternative approach is
to model the cache hit ratio of a specific workload such as
TPC-C as a function of buffer size [15, 26]. Although we
use a TPC-C like workload in our evaluation, the Resource
Adpvisor itself is workload-agnostic, using live system traces
to capture workload characteristics, and usable by DBAs
with little or no understanding of the workload.

Several studies have proposed detailed cost models of
CPU usage and of the processor cache hierarchy [2, 4, 17].
Others have developed models of storage device perfor-
mance [24, 27]. Our contribution is in integrating these
approaches into a broader mechanism to answer “what-if”
questions about hypothetical hardware changes.

Magpie [3] and Pinpoint [8] both use end-to-end event
tracing, for workload modeling and fault detection respec-
tively. The Resource Advisor uses the same principle for
DBMS performance prediction and capacity planning.

Finally, resource provisioning is only one of many
database configuration and maintenance tasks. Orthogo-
nally to our work, recent research has focused on automated
physical database design tools to reduce manual interven-
tion and maximize performance. The Database Tuning Ad-
visor [1] and DB2 Advisor [16] suggest the most appropri-
ate set of indexes and materialized views as well as the best
physical layout of tables. AutoPart [23] automates schema
design using data partitioning on large-scale datasets.

7. Conclusion

This paper presented a design and implementation for
a database Resource Advisor that predicts the performance
impact of changing resource availability. It is based on
fine-grained, low-overhead tracing; per-transaction demand
extraction; and simple, lightweight, workload-agnostic re-
source and performance models.



Our primary contribution is to demonstrate that the Re-
source Advisor can accurately answer “what-if” questions
about hypothetical resource changes for a live system: the
key requirement for automating decisions on resource up-
grades or reprovisioning. We validated this claim by pre-
dicting the throughput and response time of an OLTP work-
load as a function of buffer pool size. Our second contribu-
tion is a modular architecture with easily replaceable anal-
ysis and modeling components.Finally, we demonstrated
the value of end-to-end transaction tracing both in response
time prediction and in performance visualization.

Our current goal is a more thorough validation of the Re-
source Advisor prototype, for instance using DSS (Decision
Support System) workloads which behave very differently
from OLTP. We also intend to extend our models to predict
response time distributions in addition to mean values, and
also to predict the effect of changing the workload transac-
tion mix. Finally, we are extending both the instrumentation
and the models to other performance-limiting factors such
as locking and network communication.
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