
Everything is a Transaction: Unifying Logical Concurrency
Control and Physical Data Structure Maintenance in

Database Management Systems

Ling Zhang, Matthew Butrovich, Tianyu Li♠, Yash Nannapanei�
Andrew Pavlo, John Rollinson♣, Huanchen ZhangF

Ambarish Balakumar, Daniel Biales, Ziqi Dong, Emmanuel Eppinger, Jordi Gonzalez
Wan Shen Lim, Jianqiao Liu, Lin Ma, Prashanth Menon, Soumil Mukherjee, Tanuj Nayak
Amadou Ngom, Jeff Niu, Deepayan Patra, Poojita Raj, Stephanie Wang, Wuwen Wang

Yao Yu, William Zhang
Carnegie Mellon University

♠Massachusetts Institute of Technology, �Rockset, ♣Army Cyber Institute FTsinghua University,

lingz2@cs.cmu.edu

ABSTRACT
Almost every database management system (DBMS) supporting
transactions created in the last decade implements multi-version
concurrency control (MVCC). But these systems rely on physical
data structures (e.g., B+trees, hash tables) that do not natively sup-
port multi-versioning. As a result, there is a disconnect between the
logical semantics of transactions and the DBMS’s underlying im-
plementation. System developers must invest in engineering efforts
to coordinate transactional access to these data structures and non-
transactional maintenance tasks. This burden leads to challenges
when reasoning about the system’s correctness and performance
and inhibits its modularity. In this paper, we propose the Deferred
Action Framework (DAF), a new system architecture for scheduling
maintenance tasks in an MVCC DBMS integrated with the system’s
transactional semantics. DAF allows the system to register arbi-
trary actions and then defer their processing until they are deemed
safe by transactional processing. We show that DAF can support
garbage collection and index cleaning without compromising per-
formance while facilitating higher-level implementation goals, such
as non-blocking schema changes and self-driving optimizations.

1. INTRODUCTION
Race conditions and transaction interleavings within an MVCC

DBMS remain challenging implementation hurdles despite insights
from decades of development [9, 24, 22, 28, 20]. This difficulty
partly arises because of a disconnect between the concurrency con-
trol semantics of the logical layer of the system (e.g., transactions,
tuples) and the synchronization techniques of the underlying physi-
cal data structures (e.g., arrays, hash tables, trees). Developers must
carefully reason about races within these physical objects and devise
bespoke solutions that are transactionally correct and scalable.

The core challenge in this is to coordinate two types of accesses
to the same physical data structures: (1) transactional runtime oper-
ations (e.g., inserting a key into an index) and (2) non-transactional
maintenance tasks (e.g., removing invisible versions from an index).
The DBMS can simplify this dichotomy by unifying them under the
same transactional semantics. Under this model, the system uses
transactional timestamps as an epoch protection mechanism to pre-
vent races between maintenance tasks and active transactions [26].
For example, an entry in an MVCC version chain is obsolete when

it is no longer visible by any active transactions in the system. The
DBMS’s garbage collector, therefore, looks up the oldest running
transaction in the system and safely removes the entries created
before that transaction starts [15, 7].

In this paper, we generalize this idea into a framework, called the
Deferred Action Framework (DAF), that can process maintenance
tasks in a safe and scalable way. We integrate DAF into a DBMS’s
transaction processing engine and provide a simple API for deferring
arbitrary actions on physical data structures. Specifically, DAF
guarantees to process actions deferred at some timestamp t only after
all transactions started before t have exited. This provides epoch
protection to transactions and maintenance tasks, without requiring
a separate mechanism for refreshing and advancing epochs. Unlike
other epoch-based protection implementations [26], DAF satisfies
complex ordering requirements for actions deferred at the same
time through a novel algorithm of repeated deferrals. This enables
DAF to process maintenance tasks in parallel while satisfying any
implicit dependencies between them (e.g., delete a table only after
all version chain maintenance on the table is finished).

To evaluate DAF, we integrated it into the NoisePage [1] DBMS
to process two internal tasks: (1) MVCC version chain maintenance
and (2) index maintenance. We found that DAF reduces the im-
plementation complexity of these tasks while offering competitive
performance compared to hand-optimized alternatives. DAF also
helps us reason about more complex transaction interleavings in
databases with evolving schemas, and it serves as a basis for sup-
porting non-blocking schema changes. Because DAF decouples
action processing from action generation, it gives us flexibility to
dynamically adjust the action processing strategies. Additionally,
DAF functions as a central point for runtime metrics collection in
our system. These features combine to make DAF a strong building
block for the self-driving [21] features in NoisePage.

The rest of this paper is organized as follows. We begin in Sec-
tion 2 with a survey of existing solutions for physical data struc-
ture synchronization and epoch-based protections. Section 3 then
presents DAF’s programming model. We show the correctness of
DAF and address the implementation challenges in Section 4. Sec-
tion 5 details other uses of DAF within NoisePage. We present our
experimental evaluation of DAF in Section 6 and conclude with a
summary of related and future works in Sections 7 and 8.

1

mailto:lingz2@cs.cmu.edu


2. BACKGROUND
The crux of MVCC is that a writer to a tuple creates a new “ver-

sion” instead of taking a lock and performing in-place updates [6].
Under this scheme, readers can access proper older versions without
being blocked by writers. Such scalability benefits come at the cost
of additional storage overhead and implementation complexity that
systems need to address. Systems need to store and differentiate
multiple versions, maintain them until no transaction can access
them, and quickly discard them to free up storage space after that.
In this section, we provide an overview of these challenges and
a brief survey on existing solutions. We also present the MVCC
implementation of NoisePage that DAF integrates with.

2.1 Data Structure Maintenance in MVCC
The need to keep track of multi-versioning information permeates

across many of an MVCC DBMS’s internal data structures. For
example, the DBMS organizes tuples in version chains that are
linked lists of all physical versions of a single logical tuple [28].
But indexes may have multiple references pointing to the same
underlying tuple if the versions of that tuple differ in the attribute
indexed. To support non-blocking schema changes [19], the system
additionally needs to accommodate multiple versions of the schema
co-existing in the system. With multi-versioned schemas, however,
the DBMS needs to support multiple entries in its plan cache to
support transactions with different visibilities.

There are different ways to solve this multi-versioning data struc-
ture problem. The system can assign the responsibility of mainte-
nance to either a set of background threads and require transaction
processing threads to cooperatively perform the duty or a combina-
tion of the two [9]. Additionally, data structure maintenance happens
concurrently with user transactions, and the maintenance tasks must
coordinate access to internal data structures with the transactions for
memory safety and semantic correctness. Such coordination must be
scalable, so as to not affect the transactional performance of the sys-
tem. Many systems resort to an epoch-based protection mechanism
to achieve this [26, 8, 12]. Under this scheme, transactions protect
against concurrent maintenance by registering with a monotonically
increasing counter, or epoch, and deregister once they no longer
require protection. The epoch steadily advances, so eventually, an
epoch has no registered transactions and becomes unprotected. The
maintenance tasks associated with that epoch can then be safely
processed without interfering with running transactions. To our
knowledge, all of these systems implement epoch protection as a
stand-alone component that does not integrate into the transactional
semantics of MVCC. Thus, DBMS developers maintain the epoch
explicitly in the transactional processing code.

3. FRAMEWORK OVERVIEW
In this section, we present an overview of the logical model of

DAF and its programming interface. At the core of DAF is the con-
cept of actions that are internal operations that DBMS performs on
physical data structures, such as pruning a version chain, compact-
ing a storage block, or removing a key from an index. The system
executes actions in response to user requests, but the execution must
be deferred until safety requirements are met. For example, when
a query updates a tuple, the system can remove the older version
only after that version is no longer visible to any current or future
transactions in the system.

DAF exposes a single API to the rest of the system: defer (action).
This function takes in an action as its input parameter and tags it
with the current timestamp. DAF guarantees to invoke the given
action if and only if there are no transactions in the system with a
start timestamp smaller than the tagged timestamp.

The action is a lambda function that contains the references to the
physical data objects that it will modify or deallocate.

3.1 System Characteristics
To simplify the implementation of DAF, we require the DBMS

to have certain properties. In particular, the DBMS must use
timestamp-ordering for MVCC and track the begin timestamp of
all transactions that may still be holding references to objects in the
system. The system must provide a method for transactions to query
the begin timestamp of the oldest active transaction. In addition, a
transaction must also be able to obtain an “observable” timestamp:
the timestamp at which all active transactions are guaranteed to see
its logical effects. While the discussion below will further assume
that the system uses a single, global counter for timestamps, the
framework functions correctly as long as the timestamp returned
by “next” is guaranteed to be logically after any timestamps already
assigned to transactions. We implemented DAF in NoisePage, but
several other modern in-memory databases meet these requirements
or could support it with minor modifications to expose the necessary
functionality in their timestamp systems.

For the rest of the paper, we make only minimal assumptions
about the threading model of the system. In particular, we do
not make any assumption about whether the threading model is
implemented in hardware, the kernel, or userspace. For simplicity,
however, we assume that the unit of work for a thread is a task: it
will execute a single task to completion before starting another. We
will further distinguish between two types of tasks: worker tasks
which execute individual transactions in the system and action tasks
which are maintenance routines which cleanup and release resources
no longer in use.

3.2 Implementation
Figure 1 presents an overview of how DAF interacts with the

system’s transaction manager. In the simplest configuration, DAF
utilizes a single action queue and a dedicated thread for executing
the actions as individual tasks. A worker task first queries for its
“observable” timestamp and then appends the actions tagged with
this timestamp to the queue. As shown in Figure 1, a transaction
worker first increments the global timestamp counter in step one
to get the current timestamp to tag its deferred actions. When the
transaction begins in step two, it increments the global timestamp
counter again. The action thread then processes the queue in order.
In particular, the thread checks the timestamp tag of the first item
in the queue and compares it to the timestamp of the current oldest
transaction. If the oldest transaction’s timestamp is larger than the
tag, or there are no active transactions, then the action thread pops
the head and executes the task. Otherwise, the thread is blocked
until this condition is satisfied. If the queue is empty, the action
thread waits in the background for a new action to process. For
example, in step three of Figure 1, actions tagged with t1 in the
queue get popped and executed because they have tags smaller than
the timestamp of the oldest active transaction, t2, in the system.
After that, the action thread is blocked because the next item in the
queue has a tag, t3, that is larger than t2. The action thread can
proceed only when the transaction with timestamp t2 completes, as
shown in steps four and five in Figure 1.

3.3 Ordering Actions
The naïve implementation of this API lacks ordering guarantees

for actions from concurrent producers. Even with actions serialized
into a single queue, hidden dependencies caused by MVCC and
snapshot isolation make certain actions such as deleting the data

2



Unlink Version Chain;
Some Other Tasks

   t1

Defer(() => {
 Delete 
 Version Chain;});

Delete Version Chain;

t0

t0

Timestamp 
Manager

Transaction 
Manager

Registered Commit Actions

Defer(() => {
Unlink Version Chain;

});

Defer(() => {
 Delete 
 Version Chain;});

Deferred 
Action 

Framework

Invoke Commit Actions
Insert All Deferred Actions

Into Deferred Action Queue

Increment Timestamp

Deferred Action Queue Deferred Action Queue

Wait An
Epoch

Increment Timestamp

Unlink Version Chain;

Deferred Action Queue

Some Other Tasks

   t1
Insert

Deferred
Actions

Into Queue

Process Actions Older than Oldest Running Txn

Wait An
Epoch

Process Deferred Action Queue

Increment Timestamp

Increment Timestamp Increment Timestamp

Delete Version Chain;

   t4

Transaction Commit

Process Deferred Action Queue

Transaction Commit Transaction Begin

Deferred Action Queue

Process Actions Older than Oldest Running Txn

1 2

3

4

5

Current Time

Oldest Running Txn

t1

NULL

t2

t2

t3

t2

t5

NULL

   t1    t1    t1    t3    t3

t4

NULL

Figure 1: DAF Overview –The DAF integrates with the transaction engine of NoisePage and tags actions with the system timestamp at the time of enqueueing.
DAF pops and executes an action if its timestamp is smaller than the oldest running transaction in the system. The shared timestamp between transactions and
DAF ensures correct ordering between action processing and transactional access.

structure backing a table problematic. We now present a solution
for this without modifying DAF through chaining deferrals.

Chaining deferrals allow us to bootstrap basic guarantees about
the ordering of actions within the queue. Consider the following
execution under snapshot isolation: transaction T1 drops a table
and commits while transaction T2 actively inserts into the table and
commits after T1. The action to prune the version chain from T2

will be processed after any action from T1, including the deletion of
the table data structure DAF must ensure that it processes the delete
action after it completes all other actions on the table for memory
safety. Observe that because no new transactions will see the table
after T1 commits at time t, any actions referencing the table after
t in the defer queue can only come from concurrent transactions
such as T2. We solve this problem with the following chaining of
event deferrals: T1 defers an action that when executed, defers the
actual deletion of the table. At the time of the second deferral, all
other actions on the table must be already in the queue, and the
deletion will be correctly ordered after them, at the tail of the queue.
The system can chain deferrals more than once to accommodate
more complex ordering requirements, as we will show in Section 4,
although in practice, we have not found the need to do so more than
twice.

4. OPTIMIZATIONS
The main challenge with general-purpose frameworks like DAF

is that they often achieve worse performance than specialized imple-
mentations. To overcome this, we now describe optimizations that
we developed when integrating DAF into NoisePage.

4.1 Timestamp Caching & Batching Actions
Before processing an action, DAF must know the timestamp of

the oldest running transaction. Computing this timestamp per action
on-the-fly is expensive, and is a bottleneck on the data structure
that the DBMS uses to track the active transaction set [7]. Given
the frequency that transactions begin and finish in high-throughput
workloads, it is better to optimize the system for transactions at the
expense of finding their minimum timestamp.

One way to avoid this problem is to cache the oldest transac-
tion’s timestamp. The DAF uses this cached timestamp rather than
recalculating it for each action that it has processed. The DBMS
periodically calculates the cached timestamp and then continues
to use it as long as it is greater than the timestamp of the head of
the DAF’s queue. This caching concept can be extended to include

batching actions since adjacent actions tend to share the same times-
tamp tag. Thus, you can reduce the number of latch operations on
the queue by eagerly dequeuing multiple actions that are ready to
process inside the same critical section.

If the DBMS’s active transaction set is under heavy contention,
one can further improve caching at the cost of a minor latency
increase. The DBMS can maintain a second cached timestamp of
the oldest running transaction’s timestamp. The DBMS then only
updates this cached timestamp when it deletes the oldest running
transaction. This introduces a small delay in the time from when
the DAF could process action (i.e., when it is safe) to when the
framework will process it. The benefit, however, is that this caching
reduces the contention of the DBMS’s active transaction set.

4.2 Multi-Threaded Action Processing
The queue-based implementation discussed in Section 3.2 is in-

herently single-threaded. This is not a scalable design for modern
multi-core systems. We found that using a single thread for DAF
is not able to keep up with processing only version chain pruning
actions in NoisePage for TPC-C using six execution threads.

The framework can support processing actions on multiple threads
by relaxing the ordering guarantee it provides. But adding more
consumer threads without additional controls is unsafe. The location
of an action in the queue relative to other actions is not enough to
guarantee correct ordering. Consider the version chain pruning
example. Suppose that one thread is processing an action to remove
old versions from a table and then stalls due to a context switch.
Then another thread processes an action to delete that same table in
response to a DDL statement. When the first thread awakes, it tries
to complete the action on a table that no longer exists.

The way to avoid this problem is to process actions inside of
transactions. For actions that arise due to schema changes (e.g.,
the drop table example), the DAF adds a third deferral to ensure
that it processes actions in the correct order. As discussed above,
all pruning actions (single deferral) are ahead of any action that is
double deferred. Thus, if the system pops an action from the queue
and executes it within the same transaction, then this guarantees that
when the system executes any double-deferred action, all prior ac-
tions are either in-progress or completed. Deferring from this point
guarantees that all prior actions are done because their associated
transactions have completed.

Executing actions in transactions in this manner allows us to asso-
ciate the length of an action’s deferral chain to a specific guarantee
in the system:

3



• Single-Deferral: All concurrent transactions have exited.
• Double-Deferral: All singly-deferred actions from concurrent

transactions have started.
• Triple-Deferral: All singly-deferred actions from concurrent

transactions have completed.
For our DAF implementation in NoisePage, we use multiple

consumers to perform the steps discussed in Section 3.2 within
transactions. The consumers commit their transactions whenever
they cannot execute the action at the head of the action queue.

4.3 Cooperative Execution
Although multi-threading improves the scalability of DAF, the

framework is still susceptible to scalability issues at higher thread
counts. Furthermore, if the DBMS uses dedicated threads to process
actions, then these threads take away computational resources that
could be used to execute transactions and queries. Choosing the right
number of DAF threads in this architecture is a trade-off between
the system being able to keep up with the background maintenance
requirements and losing performance due to context switches.

To avoid this problem, the DAF can employ a cooperative execu-
tion model where worker threads are also responsible for processing
actions [7, 14, 17]. This approach provides two benefits: (1) it
creates natural back-pressure on worker threads as delta records
accumulate and (2) it improves locality in the memory allocator.

The former helps to prevent a runaway performance situation
where the DBMS’s garbage collection mechanism cannot keep up
with demand [7]. By interspersing actions on the same threads as
transactions, the DBMS achieves an equilibrium where it does not
produce more actions than it can sustainably execute.

The other benefit is improved locality for the DBMS’s memory al-
locator. Most state-of-the-art allocators, such jemalloc, use arenas
that it maintains on a per-thread basis. When a thread frees mem-
ory, the allocator adds that newly freed memory back to the calling
thread’s local arena [5]. In this situation, an arena-based allocation
scheme is most efficient when the same threads are both allocating
and freeing memory, as they do not access a shared memory pool.

5. APPLICATIONS
We next outline the use cases where DAF helped simplify the

implementation of NoisePage’s components. This discussion is our
vision for how other system developers can use DAF to achieve
more functionality at lower engineering costs.

5.1 Low-Level Synchronization
The first category encompasses methods for ensuring the correct-

ness and safety of a DBMS’s internal physical data structures.

Index Cleaning: Most of the data structures used in DBMSs for
table indexes do not natively support multi-versioning [25]. Thus,
to use these data structures in an MVCC DBMS, developers either
(1) embed version metadata into index keys or (2) maintain version
metadata outside of the index. The latter is preferable because the
DBMS already does this to identify whether a tuple is visible. With
DAF, it is possible to take an existing single-version data structure
and integrate it into the DBMS with minimal code to add support
for multi-versioning. The high-level idea is to treat any update to
an indexed attribute on a tuple as an insert followed by a delete,
and then use an action to remove the deleted version when it is no
longer visible [20]. The index registers two actions for the updating
transaction: a commit action that defers deleting the original key
upon commit as well as an abort action that would immediately
remove the new index key.

Query Cache Invalidation: DBMSs rely on query plan caching
for frequently executed queries and prepared statements to reduce
the amount of redundant work. When an application changes the
physical layout of a table (e.g., drop column) or changes the indexes
on a table, the DBMS may need to re-plan any cached queries. For
example, if a cached query plan accesses an index but then the
application drops that index, the DBMS needs to invalidate the plan.
When the application invokes the query again, the DBMS generates
a new plan for it. Concurrent transactions still access the previous
query plan if the schema change is non-blocking. With DAF, the
transaction that issued the physical layout change only needs to
enqueue an action that defers the removal of the old query plan once
all the transactions that could access that plan are finished.

Latch-free Block Transformations: Some HTAP DBMSs treat
frequently modified (hot) blocks of data and read-mostly (cold)
data differently [3, 2, 4]. In NoisePage, transactions modify hot
data in-place, and concurrent transactions use version deltas to re-
construct earlier versions. For cold data, NoisePage converts data
to a more compact and read-efficient representation in-place [18].
Non-modifying queries are able to read data from cold blocks with-
out checking the version chain and materializing the tuple. During
normal operations, the DBMS may need to convert a data block
between hot and cold formats multiple times due to changes in the
application’s access pattern. Because the physical transformation
from one format to another is not atomic, the DBMS protects blocks
with a shared latch that transactions have to check before accessing
them. However, this would lay on the critical path of queries and
cause scalability issues. DAF enables the DBMS to perform these
layout transformations without such a latch. Instead, the DBMS
sets a flag inside of a block’s header to indicate that the block is
in an intermediate state. It then defers the transformation in an
action. Transactions that observe that the intermediate flag is set
fallback to materializing tuples when reading, as some threads may
still be issuing in-place writes. When the DBMS finally processes
the transformation action, all threads are in agreement that the block
will not be modified, and thus it safely allows in-place readers.

5.2 Non-Blocking Schema Change
Supporting transactional schema changes are notoriously diffi-

cult because they sometimes require the DBMS to rewrite entire
tables [19, 23]. In some cases, the schema change is trivial and thus
the DBMS does not need to block other transactions (e.g., rename
table, drop column). But there are other changes where the DBMS
will block other queries until the modification finishes.

With DAF, schema changes become easier to support because the
DBMS can reason about transactional physical data structure modi-
fications without special casing or coarse-grained locking. We can
extend the drop table example in Section 3.3 to also support indexes
and columns; the physical change is concealed via versioned shim
functions which are removed once all transactions operate on the
same schema definition again. DAF’s flexibility enables more inter-
esting possibilities because it can leverage a DBMS’s own MVCC
semantics to version other optimizations. For example, the DBMS
could JIT compile optimized access methods for its physical storage
layer, and then use actions to maintain a catalog of these methods.
The DBMS could also load new indexes or storage engines into
its address space at runtime without having to restart. Again, DAF
makes this possible because the deallocation mechanisms for these
components are decentralized, which means that they are not depen-
dent on hard-coded logic in the DBMS’s GC routines.

4



4 8 12 16 20 24
Number of Worker Threads

0

120

240

360
Th

ro
ug

hp
ut

 (k
 tx

n/
se

c)
24 Cooperative=24 Threads

1 DAF+24 Worker=25 Threads

2 DAF+24 Worker=26 Threads

4 DAF+24 Worker=28 Threads

8 DAF+24 Worker=32 Threads

1 GC+24 Worker=25 Threads

Cooperative
1 DAF
2 DAF
4 DAF
8 DAF
GC

Figure 2: TPC-C Performance – Throughput comparisons when varying
the number of worker threads using (1) cooperative DAF threads, (2) a single
dedicated GC thread, and (3) dedicated action processing threads.

0 25 50 75 100 125 150 175 200
Time (sec)

0

120

240

360

Th
ro

ug
hp

ut
 (k

 tx
n/

se
c)

Cooperative DAF
2 DAF Threads

Figure 3: Cooperative vs. Dedicated DAF Threads (Throughput) –
Comparison for NoisePage with a total of 20 threads, using either (1) coop-
erative action processing or (2) two dedicated action processing threads.

6. PRELIMINARY RESULTS
We now present our evaluation of DAF in NoisePage. Our goal

is to demonstrate the transactional performance for our DAF imple-
mentation and showcase its support for easy extension and instru-
mentation. We perform all experiments on Amazon EC2 r5.metal
instance: Intel Xeon Platinum 8259CL CPU (24× cores, HT dis-
abled) with 768 GB of memory.

We use transactional GC as our sample use-case for these exper-
iments. We compare our DAF-based implementation against an
earlier version of NoisePage with a hand-coded GC similar to the
original HyPer [20]. We use the TPC-C workload with one ware-
house per worker thread and report the total number of transactions
processed. We pre-compute all of the transaction parameters and
execute each transaction as a stored procedure. The DBMS run 200
seconds per trial to ensure the system reaches steady-state through-
put, and we record performance measurements using NoisePage’s
internal metric logging framework.

The graph in Figure 2 shows NoisePage’s throughput when in-
creasing the number of worker threads. DAF is able to scale across
multiple cores when using (1) cooperative or (2) dedicated thread
action processing. The latter outperforms the cooperative configu-
ration below 16 worker threads, but we see a drop in performance
when the total number of threads in the system (dedicated + worker)
saturates the number of physical cores. These results show that the
dedicated thread configuration fails to scale when exceeding four
worker threads per DAF thread.

To better understand this performance degradation for higher
thread counts, we measure the DBMS’s throughput continuously
during the benchmark. Figure 3 shows the sustained throughput
of two runs with 20 threads on two configurations: (1) cooperative
and (2) two dedicated DAF threads. The dedicated thread config-
uration initially starts with approximately the same throughput as
cooperative, but then its performance drops by half within the first
30 seconds of execution. To explain this pattern, we plot average

0

400

800

Th
ro

ug
hp

ut
(k

 a
ct

io
n/

se
c)

Cooperative DAF 2 DAF Threads

0 25 50 75 100 125 150 175 200
Time (sec)

0

1200

2400

M
ax

 Q
ue

ue
 S

ize
(k

 it
em

s)

Figure 4: Cooperative vs. Dedicated DAF Threads (Metrics) – DAF’s
internal measurements from the experiment in Figure 3 for (1) action pro-
cessing throughput and (2) max action queue size.

the action processing rate and queue size over time in Figure 4.
With cooperative threading, we observe both a steady throughput
on actions processed as well as a negligible actions queue size. In
contrast, the two DAF thread configuration shows a lower through-
put of actions. This throughput is not sufficient to keep up with the
maintenance demand of 20 workers, and thus the size of the action
queue increases by several orders of magnitude. As this happens,
tuples’ version chains become longer, indexes become larger, and
transactional throughput lowers, until the system eventually reaches
a steady state. This steady state is undesirable as it corresponds to a
lower throughput, and several seconds of average latency for actions
versus sub-millisecond latency with the cooperative configuration.

7. RELATED WORK
To the best of our knowledge, there is no previous work on build-

ing a general-purpose framework to maintain internal physical data
structures of a DBMS with transaction timestamps. Our work is
inspired by and builds on advancements in MVCC and epoch-based
GC for in-memory DBMSs.

Garbage Collection in MVCC: There are two representative
approaches to GC in MVCC systems. Microsoft Hekaton uses a
cooperative approach where actively running transactions are also
responsible for version-chain pruning during query processing [9].
Transactions refer to the “high watermark” (i.e., the start timestamp
of the oldest active transaction) to identify obsolete versions. SAP
HANA periodically triggers a GC background thread using the
same watermarks [15]. HANA also uses an interval-based approach
where the DBMS prunes unused versions in the middle of the chain
(as opposed to only the head of chain as in Hekaton). HyPer’s
Steam improves techniques from Hekaton and HANA: it prunes
both the head of version chains as well as the middle of chains by
piggy-backing the GC tasks on transaction processing [7]. The same
methods that the DBMS uses to identify obsolete versions (e.g., high
watermark, interval-based) are orthogonal to DAF. DAF’s support
for cooperative processing allows it to have a higher GC frequency
compared to background vacuuming. Moreover, DAF is a general
framework that can do more than GC: as described in Section 5,
version-chain pruning is one of the applications that DAF supports.

Epoch Protection: One can also consider DAF to be an epoch
protection framework, which is widely used in multi-core DBMSs.
FASTER’s epoch protection framework exposes an API similar to
DAF for threads to register arbitrary actions for later execution [8].
FASTER is a non-transactional embedded key-value store, and its

5



epoch framework maintains its own counter that is cooperatively
advanced by user threads. These threads must explicitly refresh
the epoch framework and process actions periodically to guaran-
tee progress. FASTER also offers no ordering guarantees between
actions registered to the same epoch, whereas NoisePage can accom-
modate this with repeated deferrals. Although not multi-versioned,
Silo’s concurrency control protocol relies on epochs [26]. The sys-
tem maintains a global epoch counter that increments periodically,
and transactions from larger epochs never depend on smaller epochs.
The Bw-tree [17, 27] is a latch-free data structure from Hekaton that
relies on a similar epoch-based GC scheme like Silo.

Memory Management: A DBMS’s memory allocator also af-
fects a DBMS’s performance in a multi-core environment [5, 13,
16]. The allocator will affect the DBMS’s resident set size, query
latency, and query throughput of a DBMS [10]. Although not thor-
oughly studied in the context of a DBMS, these allocators also cause
performance variations depending on whether the threads allocat-
ing memory are also the same ones freeing it [5]. Because DAF
turns GC into a thread-independent, parallelizable task, it is worth
exploring the interaction of GC parameters with allocators [7, 16].

Since DAF introduces transactional semantics to data structure
maintenance, it has some similarities with software transactional
memory (STM) [11]. STM instruments program instructions to pro-
vide transactional semantics to memory reads and writes. In contrast,
DAF is not by itself transactional, but integrates into a transactional
engine to complement its capabilities. DAF also operates at a higher
abstraction level than STM, operating on program-level maintenance
tasks, as opposed to instruction-level.

8. FUTURE WORK
We foresee more optimizations beyond those in Section 4 that

could improve the DAF’s scalability. We now discuss two of these
as potential research directions.

Coalescing Deferrals: Another way to reduce contention on
the action queue latch is for threads to coalesce their observed
deferrals into a single action. This extra processing step is likely
to be a substantial performance improvement in the common case.
But it requires a protection mechanism to ensure that long-running
transactions do not inadvertently create a single, long-running action.
Such transactions would create a second pause in the framework
since actions must be executed inside of transactions. The DBMS
could minimize this risk by limiting the number of actions that
threads are allowed to combine together.

Long-Running Transactions: The most onerous short-coming
of our current implementation of DAF is that it assumes read-write
transactions are short-lived. Action processing is halted if the oldest
running transaction in the system does not exit. This is similar to the
impact of long-running transactions in [20], or the impact of a thread
does not refresh its epoch in [8]. It is possible to use techniques
outlined in [15] and [7] to ensure progress of the rest of the system,
although this invariably leads to additional complexity in the API
and implementation of DAF.

9. CONCLUSION
We presented the Deferred Action Framework for unifying the

life cycle of transactional logical database objects and physical data
structures in a DBMS. This framework integrates with existing an
DBMSs to leverage MVCC semantics for the system’s internal main-
tenance tasks. Our evaluation DAF in the NoisePage DBMS shows
that achieves similar or better performance for version chain and in-
dex clean-up while keeping the corresponding code straightforward

and modular. We also presented other maintenance scenarios that
DAF could support, such as non-blocking schema changes.

10. REFERENCES
[1] NoisePage. https://noise.page.
[2] I. Alagiannis, S. Idreos, and A. Ailamaki. H2o: A hands-free adaptive

store. SIGMOD, pages 1103–1114, 2014.
[3] J. Arulraj et al. Bridging the archipelago between row-stores and

column-stores for hybrid workloads. SIGMOD, pages 583–598, 2016.
[4] M. Athanassoulis, K. S. Bøgh, and S. Idreos. Optimal column layout

for hybrid workloads. Proc. VLDB Endow., 12(13):2393–2407, 2019.
[5] E. D. Berger et al. Hoard: A scalable memory allocator for

multithreaded applications. ASPLOS, pages 117–128, 2000.
[6] P. A. Bernstein and N. Goodman. Concurrency control in distributed

database systems. ACM Comput. Surv., 13(2):185–221, June 1981.
[7] J. Böttcher, V. Leis, T. Neumann, and A. Kemper. Scalable garbage

collection for in-memory mvcc systems. Proc. VLDB Endow.,
13(2):128–141, Oct. 2019.

[8] B. Chandramouli et al. Faster: A concurrent key-value store with
in-place updates. SIGMOD, pages 275–290, 2018.

[9] C. Diaconu et al. Hekaton: Sql server’s memory-optimized oltp engine.
SIGMOD, pages 1243–1254, 2013.

[10] D. Durner, V. Leis, and T. Neumann. On the impact of memory
allocation on high-performance query processing. In DaMoN, pages
21:1–21:3, 2019.

[11] N. Herman et al. Type-aware transactions for faster concurrent code.
EuroSys’16.

[12] K. Kim et al. Ermia: Fast memory-optimized database system for
heterogeneous workloads. SIGMOD, pages 1675–1687, 2016.

[13] P.-Å. Larson and M. Krishnan. Memory allocation for long-running
server applications. ISMM, pages 176–185, 1998.

[14] P.-r. Larson et al. High-performance concurrency control mechanisms
for main-memory databases. Proc. VLDB Endow., 5(4):298–309.

[15] J. Lee et al. Hybrid garbage collection for multi-version concurrency
control in sap hana. SIGMOD, pages 1307–1318, 2016.

[16] D. Leijen, B. Zorn, and L. de Moura. Mimalloc: Free list sharding in
action. Technical Report MSR-TR-2019-18, Microsoft, June 2019.

[17] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The bw-tree: A b-tree
for new hardware platforms. ICDE, pages 302–313, 2013.

[18] T. Li et al. Mainlining databases: Supporting fast transactional
workloads on universal columnar data file formats, 2020.

[19] J. Løland and S.-O. Hvasshovd. Online, non-blocking relational
schema changes. In EDBT, pages 405–422, 2006.

[20] T. Neumann, T. Mühlbauer, and A. Kemper. Fast serializable
multi-version concurrency control for main-memory database systems.
SIGMOD, pages 677–689, 2015.

[21] A. Pavlo et al. Self-driving database management systems. CIDR’17.
[22] D. R. K. Ports and K. Grittner. Serializable snapshot isolation in

postgresql. Proc. VLDB Endow., 5(12):1850–1861, Aug. 2012.
[23] I. Rae, E. Rollins, J. Shute, S. Sodhi, and R. Vingralek. Online,

asynchronous schema change in f1. Proc. VLDB Endow.,
6(11):1045–1056, Aug. 2013.

[24] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd.
Efficient transaction processing in sap hana database: The end of a
column store myth. SIGMOD ’12, pages 731–742, 2012.

[25] Y. Sun et al. On supporting efficient snapshot isolation for hybrid
workloads with multi-versioned indexes. Proc. VLDB Endow.,
13:221–225, 2019.

[26] S. Tu et al. Speedy transactions in multicore in-memory databases.
SOSP, pages 18–32, 2013.

[27] Z. Wang, A. Pavlo, H. Lim, V. Leis, H. Zhang, M. Kaminsky, and
D. G. Andersen. Building a bw-tree takes more than just buzz words.
SIGMOD, pages 473–488, 2018.

[28] Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo. An empirical
evaluation of in-memory multi-version concurrency control. Proc.
VLDB Endow., 10(7):781–792, Mar. 2017.

6

https://noise.page

	Introduction
	Background
	Data Structure Maintenance in MVCC

	Framework Overview
	System Characteristics
	Implementation
	Ordering Actions

	Optimizations
	Timestamp Caching & Batching Actions
	Multi-Threaded Action Processing
	Cooperative Execution

	Applications
	Low-Level Synchronization
	Non-Blocking Schema Change

	Preliminary Results
	Related Work
	Future Work
	Conclusion
	References

