
The DiskSim Simulation Environment
Version 3.0 Reference Manual

John S. Bucy, Gregory R. Ganger, and Contributors

January 2003

CMU-CS-03-102

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

DiskSim is an efficient, accurate and highly-configurable disk system simulator developed to support research into
various aspects of storage subsystem architecture. It includes modules that simulate disks, intermediate controllers,
buses, device drivers, request schedulers, disk block caches, and disk array data organizations. In particular, the disk
drive module simulates modern disk drives in great detail and has been carefully validated against several production
disks (with accuracy that exceeds any previously reported simulator).

This manual describes how to configure and use DiskSim, which has been made publicly available with the hope
of advancing the state-of-the-art in disk system performance evaluation in the research community. The manual also
briefly describes DiskSim’s internal structure and various validation results.

Keywords: storage system, disk simulator, disk model

i

Contents

Contents i

1 Introduction 1
1.1 What DiskSim Does . 1
1.2 What DiskSim Does Not Do . 1
1.3 Limitations and Advantages of Version 3.0 . 2

1.3.1 Diskmodel . 2
1.3.2 Libparam . 2

1.4 Known Bugs . 2
1.5 Organization of Manual . 2

1.5.1 Contributors . 2

2 Running DiskSim 3
2.1 Parameter Overrides . 3
2.2 Example Command Line . 4

3 The Parameter File 5
3.1 Global Block . 5
3.2 Stats Block . 6

3.2.1 Bus Statistics . 6
3.2.2 Controller Statistics . 6
3.2.3 Device Statistics . 7
3.2.4 iodriver Statistics . 7
3.2.5 Process-flow Statistics . 7

3.3 iosim Block . 7
3.4 I/O Subsystem Component Specifications . 8

3.4.1 Device Drivers . 8
3.4.2 Buses . 9
3.4.3 Controllers . 10
3.4.4 Storage Devices . 10
3.4.5 Disks . 11
3.4.6 Simple Disks . 18
3.4.7 Queue/Scheduler Subcomponents . 19
3.4.8 Disk Block Cache Subcomponents . 20
3.4.9 Memory Caches . 22
3.4.10 Cache Devices . 23

3.5 Component Instantiation . 24
3.6 I/O Subsystem Interconnection Specifications . 25
3.7 Rotational Synchronization of Devices . 25
3.8 Disk Array Data Organizations . 25
3.9 Process-Flow Parameters . 28

4 Input Workloads: Traces and Synthetic Workloads 29
4.1 Traces . 29

4.1.1 Default Format . 29
4.1.2 Adding Support For New Trace Formats . 29

4.2 Synthetic Workloads . 30
4.2.1 Configuration . 30

4.3 Incorporating DiskSim Into System-Level Simulators . 32

ii

5 The Output File 34
5.1 Thestatdefs File . 34
5.2 Simulation Sesults . 35

5.2.1 Process-flow Statistics . 35
5.2.2 Validation Trace Statistics . 37
5.2.3 HPL Trace Statistics . 37
5.2.4 System-level Logical Organization Statistics . 38
5.2.5 I/O Driver Statistics . 40
5.2.6 Disk Statistics . 41
5.2.7 Controller Statistics . 43
5.2.8 Bus Statistics . 44

6 Validation 45

A Copyright notices for DiskSim 48
A.1 Version 3.0 Copyright Addendum . 48
A.2 Version 2.0 Copyright Addendum . 48
A.3 Original (Version 1.0) Copyright Statement . 48

B Diskmodel 50
B.1 Introduction . 50
B.2 Types and Units . 50

B.2.1 Three Zero Angles . 50
B.2.2 Two Zero Sectors . 50
B.2.3 Example . 50

B.3 API . 51
B.3.1 Disk-wide Parameters . 51
B.3.2 Layout . 51
B.3.3 Mechanics . 53

B.4 Model Configuration . 56
B.4.1 dmdisk . 56
B.4.2 dmlayout g1 . 56
B.4.3 dmmechg1 . 58

References 61

1

1 Introduction

Because of trends in both computer technology advancement (e.g., CPU speeds vs. disk access times) and application
areas (e.g., on-demand video, global information access), storage system performance is becoming an increasingly
large determinant of overall system performance. As a result, the need to understand storage performance under a
variety of workloads is growing. Disk drives, which are still the secondary storage medium of choice, continue to
expand in capacity and reliability while decreasing in unit cost, price/capacity, and power requirements. Performance
characteristics also continue to change due to maturing technologies as well as new advances in materials, sensors, and
electronics. New storage subsystem architectures may be needed to better exploit current and future generations of
disk devices. The DiskSim simulation environment was developed as a tool for two purposes: understanding storage
performance and evaluating new architectures.

1.1 What DiskSim Does

DiskSim is an efficient, accurate, highly-configurable storage system simulator. It is written in C and requires no
special system software. It includes modules for many secondary storage components of interest, including device
drivers, buses, controllers, adapters and disk drives. Some of the major functions (e.g., request queueing/scheduling,
disk block caching, disk array data organizations) that can be present in several different components (e.g., operating
system software, intermediate controllers, disk drives) have been implemented as separate modules that are linked
into components as desired. Some of the component modules are highly detailed (e.g., the disk module), and the
individual components can be configured and interconnected in a variety of ways. DiskSim has been used in a variety
of published studies (and several unpublished studies) to understand modern storage subsystem performance [3, 22],
to understand how storage performance relates to overall system performance [5, 2, 1], and to evaluate new storage
subsystem architectures [21].

DiskSim has been validated both as part of a more comprehensive system-level model [5, 1] and as a standalone
subsystem [22, 24, 18]. In particular, the disk module, which is extremely detailed, has been carefully validated against
five different disk drives from three different manufacturers. The accuracy demonstrated exceeds that of any other disk
simulator known to the authors (e.g., see [16]).

DiskSim can be driven by externally-provided I/O request traces or internally-generated synthetic workloads.
Several trace formats have been used and new ones can be easily added. The synthetic trace generation module is quite
flexible, particularly in the request arrival model (which can mimic an open process, a closed process or something in
between). DiskSim was originally part of a larger, system-level model [5, 2] that modeled each request’s interactions
with executing processes, but has been separated out for public dissemination.1 As a result, it can be integrated into
full system simulators (e.g., simulators like SimOS [14]) with little difficulty.

1.2 What DiskSim Does Not Do

DiskSim, by itself, simulates and reports on only the performance-related aspects of the storage subsystem. It does
not model the behavior of the other computer system components or interactions between them and the storage sub-
system.2 Because storage subsystem performance metrics are not absolute indicators of overall system performance
(e.g., see [1]), promising architectures should be evaluated in the context of a more comprehensive system model or
a real system. In such cases, DiskSim becomes one component of the full model, just as a storage subsystem is one
component of a full system.

DiskSim models the performance behavior of disk systems, but does not actually save or restore data for each
request. If such functionality is desired (as, for example, when building a full system simulator like SimOS), it can
easily be provided independently of DiskSim, which will still provide accurate timings for I/O activity. See [6] for an
example of this in the form of storage subsystem emulation.

1The system-level model includes several portions of a proprietary operating system, allowing it to achieve a close match to the real system
behavior [2] but also preventing it from being publicly released.

2Actually, a rudimentary system model was kept in place to support the internal synthetic generation module. However, it should not be viewed
as representative of any real system’s behavior.

2

1.3 Limitations and Advantages of Version 3.0

DiskSim 3.0 builds on DiskSim 2.0 in several ways: parts of DiskSim’s disk model have been moved into a separate
library (diskmodel), the library has been re-integrated into DiskSim, the parameter-file infrastructure has been com-
pletely rewritten, and most of it has been moved into another library (libparam). The checkpoint-restore code has been
removed for this release as it was not well maintained and created debugging difficulties. Support has been added for
using one storage device as a cache for another.

There are still a number of limitations on the shape of a storage system topology. See Section 3.6 for details.

1.3.1 Diskmodel

The impetus for the diskmodel transition was the desire to use DiskSim’s disk model with a a number of other software
projects. The original interface between DiskSim’s disk model and the rest of DiskSim was idiosyncratic to DiskSim,
making it difficult to reuse. As a result, DiskSim’s layout and mechanical code was often replicated in other software
in an ad hoc fashion that resulted in numerous incompatible copies that were difficult to keep in sync.

Diskmodel introduces a clean, functional interface to all of the mechanical and layout computations. Integration
of the new interface required a substantial overhaul of DiskSim with the advantage that, now, the implementations of
the diskmodel functions can change independently of DiskSim and that diskmodel has no knowledge about DiskSim’s
internals embedded in it.

1.3.2 Libparam

Libparam also unifies DiskSim’s parameter-input code such that the same parser (in libparam) can be shared by disksim
and diskmodel. This also makes it easy for applications using diskmodel to input the necessary disk specifications
without copying large portions of DiskSim’s input code.

Libparam introduces a new grammar for configuring DiskSim that is easier to use. It tolerates reordered parame-
ters, unlike DiskSim 2.0, and generally provides greater assistance in identifying bugs in inputs.

1.4 Known Bugs

Multi-CPU configurations in the process-flow simulation do not work correctly; only the first CPU will have processes
scheduled on it while the rest idle forever.

1.5 Organization of Manual

This manual describes how to configure and use DiskSim and how to interpret the output generated. Section 2 explains
the DiskSim command line and how to execute the simulator given the appropriate configuration files. Section 3
describes how to describe a storage system to DiskSim. Section 4 describes how to provide an input workload of I/O
requests to DiskSim – options include external traces, internally-generated synthetic workloads, and interactions with
a larger simulation environment. Section 5 describes the contents of the output file. Section 6 provides validation
data (all of which has been published previously [22, 24, 1]) showing that DiskSim accurately models the behavior
of several high-performance disk drives produced in the early 1990s. The same has been found true of disk drives
produced in the late 1990s [18].

This manual does not provide details about DiskSim’s internals. We refer those that wish to understand DiskSim
more thoroughly and/or modify it to the appendices of [2].

1.5.1 Contributors

Many people have contributed to DiskSim’s development over the past 11 years including: Bruce Worthington, Steve
Schlosser, John Griffin, Ross Cohen, Jiri Schindler, Chris Lumb, John Bucy and Greg Ganger.

3

2 Running DiskSim

DiskSim requires five command line arguments and optionally accepts some number of parameter overrides:
disksim <parfile> <outfile> <tracetype> <tracefile> <synthgen> [par override ...
]
where:

• disksim is the name of the executable.

• parfile is the name of the parameter file (whose format is described in chapter 3).

• outfile is the name of the output file (whose format is described in chapter 5). Output can be directed to
stdout by specifying “stdout” for this argument.

• tracetype identifies the format of the trace input, if any (options are described in chapter 4).

• tracefile identifies the trace file to be used as input. Input is taken from stdin when “stdin” is specified for
this argument.

• synthgen determines whether or not the synthetic workload generation portion of the simulator should be
enabled (any value other than “0” enables synthetic workload generation). The synthetic generator(s) are con-
figured by values in the parameter file, as described in chapter 4. Currently, DiskSim cannot use both an input
trace and an internally-generated synthetic workload at the same time.

• par override allows default parameter values or parameter values fromparfile to be replaced by values
specified in the command line. The exact syntax is described in the following section.

2.1 Parameter Overrides

When using DiskSim to examine the performance impacts of various storage subsystem design decisions (e.g., sen-
sitivity analyses), the experimental configurations of interest are often quite similar. To avoid the need for numerous
parameter files with incremental differences, DiskSim allows parameter values to be overridden with command line
arguments. The parameter overrides are applied after the parameter file has been read, but before the internal configu-
ration phase begins. Each parameter override is described by a (component, param name, param value) triple:

<component> <parameter> <new value>

1. component is the name of a component whose parameters are to be overridden. This is the name given to
the component when it is instantiated in the parameter file. Ranges are supported; for exampledisk0 ..
disk5 indicates 6 disks “disk0” through “disk5.” Wildcards are also supported; a trailing* matches any string
of digits. For exampledriver* matchesdriver2 , driver anddriver2344 but notdriverqux .

2. parameter is a string identifying the parameter to be overridden. This is identical to the variable name used
in the parameter file. If the name contains spaces, it must be quoted so that the shell will pass it to DiskSim
as a single argument. To reference a parameter of a subcomponent such as a disk’s scheduler, use the form
Scheduler:parameter

3. new value is the new value for the parameter for the specified instances of the specified module.

Every parameter in the parameter file can be overridden on the command line. Some parameters’ definitions
are long enough that it may prove more practical to switch out the parameter files rather than use the command-line
override.

4

2.2 Example Command Line

An example may be useful to demonstrate the command line syntax. The following command:
disksim parms.1B stdout ascii t.Jan6 0 "disk1 .. disk16" "Segment size (in

blks)" 64 "disk*" "Scheduler:Scheduling policy" 4
executes DiskSim as follows:

• initial parameters are read from fileparms.1B;

• output (e.g., statistics) is sent tostdout;

• theascii input trace is read from filet.Jan6;

• there is no synthetically generated activity;

• the cache segment size parameter values of disks 1 through 16, as specified in the parameter file (parms.1B), are
overridden with a value of 64 (sectors); and

• the scheduling algorithm parameter value for all components matching “disk*” is overridden with a value of 4
(which corresponds to a Shortest-Seek-Time-First algorithm).

5

3 The Parameter File

DiskSim can be configured via the parameter file to model a wide variety of storage subsystems.
DiskSim uses libparam to input the parameter file; a brief overview of libparam is provided here. At top level in a

parameter file, there are three kinds of things in a parameter file: blocks delimited by{ }, instantiations, and topology
specifications. Instantiations are described in Section 3.5, and topology specifications are described in Section 3.6.

A block consists of a number of “name = value” assignments. Names may contain spaces and are case-sensitive.
Values may be integers (including0x -prefixed hexadecimal), floating point numbers, strings, blocks, and lists delim-
ited by [].

Libparam contains a directive calledsource similar to the#include preprocessor directive in C.source
may be used recursively up to a compile-time depth limit of 32.

The organization of the parameter file is quite flexible though there are a few required blocks. Also, components
must not be referenced prior to their definition. Every DiskSim parameter file must define theGlobal andStats
blocks. A simulation using the synthetic trace generator must also define theProc andSynthio blocks. A typical
setup will then define some number of buses, controllers and an iodriver, define orsource in some storage device
descriptions,instantiate all of these, and then define their interconnection in the simulated storage simulation in
a topology specification.3

Disk array data organizations are described inlogorg blocks (Section 3.8). Every access must fall within some
logorg, so at least one must be defined.

Rotational syncrhonization of devices may optionally be described in asyncset block (Section 3.7).
Adjusting the time scale and remapping requests from a trace may be described in theiosim block (Section 3.3).
Several example parameter files are provided with the software distribution.
The remainder of this section describes each block and its associated parameters. The format of each parameter’s

description is:

blockname paramname type required| optional
Parameter description

which describes a parameterparamname, whose type istypeappearing in blockblockname.

3.1 Global Block

The global block contains a number of simulation-wide parameters. The name given to the global block to be used
must beGlobal .

disksim global Init Seed int optional
This specifies the initial seed for the random number generator. The initial seed value is applied at the very
beginning of the simulation and is used during the initialization phase (e.g., for determining initial rotational
positions). Explicitly specifying the random generator seed enables experiment repeatability.

disksim global Init Seed with time int optional
If a nonzero value is provided, DiskSim will use the current system time to initialize the “Init Seed” parameter.

disksim global Real Seed int optional
The ‘real’ seed value is applied after the initialization phase and is used during the simulation phase (e.g., for
synthetic workload generation). This allows multiple synthetic workloads (with different simulation seeds)
to be run on equivalent configurations (i.e., with identical initial seeds, as specified above).

disksim global Real Seed with time int optional
If a nonzero value is provided, DiskSim will use the current system time to initialize the “Real Seed” param-
eter.

3The separation of component definitions and their interconnections greatly reduces the effort required to develop and integrate new components
as well as the effort required to understand and modify the existing components [17].

6

disksim global Statistic warm-up time float optional
This specifies the amount of simulated time after which the statistics will be reset.

disksim global Statistic warm-up IOs int optional
This specifies the number of I/Os after which the statistics will be reset.

disksim global Stat definition file string required
This specifies the name of the input file containing the specifications for the statistical distributions to collect.
This file allows the user to control the number and sizes of histogram bins into which data are collected. This
file is mandatory. Section 5.1 describes its use.

disksim global Output file for trace of I/O requests sim-
ulated

string optional

This specifies the name of the output file to contain a trace of disk request arrivals (in the default ASCII trace
format described in Section 4.1). This allows instances of synthetically generated workloads to be saved and
analyzed after the simulation completes. This is particularly useful for analyzing (potentially pathological)
workloads produced by a system-level model.

3.2 Stats Block

This block contains a series of Boolean [1 or 0] parameters that specify whether or not particular groups of statistics
are reported. The name given to the stats block must beStats .

The iodriver parameters control statistics output from both the device drivers (individual values and overall to-
tals) and any driver-level disk array logical data organizations (referred to aslogorgs). The device parameters control
statistics output for the devices themselves (individually, overall, and combined with the other devices in a particular
logorg). The different print-control parameters (corresponding to particular statistics groups) will be identified with
individual statistics in Section 5.

disksim stats iodriver stats block required
disksim stats bus stats block required
disksim stats ctlr stats block required
disksim stats device stats block required
disksim stats process flow stats block required

3.2.1 Bus Statistics

disksim bus stats Print bus idle stats int required
disksim bus stats Print bus arbwait stats int required

3.2.2 Controller Statistics

disksim ctlr stats Print controller cache stats int required
disksim ctlr stats Print controller size stats int required
disksim ctlr stats Print controller locality stats int required
disksim ctlr stats Print controller blocking stats int required
disksim ctlr stats Print controller interference stats int required
disksim ctlr stats Print controller queue stats int required
disksim ctlr stats Print controller crit stats int required
disksim ctlr stats Print controller idle stats int required
disksim ctlr stats Print controller intarr stats int required

7

disksim ctlr stats Print controller streak stats int required
disksim ctlr stats Print controller stamp stats int required
disksim ctlr stats Print controller per-device stats int required

3.2.3 Device Statistics

disksim device stats Print device queue stats int required
disksim device stats Print device crit stats int required
disksim device stats Print device idle stats int required
disksim device stats Print device intarr stats int required
disksim device stats Print device size stats int required
disksim device stats Print device seek stats int required
disksim device stats Print device latency stats int required
disksim device stats Print device xfer stats int required
disksim device stats Print device acctime stats int required
disksim device stats Print device interfere stats int required
disksim device stats Print device buffer stats int required

3.2.4 iodriver Statistics

disksim iodriver stats Print driver size stats int required
disksim iodriver stats Print driver locality stats int required
disksim iodriver stats Print driver blocking stats int required
disksim iodriver stats Print driver interference stats int required
disksim iodriver stats Print driver queue stats int required
disksim iodriver stats Print driver crit stats int required
disksim iodriver stats Print driver idle stats int required
disksim iodriver stats Print driver intarr stats int required
disksim iodriver stats Print driver streak stats int required
disksim iodriver stats Print driver stamp stats int required
disksim iodriver stats Print driver per-device stats int required

3.2.5 Process-flow Statistics

disksim pf stats Print per-process stats int required
disksim pf stats Print per-CPU stats int required
disksim pf stats Print all interrupt stats int required
disksim pf stats Print sleep stats int required

3.3 iosim Block

Several aspects of input trace handling are configured in the iosim block.

disksim iosim I/O Trace Time Scale float optional
This specifies a value by which each arrival time in a trace is multiplied. For example, a value of 2.0 doubles
each arrival time, lightening the workload by stretching it out over twice the length of time. Conversely, a
value of 0.5 makes the workload twice as heavy by compressing inter-arrival times. This value has no effect
on workloads generated internally (by the synthetic generator).

8

disksim iosim I/O Mappings list optional
This is a list of iomap blocks (see below) which enable translation of disk request sizes and locations
in an input trace into disk request sizes and locations appropriate for the simulated environment. When
the simulated environment closely matches the traced environment, these mappings may be used simply to
reassign disk device numbers. However, if the configured environment differs significantly from the trace
environment, or if the traced workload needs to be scaled (by request size or range of locations), these
mappings can be used to alter the the traced “logical space” and/or scale request sizes and locations. One
mapping is allowed per traced device. The mappings from devices identified in the trace to the storage
subsystem devices being modeled are provided by block values.

TheI/O Mappings parameter takes a list ofiomap blocks which contain the following fields:

disksim iomap tracedev int required
This specifies the traced device affected by this mapping.

disksim iomap simdev string required
This specifies the simulated device such requests should access.

disksim iomap locScale int required
This specifies a value by which a traced disk request location is multiplied to generate the starting location (in
bytes) of the simulated disk request. For example, if the input trace specifies locations in terms of 512-byte
sectors, a value of 512 would result in an equivalent logical space of requests.

disksim iomap sizeScale int required
This specifies a value by which a traced disk request size is multiplied to generate the size (in bytes) of the
simulated disk request.

disksim iomap offset int optional
This specifies a value to be added to each simulated request’s starting location. This is especially useful for
combining multiple trace devices’ logical space into the space of a single simulated device.

3.4 I/O Subsystem Component Specifications

DiskSim provides four main component types: device drivers, buses, controllers and storage devices. The storage
device type currently has three subtypes: a disk model, a simplified, fixed-access-time diskmodel hereinafter refered
to as “simpledisk.”

There are two additional components – queues/schedulers and caches – which serve as subcomponents of the
above components.

3.4.1 Device Drivers

At the top of the storage system, DiskSim simulates the activity of a device driver in the host system. There must be
exactly one configured device driver per storage subsystem configuration.

disksim iodriver type int required
This is included for extensibility purposes.

9

disksim iodriver Constant access time float required
This specifies any of several forms of storage simulation abstraction. A positive value indicates a fixed access
time (after any queueing delays) for each disk request. With this option, requests do not propagate to lower
levels of the storage subsystem (and the stats and configuration of lower levels are therefore meaningless).
−1.0 indicates that the trace provides a measured access time for each request, which should be used instead
of any simulated access times.−2.0 indicates that the trace provides a measured queue time for each request,
which should be used instead of any simulated queue times. (Note: This can cause problems if multiple
requests are simultaneously issued to to disks that don’t support queueing.)−3.0 indicates that the trace pro-
vides measured values for both the access time and the queue time. Finally,0.0 indicates that the simulation
should compute all access and queue times as appropriate given the changing state of the storage subsystem.

disksim iodriver Use queueing in subsystem int required
This specifies whether or not the device driver allows more than one request to be outstanding (in the storage
subsystem) at any point in time. During initialization, this parameter is combined with the parameterized
capabilities of the subsystem itself to determine whether or not queueing in the subsystem is appropriate.

disksim iodriver Scheduler block required
This is an ioqueue; see section 3.4.7.

3.4.2 Buses

disksim bus type int required
This specifies the type of bus. 1 indicates an exclusively-owned (tenured) bus (i.e., once ownership is ac-
quired, the owner gets 100% of the bandwidth available until ownership is relinquished voluntarily). 2 indi-
cates a shared bus where multiple bulk transfers are interleaved (i.e., each gets a fraction of the total band-
width).

disksim bus Arbitration type int required
This specifies the type of arbitration used for exclusively-owned buses (see above parameter description).
1 indicates slot-based priority (e.g., SCSI buses), wherein the order of attachment determines priority
(i.e., the first device attached has the highest priority). 2 indicates First-Come-First-Served (FCFS) arbi-
tration, wherein bus requests are satisfied in arrival order.

disksim bus Arbitration time float required
This specifies the time (in milliseconds) required to make an arbitration decision.

disksim bus Read block transfer time float required
This specifies the time in milliseconds required to transfer a single 512-byte block in the direction of the
device driver / host.

disksim bus Write block transfer time float required
This specifies the time (in milliseconds) required to transfer a single 512-byte block in the direction of the
disk drives.

disksim bus Print stats int required
This specifies whether or not the collected statistics are reported.

10

3.4.3 Controllers

disksim ctlr type int required
This specifies the type of controller. 1 indicates a simple controller that acts as nothing more than a bridge
between two buses, passing everything straight through to the other side. 2 indicates a very simple, driver-
managed controller based roughly on the NCR 53C700. 3 indicates a more complex controller that decouples
lower-level storage component peculiarities from higher-level components (e.g., device drivers). The complex
controller queues and schedules its outstanding requests and possibly contains a cache. As indicated below,
it requires several parameters in addition to those needed by the simpler controllers.

disksim ctlr Scale for delays float required
This specifies a multiplicative scaling factor for the various processing delays incurred by the controller.
Default overheads for the 53C700-based controller and the more complex controller are hard-coded into
the “readspecs” procedure of the controller module (and are easily changed). For the simple pass-thru
controller, the scale factor represents the per-message propagation delay (because the hard-coded value is
1.0). 0.0 results in no controller overheads or delays. When the overheads/delays of the controller(s) cannot
be separated from those of the disk(s), as is usually the case for single-point tracing of complete systems, the
various disk overhead/delay parameter values should be populated and this parameter should be set to 0.0.

disksim ctlr Bulk sector transfer time float required
This specifies the time (in milliseconds) necessary to transfer a single 512-byte block to, from or through
the controller. Transferring one block over the bus takes the maximum of this time, the block transfer time
specified for the bus itself, and the block transfer time specified for the component on the other end of the bus
transfer.

disksim ctlr Maximum queue length int required
This specifies the maximum number of requests that can be concurrently outstanding at the controller. The
device driver discovers this value during initialization and respects it during operation. For the simple types
of controllers (see above parameter description), 0 is assumed.

disksim ctlr Print stats int required
This specifies whether or not statistics will be reported for the controller. It is meaningless for the simple
types of controllers (see above parameter description), as no statistics are collected.

disksim ctlr Scheduler block optional
This is an ioqueue; see section 3.4.7

disksim ctlr Cache block optional
A block cache; see section 3.4.8

disksim ctlr Max per-disk pending count int optional
This specifies the maximum number of requests that the controller can have outstanding to each attached disk
(i.e., the maximum number of requests that can be dispatched to a single disk). This parameter only affects
the interaction of the controller with its attachments; it is not visible to the device driver.

3.4.4 Storage Devices

“Storage devices” are the abstraction through which the various storage device models are interfaced with disksim.
In the current release, there are 2 such models: conventional disks, and a simplified, fixed-access-time diskmodel
hereinafter refered to as “simpledisk.”

11

3.4.5 Disks

Since disk specifications are long, it is often convenient to store them in separate files and include them in the main
parameter file via the “source” directive.

disksim disk Model block required
Parameters for the disk’s libdiskmodel model. See the diskmodel documentation for details.

disksim disk Scheduler block required
An ioqueue; see Section 3.4.7

disksim disk Max queue length int required
This specifies the maximum number of requests that the disk can have in service or queued for service at
any point in time. During initialization, other components request this information and respect it during
simulation.

disksim disk Bulk sector transfer time float required
This specifies the time for the disk to transfer a single 512-byte block over the bus. Recall that this value
is compared with the corresponding bus and controller block transfer values to determine the actual transfer
time (i.e., the maximum of the three values).

disksim disk Segment size (in blks) int required
This specifies the size of each buffer segment, assuming a static segment size. Some modern disks will
dynamically resize their buffer segments (and thereby alter the number of segments) to respond to perceived
patterns of workload behavior, but DiskSim does not currently support this functionality.

disksim disk Number of buffer segments int required
This specifies the number of segments in the on-board buffer/cache. A buffer segment is similar to a cache
line, in that each segment contains data that is disjoint from all other segments. However, segments tend to be
organized as circular queues of logically sequential disk sectors, with new sectors pushed into an appropriate
queue either from the bus (during a write) or from the disk media (during a read). As data are read from the
buffer/cache and either transferred over the bus (during a read) or written to the disk media (during a write),
they are eligible to be pushed out of the segment (if necessary or according to the dictates of the buffer/cache
management algorithm).

disksim disk Print stats int required
This specifies whether or not statistics for the disk will be reported.

disksim disk Per-request overhead time float required
This specifies a per-request processing overhead that takes place immediately after the arrival of a new request
at the disk. It is additive with various other processing overheads described below, but in general either the
other overheads are set to zero or this parameter is set to zero.

disksim disk Time scale for overheads float required
This specifies a multiplicative scaling factor for all processing overhead times. For example, 0.0 eliminates
all such delays, 1.0 uses them at face value, and 1.5 increases them all by 50%.

disksim disk Hold bus entire read xfer int required
This specifies whether or not the disk retains ownership of the bus throughout the entire transfer of “read”
data from the disk. If false (0), the disk may release the bus if and when the current transfer has exhausted all
of the available data in the on-board buffer/cache and must wait for additional data sectors to be read off the
disk into the buffer/cache.

12

disksim disk Hold bus entire write xfer int required
This specifies whether or not the disk retains ownership of the bus throughout the entire transfer of “write”
data to the disk. If false (0), the disk may release the bus if and when the current transfer has filled up the
available space in the on-board buffer/cache and must wait for data from the buffer/cache to be written to the
disk.

disksim disk Allow almost read hits int required
This specifies whether or not a new read request whose first block is currently being prefetched should be
treated as a partial cache hit. Doing so generally means that the request is handled right away.

disksim disk Allow sneaky full read hits int required
This specifies whether or not a new read request whose data are entirely contained in a single segment of the
disk cache is allowed to immediately transfer that data over the bus while another request is moving the disk
actuator and/or transferring data between the disk cache and the disk media. In essence, the new read request
“sneaks” its data out from the disk cache without interrupting the current (active) disk request.

disksim disk Allow sneaky partial read hits int required
This specifies whether or not a new read request whose data are partially contained in a single segment of the
disk cache is allowed to immediately transfer that data over the bus while another request is moving the disk
actuator and/or transferring data between the disk cache and the disk media. In essence, the new read request
“sneaks” the cached portion of its data out from the disk cache without interrupting the current (active) disk
request.

disksim disk Allow sneaky intermediate read hits int required
This specifies whether or not the on-board queue of requests is searched during idle bus periods in order to
find read requests that may be partially or completely serviced from the current contents of the disk cache.
That is, if the current (active) request does not need bus access at the current time, and the bus is available for
use, a queued read request whose data are in the cache may obtain access to the bus and begin data transfer.
“Full” intermediate read hits are given precedence over “partial” intermediate read hits.

disksim disk Allow read hits on write data int required
This specifies whether or not data placed in the disk cache by write requests are considered usable by read
requests. If false (0), such data are removed from the cache as soon as they have been copied to the media.

disksim disk Allow write prebuffering int required
This specifies whether or not the on-board queue of requests is searched during idle bus periods for write
requests that could have part or all of their data transferred to the on-board cache (without disturbing an
ongoing request). That is, if the current (active) request does not need bus access at the current time, and
the bus is available for use, a queued write request may obtain access to the bus and begin data transfer into
an appropriate cache segment. Writes that are contiguous to the end of the current (active) request are given
highest priority in order to facilitate continuous transfer to the media, followed by writes that have already
“prebuffered” some portion of their data.

disksim disk Preseeking level int required
This specifies how soon the actuator is allowed to start seeking towards the media location of the next re-
quest’s data. 0 indicates no preseeking, meaning that the actuator does not begin relocation until the current
request’s completion has been confirmed by the controller (via a completion “handshake” over the bus).
1 indicates that the actuator can begin relocation as soon as the completion message has been prepared for
transmission by the disk. 2 indicates that the actuator can begin relocation as soon as the access of the last sec-
tor of the current request (and any required prefetching) has been completed. This allows greater parallelism
between bus activity and mechanical activity.

13

disksim disk Never disconnect int required
This specifies whether or not the disk retains ownership of the bus during the entire processing and servicing
of a request (i.e., from arrival to completion). If false (0), the disk may release the bus whenever it is not
needed for transferring data or control information.

disksim disk Avg sectors per cylinder int required
This specifies (an approximation of) the mean number of sectors per cylinder. This value is exported to
external schedulers some of which utilize approximations of the actual layout of data on the disk(s) when
reordering disk requests. This value is not used by the disk itself.

disksim disk Maximum number of write segments int required
This specifies the number of cache segments available for holding “write” data at any point in time. Because
write-back caching is typically quite limited in current disk cache management schemes, some caches only
allow a subset of the segments to be used to hold data for write requests (in order to minimize any interference
with sequential read streams).

disksim disk Use separate write segment int required
This specifies whether or not a single segment is statically designated for use by all write requests. This
further minimizes the impact of write requests on the caching/prefetching of sequential read streams.

disksim disk Low (write) water mark float required
This specifies the fraction of segment size or request size (see below) corresponding to thelow water mark.
When data for a write request are being transferred over the bus into the buffer/cache, and the buffer/cache
segment fills up with “dirty” data, the disk may disconnect from the bus while the buffered data are written to
the disk media. When the amount of dirty data in the cache falls below the low water mark, the disk attempts
to reconnect to the bus to continue the interrupted data transfer.

disksim disk High (read) water mark float required
This specifies the fraction of segment size or request size (see below) corresponding to thehigh water mark.
When data for a read request are being transferred over the bus from the buffer/cache, and the buffer/cache
segment runs out of data to transfer, the disk may disconnect from the bus until additional data are read from
the disk media. When the amount of available data in the cache reaches the high water mark, the disk attempts
to reconnect to the bus to continue the interrupted data transfer.

disksim disk Set watermark by reqsize int required
This specifies whether the watermarks are computed as fractions of the individual request size or as fractions
of the buffer/cache segment size.

disksim disk Calc sector by sector int required
This specifies whether or not media transfers should be computed sector by sector rather than in groups of
sectors. This optimization has no effect on simulation accuracy, but potentially results in shorter simulation
times (at a cost of increased code complexity). It has not been re-enabled since the most recent modifications
to DiskSim, so the simulator currently functions as if the value were always true (1).

disksim disk Enable caching in buffer int required
This specifies whether or not on-board buffer segments are used for data caching as well as for speed-
matching between the bus and the disk media. Most (if not all) modern disk drives utilize their buffers
as caches.

14

disksim disk Buffer continuous read int required
This specifies the type of prefetching performed by the disk. 0 disables prefetching. 1 enables prefetching up
to the end of the track containing the last sector of the read request. 2 enables prefetching up to the end of the
cylinder containing the last sector of the read request. 3 enables prefetching up to the point that the current
cache segment is full. 4 enables prefetching up to the end of the track following the track containing the
last sector of the read request, provided that the current request was preceded in the not-too-distant past by
another read request that accessed the immediately previous track. In essence, the last scheme enables a type
of prefetching that tries to stay one logical track “ahead” of any sequential read streams that are detected.

disksim disk Minimum read-ahead (blks) int required
This specifies the minimum number of disk sectors that must be prefetched after a read request before ser-
vicing another (read or write) request. A positive value may be beneficial for workloads containing multiple
interleaved sequential read streams, but 0 is typically the appropriate value.

disksim disk Maximum read-ahead (blks) int required
This specifies the maximum number of disk sectors that may be prefetched after a read request (regardless of
all other prefetch parameters).

disksim disk Read-ahead over requested int required
This specifies whether or not newly prefetched data can replace (in a buffer segment) data returned to the host
as part of the most recent read request.

disksim disk Read-ahead on idle hit int required
This specifies whether or not prefetching should be initiated by the disk when a read request is completely
satisfied by cached data (i.e., a “full read hit”).

disksim disk Read any free blocks int required
This specifies whether or not disk sectors logically prior to the requested sectors should be read into the cache
if they pass under the read/write head prior to reaching the requested data (e.g., during rotational latency).

disksim disk Fast write level int required
This specifies the type of write-back caching implemented. 0 indicates that write-back caching is disabled
(i.e., all dirty data must be written to the disk media prior to sending a completion message). 1 indicates that
write-back caching is enabled for contiguous sequential write request streams. That is, as long as each request
arriving at the disk is a write request that “appends” to the current segment of dirty data, a completion message
will be returned for each new request as soon as all of its data have been transferred over the bus to the disk
buffer/cache. 2 indicates that write-back caching is enabled for contiguous sequential write request streams
even if they are intermixed with read or non-appending write requests, although before any such request is
serviced by the disk, all of the dirty write data must be flushed to the media. A scheduling algorithm that
gives precedence to sequential writes would maximize the effectiveness of this option.

disksim disk Combine seq writes int required
This specifies whether or not sequential data from separate write requests can share a common cache segment.
If true (1), data are typically appended at the end of a previous request’s dirty data. However, if all of the
data in a cache segment are dirty, and no mechanical activity has begun on behalf of the request(s) using that
segment, “prepending” of additional dirty data are allowed provided that the resulting cache segment contains
a single contiguous set of dirty sectors.

disksim disk Stop prefetch in sector int required
This specifies whether or not a prefetch may be aborted in the “middle” of reading a sector off the media. If
false (0), prefetch activity is only aborted at sector boundaries.

15

disksim disk Disconnect write if seek int required
This specifies whether or not the disk should disconnect from the bus if the actuator is still in motion (seeking)
when the last of a write request’s data has been transferred to the disk buffer/cache.

disksim disk Write hit stop prefetch int required
This specifies whether or not the disk should discontinue the read-ahead of a previous request when a write
hit in the cache occurs. Doing so allows the new write request’s data to begin travelling to the disk more
quickly, at the expense of some prefetching activity.

disksim disk Read directly to buffer int required
This specifies whether or not space for a sector must be available in the buffer/cache prior to the start of
the sector read. If false (0), a separate sector buffer is assumed to be available for use by the media-reading
electronics, implying that the data for a sector is transferred to the main buffer/cache only after it has been
completely read (and any error-correction algorithms completed).

disksim disk Immed transfer partial hit int required
This specifies whether or not a read request whose initial (but not all) data are present in the disk buffer/cache
has that data immediately transferred over the bus. If false (0), the data are immediately transferred only if
the amount of requested data that are present in the buffer/cache exceed thehigh water mark(see above).

disksim disk Read hit over. after read float required
This specifies the processing time for a read request that hits in the on-board cache when the immediately pre-
vious request was also a read. This delay is applied before any data are transferred from the disk buffer/cache.

disksim disk Read hit over. after write float required
This specifies the processing time for a read request that hits in the on-board cache when the immediately
previous request was a write. This delay is applied before any data are transferred from the disk buffer/cache.

disksim disk Read miss over. after read float required
This specifies the processing time for a read request that misses in the on-board cache when the immediately
previous request was also a read. This delay is applied before any mechanical positioning delays or data
transfer from the media.

disksim disk Read miss over. after write float required
This specifies the processing time for a read request that misses in the on-board cache when the immediately
previous request was a write. This delay is applied before any mechanical positioning delays or data transfer
from the media.

disksim disk Write hit over. after read float required
This specifies the processing time for a write request that “hits” in the on-board cache (i.e., completion will be
reported before data reaches media) when the immediately previous request was a read. This delay is applied
before any mechanical positioning delays and before any data are transferred to the disk buffer/cache.

disksim disk Write hit over. after write float required
This specifies the processing time for a write request that “hits” in the on-board cache (i.e., completion will
be reported before data reaches media) when the immediately previous request was also a write. This delay is
applied before any mechanical positioning delays and before any data are transferred to the disk buffer/cache.

16

disksim disk Write miss over. after read float required
This specifies that “misses” in the on-board cache (i.e., completion will be reported only after data reaches
media) when the immediately previous request was a read. This delay is applied before any mechanical
positioning delays and before any data are transferred to the disk buffer/cache.

disksim disk Write miss over. after write float required
This specifies the processing time for a write request that “misses” in the on-board cache (i.e., completion
will be reported only after data reaches media) when the immediately previous request was also a write. This
delay is applied before any mechanical positioning delays and before any data are transferred to the disk
buffer/cache.

disksim disk Read completion overhead float required
This specifies the processing time for completing a read request. This overhead is applied just before the
completion message is sent over the (previously acquired) bus and occurs in parallel with any background
disk activity (e.g., prefetching or preseeking).

disksim disk Write completion overhead float required
This specifies the processing time for completing a write request. This overhead is applied just before the
completion message is sent over the (previously acquired) bus and occurs in parallel with any background
disk activity (e.g., preseeking).

disksim disk Data preparation overhead float required
This specifies the additional processing time necessary when preparing to transfer data over the bus (for
either reads or writes). This command processing overhead is applied after obtaining access to the bus (prior
to transferring any data) and occurs in parallel with any ongoing media access.

disksim disk First reselect overhead float required
This specifies the processing time for reconnecting to (or “reselecting”) the controller for the first time during
the current request. This command processing overhead is applied after the disk determines that reselection is
appropriate (prior to attempting to acquire the bus) and occurs in parallel with any ongoing media access. Re-
selection implies that the disk has explicitly disconnected from the bus at some previous point while servicing
the current request and is now attempting to reestablish communication with the controller. Disconnection
and subsequent reselection result in some additional command processing and protocol overhead, but they
may also improve the overall utilization of bus resources shared by multiple disks (or other peripherals).

disksim disk Other reselect overhead float required
This specifies the processing time for reconnecting to the controller after the first time during the current
request (i.e., the second reselection, the third reselection, etc.). This command processing overhead is applied
after the disk determines that reselection is appropriate (prior to attempting to acquire the bus) and occurs in
parallel with any ongoing media access.

disksim disk Read disconnect afterread float required
This specifies the processing time for a read request that disconnects from the bus when the previous request
was also a read. This command processing overhead is applied after the disk determines that disconnection
is appropriate (prior to requesting disconnection from the bus) and occurs in parallel with any ongoing media
access.

17

disksim disk Read disconnect afterwrite float required
This specifies the processing time for a read request that disconnects from the bus when the previous request
was a write request. This command processing overhead is applied after the disk determines that disconnec-
tion is appropriate (prior to requesting disconnection from the bus) and occurs in parallel with any ongoing
media access.

disksim disk Write disconnect overhead float required
This specifies the processing time for a write request that disconnects from the bus (which generally occurs
after the data are transferred from the host to the on-board buffer/cache). This command processing overhead
is applied after the disk determines that disconnection is appropriate (prior to requesting disconnection from
the bus) and occurs in parallel with any ongoing media access.

disksim disk Extra write disconnect int required
This specifies whether or not the disk disconnects from the bus after processing the write command but before
any data have been transferred over the bus into the disk buffer/cache. Although there are no performance
or reliability advantages to this behavior, it has been observed in at least one production SCSI disk and has
therefore been included in DiskSim. If true (1), the next five parameters configure additional overhead values
specifically related to this behavior.

disksim disk Extradisc command overhead float required
This specifies the processing time for a write request that disconnects from the bus before transferring any
data to the disk buffer/cache. This overhead is applied before requesting disconnection from the bus and
before any mechanical positioning delays. This parameter (when enabled) functions in place of the above
“Write over.” parameters.

disksim disk Extradisc disconnect overhead float required
This specifies the additional processing time for a write request that disconnects from the bus before trans-
ferring any data to the disk buffer/cache. This overhead is also applied before requesting disconnection from
the bus, but it occurs in parallel with any mechanical positioning delays. This parameter (when enabled)
functions in place of the above “Write disconnect” parameter for initial write disconnections.

disksim disk Extradisc inter-disconnect delay float required
This specifies the time between the initial disconnect from the bus and the subsequent reconnection attempt
for a write request that disconnects from the bus before transferring any data to the disk buffer/cache. It
occurs in parallel with any mechanical positioning delays.

disksim disk Extradisc 2nd disconnect overhead float required
This specifies the processing time for a write request that disconnects from the bus after data has been trans-
ferred but previously had disconnected without transferring any data to the disk buffer/cache. This command
processing overhead is applied after the disk determines that disconnection is appropriate (prior to requesting
disconnection from the bus) and occurs in parallel with any ongoing media access. This parameter (when
enabled) functions in place of the above “Write disconnect” parameter for non-initial write disconnections.

disksim disk Extradisc seek delta float required
This specifies the additional delay between the completion of the initial command processing overhead and
the initiation of any mechanical positioning for a write request that disconnects from the bus before trans-
ferring any data to the disk buffer/cache. This delay occurs in parallel with ongoing bus activity and related
processing overheads.

18

disksim disk Minimum seek delay float required
This specifies the minimum media access delay for a nonsequential write request. That is, a nonsequen-
tial write request (after any command processing overheads) must wait at least this amount of time before
accessing the disk media.

disksim disk Immediate buffer read int required
This specifies whether or not disk sectors should be transferred into the on-board buffer in the order that
they pass under the read/write head rather than in strictly ascending logical block order. This is known as
zero-latency readsor read-on-arrival. It is intended to improve response times by reducing rotational latency
(by not rotating all the way around to the first requested sector before beginning to fill the buffer/cache).

disksim disk Immediate buffer write int required
This specifies whether or not disk sectors should be transferred from the on-board buffer in the order that they
pass under the read/write head rather than in strictly ascending logical block order. These are known aszero-
latency writesor write-on-arrival. It is intended to improve response times by reducing rotational latency (by
not rotating all the way around to the first “dirty” sector before beginning to flush the buffer/cache).

3.4.6 Simple Disks

The simpledisk module provides a simplified model of a storage device that has a constant access time. It was imple-
mented mainly as an example and to test the interface through which new storage device types might later be added to
DiskSim.

disksim simpledisk Scheduler block required
This is an ioqueue; see Section 3.4.7 for details.

disksim simpledisk Max queue length int required
This specifies the maximum number of requests that the simpledisk can have in service or queued for service
at any point in time. During initialization, other components request this information and respect it during
simulation.

disksim simpledisk Block count int required
This specifies the capacity of the simpledisk in blocks.

disksim simpledisk Bus transaction latency float optional
This specifies the delay involved at the simpledisk for each message that it transfers.

disksim simpledisk Bulk sector transfer time float required
This specifies the time necessary to transfer a single 512-byte block to, from or through the controller. Trans-
ferring one block over the bus takes the maximum of this time, the block transfer time specified for the bus
itself, and the block transfer time specified for the component on the other end of the bus transfer.

disksim simpledisk Never disconnect int required
This specifies whether or not the simpledisk retains ownership of the bus during the entire processing and
servicing of a request (i.e., from arrival to completion). If false (0), the simpledisk may release the bus
whenever it is not needed for transferring data or control information.

disksim simpledisk Print stats int required
Specifies whether or not statistics for the simpledisk will be reported.

19

disksim simpledisk Command overhead float required
This specifies a per-request processing overhead that takes place immediately after the arrival of a new request
at the disk.

disksim simpledisk Constant access time float optional
This specifies the fixed per-request access time (i.e., actual mechanical activity is not simulated).

disksim simpledisk Access time float required
Synonym forConstant access time .

3.4.7 Queue/Scheduler Subcomponents

disksim ioqueue Scheduling policy int required
This specifies the primary scheduling algorithm employed for selecting the next request to be serviced. A
large set of algorithms have been implemented, ranging from common choices like First-Come-First-Served
(FCFS) and Shortest-Seek-Time-First (SSTF) to new algorithms like Shortest-Positioning-(w/Cache)-Time-
First (described in [22]). See Table 1 for the list of algorithms provided.

disksim ioqueue Cylinder mapping strategy int required
This specifies the level of detail of physical data layout information available to the scheduler. 0 indicates
that the only information available to the scheduler are the logical block numbers specified in the individual
requests. 1 indicates that the scheduler has access to information about zone boundaries, the number of
physical sectors/zone, and the number of physical sectors/track in each zone. 2 indicates that the scheduler
also has access to the layout of spare sectors or tracks in each zone. 3 indicates that the scheduler also has
access to the list of any slipped sectors/tracks. 4 indicates that the scheduler also has access to the list of any
remapped sectors/tracks, thereby providing an exact data layout (logical-to-physical mapping) for the disk.
5 indicates that the scheduler uses the cylinder number given to it with the request, allowing experiments
with arbitrary mappings. In particular, some traces include the cylinder number as part of the request record.
6 indicates that the scheduler only has access to (an approximation of) the mean number of sectors per
cylinder. The value used in this case is that specified in the disk parameter “Avg. sectors per cylinder.”

disksim ioqueue Write initiation delay float required
This specifies an approximation of the write request processing overhead(s) performed prior to any mechan-
ical positioning delays. This value is used by scheduling algorithms that select the order of request service
based (at least in part) on expected positioning delays.

disksim ioqueue Read initiation delay float required
This specifies an approximation of the read request processing overhead performed prior to any mechanical
positioning delays. This value is used by scheduling algorithms that select the order of request service based
(at least in part) on expected positioning delays.

disksim ioqueue Sequential stream scheme int required
The integer value is interpreted as a boolean bitfield. It specifies the type of sequential stream detection and/or
request concatenation performed by the scheduler (see [21] for additional details). Bit 0 indicates whether or
not sequential read requests are concatenated by the scheduler. Bit 1 indicates whether or not sequential write
requests are concatenated by the scheduler. Bit 2 indicates whether or not sequential read requests are always
scheduled together. Bit 3 indicates whether or not sequential write requests are always scheduled together.
Bit 4 indicates whether or not sequential requests of any kind (e.g., interleaved reads and writes) are always
scheduled together.

20

disksim ioqueue Maximum concat size int required
This specifies the maximum request size resulting from concatenation of sequential requests. That is, if the
sum of the sizes of the two requests to be concatenated exceeds this value, the concatenation will not be
performed by the scheduler.

disksim ioqueue Overlapping request scheme int required
This specifies the scheduler’s policy for dealing with overlapping requests. 0 indicates that overlapping
requests are treated as independent. 1 indicates that requests that are completely overlapped by a completed
request that arrived after them are subsumed by that request. 2 augments this policy by also allowing read
requests that arrive after the completed overlapping request to be subsumed by it, since the necessary data
are known. This support was included for experiments in [2] in order to partially demonstrate the correctness
problems of open workloads (e.g., feedback-free request traces). In most real systems, overlapping requests
are almost never concurrently outstanding.

disksim ioqueue Sequential stream diff maximum int required
This specifies the maximum distance between two “sequential” requests in a sequential stream. This allows
requests with a small stride or an occasional “skip” to still be considered for inclusion in a sequential stream.

disksim ioqueue Scheduling timeout scheme int required
This specifies the type of multi-queue timeout scheme implemented. 0 indicates that requests are not moved
from thebasequeue to a higher-priority queue because of excessive queueing delays. 1 indicates that requests
in the base queue whose queueing delays exceed the specified timeout value (see below) will be moved to
one of two higher-priority queues (thetimeoutqueue or thepriority queue) based on the scheduling priority
scheme (see below). 2 indicates that requests in the base queue whose queueing delays exceed half of the
specified timeout value (see below) will be moved to the next higher priority queue (the timeout queue).
Furthermore, such requests will be moved to the highest priority queue (the priority queue) if their total
queueing delays exceed the specified timeout value (see below).

disksim ioqueue Timeout time/weight int required
This specifies either the timeout value (in seconds) for excessive queueing delays or the time/aging factor
used in calculating request priorities for various age-sensitive scheduling algorithms. The time/aging factor
is additive for some algorithms and multiplicative for others.

disksim ioqueue Timeout scheduling int required
This specifies the scheduling algorithm employed for selecting the next request to be serviced from the
timeoutqueue. The options are the same as those available for the “Scheduling policy” parameter above.

disksim ioqueue Scheduling priority scheme int required
This specifies whether or not requests flagged as high priority (i.e., time-critical or time-limited requests [5])
are automatically placed in the highest-priority queue (thepriority queue).

disksim ioqueue Priority scheduling int required
This specifies the scheduling algorithm employed for selecting the next request to be serviced from the
priority queue. The options are the same as those available for the “Scheduling policy” parameter above.

3.4.8 Disk Block Cache Subcomponents

The following parameters configure the generic disk block cache subcomponent, which is currently only used in the
intelligent controller type (3). The disk module has its own cache submodule, which is configured by disk parameters
described in Section 3.4.5.

21

FCFS 1
ELEVATOR LBN 2
CYCLE LBN 3
SSTFLBN 4
ELEVATOR CYL 5
CYCLE CYL 6
SSTFCYL 7
SPTFOPT 8
SPCTFOPT 9
SATF OPT 10
WPTF OPT 11
WPCTF OPT 12
WATF OPT 13
ASPTFOPT 14
ASPCTFOPT 15
ASATF OPT 16
VSCAN LBN 17
VSCAN CYL 18
PRI VSCAN LBN 19
PRI ASPTFOPT 20
PRI ASPCTFOPT 21
SDF APPROX 22
SDF EXACT 23
SPTFROT OPT 24
SPTFROT WEIGHT 25
SPTFSEEK WEIGHT 26
TSPS 27

Table 1: Scheduling algorithms provided by ioqueues

22

3.4.9 Memory Caches

disksim cachemem Cache size int required
This specifies the total size of the cache in blocks.

disksim cachemem SLRU segments list optional
This is a list of segment sizes in blocks for the segmented-LRU algorithm [10] if it is specified as the cache
replacement algorithm (see below).

disksim cachemem Line size int required
This specifies the cache line size (i.e., the unit of cache space allocation/replacement).

disksim cachemem Bit granularity int required
This specifies the number of blocks covered by each “present” bit and each “dirty” bit. The value must
divide the cache line size evenly. Higher values (i.e., coarser granularities) can result in increased numbers
of installation reads (i.e., fill requests required to complete partial-line writes [13]).

disksim cachemem Lock granularity int required
This specifies the number of blocks covered by each lock. The value must divide the cache line size evenly.
Higher values (i.e., coarser granularities) can lead to increased lock contention.

disksim cachemem Shared read locks int required
This specifies whether or not read locks are sharable. If false (0), read locks are exclusive.

disksim cachemem Max request size int required
This specifies the maximum request size to be served by the cache. This value does not actually affect the
simulated cache’s behavior. Rather, higher-level system components (e.g., the device driver in DiskSim)
acquire this information at initialization time and break up larger requests to accommodate it. 0 indicates that
there is no maximum request size.

disksim cachemem Replacement policy int required
This specifies the line replacement policy. 1 indicates First-In-First-Out (FIFO). 2 indicates segmented-LRU
[10]. 3 indicates random replacement. 4 indicates Last-In-First-Out (LIFO).

disksim cachemem Allocation policy int required
This specifies the line allocation policy. 0 indicates that the cache replacement policy is strictly followed; if
the selected line is dirty, the allocation waits for the required write-back request to complete. 1 indicates that
“clean” lines are considered for replacement prior to “dirty” lines (and background write-back requests are
issued for each dirty line considered).

disksim cachemem Write scheme int required
This specifies the policy for handling write requests. 1 indicates that new data are always synchronously
written to the backing store before indicating completion. 2 indicates a write-through scheme where requests
are immediately initiated for writing out the new data to the backing store. The original write requests are
considered complete as soon as the new data is cached. 3 indicates a write-back scheme where completions
are reported immediately and dirty blocks are held in the cache for some time before being written out to the
backing store.

23

disksim cachemem Flush policy int required
This specifies the policy for flushing dirty blocks to the backing store (assuming a write-back scheme for
handling write requests). 0 indicates that dirty blocks are written back “on demand” (i.e., only when the al-
location/replacement policy needs to reclaim them). 1 indicates write-back requests are periodically initiated
for all dirty cache blocks.

disksim cachemem Flush period float required
This specifies the time between periodic write-backs of all dirty cache blocks (assuming a periodic flush
policy).

disksim cachemem Flush idle delay float required
This specifies the amount of contiguous idle time that must be observed before background write-backs of
dirty cache blocks are initiated. Any front-end request processing visible to the cache resets the idle timer.
−1.0 indicates that idle background flushing is disabled.

disksim cachemem Flush max line cluster int required
This specifies the maximum number of cache lines that can be combined into a single write-back request
(assuming “gather” write support).

disksim cachemem Read prefetch type int required
This specifies the prefetch policy for handling read requests. Prefetching is currently limited to extending
requested fill accesses to include other portions of requested lines. 0 indicates that prefetching is disabled.
1 indicates that unrequested data at the start of a requested line are prefetched. 2 indicates that unrequested
data at the end of a requested line are prefetched. 3 indicates that any unrequested data in a requested line are
prefetched (i.e., full line fills only).

disksim cachemem Write prefetch type int required
This specifies the prefetch policy for handling installation reads (caused by write requests). Prefetching is
currently limited to extending the requested fill accesses to include other portions of the requested lines.
0 indicates that prefetching is disabled. 1 indicates that unrequested data at the start of a requested line are
prefetched. 2 indicates that unrequested data at the end of a requested line are prefetched. 3 indicates that
any unrequested data in a requested line are prefetched (i.e., full line fills only).

disksim cachemem Line-by-line fetches int required
This specifies whether or not every requested cache line results in a separate fill request. If false (0), multi-line
fill requests can be generated when appropriate.

disksim cachemem Max gather int required
This specifies the maximum number of non-contiguous cache lines (in terms of their memory addresses)
that can be combined into a single disk request, assuming that they correspond to contiguous disk addresses.
(DiskSim currently treats every pair of cache lines as non-contiguous in memory.) 0 indicates that any number
of lines can be combined into a single request (i.e., there is no maximum).

3.4.10 Cache Devices

DiskSim can use one device as a cache for another.

disksim cachedev Cache size int required
This specifies the total size of the cache in blocks.

24

disksim cachedev Max request size int required
This specifies the maximum request size to be served by the cache. This value does not actually affect the
simulated cache’s behavior. Rather, higher-level system components (e.g., the device driver in DiskSim)
acquire this information at initialization time and break up larger requests to accommodate it. 0 indicates that
there is no maximum request size.

disksim cachedev Write scheme int required
This specifies the policy for handling write requests. 1 indicates that new data are always synchronously
written to the backing store before indicating completion. 2 indicates a write-through scheme where requests
are immediately initiated for writing out the new data to the backing store, but the original write requests are
considered complete as soon as the new data is cached. 3 indicates a write-back scheme where completions
are reported immediately and dirty blocks are held in the cache for some time before being written out to the
backing store.

disksim cachedev Flush policy int required
This specifies the policy for flushing dirty blocks to the backing store (assuming a write-back scheme for
handling write requests). 0 indicates that dirty blocks are written back “on demand” (i.e., only when the al-
location/replacement policy needs to reclaim them). 1 indicates write-back requests are periodically initiated
for all dirty cache blocks.

disksim cachedev Flush period float required
This specifies the time between periodic write-backs of all dirty cache blocks (assuming a periodic flush
policy).

disksim cachedev Flush idle delay float required
This specifies the amount of contiguous idle time that must be observed before background write-backs of
dirty cache blocks are initiated. Any front-end request processing visible to the cache resets the idle timer.
-1.0 indicates that idle background flushing is disabled.

disksim cachedev Cache device string required
The device used for the cache.

disksim cachedev Cached device string required
The device whose data is being cached.

3.5 Component Instantiation

The input component specifications must be instantiated and given names before they can be incorporated into a
simulated storage system. Component instantiations have the following form:

instantiate <name list> as <instance name>

where<instance name > is the name given to the component specification and<name list > is a list of names
for the instantiated devices.
e.g. instantiate [bus0] as BUS0
creates a bus namedbus0 using theBUS0specification.
instantiate [disk0, disk2, disk4 .. disk6] as IBM DNES-309170W validate
creates 5 disks with namesdisk0, disk2, disk4, disk5 anddisk6 using theIBM DNES-309170W validate
specification.

25

3.6 I/O Subsystem Interconnection Specifications

The allowed interconnections are independent of the components themselves except that a device driver must be at the
“top” of any subsystem and storage devices must be at the “bottom.” Exactly one or two controllers must be between
the device driver and each disk, with a bus connecting each such pair of components along the path from driver to disk.
Each disk or controller can only be connected to one bus from the host side of the subsystem. A bus can have no more
than 15 disks or controllers attached to it. A controller can have no more than 4 back-end buses (use of more than one
is not well tested). The one allowable device driver is connected to the top-level bus.

The system topology is specified to DiskSim via a topology specification. A topology specification consists
of a device type, a device name and a list of devices which are children of that device. The named devices must
be instantiated; the component instantiations should precede the topology specification in the parameter file. In the
current implementation, no device may appear more than once in the topology specification. Future versions may
provide multi-path support.

An example topology specification is provided in Figure 1 below along with a diagram of the storage system
corresponding to the specification (Figure 2).

3.7 Rotational Synchronization of Devices

DiskSim can be configured to simulate rotationally synchronized devices via the following parameters. Rotationally
synchronized devices are always at exactly the same rotational offset, which requires that they begin the simulation at
the same offset and rotate at the same speed. Non-synchronized devices are assigned a random initial rotational offset
at the beginning of the simulation and are individually assigned a rotational speed based on the appropriate device
parameters.

disksim syncset type string required
The type of devices appearing in the syncset. Currently, only “disk” is allowed.

disksim syncset devices list required
A list of names of devices that are in the syncset.

3.8 Disk Array Data Organizations

DiskSim can simulate a variety of logical data organizations, including striping and various RAID architectures. Al-
though DiskSim is organized to allow such organizations both at the system-level (i.e., at front end of the device
drivers) and at the controller-level, only system-level organizations are supported in the first released version. Each
logical organization is configured in a “logorg” block.

disksim logorg Addressing mode string required
This specifies how the logical data organization is addressed.Array indicates that there is a single log-
ical device number for the entire logical organization.Parts indicates that back-end storage devices are
addressed as though there were no logical organization, and requests are re-mapped appropriately.

26

topology disksim_iodriver driver0 [
disksim_bus bus0 [

disksim_ctlr ctlr0 [
disksim_bus bus1 [

disksim_disk disk0 []
] # end of bus1
disksim_bus bus2 [

disksim_disk disk1 []
disksim_disk disk2 []
disksim_disk disk3 []

] # end of bus2
] # end of ctlr0

] # end of bus0
] # end of system topology

Figure 1: A Storage System Topology

d
r
i
v
e
r
0

c
t
l
r
0

b
u
s
0

b
u
s
2

b
u
s
1

disk3

disk2

disk1

disk0

Figure 2: Diagram of the storage system corresponding to the above specification

27

disksim logorg Distribution scheme string required
This specifies the data distribution scheme (which is orthogonal to the redundancy scheme).Asis indicates
that no re-mapping occurs.Striped indicates that data are striped over the organization members.Random
indicates that a random disk is selected for each request. N.B.: This is only to be used with constant access-
time disks for load-balancing experiments.Ideal indicates that an idealized data distribution (from a load
balancing perspective) should be simulated by assigning requests to disks in a round-robin fashion. Note that
the last two schemes do not model real data layouts. In particular, two requests to the same block will often
be sent to different devices. However, these data distribution schemes are useful for investigating various load
balancing techniques [3]. N.B.: This is only to be used with constant access-time disks for load-balancing
experiments.

disksim logorg Redundancy scheme string required
This specifies the redundancy scheme (which is orthogonal to the data distribution scheme).Noredun
indicates that no redundancy is employed.Shadowed indicates that one or more replicas of each data
disk are maintained.Parity disk indicates that one parity disk is maintained to protect the data of the
other organization members.Parity rotated indicates that one disk’s worth of data (spread out across
all disks) are dedicated to holding parity information that protects the other N-1 disks’ worth of data in an
N-disk organization.

disksim logorg Components string optional
This specifies whether the data organization’s component members are entire disks (Whole) or partial disks
(Partial). Only the former option is supported in the first released version of DiskSim.

disksim logorg devices list required
List of device names to be included in this logical organization.

disksim logorg Stripe unit int required
This specifies the stripe unit size. 0 indicates fine-grained striping (e.g., bit or byte striping), wherein all data
disks in the logical organization contain an equal fraction of every addressable data unit.

disksim logorg Synch writes for safety int required
This specifies whether or not an explicit effort should be made to do the N+1 writes of a parity-protected
logical organization at “the same time” when handling a front-end write request with the read-modify-write
(RMW) approach to parity computation. If true (1), then all reading of old values (for computing updated
parity values) must be completed before the set of back-end writes is issued. If false (0), then each back-end
write is issued immediately after the corresponding read completes (perhaps offering improved performance).

disksim logorg Number of copies int required
This specifies the number of copies of each data disk if the logical organization employsShadowed redun-
dancy. Otherwise, this parameter is ignored.

disksim logorg Copy choice on read int required
This specifies the policy used for selecting which disk from a set ofShadowed replicas should service a
given read request since any of them can potentially do so. 1 indicates that all read requests are sent to
a single primary replica. 2 indicates that one of the replicas should be randomly selected for each read
request. 3 indicates that requests should be assigned to replicas in a round-robin fashion. 4 indicates that the
replica that would incur the shortest seek distance should be selected and ties are broken by random selection.
5 indicates that the replica that has the shortest request queue should be selected and ties are broken by random
selection. 6 indicates that the replica that has the shortest request queue should be selected and ties are broken
by policy 4 (see above). This parameter is ignored ifShadowed replication is not chosen.

28

disksim logorg RMW vs. reconstruct float required
This specifies the breakpoint in selecting Read-Modify-Write (RMW) parity updates (verses complete recon-
struction) as the fraction of data disks that are updated. If the number of disks updated by the front-end write
request is smaller than the breakpoint, then the RMW of the “old” data, “old” parity, and “new” data is used to
compute the new parity. Otherwise, the unmodified data in the affected stripe are read from the corresponding
data disks and combined with the new data to calculate the new parity. This parameter is ignored unless some
form of parity-based replication is chosen.

disksim logorg Parity stripe unit int required
This specifies the stripe unit size used for theParity rotated redundancy scheme. This parameter is
ignored for other schemes. The parity stripe unit size does not have to be equal to the stripe unit size, but one
must be a multiple of the other. Use of non-equal stripe unit sizes for data and parity has not been thoroughly
tested in the current release of DiskSim.

disksim logorg Parity rotation type int required
This specifies how parity is rotated among the disks of the logical organization. The four options, as described
in [11], are 1 - left symmetric, 2 - left asymmetric, 3 - right asymmetric, 4 - right symmetric. This parameter
is ignored unlessParity rotated redundancy is chosen.

disksim logorg Time stamp interval float required
This specifies the interval between “time stamps.” A value of0.0 for this parameter disables the time stamp
mechanism.

disksim logorg Time stamp start time float required
This specifies the simulated time (relative to the beginning of the simulation) of the first time stamp.

disksim logorg Time stamp stop time float required
This specifies the simulated time (relative to the beginning of the simulation) of the last time stamp.

disksim logorg Time stamp file name string required
This specifies the name of the output file to contain a log of the instantaneous queue lengths of each of the
organization’s back-end devices at each time stamp. Each line of the output file corresponds to a single time
stamp and contains the queue lengths of each device separated by white space. A value of “0” or of “null”
disables this feature (as does disabling the time stamp mechanism).

The “time-stamp” parameters configure DiskSim’s per-logorg mechanism for collecting information about instan-
taneous per-device queue lengths at regular intervals.

3.9 Process-Flow Parameters

The various parameters involved with configuring the synthetic workload generation module are described in Sec-
tion 4.2.

disksim pf Number of processors int required
This specifies the number of processors used by the simple system-level model. These processors (and, more
generally, DiskSim’s system-level model) are only used for the synthetic generation module.

disksim pf Process-Flow Time Scale float required
This specifies a multiplicative scaling factor for computation times “executed” by a simulated processor. For
example, 2.0 doubles each computation time, and 0.5 halves each computation time.

29

4 Input Workloads: Traces and Synthetic Workloads

DiskSim can be exercised with I/O requests in several ways, including external traces, internally-generated synthetic
workloads, and interactions within a larger simulation environment (e.g., a full system simulator). This section de-
scribes each of these options.

4.1 Traces

DiskSim can accept traces in several formats, and new formats can be added with little difficulty. This subsection
describes the default input format and briefly describes how to add support for new trace formats. The DiskSim 1.0
distribution supports the default format (“ascii”), a validation trace format (“validate”), the raw format (“raw”) of the
disk request traces described in [5, 3], and the raw format (“hpl”, or “hpl2” if the trace file header has been stripped)
of the disk request traces described in [15].

4.1.1 Default Format

The default input format is a simple ASCII stream (or file), where each line contains values for five parameters
(separated by white space) describing a single disk request. The five parameters are:

1. Request arrival time: Float [nonnegative milliseconds] specifying the time the request “arrives” relative to the
start of the simulation (at time 0.0). Requests must appear in the input stream in ascending time order.

2. Device number: Integer specifying the device number (i.e., the storage component that the request accesses).
The device mappings (see Section 3), if any, are applied to this value.

3. Block number: Integer [nonnegative] specifying the first device address of the request. The value is specified
in the appropriate access unit of the logical device in question, which may be modified by the device mappings
(see Section 3).

4. Request size: Integer [positive] specifying the size of the request in device blocks (i.e., the access unit of the
logical device in question).

5. Request flags: Hex Integer comprising a Boolean Bitfield specifying additional information about the request.
For example, bit 0 indicates whether the request is a read (1) or a write (0). Other bits specify information that is
most appropriate to a full system simulation environment (e.g., request priority). Valid bitfield values are listed
in “disksim global.h”.

An example trace in this format is included with the distribution.

4.1.2 Adding Support For New Trace Formats

Adding support for a new trace format requires only a few steps:

1. Add a new trace format constant to “disksimglobal.h”.

2. Select a character string to represent the trace format on the command line. Add a format name comparison to
“iotrace set format” in “disksim iotrace.c”.

3. Create a procedure (“iotraceXXXX get ioreq event”) in “disksimiotrace.c” to read a single disk request de-
scription from an input trace of the new format (“XXXX”) and construct a disk request event in the internal
format (described briefly below). The functions “iotraceread[char,short,int32]” can simplify this process.
Incorporate the new function into main switch statement in “iotraceget ioreq event”. The internal DiskSim
request structure (at request arrival time) is not much more complicated than the default (ascii) trace format. It
contains “time,” “devno,” “blkno,” “bcount,” and “flags” fields that correspond to the five non-auxiliary fields
described above. The other fields do not have to be initialized, except that “opid” should be zeroed. See “io-
traceascii get ioreq event” for an example.

4. If the trace file has an informational header (useful or otherwise), then create a procedure (“iotraceXXXX initialize file”)
in “disksim iotrace.c” and add it into the if/else statement in “iotraceinitialize file”.

30

4.2 Synthetic Workloads

DiskSim includes a simple synthetic workload generating module that can be used to drive storage subsystem sim-
ulations. The parameter file specifies the number of generators (similar to processes) and the characteristics of the
workloads generated by each. Each synthetic generator “executes” as a process in a very simple system-level model,
issuing I/O requests after periods of “think time” and, when appropriate, waiting for them to complete. This module
can be configured to generate a wide range of synthetic workloads, both with respect to the disk locations accessed
and the request arrival times.

4.2.1 Configuration

The synthetic generation module is configured with the parameters (described below) specified in the last section of
the parameter file. The other “Process-Flow Input Parameters” are also relevant. In particular, the number and time
scaling of the simulated processors is important, since these processors “execute” the inter-request think times as com-
putation times (one process’s computation per processor at a time).

disksim synthio Number of I/O requests to generate int required
This specifies the number of independent, concurrent, request-generating processes.

disksim synthio Maximum time of trace generated float required
This specifies the maximum number of I/O requests to generate before ending the simulation run. A simula-
tion run continues until either the specified number of requests is generated or the maximum simulation time
(see below) is reached.

disksim synthio System call/return with each request int required
This specifies whether or not each request occurs within the context of a system call (which may affect the
behavior of the associated process in the system-level model). If true (1), each request will be preceded by a
system call event and followed by a system call return event.

disksim synthio Think time from call to request float required
This specifies the think time (i.e., computation time) between the system call event and the disk request event.
This parameter is only relevant if the above Boolean parameter is set to true (1).

disksim synthio Think time from request to return float required
This specifies the think time (i.e., computation time) between the disk request event and the system call return
event. This parameter is only relevant if the above Boolean parameter is set to true (1).

disksim synthio Generators list required
A list of synthgen block values describing the generators.

The generators (described below) contain several probability-distribution parameters which are defined as follows:
A distribution is defined by a list whose first element is a string naming the type of distribution; the subsequent list
elements are specific to the type of distribution.

The distribution name may be one of:

• uniform requiring two additional floats specifying minimum and maximum values

• normal requiring two additional Floats specifying mean and variance values. As the second value is a variance,
it must be nonnegative.

• exponential requiring two additional Floats specifying base and mean values.

• poisson requiring two additional Floats specifying base and mean values.

31

• twovalue requiring three additional Floats specifying a default value, a secondary value, and a probability
indicating how often the secondary value should be returned. As the last Float is a measure of probability, it
must be between 0.0 and 1.0.

All of the distributions are computed as specified, but value generation is repeated whenever an illegal value re-
sults (e.g., a negative inter-arrival time).

disksim synthgen Storage capacity per device int required
This specifies the number of unique storage addresses per storage device (in the corresponding device’s unit
of access) accessible to generators of this type.

disksim synthgen devices list required
This specifies the set of storage devices accessible to generators of this type. The devices may be either the
names of individual devices in a “parts” logorg or the name of an “array” logorg.

disksim synthgen Blocking factor int required
This specifies a unit of access for generated requests that is a multiple of the storage devices’ unit of access.
All generated request starting addresses and sizes will be a multiple of this value.

disksim synthgen Probability of sequential access float required
This specifies the probability that a generated request is sequential to the immediately previous request. A
sequential request starts at the address immediately following the last address accessed by the previously
generated request.

disksim synthgen Probability of local access float required
This specifies the probability that a generated request is “local” to the immediately previous request. A local
request begins some short distance away from the previous request’s starting address, where the distance is
computed via a random variable definition described below.

disksim synthgen Probability of read access float required
This specifies the probability that a generated request is a read.

disksim synthgen Probability of time-critical request float required
This specifies the probability that a generated request is time-critical. That is, the corresponding generator
process “blocks” and waits for the request to complete before continuing with its sequence of work (i.e., its
next think time) [5, 2].

disksim synthgen Probability of time-limited request float required
This specifies the probability that a generated request is time-limited. That is, the corresponding generator
process “blocks” and waits for the request to complete (if it is not already complete) after a given amount of
think time (specified by the below “time limit” parameters) [5, 2].

disksim synthgen Time-limited think times list required
This is a random variable distribution specifying the time limit for a time-limited request. Note that the
generated time limit (i.e., the computation time occuring before the generator process “blocks” and waits for
the request to complete) may differ from the actual time limit (due to CPU contention).

disksim synthgen General inter-arrival times list required
This is a random variable distribution specifying the inter-request think time preceding the generated request
if the generated request’s starting address is unrelated to the previous request’s starting address (i.e., if the
generated request’s address is “random” rather than “sequential” or “local”).

32

disksim synthgen Sequential inter-arrival times list required
This is a random variable distribution specifying the inter-request think time preceding the generated request
if the generated request’s starting address is “sequential” to the previous request’s starting address.

disksim synthgen Local inter-arrival times list required
This is a random variable distribution specifying the inter-request think time preceding the generated request
if the generated request’s starting address is “local” to the previous request’s starting address.

disksim synthgen Local distances list required
This is a random variable distribution specifying the distance from the previous request’s starting address
when generating a “local” request’s starting address.

disksim synthgen Sizes list required
This is a random variable distribution specifying the request size.

Probability of sequential access along withProbability of local access determine how
a generated request’s starting address is assigned. Their sum must be less than or equal to1.0. Each request’s starting
address is sequential, local or random. A random request is assigned a device and starting address from a uniform
distribution spanning the entire available storage space (as specified by the above parameters).

Probability of time-critical request along withProbability of time-limited request
determine how a generated request’s criticality is assigned. Their sum must be less than or equal to1.0. Each request
is time-critical, time-limited or time-noncritical. A generator process nevers “blocks” and waits for time-noncritical
requests; it simply generates them and continues with its work.

With these probabilities, the synthetic generators can be configured to emulate open and closed subsystem models,
as well as a range of intermediate options. An open subsystem model (like most trace-driven simulations) generates
new requests independently of the completion times of previous requests. It can be created by setting the probabilities
of time-critical and time-limited requests both to zero (0.0) and configuring the system-level model to have the same
number of processors as there are generators. The inter-request computation times will therefore be the inter-arrival
times (per generator). A closed subsystem model (like many queueing models) generates a new request only after
the previous request completes, keeping a constant number of requests in the system (either hidden in think times or
being serviced). It can be created by setting the probability that a request is time-critical to one (1.0). Setting the inter-
request computation times (below) to zero (0.0) eliminates think times and results in a constant number of requests “in
service” at all times.

4.3 Incorporating DiskSim Into System-Level Simulators

With a modicum of effort, DiskSim can be incorporated into a full system-level simulator in order to provide accu-
rate timings for the handling of storage I/O requests. This section briefly describes one method for doing so, and
“disksim interface.c” stubs out a possible implementation. Using this approach (which assumes only a few character-
istics of the system simulator), DiskSim will act as a slave of the system simulator, providing disk request completion
indications in time for an interrupt to be generated in the system simulation. Specifically, DiskSim code will only be
executed when invoked by one of the following procedures, called as appropriate by the containing simulator:

• disksim initialize : for initializing the DiskSim state.

• disksim shutdown: for printing statistics at the end of a simulation run.

• disksim dump stats: for printing the current running statistics during the simulation (e.g., at a statistics check-
point).

• disksim internal event: for “calling back” into DiskSim so that it can update its internal simulation “time”
to match the system-level simulator’s global “time” and handle any internal DiskSim events that occur in the
intervening time. Note that this function is called by the system-level simulatoron behalfof DiskSim, since
DiskSim no longer has control over the global simulation “time.” Additional details are given below.

33

• disksim request arrive : for issuing an I/O request into DiskSim.

Using this interface requires only two significant functionalities of the system simulation environment:

1. The ability to function correctly without knowing when a disk request will complete at the time that it is initiated.
The system simulation will be informed at some later point (in its view of time) that the request is completed.
At this time, the appropriate “disk request completion” interrupt could be inserted into the system simulation.

2. The ability for DiskSim to register callbacks with the system simulation environment. That is, this inter-
face code must be able to request (of the sytem-level simulator) an invocation of a callback function (such
as disksiminternalevent, described above) when the simulated time reaches a DiskSim-specified value. It is
also helpful (but not absolutely necessary) to be able to “de-schedule” a callback at some point after it has
been requested. For example, a callback requested to indicate the end of some disk prefetching activity may be
superceded by a new request arriving at the disk (and interrupting the ongoing prefetch).

If the actual content on the disk media (i.e., the “data”) must be maintained during the course of a system-level
simulation, this functionality can easily be provided by code outside of DiskSim, which does not itself provide such
functionality.

34

5 The Output File

At the beginning of the simulation, the values for the numerous configuration parameters are copied into the beginning
of the output file. The remainder of the output file contains the aggregate statistics of the simulation run, including
both the characteristics of the simulated workload (if enabled) and the performance indicators of the various storage
components. Each line of the latter portion of the output file (excluding the statistic distributions) is unique, simplifying
the process of searching through the file for a particular result.

DiskSim collects a large number of statistics about the simulated storage components. As discussed in section 3,
the size of the output file can be reduced by configuring DiskSim not to report undesired sets of statistics. As each
statistic is described below, it will also be noted whether or not the statistic can be pruned from the output file via
corresponding Boolean (enable/disable) input parameters.

The following subsection describes the configuration of statistics-collection parameters. The remainder of the
section describes the sets of statistics which DiskSim collects.

5.1 Thestatdefs File

Although some of the results collected by DiskSim are simple counts or sums, aggregate statistics (average, standard
deviation, distribution) are collected for many values. In particular, statistics reported as distributions make use of
the statdefs file for configuring the “bins” which count observed values falling within specific ranges. Each statistic
description consists of four lines, as described below. Comments or other extraneous information may be placed within
the file as long as each 4-line description is contiguous. Most of the statistics in the sample statdefs file provided in the
DiskSim distribution are mandatory; DiskSim will emit an error message and exit if any such statistic is not defined.
Each statistic definition consists of:

<statname>
Distribution size: <distsize>
Scale/Equals: <scale>/<equals>
<bins>

statname is the name of the statistic being described. DiskSim searches for this value on a line by itself to
identify the beginning of the corresponding statistic description. So, the order of the statistics in the statdefs file is
unimportant.

distsize is a positive integer specifying the number of bins into which to partition the observed values. When
this value is less than or equal to the internal DiskSim constantDISTSIZE , the entire distribution is reported on two
lines (for output file compactness and readability). The output for larger distributions consists of one bin per line.

scale is a nonzero multiplication factor to be applied to observed values before selecting an appropriate bin. It
is useful mainly because the bin boundaries are specified as integers (see below). For example, if a specific “response
time” statistic’s distribution is specified using microsecond-based boundaries, the “Scale” value should be set to 1000
(since internal times in DiskSim are millisecond-based).

equals is a nonnegative integer that specifies how many of the bins (starting from the first one) should collect
only observed values that are exactly equal to the specified boundary, rather than values that are less than the boundary
(see below).

bins describes the bin boundaries in one of two formats. If the number of bins is less than or equal to the internal
DiskSim constantDISTSIZE , then this line contains nine integers. If theequals value (see above) is set to some
valuen, the firstn integers specify bins that will hold exact observed values rather than ranges of observed values.
The remaining integers specify bins holding observed values below the specified integer boundary. When DiskSim
categorizes an observed value, the bins are checked in the sequence in which they are found on the line. So, bin
boundaries beyond the “Equals” values should be in ascending order to avoid unclear results.

If the number of bins is greater thanDISTSIZE , the format of this line is a string
Start <x> step <y> grow <z>
wherex specifies the first bin boundary,y specifies a constant value to be added to the current boundary value when
computing the next boundary value, andz specifies a percent of the previous bin value to be added to the current
boundary value when computing the next boundary value. The combination of a multiplicative scaling factor (“Scale”),

35

an additive step function (“step”), and a multiplicative step function (“grow”) provides the flexibility to concisely
specify a wide range of typical statistic distributions.

5.2 Simulation Sesults

Each statistic in the output file is identified by a unique string. A typical single-value statistic is reported as “<name>:
<value> .” In some cases a single value is inadequate to describe the statistic, so a set of four aggregate statistics are
reported instead: the average value, the standard deviation, the maximum value, and the distribution as specified by
the corresponding entry in the statdef file.

The format for reporting the first three aggregates mentioned above is
<context> <statname> <type>: <value>
where thecontext is the context of the statistic (e.g., “Disk #2”),statname is the name of the statistic used
to index into the statdefs file, andtype is the the aggregate type [average , std.dev. , or maximum]. The
corresponding result value is specified on the same line. The format for reporting distributions is similar to the other
three aggregates, but the value is reported on lines following the indentifying string. If the number of bins specified in
the corresponding entry in the statdefs file is greater thanDISTSIZE , then the distribution is reported on two lines:
one for the bin boundaries and one for the observed bin counts. Otherwise, the distribution is reported on the nextn
lines, wheren is the number of bins. Each line contains four values: (1) the bin boundary, (2) the count of observed
values falling into the bin, (3) the measured probability that an observed value falls into the bin (i.e., the count divided
by the number of observations), and (4) the measured probability that an observed value falls in the bin or any previous
bin.

Each individual statistic found in the output file is described below.Unless otherwise specified, all statistics
measuring simulation “time” are reported in milliseconds.

Total time of run : The simulated time at the end of the simulation run.
Warm-up time : The simulation warm-up time not covered by the reported statistics. See Section 3.1.
The next set of statistics falls into one of several categories, depending on the style of input. If synthetic generation

is used, then statistics for the simple system-level model are reported (Section 5.2.1). If a validation trace is used, then
statistics about the behavior measured for the real disk are reported (Section 5.2.2). If the traces described in [15]
(referred to in DiskSim as “HPL” traces) are used, then statistics about performance observed for the traced system
are reported (Section 5.2.3). If any other external trace is used, then no statistics are reported in this section of the
output file, and the I/O driver statistics are next in the output file (Section 5.2.5), followed by the disk drive statistics
(Section 5.2.6), controller statistics (Section 5.2.7), and bus statistics (Section 5.2.8).

5.2.1 Process-flow Statistics

The following statistics are reported only when the internal synthetic workload generator is enabled.
CPU Total idle milliseconds: the sum of the idle times for all simulated CPUs in the process-flow simulation.
CPU Idle time per processor: the average per-CPU idle time.
CPU Percentage idle cycles: the average percentage of time that each CPU spent idle.
CPU Total false idle ms: the sum of the false idle times for all CPUs. “False idle time” is that time that a

processor spends idle because processes are blocked waiting for I/O (e.g., disk requests), as opposed to real idle time
during which there is no work for the CPU to do.

CPU Percentage false idle cycles: the average percentage of each CPUs time that was consumed by false idle
time.

CPU Total idle work ms: the sum of the idle work times for all CPUs. “Idle work time” is useful computa-
tion (e.g., interrupt handlers and background tasks) completed while in the idle state (because no user processes are
runnable).

CPU Context Switches: the number of context switches.
CPU Time spent context switching: the aggregate CPU time consumed by context switch overheads on all

CPUs.
CPU Percentage switching cycles: the average percentage of each CPUs time that was consumed by context

switching overheads.
CPU Number of interrupts : the total number of interrupts received by all CPUs.

36

CPU Total time in interrupts : the total computation time consumed by interrupt handlers.
CPU Percentage interrupt cycles: the average percentage of each CPUs time that was consumed by interrupt

handling.
CPU Time-Critical request count: the total number of time-critical requests generated.
CPU Time-Critical Response time stats: aggregate statistics for the response times observed for all time-critical

requests.
CPU Time-Limited request count: the total number of time-limited requests generated.
CPU Time-Limited Response time statsaggregate statistics for the response times observed for all time-limited

requests.
CPU Time-Noncritical request count: the total number of time-noncritical requests generated.
CPU Time-Noncritical Response time statsaggregate statistics for the response times observed for all time-

noncritical requests.
The next four statistics are not reported if “Print all interrupt stats?” is set to false (0).
CPU Number of IO interrupts : the total number of I/O interrupts received by all CPUs.
CPU Time spent in I/O interrupts : the total computation time spent on I/O interrupt handlers.
CPU Number of clock interrupts: the total number of I/O interrupts received by all CPUs.
CPU Time spent in clock interrupts: the total computation time spent on clock interrupt handlers.
The next four statistics are not reported if “Print sleep stats?” is set to false (0).
Number of sleep events: the total number of sleep events “executed” by all processes.
Number of I/O sleep events: the total number of sleep events “executed” in order to wait for I/O requests.
Average sleep time: the average length of time between a sleep event and the corresponding wake-up event.
Average I/O sleep time: the average length of time between a sleep event that waits for an I/O request and the

corresponding wake-up event (i.e., the I/O request’s completion).
If there is more than one CPU, then per-CPU statistics are reported. The per-CPU statistics are the same as the

aggregate CPU statistics described above. The per-CPU statistics are not reported if “Print per-CPU stats?” is set to
false (0).

Process Total computation time: the total computation time of all processes (other than the idle processes) in
the system.

Process Last event time: the simulated time of the last process event “executed.”
Process Number of I/O requests: the total number of I/O requests generated.
Process Number of read requests: the total number of read I/O requests generated.
Process Number of C-switches: the total number of context switches to or from non-idle processes.
Process Number of sleeps: the total number of sleep events “executed.”
Process Average sleep time: the average time between a process’s sleep event and the corresponding wake-up

event.
Process Number of I/O sleeps: the total number of sleep events “executed” in order to wait for I/O requests.
Process Average I/O sleep time: the average time between a process’s sleep event that waits for an I/O request

and the corresponding wake-up event (i.e., the I/O request’s completion).
Process False idle time: the total amount of false idle time. This value can be greater than the total measured

false idle time because more than one process can contribute to any given period of false idle time.
Process Read Time limits measured: the number of time limits observed for read I/O requests. (This value

differs from the number of time-limited read requests if the simulation ends before one or more read I/O request time
limits expire.)

Process Read Time limit duration stats: aggregate statistics for read I/O request time limits.
Process Write Time limits measured: the number of time limits measured for write I/O requests. (This value

differs from the number of time-limited write requests if the simulation ends before one or more write I/O request time
limits expire.)

Process Write Time limit duration stats: aggregate statistics for write I/O request time limits.
Process Read Time limits missed: the number of time limits missed by read I/O requests.
Process Missed Read Time limit duration stats: aggregate statistics for missed read I/O request time limits.
Process Write Time limits missed: the number of time limits missed by write I/O requests.
Process Missed Write Time limit duration stats: aggregate statistics for the missed write I/O request time

limits.

37

If there is more than one simulated process, then per-process statistics are reported. The per-process statistics
are the same as the aggregate process statistics described above. The per-process statistics are not reported if “Print
per-process stats?” is set to false (0).

5.2.2 Validation Trace Statistics

The following statistics are reported only when an external validation trace (with a format of “validate”) is used as the
input workload.

VALIDATE Trace access time stats: aggregate statistics for the access times measured for the corresponding
real storage subsystem. (The access time measured for each request is part of the input trace format.)

VALIDATE Trace access diff time stats: aggregate statistics for the per-request differences between the simu-
lated and measured access times.

VALIDATE Trace write access diff time stats: aggregate statistics for the measured access times for write
requests.

VALIDATE Trace write access diff time stats: aggregate statistics for the per-request differences between the
simulated and measured access times for write requests.

The remaining statistics for validate workloads are historical in nature and are primarily useful for debugging
DiskSim’s behavior. The information needed to trigger them is not included in most of the validation traces.

VALIDATE double disconnects: the number of requests incurring two bus disconnects during the request’s
lifetime.

VALIDATE triple disconnects : the number of requests incurring three bus disconnects during the request’s
lifetime.

VALIDATE read buffer hits : the number of read requests that were serviced directly from the disk’s on-board
cache.

VALIDATE buffer misses : the number of requests that required actual magnetic media access.

5.2.3 HPL Trace Statistics

The following statistics are reported only when an external HPL trace (i.e., a trace in the HPLabs SRT format) is used
as the input workload.

Total reads: the number of read requests in the trace, followed by the fraction of all requests that were reads.
Total writes: the number of write requests in the trace, followed by the fraction of all requests that were writes.
Sync Reads: the number of read requests marked (by a flag value) as synchronous, meaning that an application

process will be blocked until the request completes. This value is followed by the fraction of all requests that were
synchronous reads and the fraction of all read requests that were synchronous.

Sync Writes: the number of write requests marked (by a flag value) as synchronous, meaning that an application
process will be blocked until the request completes. This value is followed by the fraction of all requests that were
synchronous writes and the fraction of write requests that were synchronous.

Async Reads: the number of read requests not marked as synchronous, followed by the fraction of requests that
were asynchronous reads and the fraction of all read requests that were asynchronous.

Async Writes: the number of write requests not marked as synchronous, followed by the fraction of all requests
that were asynchronous writes and the fraction of all write requests that were asynchronous.

Mapped disk #X Trace queue time stats: aggregate statistics for the per-request queue times measured for
disk X in the traced system.

Mapped disk #X Trace response time stats: aggregate statistics for the per-request response times (i.e., request
arrival to request complete, including queue delays and service time) measured for disk X in the traced system.

Mapped disk #X Trace access time stats: aggregate statistics for the per-request access times (i.e., service times)
measured for disk X in the traced system.

Mapped disk #X Trace queue length stats: aggregate statistics for the instantaneous queue lengths observed by
each request for disk X in the traced system.

Mapped disk #X Trace non-queue time stats: aggregate statistics for the measured per-request times spent in
the device driver for disk X in the traced system between request arrival and delivery to the storage controller when no
other requests are pending. This provides insight into the device driver overheads for the traced systems.

38

5.2.4 System-level Logical Organization Statistics

The following statistics are reported for each system-level logical organization. (Note: Every DiskSim simulation
involves at least one system-level logical organization, even if it simply maps each logical device onto an equivalent
physical device.)

System logorg #X Number of requests: the number of requests submitted to the front-end of logical organiza-
tion x.

System logorg #X Number of read requests: the number of read requests submitted to the front-end of logical
organization X, followed by the fraction of all front-end requests that were reads.

System logorg #X Number of accesses: the number of accesses passed to the back-end of logical organiza-
tion X. Striping, data redundancy, and other logical aspects can cause this value to differ from the number of front-end
requests.

System logorg #X Number of read accesses: the number of accesses passed to the back-end of logical organi-
zation X in response to front-end read requests, followed by the fraction of all back-end requests that were reads.

System logorg #X Average outstanding: the average number of front-end requests in progress at any point in
time to logical organization X.

System logorg #X Maximum outstanding: the maximum number of front-end requests in progress at any point
in time to logical organization X.

System logorg #X Avg nonzero outstanding: the average number of front-end requests in progress at times when
there was at least one outstanding request to logical organization X.

System logorg #X Completely idle time: the amount of time during which no front-end requests are outstanding
to logical organization X.

System logorg #X Response time stats: aggregate statistics for the response times observed for all front-end
requests to logical organization X.

System logorg #X Time-critical reads: the number of front-end read requests to logical organization X marked
(by a flag field) as time-critical.

System logorg #X Time-critical write: the number of front-end write requests to logical organization X marked
(by a flag field) as time-critical.

The next ten statistics are not reported if “Print driver locality stats?” is set to false (0).
System logorg #X Inter-request distance stats: aggregate statistics for the distances between the starting ad-

dresses of subsequent accesses to the same device in logical organization X.
System logorg #X Sequential reads: the number of back-end read accesses whose starting addresses were se-

quential to the immediately previous access to the same device in logical organization X, followed by the fraction of
back-end accesses that were sequential reads and the fraction of back-end reads that were sequential.

System logorg #X Sequential writes: the number of back-end write accesses whose starting addresses were
sequential to the immediately previous access to the same device in logical organization X, followed by the fraction of
back-end accesses that were sequential writes and the fraction of back-end writes that were sequential.

System logorg #X Interleaved reads: the number of back-end read accesses whose starting addresses were
almost sequential to (i.e., less than 16 sectors beyond the end of) the immediately previous access to logical organiza-
tion X, followed by the fraction of back-end accesses that were “interleaved” reads and the fraction of back-end reads
that were “interleaved.”

System logorg #X Interleaved writes: the number of back-end write accesses whose starting addresses were
almost sequential to (i.e., less than 16 sectors beyond the end of) the immediately previous access to logical organi-
zation X, followed by the fraction of back-end accesses that were “interleaved” writes and the fraction of back-end
writes that were “interleaved.”

System logorg #X Logical sequential reads: the number of front-end read requests whose starting addresses
were logically sequential to the immediately previous request to logical organization X.

System logorg #X Logical sequential writes: the number of front-end write requests whose starting addresses
were logically sequential to the immediately previous request to logical organization X.

System logorg #X Sequential disk switches: the number of back-end accesses generated for logically sequential
front-end requests for logical organization X that (because of striping or some such) accessed a different device than
the immediately previous request.

39

System logorg #X Logical local accesses: the number of front-end requests marked (by a flag) as logically
“local” to the immediately previous request to logical organization X.

System logorg #X Local disk switches: the number of back-end accesses generated for front-end requests marked
(by a flag) as logically “local” that (because of striping or some such) accessed a different device than the immediately
previous request to logical organization X.

The next two statistics are not reported if “Print driver interfere stats?” is set to false (0).
System logorg #X Sequential step S: the number of back-end accesses to logical organization X that were

sequential to the back-end access S+1 accesses prior, followed by the fraction of back-end accesses that fall into this
category. These statistics are only reported if the fraction is greater than 0.002.

System logorg #X Local (D) step S: the number of back-end accesses to logical organization X whose starting
addresses were D device sectors from the back-end access S+1 accesses prior, followed by the fraction of back-end
accesses that fall into this category. These statistics are only reported if the fraction is greater than 0.002.

The next two statistics are not reported if “Print driver blocking stats?” is set to false (0).
System logorg #X Blocking factor: B: the number of back-end accesses to logical organization X whose size

is an integer multiple of B sectors, followed by the fraction of back-end accesses that fall into this category. These
statistics are only reported if the fraction is greater than 0.002.

System logorg #X Alignment factor: A: the number of back-end accesses to logical organization X whose
starting address is an integer multiple of A sectors, followed by the fraction of back-end accesses that fall into this
category. These statistics are only reported if the fraction is greater than 0.002.

The next three statistics are not reported if “Print driver intarr stats?” is set to false (0).
System logorg #X Inter-arrival time stats: aggregate statistics for the inter-arrival times of front-end requests

to logical organization X.
System logorg #X Read inter-arrival time stats: aggregate statistics for the inter-arrival times of front-end read

requests to logical organization X.
System logorg #X Write inter-arrival time stats: aggregate statistics for the inter-arrival times of front-end

write requests to logical organization X.
The next two statistics are not reported if “Print driver streak stats?” is set to false (0).
System logorg #X Number of streaks: the number of sequences of back-end accesses to logical organization X

addressed to the same device with no interleaved accesses to other devices.
System logorg #X Streak length stats: aggregate statistics for the lengths of sequences of back-end accesses to

logical organization X addressed to the same device with no interleaved accesses to other devices.
The next three statistics are not reported if “Print driver stamp stats?” is set to false (0).
System logorg #X Timestamped # outstanding distribution: a distribution of the number of requests outstand-

ing to logical organization X at regular simulated time intervals (specified by the “Time stamp interval” parameter).
System logorg #X Timestamped avg # outstanding difference distribution: a distribution of the average dif-

ference between the number of requests outstanding to each back-end device of logical organization X and the average
number of requests outstanding per back-end device of logical organization X (measured at regular simulated time
intervals).

System logorg #X Timestamped max # outstanding difference distribution: a distribution of the maximum
difference between the number of requests outstanding to a particular back-end device of logical organization X and the
average number of requests outstanding per back-end device of logical organization X (measured at regular simulated
time intervals).

The next three statistics are not reported if “Print driver size stats?” is set to false (0).
System logorg #X Request size stats: aggregate statistics for the sizes of front-end requests to logical organiza-

tion X.
System logorg #X Read request size stats: aggregate statistics for the sizes of front-end read requests to logical

organization X.
System logorg #X Write request size stats: aggregate statistics for the sizes of front-end write requests to logical

organization X.
The next two statistics are not reported if “Print driver idle stats?” is set to false (0).
System logorg #X Number of idle periods: the number of time periods during which no requests were outstand-

ing to logical organization X.

40

System logorg #X Idle period length stats: aggregate statistics for the durations of time periods during which
no requests were outstanding to logical organization X.

The remaining system-level logorg statistics are aggregate statistics over the set of disks in the logical organization.
The statistics reported are the same as those described in Section 5.2.6 under “Disk statistics.”

5.2.5 I/O Driver Statistics

All of the I/O driver statistics are generated by the request queue module (which is also used by the disk and controller
modules). None of them are reported if “Print driver queue stats?” is set to false (0).

IOdriver Total Requests handled: the number of requests completed from the driver’s point of view.
IOdriver Requests per second: the number of requests completed per second of simulated time.
IOdriver Completely idle time : the total amount of time that no requests were outstanding.
IOdriver Response time stats: aggregate statistics for request response times.
IOdriver Overlaps combined: the number of requests made unnecessary because they completely overlap with

another outstanding request, followed by the fraction of requests that fall into this category. (Note that this is an
extremely unusual event in real systems, but the situation may arise frequently in trace-driven simulation [2].)

IOdriver Read overlaps combined: the number of read requests made unnecessary because they completely
overlap with another outstanding request, followed by the fraction of requests that fall into this category.

The next eight statistics are not reported if “Print driver crit stats?” is set to false (0).
IOdriver Critical Reads : the number of read requests marked (by a flag) as time-critical, followed by the fraction

of requests that are time-critical reads.
IOdriver Critical Read Response time stats: aggregate statistics for the response times of read requests marked

time-critical.
IOdriver Non-Critical Reads : the number of read requests not marked (by a flag) as time-critical, followed by

the fraction of requests that are reads not marked time-critical.
IOdriver Non-Critical Read Response time stats: aggregate statistics for the response times of read requests

not marked time-critical.
IOdriver Critical Writes : the number of write requests marked (by a flag) as time-critical, followed by the

fraction of requests that are time-critical writes.
IOdriver Critical Write Response time stats: aggregate statistics for the response times of write requests marked

time-critical.
IOdriver Non-Critical Writes : the number of write requests not marked (by a flag) as time-critical, followed by

the fraction of requests that are writes not marked time-critical.
IOdriver Non-Critical Write Response time stats: aggregate statistics for the response times of write requests

not marked time-critical.
IOdriver Number of reads : the number of read requests, followed by the fraction of requests that are reads.
IOdriver Number of writes : the number of write requests, followed by the fraction of requests that are writes.
IOdriver Sequential reads: the number of read requests whose starting addresses are sequential to the immedi-

ately previous request to the same device, followed by the fraction of requests that are sequential reads.
IOdriver Sequential writes: the number of write requests whose starting addresses are sequential to the imme-

diately previous request to the same device, followed by the fraction of requests that are sequential writes.
The next twelve statistics are not reported if “Print driver queue stats?” is set to false (0).
IOdriver Average # requests: the average number of requests outstanding (in queues or in service).
IOdriver Maximum # requests: the maximum number of requests outstanding.
IOdriver end # requests: the number of requests outstanding when the simulation ended.
IOdriver Average queue length: the average length of the request queue.
IOdriver Maximum queue length : the maximum length of the request queue.
IOdriver End queued requests: the length of the request queue when the simulation ended.
IOdriver Queue time stats: aggregate statistics for the queue times incurred by requests.
IOdriver Avg # read requests: the average number of read requests outstanding.
IOdriver Max # read requests: the maximum number of read requests outstanding.
IOdriver Avg # write requests: the average number of write requests outstanding.
IOdriver Max # write requests : the maximum number of write requests outstanding.

41

IOdriver Physical access time stats: aggregate statistics for the request access times (i.e., excluding any queueing
times).

The next three statistics are not reported if “Print driver intarr stats?” is set to false (0).
IOdriver Inter-arrival time stats : aggregate statistics for request inter-arrival times.
IOdriver Read inter-arrival time stats : aggregate statistics for read request inter-arrival times.
IOdriver Write inter-arrival time stats : aggregate statistics for write request inter-arrival times.
The next two statistics are not reported if “Print driver idle stats?” is set to false (0).
IOdriver Number of idle periods : the number of time periods during which no requests were outstanding.
IOdriver Idle period length stats aggregate statistics for the durations of time periods during which no requests

were outstanding.
The next three statistics are not reported if “Print driver size stats?” is set to false (0).
IOdriver Request size stats: aggregate statistics for the sizes of requests.
IOdriver Read request size stats: aggregate statistics for the sizes of read requests.
IOdriver Write request size stats: aggregate statistics for the sizes of write requests.
IOdriver Instantaneous queue length stats: aggregate statistics for the queue lengths observed at the points in

time when each new request arrived.
IOdriver Sub-optimal mapping penalty stats: aggregate statistics for the seek distance penalties incurred due

to the use of inaccurate mapping information in translating request starting locations to cylinder/track/sector locations
(by a scheduler).

Some of the disk request scheduling algorithms supported by DiskSim employ more than one sub-queue (e.g.,
for request prioritization). If this is the case, then several of the above statistics (from “IOdriver Response time stats”
to “IOdriver Physical access time stats”) are reported for each of the sub-queues in addition to the above aggregate
values. Also, depending upon which sub-queues are employed, up to four additional statistics may be reported:

IOdriver Requests switched to timeout queue: the number of requests that were switched to the higher priority
timeoutqueue (as described in section 3.4.7), because they were queued in thebasequeue for longer than their specified
timeout time.

IOdriver Timed out requests: the number of requests that did not complete within their timeout value. Such
requests are only switched to thetimeoutqueue if they have not yet been initiated.

IOdriver Half-way timed out requests: the number of requests that did not complete within half of their timeout
value. One of the supported scheduler options gives such requests an intermediate priority level for the remainder of
their timeout period.

IOdriver Requests switched to priority queue: the number of requests that were switched to the high-priority
timeoutqueue because of information delivered from higher-level system components (e.g., the process scheduler)
after the request was queued. One reason for such a switch might be that a process must wait for the request to
complete [5]; if a high-priority process is waiting on the request completion, the request’s priority may be increased at
the I/O driver.

If there is more than one device (or more than one driver), then separate per-driver-per-device statistics are re-
ported. The statistics reported are the same as those described above (as aggregate “IOdriver” statistics). The per-
driver-per-device statistics are not reported if “Print driver per-device stats?” is set to false (0).

5.2.6 Disk Statistics

The first set of disk statistics is generated by the request queue module. The specific statistics reported are the same
as the “IOdriver” statistics described in Section 5.2.5, except that they apply to each disk’s individual request queue(s)
(and are denoted accordingly). The “Print ... stats?” parameters for the queue statistics are the same as for the
corresponding driver parameters with the word, “driver,” replaced by “disk.”

The next three statistics are not reported if “Print device seek stats?” is set to false (0).
Disk Seeks of zero distance: the number of requests resulting in media accesses that require no “seek” (i.e., move-

ment of the disk’s read/write head from one cylinder to another), followed by the fraction of all requests requiring no
seek.

Disk Seek distance stats: aggregate statistics for the seek distances observed for requests requiring media access.
Disk Seek time stats: aggregate statistics for the seek times observed for requests requiring media access.
The next three statistics are not reported if “Print device latency stats?” is set to false (0).

42

Disk Full rotation time : the amount of time required for the disk platters to complete a full revolution. This
statistic is only reported for single-disk configurations or in sets of per-disk statistics (see below).

Disk Zero rotate latency: the number of media accesses that incur no rotational latency, followed by the fraction
of all media accesses incurring no rotational latency.

Disk Rotational latency stats: aggregate statistics for the rotational latencies for requests requiring media access.
The next statistic is not reported if “Print device xfer stats?” is set to false (0).
Disk Transfer time stats: aggregate statistics for the media transfer times for requests requiring media access.
The next two statistics are not reported if “Print device acctime stats?” is set to false (0).
Disk Positioning time stats: aggregate statistics for positioning times (seek time plus rotational latency) for

requests requiring media access.
Disk Access time stats: aggregate statistics for media access times for requests requiring media access.
The next two statistics are not reported if “Print device interfere stats?” is set to false (0).
Disk Sequential interference: the number of requests marked (by a flag) as logically sequential that were not

temporally and physically sequential due to interference with other request streams or data mapping algorithms (e.g.,
striping).

Disk Local interference: the number of requests marked (by a flag) as logically “local” that were not temporally
or physically local due to interference with other request streams or data mapping algorithms (e.g., striping).

The next seventeen statistics are not reported if “Print device buffer stats?” is set to false (0).
Disk Number of buffer accesses: the number of requests that check the disk’s on-board cache for specific

contents.
Disk Buffer hit ratio : the number of requests that check the disk’s on-board cache and find some “usable” data,

followed by the fraction of all requests that check the disk’s on-board cache and find some “usable” data. For example,
a read request whose first sector of requested data is in the cache (or is currently being read into the cache) would
fall into this category. Also, a write request may fall into this cateogory if the on-board controller allows its data to
be appended or prepended to an existing quantity of “dirty” data. In the latter case, the existing dirty data is “usable”
because the new request may be combined with it (i.e., is logically sequential to it).

Disk Buffer miss ratio: the number of requests that check the disk’s on-board cache and do not find any “usable”
data, followed by the fraction of all requests that check the disk’s on-board cache and do not find some “usable” data.
For example, a read request whose first sector of requested data is not in the cache (and is not currently being read into
the cache) would certainly fall into this category. Also, a write request would fall into this cateogory if the request’s
data cannot be combined with any existing “dirty” data in the cache.

Disk Buffer read hit ratio : the number of read requests that check the disk’s on-board cache and find all of the
requested data already present, followed by the fraction of all read requests and the fraction of all requests that fall
into this category.

Disk Buffer prepend hit ratio : the number of all write requests that check the disk’s on-board cache and are
combined with existing write requests where the new request’s data are logically prepended to the existing “dirty”
data, followed by the fraction of all write requests that fall into this category.

Disk Buffer append hit ratio : the number of all write requests that check the disk’s on-board cache and are
combined with existing write requests where the new request’s data are logically appended to the existing “dirty” data,
followed by the fraction of all write requests that fall into this category.

Disk Write combinations: the number of all write requests that check the disk’s on-board cache and are combined
with existing write requests (either logically prepended or appended), followed by the fraction of all write requests
that are combined with existing write requests.

Disk Ongoing read-ahead hit ratio: the number of all read requests that check the disk’s on-board cache and
find an initial portion of the requested data already present and additional data being actively prefetched into the same
cache segment, followed by the fraction of all read requests and the fraction of all requests that fall into this category.

Disk Average read-ahead hit size: the average amount of requested data found in the cache for read requests that
check the disk’s on-board cache and find an initial portion of the requested data already present and additional data
being actively prefetched into the same cache segment.

Disk Average remaining read-ahead: the average amount of requested data remaining to be fetched into the
cache for read requests that check the disk’s on-board cache and find an initial portion of the requested data already
present and additional data being actively prefetched into the same cache segment.

43

Disk Partial read hit ratio : the number of read requests that check the disk’s on-board cache and find an initial
portion of the requested data already present (with no ongoing prefetch), followed by the fraction of all read requests
and the fraction of all requests that fall into this category.

Disk Average partial hit size: the average amount of requested data found in the cache for read requests that
check the disk’s on-board cache and find an initial portion of the requested data (with no ongoing prefetch).

Disk Average remaining partial: the average amount of requested data remaining to be fetched into the cache
for read requests that check the disk’s on-board cache and find an initial portion of the requested data (with no ongoing
prefetch).

Disk Total disk bus wait time: the total amount of time spent waiting for access to a bus (i.e., arbitration delay).
Disk Number of disk bus waits: the total number of times a delay occured when attempting to access the bus

(i.e., the bus was “owned” by another entity when access was requested).
Per-disk statistics are reported for multi-disk configurations. Statistics for specific disks can be enabled or disabled

by setting the corresponding “Print stats for disk” configuration parameter (see Section 3.4.5) true (1) or false (0).

5.2.7 Controller Statistics

No statistics are reported for the two simple controller models. The following statistics are reported only for “CTLRSMART”
controllers, which include a cache and are capable of queueing/scheduling requests for one or more attached storage
devices. All of the cache statistics are reported for individual controllers only (i.e., no aggregates across controllers
are reported). The controller cache statistics are not reported if “Print controller cache stats?” is set to false (0).

Controller #X cache requests: the number of requests serviced by the cache of controller X.
Controller #X cache read requests: the number of read requests serviced by the cache of controller X, followed

by the fraction of serviced requests that are reads.
Controller #X cache atoms read: the number of cache atoms accessed by read requests to controller X, followed

by the fraction of cache atom accesses that are reads. A “cache atom” is the minimal unit of cache access. In the
current version of DiskSim, the cache atom size is always equal to the sector size of the underlying storage devices.

Controller #X cache read misses: the number of cache read requests to controller X for which no useful data
are found in the cache, followed by the fraction of all requests that are cache read misses and the fraction of all read
requests that are misses.

Controller #X cache read full hits: the number of cache read requests to controller X for which all necessary
data are found in the cache, followed by the fraction of all requests that are cache read full hits and the fraction of all
read requests that are full hits.

Controller #X cache fills (read): the number of cache fill accesses issued to the underlying storage devices by
controller X, followed by the fraction of requests that require a cache fill and the fraction of read requests that require
a cache fill.

Controller #X cache atom fills (read): the number of atoms read by cache fill accesses issued to the underlying
storage devices by controller X, followed by the fraction of cache atom accesses that require a cache fill and the
fraction of cache atom read accesses that require a cache fill.

Controller #X cache write requests: the number of write requests serviced by the cache of controller X, followed
by the fraction of requests that are writes.

Controller #X cache atoms written: the number of cache atoms written by write requests to controller X,
followed by the fraction of cache atom accesses that are writes.

Controller #X cache write misses: the number of cache write requests to controller X that do not overlap at all
with data found in the cache, followed by the fraction of all requests that are cache write misses and the fraction of
write requests that are misses.

Controller #X cache write hits (clean): the number of cache write requests to controller X that overlap only with
clean data found in the cache, followed by the fraction of all requests that are clean cache write hits and the fraction
of write requests that are clean hits.

Controller #X cache write hits (dirty) : the number of cache write requests to controller X that overlap with
some amount of dirty data found in the cache, followed by the fraction of all requests that are dirty cache write hits
and the fraction of write requests that are dirty hits.

Controller #X cache fills (write): the number of cache fill accesses (i.e., installation reads [13]) that were required
to complete write requests to controller X, followed by the fraction of all requests that require an installation read and

44

the fraction of all write requests that require an installation read.
Controller #X cache atom fills (write): the number of atoms read into the cache in order to complete write

requests to controller X, followed by the fraction of all cache atom accesses requiring an installation read and the
fraction of all cache atom writes requiring an installation read.

Controller #X cache destages (write): the number of destage accesses (i.e., write-backs) initiated by con-
troller X, followed by the fraction of all requests that (eventually) generated a destage access and the fraction of
all write requests that generated a destage access.

Controller #X cache atom destages (write): the number of atoms written back from the cache of controller X
to the storage devices, followed by the fraction of all atom accesses generating (eventually) a destage access and the
fraction of all atom write accesses generating a destage access.

Controller #X cache end dirty atoms: the number of dirty atoms left in the cache of controller X at the end of
the simulation, followed by the fraction of all cache atom accesses that remain dirty at the end of the simulation.

In addition to the per-controller cache statistics, a set of per-controller aggregate queue statistics are generated
by the request queue module. That is, queue statistics are reported for each individual controller across all storage
devices attached to that controller. The specific statistics reported are the same as the “IOdriver ...” statistics described
in Section 5.2.5, except that they apply to each controller’s back-end, per-device request queues (and are denoted
accordingly). The “Print ... stats?” parameters for the queue statistics are the same as for the corresponding driver
parameters with the word, “driver,” replaced by “controller.”

If there are multiple devices attached to a controller, then the corresponding per-device queue statistics are also
reported for each device (i.e., in addition to the aggregate statistics described above). The per-device statistics will not
be reported if “Print controller per-device stats?” is set to false (0).

Total controller bus wait time : the total amount of time spent by all controllers waiting for access to a bus
(i.e., arbitration delay).

5.2.8 Bus Statistics

No aggregate statistics (across sets of buses) are reported.
Bus #X Total utilization time : the amount of time (in milliseconds) that the bus was not idle during the simulation

run. Utilization as a fraction of total simulation time is also reported on this line.
The following set of statistics are not reported if “Print bus idle stats?” is set to false (0).
Bus #X Idle period length stats: aggregate statistics for the lengths of idle periods (i.e., periods during which

the bus was unused) observed for bus X.
The remaining statistics are not reported if “Print bus arbwait stats?” is set to false (0).
Bus #X Number of arbitrations: the number of arbitration decisions made for bus X, including those that

involved only a single requester.
Bus #X Arbitration wait time stats : aggregate statistics for bus X acquisition delays experienced by attached

components. Such delays include both the bus arbitration overhead and any wait time experienced while other com-
ponents finish their bus transfers.

45

HP Seagate DEC HP HP
Parameter C2247A ST41601N RZ26 C2490A C3323A

Formatted Capacity 1.05 GB 1.37 GB 1.03 GB 2.13 GB 1.05 GB
RPM 5400 5400 5400 6400 5400

Diameter 31/2
′′

51/4
′′

31/2
′′

31/2
′′

31/2
′′

Height 1.63′′ 3.25′′ 1.63′′ 1.63′′ 1.00′′

Data Surfaces 13 17 14 18 7
Cylinders 2051 2098 2570 2582 2910

Zones 8 14 1 11 8
Sectors/Track 56–96 61–85 58 68–108 72-120

Table 2: Basic disk drive parameters.

6 Validation

The disk module of the storage subsystem simulator has been validated by exercising five disk drives, representing
three different disk manufacturers (see Table 2), and capturing traces of the resulting I/O activity. Using the observed
inter-request delays, each traced request stream was also run through the simulator, which was configured to emulate
the corresponding real subsystem. For each disk, this process was repeated for several synthetic workloads with
varying read/write ratios, arrival rates, request sizes and degrees of sequentiality and locality. The measured and
simulated response time averages match to within 0.8% for all validation runs. (The bus, controller and device driver
modules have also been validated as part of a more comprehensive, system-level simulation environment [1].)

Greater insight into the validity of a storage subsystem model can be gained by comparing measured and simulated
response time distributions [16]. Figures 3 and 4 show distributions of measured and simulated response times for a
sample validation workload of 10,000 requests. Ruemmler and Wilkes[16] define the root mean square horizontal
distance between the two distribution curves as ademerit figure for disk model calibration. The demerit figure for
each of the curves is given in the corresponding caption. The worst-case demerit figure observed over all validation
runs was only 2.0% of the corresponding average response time. To our knowledge, no previous disk drive simulator
has achieved this level of accuracy.

To accurately mimic the performance behavior of a disk drive, the parameter values used to configure the simulator
must accurately reflect the behavior of the actual device. The extremely close match shown in Figure 3 was realized
by measuring parameter values directly with a logic analyzer attached to the SCSI bus. The configuration values for
the other four disks were obtained with an automatic (software) extraction tool (described in [24]). While still accurate
and much less time-consuming, these values are not quite as precise as those obtained with the logic analyzer. We
have further observed that using the limited information generally provided in disk drive specifications yields much
larger discrepancies between simulated and observed performance.

46

0
�

10 20 30 40

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eq
ue

st
s

Measured
Simulated

Figure 3: Measured and Simulated Response Time Distributions for an HP C2247A Disk Drive.The demerit figure for
this validation run is 0.07 ms, or 0.5% of the corresponding mean response time. Characteristics of the HP C2247A can be found
in table 2 and in [8, 22]. The validation workload parameters are 50% reads, 30% sequential, 30% local [normal with 10000 sector
variance], 8KB mean request size [exponential], and interarrival time [uniform 0–22 ms].

47

0
�

10 20 30 40

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eq
ue

st
s

Measured
Simulated

0
�

10 20 30 40

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eq
ue

st
s

Measured
Simulated

(a) DEC RZ26 (b) Seagate Elite ST41601N

0
�

10 20 30

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eq
ue

st
s

Measured
Simulated

0
�

10 20 30 40

Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eq
ue

st
s

Measured
Simulated

(c) HP C2490A (d) HP C3323A

Figure 4: Measured and Simulated Response Time Distributions for 4 Disk Drives.The demerit figures for these validation
runs are 0.19 ms, 0.075 ms, 0.26 ms and 0.32 ms, respectively (or 1.2%, 0.5%, 2.0% and 1.9% of the corresponding mean response
times). Characteristics of these drives can be found in table 2 and in [19, 20, 9, 7, 23]. The validation workload parameters are
50% reads, 30% sequential, 30% local [normal with 10000 sector variance], 8KB mean request size [exponential], and interarrival
time [uniform 0–22 ms].

48

A Copyright notices for DiskSim

A.1 Version 3.0 Copyright Addendum

DiskSim Storage Subsystem Simulation Environment (Version 3.0)
Revision Authors: John Bucy, Greg Ganger
Contributors: John Griffin, Jiri Schindler, Steve Schlosser
Copyright (c) of Carnegie Mellon University, 2001, 2002, 2003.

This software is being provided by the copyright holders under the following license. By obtaining, using and/or
copying this software, you agree that you have read, understood, and will comply with the following terms and condi-
tions:

Permission to reproduce, use, and prepare derivative works of this software is granted provided the copyright and
“No Warranty” statements are included with all reproductions and derivative works and associated documentation.
This software may also be redistributed without charge provided that the copyright and “No Warranty” statements are
included in all redistributions.

NO WARRANTY. THIS SOFTWARE IS FURNISHED ON AN “AS IS” BASIS. CARNEGIE MELLON UNI-
VERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED AS TO THE MAT-
TER INCLUDING, BUT NOT LIMITED TO: WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABIL-
ITY, EXCLUSIVITY OF RESULTS OR RESULTS OBTAINED FROM USE OF THIS SOFTWARE. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. COPYRIGHT HOLDERS WILL BEAR NO
LIABILITY FOR ANY USE OF THIS SOFTWARE OR DOCUMENTATION.

A.2 Version 2.0 Copyright Addendum

DiskSim Storage Subsystem Simulation Environment (Version 2.0)
Revision Authors: Greg Ganger
Contributors: Ross Cohen, John Griffin, Steve Schlosser
Copyright (c) of Carnegie Mellon University, 1999.

Permission to reproduce, use, and prepare derivative works of this software for internal use is granted provided
the copyright and “No Warranty” statements are included with all reproductions and derivative works. This software
may also be redistributed without charge provided that the copyright and “No Warranty” statements are included in all
redistributions.

NO WARRANTY. THIS SOFTWARE IS FURNISHED ON AN “AS IS” BASIS. CARNEGIE MELLON UNI-
VERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED AS TO THE MAT-
TER INCLUDING, BUT NOT LIMITED TO: WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABIL-
ITY, EXCLUSIVITY OF RESULTS OR RESULTS OBTAINED FROM USE OF THIS SOFTWARE. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREE-
DOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

A.3 Original (Version 1.0) Copyright Statement

DiskSim Storage Subsystem Simulation Environment
Authors: Greg Ganger, Bruce Worthington, Yale Patt
Copyright (C) 1993, 1995, 1997 The Regents of the University of Michigan

This software is being provided by the copyright holders under the following license. By obtaining, using and/or
copying this software, you agree that you have read, understood, and will comply with the following terms and condi-
tions:

Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose and
without fee or royalty is hereby granted, provided that the full text of this NOTICE appears on ALL copies of the

49

software and documentation or portions thereof, including modifications, that you make.
THIS SOFTWARE IS PROVIDED “AS IS,” AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS

OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. COPYRIGHT
HOLDERS WILL BEAR NO LIABILITY FOR ANY USE OF THIS SOFTWARE OR DOCUMENTATION.

This software is provided AS IS, WITHOUT REPRESENTATION FROM THE UNIVERSITY OF MICHIGAN
AS TO ITS FITNESS FOR ANY PURPOSE, AND WITHOUT WARRANTY BY THE UNIVERSITY OF MICHI-
GAN OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IM-
PLIED MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE REGENTS OF THE UNI-
VERSITY OF MICHIGAN SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM ARISING OUT OF OR
IN CONNECTION WITH THE USE OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN IF
IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF SUCH DAMAGES

The names and trademarks of copyright holders or authors may NOT be used in advertising or publicity pertaining
to the software without specific, written prior permission. Title to copyright in this software and any associated
documentation will at all times remain with copyright holders.

50

B Diskmodel

B.1 Introduction

Diskmodel is a library implementing mechanical and layout models of modern magnetic disk drives. Diskmodel
models two major aspects of disk operation. The layout module models logical-to-physical mapping of blocks, defect
management and also computes angular offsets of blocks. The mechanical model handles seek times, rotational latency
and various other aspects of disk mechanics.

The implementations of these modules in the current version of Diskmodel are derived from DiskSim 2.0 [4].
Disksim 3.0 uses Diskmodel natively. Diskmodel has also been used in a device driver implementation of a shortest
positioning time first disk request scheduler.

B.2 Types and Units

All math in diskmodel is performed using integer arithmetic. Angles identified as points on a circle divided into dis-
crete units. Time is represented as multiples of some very small time base. Diskmodel exports the typesdm time t
anddm angle t to represent these quantities. Diskmodel exports functionsdm time itod , dm time dtoi (like-
wise for angles) for converting between doubles and the native format. The time function converts to and from mil-
liseconds; the angle function converts to and from a fraction of a circle.dm time t anddm angle t should be
regarded as opaque and may change over time. Diskmodel is sector-size agnostic in that it assumes that sectors are
some fixed size but does not make any assumption about what that size is.

B.2.1 Three Zero Angles

When considering the angular offset of a sector on a track, there are at least three plausible candidates for a “zero”
angle. The first is “absolute” zero which is the same on every track on the disk. For various reasons, this zero may
not coincide with a sector boundary on a track. This motivates the second 0 which we will refer to as0t (t for “track”)
which is the angular offset of the first sector boundary past 0 on a track. Because of skews and defects, the lowest lbn
on the track may not lie at0t. We call the angle of the lowest sector on the track0l (l for “logical” or “lbn”).

B.2.2 Two Zero Sectors

Similarly, when numbering the sectors on a track, it is reasonable to call either the sector at0t or the one at0l “sector
0.” 0t corresponds to directly to the physical location of sectors on a track whereas0l corresponds to logical layout.
Diskmodel works in both systems and the following function descriptions identify which numbering a given function
uses.

B.2.3 Example

Consider a disk with 100 sectors per track, 2 heads, a head switch skew of 10 sectors and a cylinder switch skew of 20
sectors.(x, y, z) denotes cylinderx, heady and sectorz.

LBN 0l PBN 0t PBN
0 (0,0,0) (0,0,0)

...
99 (0,0,99) (0,0,99)
100 (0,1,0) (0,1,10)
101 (0,1,1) (0,1,11)

...
189 (0,1,89) (0,1,99)
190 (0,1,90) (0,1,0)
191 (0,1,91) (0,1,1)
199 (0,1,99) (0,1,9)

51

Note that a sector is3.6 degrees wide.

Cylinder Head 0l angle
0 0 0 degrees
0 1 36 degrees
1 0 72 degrees
1 1 108 degrees
2 0 180 degrees

B.3 API

This section describes the data structures and functions that comprise the Diskmodel API.
Thedm disk if struct is the “top-level” handle for a disk in diskmodel. It contains a few disk-wide parameters

– number of heads/surfaces, cylinders and number of logical blocks exported by device – along with pointers to the
mechanics and layout interfaces.

B.3.1 Disk-wide Parameters

The top-level of a disk model is thedm disk if struct:

struct dm_disk_if {
int dm_cyls; // number of cylinders
int dm_surfaces; // number of media surfaces used for data
int dm_sectors; // LBNs or total physical sectors (??)

struct dm_layout_if *layout;
struct dm_mech_if *mech;

};

All fields of diskmodel API structures are read-only; the behavior of diskmodel after any of them is modified is
undefined.layout andmech are pointers to the layout and mechanical module interfaces, respectively. Each is a
structure containing a number of pointers to functions which constitute the actual implementation. In the following
presentation, we write the functions as declarations rather than as types of function pointers for readability. Many of
the methods take one or more result parameters; i.e. pointers whose addresses will be filled in with some result. Unless
otherwise specified, passingNULL for result parameters is allowed and the result will not be filled in.

B.3.2 Layout

The layout interface uses the following auxiliary type:
dm ptol result t appears in situations where a client code provides a pbn which may not exist on disk as-

described e.g. due to defects. It contains the following values:

DM_SLIPPED
DM_REMAPPED
DM_OK
DM_NX

DMSLIPPED indicates that the pbn is a slipped defect.DMREMAPPEDindicates that the pbn is a remapped
defect. DMOK indicates that the pbn exists on disk as-is.DMNX indicates that there is no sector on the device
corresponding to the given pbn. When interpreted as integers, these values are all less than zero so they can be
unambiguously intermixed with nonnegative integers e.g. lbns.

The layout module exports the following methods:

52

dm_ptol_result_t dm_translate_ltop(struct dm_disk_if *,
int lbn,
dm_layout_maptype,
struct dm_pbn *result,
int *remapsector);

Translate a logical block number (lbn) to a physical block number (pbn).remapsector is a result parameter
which will be set to a non-zero value if the lbn was remapped.

The sector number in the result is relative to the0l zero sector.

dm_ptol_result_t dm_translate_ltop_0t(struct dm_disk_if *,
int lbn,
dm_layout_maptype,
struct dm_pbn *result,
int *remapsector);

Same asdm translate ltop except that the sector in result is relative to the0t sector.

dm_ptol_result_t dm_translate_ptol(struct dm_disk_if *,
struct dm_pbn *p,
int *remapsector);

Translate a pbn to an lbn.remapsector is a result parameter which will be set to a non-zero value if the pbn is
defective and remapped.

The sector number in the operand is relative to the0l zero sector.

dm_ptol_result_t dm_translate_ptol_0t(struct dm_disk_if *,
struct dm_pbn *p,
int *remapsector);

Same asdm translate ptol except that the sector in the result is relative to the0t sector.

int dm_get_sectors_lbn(struct dm_disk_if *d,
int lbn);

Returns the number of sectors on the track containing the given lbn.

int dm_get_sectors_pbn(struct dm_disk_if *d,
struct dm_pbn *);

Returns the number of sectors on the track containing the given pbn.

void dm_get_track_boundaries(struct dm_disk_if *d,
struct dm_pbn *,
int *first_lbn,
int *last_lbn,
int *remapsector);

Computes lbn boundaries for the track containing the given pbn.first lbn is a result parameter which returns
the first lbn on the track containing the given pbn; similarly,last lbn returns the last lbn on the given track.
remapsector returns a non-zero value if the first or last block on the track are remapped.

dm_ptol_result_t dm_seek_distance(struct dm_disk_if *,
int start_lbn,
int dest_lbn);

53

Computes the seek distance in cylinders that would be incurred for given request. Returns adm ptol result t
since one or both of the LBNs may be slipped or remapped.

dm_angle_t dm_pbn_skew(struct dm_disk_if *,
struct dm_pbn *);

This computes the starting offset of a pbn relative to 0. The operand is a pbn relative to0l; the result is an angle
relative to0. This accounts for all skews, slips, etc.

dm_angle_t dm_get_track_zerol(struct dm_disk_if *,
struct dm_mech_state *);

The return value is0l for the track identified by the second argument. This is equivalent to callingdm pbn skew
for sector 0 on the same track.

dm_ptol_result_t dm_convert_atop(struct dm_disk_if *,
struct dm_mech_state *,
struct dm_pbn *);

Finds the pbn of the sector whose leading edge is less than or equal to the given angle. Returns aptol result t
since the provided angle could be in slipped space, etc. Both the angle in the second operand and the sector number in
the result pbn are relative to0l.

dm_angle_t dm_get_sector_width(struct dm_disk_if *,
struct dm_pbn *track,
int num);

Returns the angular width of an extent of num sectors on the given track. Returns 0 ifnum is greater than the
number of sectors on the track.

dm_angle_t dm_lbn_offset(struct dm_disk_if *, int lbn1, int lbn2);

Computes the angular distance/offset between two logical blocks.

int dm_marshalled_len(struct dm_disk_if *);

Returns the size of the structure in bytes when marshalled.

void *dm_marshall(struct dm_disk_if *, char *);

Marshall this layout struct into the provided buffer. The return value is the first address in the buffer not written.

B.3.3 Mechanics

The following diagram shows the breakdown of a zero-latency access in our model, and the corresponding definitions
of seek time, positioning time and access time.

+-------------------------+------------+----------+---------+----------+
seek	initial		add.	
headswitch	rotational	xfertime	rot.	xfertime
extra settle	latency		latency	
+-------------------------+------------+----------+---------+----------+

|---------seektime--------|
|-----------positioning-time-----------|
|------------------------------access-time-----------------------------|

54

dm_time_t dm_seek_time(struct dm_disk_if *,
struct dm_mech_state *start_track,
struct dm_mech_state *end_track,
int read);

Computes the amount of time to seek from the first track to the second track, possibly including a head switch and
additional write settling time. This is only track-to-track so the angles in the parameters are ignored.read should be
nonzero if the access on the destination track is a read and zero if it is a write; extra write-settle time is included in the
result for writes.

int dm_access_block(struct dm_disk_if *,
struct dm_mech_state *initial,
int start,
int len,
int immed);

From the given inital condition and access, it will return the first block on the track to be read. The access is
for len sectors starting at physical sectorstart on the same track asinitial . immed indicates if this is an
“immediate” or “zero-latency” access; ifimmed is zero, the result will always be the same asstart .

dm_time_t dm_latency(struct dm_disk_if *,
struct dm_mech_state *initial,
int start,
int len,
int immed,
dm_time_t *addtolatency);

This computes the rotational latency incurred from accessing up tolen blocks from the track starting from
angle initial and sectorstart . This will access to the end of the track but not wrap around; e.g. for a se-
quential access that starts on the given track and switches to another, after reaching the end of the first. The return
value is the initial rotational latency; i.e. how long before the media transfer for the first block to be read starts.
addtolatency is a result parameter returning additional rotational latency as defined in the figure above. Note that
for non-zero-latency accesses, addtolatency will always be zero. Also note that for zero latency accesses, the latency
is the amount of time before the media transfer begins for the first sector i.e. the same sector that would be returned
by dm access block() .

dm pos time and dm acctime optionally return broken-down components of the result via the following
struct:

struct dm_mech_acctimes {
dm_time_t seektime;
dm_time_t initial_latency;
dm_time_t initial_xfer;
dm_time_t addl_latency;
dm_time_t addl_xfer;

};

For a zero-latency access, the last two fields will always be zero.dm pos time only fills in the first two fields;
dm acctime fills in all 5.

dm_time_t dm_pos_time(struct dm_disk_if *,
struct dm_mech_state *initial,
struct dm_pbn *start,
int len,
int rw,
int immed);

55

Compute the amount of time before the media transfer forlen sectors starting atstart begins starting with the
disk mechanics in stateinitial . 0 for rw indicates a write, any other value indicates a read. A non-zero value for
immed indicates a “zero-latency” access. Positioning time is the same as seek time (including head-switch time and
any extra write-settle time) plus initial rotational latency.

dm_time_t dm_acctime(struct dm_disk_if *,
struct dm_mech_state *initial_state,
struct dm_pbn *start,
int len,
int rw,
int immed,
struct dm_mech_state *result_state);

Estimate how long it will take to accesslen sectors starting with pbnstart with the disk initially in state
initial . 0 for rw indicates a write; any other value indicates a read. A non-zero value forimmed indicates a
“zero-latency” access.result state is a result parameter which returns the mechanical state of the disk when the
access completes.

Access time consists of positioning time (above), transfer time and any additional rotational latency not included
in the positioning time, e.g. in the middle of a zero-latency access transfer.

dm acctime ignores defects so it yields a smaller-than-correct result when computing access times on tracks
with defective sectors. This is deliberate as the handling of defects is a high-level controller function which varies
widely.

dm_time_t dm_rottime(struct dm_disk_if *,
dm_angle_t begin,
dm_angle_t end);

Compute how long it will take the disk to rotate from the angle in the first position to that in the second position.

dm_time_t dm_xfertime(struct dm_disk_if *d,
struct dm_mech_state *,
int len);

Computes the amount of time to transfer len sectors to or from the track designated by the second argument. This
is computed in terms ofdm get sector width() anddm rottime() in the obvious way.

dm_time_t dm_headswitch_time(struct dm_disk_if *,
int h1,
int h2);

Returns the amount of time to swith from using the first head to the second.

dm_angle_t dm_rotate(struct dm_disk_if *,
dm_time_t *time);

Returns the angle of the media aftertime has elapsed assuming the media started at angle 0.

dm_time_t dm_period(struct dm_disk_if *);

Returns the rotational period of the media.

int dm_marshalled_len(struct dm_disk_if *);

Returns the marshalled size of the structure.

void *dm_marshall(struct dm_disk_if *, char *);

Marshalls the structure into the given buffer. The return value is the first address in the buffer not written.

56

B.4 Model Configuration

Diskmodel uses libparam to input the following blocks of parameter data:

dm_disk
dm_layout_g1
dm_layout_g1_zone
dm_mech_g1

B.4.1 dm disk

The outerdm disk block contains the top-level parameters which are used to fill in thedm disk if structure. The
only valid value for “Layout Model” is adm layout g1 block and for “Mechanical Model,” adm mech g1 block.

dm disk Block count int required
This specifies the number of data blocks. This capacity is exported by the disk (e.g., to a disk array con-
troller). It is not used directly during simulation, but is compared to a similar value computed from other disk
parameters. A warning is reported if the values differ.

dm disk Number of data surfaces int required
This specifies the number of magnetic media surfaces (not platters!) on which data are recorded. Dedicated
servo surfaces should not be counted for this parameter.

dm disk Number of cylinders int required
This specifies the number of physical cylinders. All cylinders that impact the logical to physical mappings
should be included.

dm disk Mechanical Model block required
This block defines the disk’s mechanical model. Currently, the only available implementation is
dm mech g1 .

dm disk Layout Model block required
This block defines the disk’s layout model. Currently, the only available implementation isdm layout g1 .

B.4.2 dm layout g1

Thedm layout g1 block provides parameters for a first generation (g1) layout model.

dm layout g1 LBN-to-PBN mapping scheme int required
This specifies the type of LBN-to-PBN mapping used by the disk. 0 indicates that the conventional mapping
scheme is used: LBNs advance along the 0th track of the 0th cylinder, then along the 1st track of the 0th
cylinder, thru the end of the 0th cylinder, then to the 0th track of the 1st cylinder, and so forth. 1 indicates
that the conventional mapping scheme is modified slightly, such that cylinder switches do not involve head
switches. Thus, after LBNs are assigned to the last track of the 0th cylinder, they are assigned to the last track
of the 1st cylinder, the next-to-last track of the 1st cylinder, thru the 0th track of the 1st cylinder. LBNs are
then assigned to the 0th track of the 2nd cylinder, and so on (“first cylinder is normal”). 2 is like 1 except
that the serpentine pattern does not reset at the beginning of each zone; rather, even cylinders are always
ascending and odd cylinders are always descending.

57

dm layout g1 Sparing scheme used int required
This specifies the type of sparing used by the disk. Later parameters determine where spare space is allocated.
0 indicates that no spare sectors are allocated. 1 indicates that entire tracks of spare sectors are allocated at
the “end” of some or all zones (sets of cylinders). 2 indicates that spare sectors are allocated at the “end” of
each cylinder. 3 indicates that spare sectors are allocated at the “end” of each track. 4 indicates that spare
sectors are allocated at the “end” of each cylinder and that slipped sectors do not utilize these spares (more
spares are located at the “end” of the disk). 5 indicates that spare sectors are allocated at the “front” of each
cylinder. 6 indicates that spare sectors are allocated at the “front” of each cylinder and that slipped sectors
do not utilize these spares (more spares are located at the “end” of the disk). 7 indicates that spare sectors
are allocated at the “end” of the disk. 8 indicates that spare sectors are allocated at the “end” of each range
of cylinders. 9 indicates that spare sectors are allocated at the “end” of each zone. 10 indicates that spare
sectors are allocated at the “end” of each zone and that slipped sectors do not use these spares (more spares
are located at the “end” of the disk).

dm layout g1 Rangesize for sparing int required
This specifies the range (e.g., of cylinders) over which spares are allocated and maintained. Currently, this
value is relevant only for disks that use “sectors per cylinder range” sparing schemes.

dm layout g1 Skew units string optional
This sets the units with which units are input:revolutions or sectors . The “disk-wide” value set here
may be overridden per-zone. The default unit issectors .

dm layout g1 Zones list required
This is a list of zone block values describing the zones/bands of the disk.

TheZones parameter is a list of zone blocks each of which contains the following fields:

dm layout g1 zone First cylinder number int required
This specifies the first physical cylinder in the zone.

dm layout g1 zone Last cylinder number int required
This specifies the last physical cylinder in the zone.

dm layout g1 zone Blocks per track int required
This specifies the number of sectors (independent of logical-to-physical mappings) on each physical track in
the zone.

dm layout g1 zone Offset of first block float required
This specifies the physical offset of the first logical sector in the zone. Physical sector 0 of every track is
assumed to begin at the same angle of rotation. This may be in either sectors or revolutions according to the
“Skew units” parameter.

dm layout g1 zone Skew units string optional
Default issectors . This value overrides any set in the surrounding layout block.

dm layout g1 zone Empty space at zone front int required
This specifies the size of the “management area” allocated at the beginning of the zone for internal data
structures. This area can not be accessed during normal activity and is not part of the disk’s logical-to-
physical mapping.

58

dm layout g1 zone Skew for track switch float optional
This specifies the number of physical sectors that are skipped when assigning logical block numbers to
physical sectors at a track crossing point. Track skew is computed by the manufacturer to optimize sequential
access. This may be in either sectors or revolutions according to the “Skew units” parameter.

dm layout g1 zone Skew for cylinder switch float optional
This specifies the number of physical sectors that are skipped when assigning logical block numbers to
physical sectors at a cylinder crossing point. Cylinder skew is computed by the manufacturer to optimize
sequential access. This may be in either sectors or revolutions according to the “Skew units” parameter.

dm layout g1 zone Number of spares int required
This specifies the number of spare storage locations – sectors or tracks, depending on the sparing scheme
chosen – allocated per region of coverage which may be a track, cylinder, or zone, depending on the sparing
scheme. For example, if the sparing scheme is 1, indicating that spare tracks are allocated at the end of the
zone, the value of this parameter indicates how many spare tracks have been allocated for this zone.

dm layout g1 zone slips list required
This is a list of lbns for previously detected defective media locations – sectors or tracks, depending upon the
sparing scheme chosen – that were skipped-over or “slipped” when the logical-to-physical mapping was last
created. Each integer in the list indicates the slipped (defective) location.

dm layout g1 zone defects list required
This list describes previously detected defective media locations – sectors or tracks, depending upon the
sparing scheme chosen – that have been remapped to alternate physical locations. The elements of the list
are interpreted as pairs wherein the first number is the original (defective) location and the second number
indicates the replacement location. Note that these locations will both be either a physical sector number or
a physical track number, depending on the sparing scheme chosen.

B.4.3 dm mech g1

Thedm mech g1 block provides parameters for a first generation (g1) mechanical model.

dm mech g1 Access time type string required
This specifies the method for computing mechanical delays. Legal values areconstant which indicates a
fixed per-request access time (i.e., actual mechanical activity is not modeled),averageRotation which
indicates that seek activity should be modeled but rotational latency is assumed to be equal to one half of a
rotation (the statistical mean for random disk access) andtrackSwitchPlusRotation which indicates
that both seek and rotational activity should be modeled.

dm mech g1 Constant access time float optional
Provides the constant access time to be used if the access time type is set to constant.

59

dm mech g1 Seek type string required
This specifies the method for computing seek delays. Legal values are the following:linear indicates that
the single-cylinder seek time, the average seek time, and the full-strobe seek time parameters should be used
to compute the seek time via linear interpolation.curve indicates that the same three parameters should be
used with the seek equation described in [12] (see Section B.4.3).constant indicates a fixed per-request
seek time. TheConstant seek time parameter must be provided.hpl indicates that the six-value
HPL seek equation values parameter (see below) should be used with the seek equation described
in [16] (see below).hplplus10 indicates that the six-valueHPL seek equation values parameter
(see below) should be used with the seek equation described in [16] for all seeks greater than 10 cylinders in
length. For smaller seeks, use the 10-valueFirst ten seek times parameter (see below) as in [22].
extracted indicates that a more complete seek curve (provided in a separate file) should be used, with
linear interpolation used to compute the seek time for unspecified distances. Ifextracted layout is used,
the parameterFull seek curve (below) must be provided.

dm mech g1 Average seek time float optional
The mean time necessary to perform a random seek

dm mech g1 Constant seek time float optional
For the “constant” seek type (above).

dm mech g1 Single cylinder seek time float optional
This specifies the time necessary to seek to an adjacent cylinder.

dm mech g1 Full strobe seek time float optional
This specifies the full-strobe seek time (i.e., the time to seek from the innermost cylinder to the outermost
cylinder).

dm mech g1 Full seek curve string optional
The name of the input file containing the seek curve data. The format of this file is described below.

dm mech g1 Add. write settling delay float required
This specifies the additional time required to precisely settle the read/write head for writing (after a seek or
head switch). As this parameter implies, the seek times computed using the above parameter values are for
read access.

dm mech g1 Head switch time float required
This specifies the time required for a head switch (i.e., activating a different read/write head in order to access
a different media surface).

dm mech g1 Rotation speed (in rpms) int required
This specifies the rotation speed of the disk platters in rpms.

dm mech g1 Percent error in rpms float required
This specifies the maximum deviation in the rotation speed specified above. During initialization, the rotation
speed for each disk is randomly chosen from a uniform distribution of the specified rotation speed± the
maximum allowed error. This feature may be deprecated and should be avoided.

dm mech g1 First ten seek times list optional
This is a list of ten floating-point numbers specifying the seek time for seek distances of 1 through 10 cylin-
ders.

60

dm mech g1 HPL seek equation values list optional
This is a list containing six numbers specifying the variablesV1 throughV6 of the seek equation described in
[16] (see below).

Lee’s Seek Equation

seekT ime(x) =
{

0 : ifx = 0
a
√
x− 1 + b(x− 1) + c : ifx > 0 ,where

x is the seek distance in cylinders,
a = (−10minSeek + 15avgSeek − 5maxSeek)/(3

√
numCyl),

b = (7minSeek − 15avgSeek + 8maxSeek)/(3numCyl),and
c = minSeek.

The HPL Seek Equation
Seek distance Seek time

1 cylinder V6

<V1 cylinders V2 + V3 *
√
dist

>=V1 cylinders V4 + V5 * dist

, wheredist is the seek distance in cylinders.

If V6 == −1, single-cylinder seeks are computed using the second equation.V1 is specified in cylinders, andV2

throughV6 are specified in milliseconds.
V1 must be a non-negative integer,V2 . . . V5 must be non-negative floats andV6 must be either a non-negative

float or−1.

Format of an Extracted Seek Curve
An extracted seek file contains a number of (seek-time,seek-distance) data points. The format of such a file is

very simple: the first line is
Seek distances measured: <n>

where<n> is the number of seek distances provided in the curve. This line is followed by<n> lines of the form
<distance>, <time> where<distance> is the seek distance measured in cylinders, and<time> is the
amount of time the seek took in milliseconds. e.g.

Seek distances measured: 4
1, 1.2
2, 1.5
5, 5
10, 9.2

61

References
[1] Gregory R. Ganger. Generating representative synthetic workloads: an unsolved problem.International Conference on

Management and Performance Evaluation of Computer Systems(Nashville, TN), pages 1263–1269, 1995.

[2] Gregory R. Ganger.System-oriented evaluation of I/O subsystem performance. PhD thesis, published as CSE–TR–243–95.
University of Michigan, Ann Arbor, MI, June 1995.

[3] Gregory R. Ganger and Yale N. Patt. The process-flow model: examining I/O performance from the system’s point of view.
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages 86–97, May 1993.

[4] Gregory R. Ganger, Bruce L. Worthington, and Yale N. Patt.The DiskSim simulation environment version 2.0 reference
manual, December 1999.

[5] Gregory Robert Ganger. Improved methodologies for evaluating I/O architectures. Electrical Engineering and Computer
Science: Computer Science and Engineering Division, University of Michigan, December 1993.

[6] John Linwood Griffin, Jiri Schindler, Steven W. Schlosser, John C. Bucy, and Gregory R. Ganger. Timing-accurate storage
emulation. Conference on File and Storage Technologies(Monterey, CA, 28–30 January 2002), pages 75–88. USENIX
Association, 2002.

[7] Hewlett-Packard Company.HP C3323A 3.5-inch SCSI-2 Disk Drives, Technical Reference Manual Part Number 5962-6452,
second edition, April 1994.

[8] Hewlett-Packard Company.HP C2244/45/46/47 3.5-inch SCSI-2 Disk Drive Technical Reference Manual Part Number 5960-
8346, third edition, September 1992.

[9] Hewlett-Packard Company.HP C2490A 3.5-inch SCSI-2 Disk Drives, Technical Reference Manual Part Number 5961-4359,
third edition, September 1993.

[10] Ramakrishna Karedla, J. Spencer Love, and Bradley G. Wherry. Caching strategies to improve disk performance.IEEE
Computer, 27(3):38–46, March 1994.

[11] Edward K. Lee and Randy H. Katz. An analytic performance model of disk arrays.ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems(Santa Clara, CA, 17–21 May 1993). Published asPerformance Evaluation
Review, 21(1):98–109, June 1993.

[12] Edward Kihyen Lee. Performance modeling and analysis of disk arrays. PhD thesis, published as UCB//CSD-93-770.
Department of Electrical Engineering and Computer Science, University of California at Berkeley, 1993.

[13] James O’Toole and Liuba Shrira. Opportunistic log: efficient installation reads in a reliable storage server.Symposium on
Operating Systems Design and Implementation(Monterey, CA), pages 39–48. Usenix Association, 14–17 November 1994.

[14] Mendel Rosenblum, Edouard Bugnion, Stephen Alan Herrod, Emmett Witchel, and Anoop Gupta. The impact of architectural
trends on operating system performance.ACM Symposium on Operating System Principles(Copper Mountain Resort, CO,
3–6 December 1995). Published asOperating Systems Review, 29(5), 1995.

[15] Chris Ruemmler and John Wilkes. UNIX disk access patterns.Winter USENIX Technical Conference(San Diego, CA, 25–29
January 1993), pages 405–420, 1993.

[16] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling.IEEE Computer, 27(3):17–28, March 1994.

[17] M. Satyanarayanan.Modelling storage systems. UMI Research Press, 1986.

[18] Jiri Schindler and Gregory R. Ganger.Automated disk drive characterization. Technical report CMU–CS–99–176. Carnegie-
Mellon University, Pittsburgh, PA, December 1999.

[19] Seagate Technology, Inc.SCSI Interface Specification, Small Computer System Interface (SCSI), Elite Product Family Docu-
ment Number 64721702, revision D, March 1992.

[20] Seagate Technology, Inc.Seagate Product Specification, ST41600N and ST41601N Elite Disc Drive, SCSI Interface Document
Number 64403103, revision G, October 1992.

[21] Bruce L. Worthington.Aggressive centralized and distributed scheduling of disk requests. PhD thesis, published as CSE–
TR–244–95. Department of Computer Science and Engineering, University of Michigan, June 1995.

[22] Bruce L. Worthington, Gregory R. Ganger, and Yale N. Patt.Scheduling for modern disk drives and non-random workloads.
CSE–TR–194–94. Department of Computer Science and Engineering, University of Michigan, 1 March 1994.

[23] Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt, and John Wilkes.On-line extraction of SCSI disk drive parameters.
CSE–TR–323–96. Department of Electrical Engineering and Computer Science, University of Michigan, December 1996.

[24] Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt, and John Wilkes. On-line extraction of SCSI disk drive parameters.
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems(Ottawa, Canada), pages 146–156, May
1995.

