
Replication policies for layered clustering of NFS servers

Raja R. Sambasivan, Andrew J. Klosterman, Gregory R. Ganger
Carnegie Mellon University

Abstract

Layered clustering offers cluster-like load balancing for
unmodified NFS or CIFS servers. Read requests sent to a
busy server can be offloaded to other servers holding repli-
cas of the accessed files. This paper explores a key de-
sign question for this approach: which files should be repli-
cated? We find that the popular policy of replicating read-
only files offers little benefit. A policy that replicates read-
only portions of read-mostly files, however, implicitly coor-
dinates with client cache invalidations and thereby allows
almost all read operations to be offloaded. In a read-heavy
trace, 75% of all operations and 52% of all data transfers
can be offloaded.

1. Introduction

Cluster-based file services promise many benefits [1, 9,
19]. They offer incremental scalability of storage capacity
and performance. They can spread data amongst themselves
so as to balance the workload. They can keep redundant
data for fault tolerance. They can provide high-end features
with commodity components. For many years, the research
community has known their superiority to the more mono-
lithic file service architectures that persist. Unfortunately,
though, their market penetration is minimal. Particularly in
mid-sized environments, due to replacement costs and the
inertia of existing server installations, it remains common to
have a small set of stand-alone servers. Moreover, the archi-
tectures of popular distributed file systems (notably, NFSv3
and CIFS) make scalability and load balancing difficult and
time-consuming.

An alternate architecture, which we call layered clus-
tering, promises a large fraction of the benefits of clus-
ter file services with minimal change to existing systems.
Specifically, layered clustering leaves clients, servers, and
the client-server protocol unchanged; it interposes cluster-
ing switch functionality between clients and servers, either
in the network stack of each server or in a network compo-
nent between clients and servers (see Figure 1). This clus-
tering switch functionality can transparently redirect, dupli-

Client 1

Client 2

Client n

Server 1

Server m

Unmodified
Clients

...
LAN ...

Unmodified
Servers

Clustering
Switch

Figure 1. Layered clustering architecture. In
the layered clustering architecture, clients, servers, and
the client-server protocol are unmodified. Clients send re-
quests to the machine that regularly exports the file the
client wishes to access. The clustering-switch adds cluster-
ing functionality by transparently redirecting client requests
to other servers.

cate, or otherwise modify RPC requests to achieve many of
the benefits of a true cluster file service. Given the inertia of
installed bases, layered clustering is a compelling option for
mid-sized environments, and some companies (e.g., Rain-
finity [15]) now offer clustering switches for file servers.

This paper develops and evaluates load balancing poli-
cies for clustering switches. We focus on the Cuckoo lay-
ered clustering model [12] in which file servers continue to
host and “own” entire file systems while also servicing re-
quests for data replicated from other servers. Thus, admin-
istrators can manage individual file servers as they always
have, with no change in failure models or understanding of
“what is where?”. But, now read requests from busy servers
can be offloaded to others, achieving a degree of cluster-like
load balancing.

A request can be offloaded only if the data accessed has
been replicated. A replication policy determines which ob-
jects (directories or files) to replicate in anticipation of fu-
ture offloading opportunities. This paper describes and eval-
uates three such policies of increasing aggressiveness. The
policies are evaluated by analysis of NFS traces from two
real environments.

The simplest policy replicates read-only objects, avoid-
ing all replica consistency issues. It allows 13%–20% of
all operations to be offloaded, but almost all are metadata

Proceedings 13th Annual Meeting of the IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS). September 26 - 29, Atlanta, GA.

requests—usually Getattrs for verifying client cache con-
tent freshness. This policy fails to enable offloading of most
data transfer requests.

The best policy replicates read-only portions of read-
mostly files in addition to read-only directories. This policy
adds the ability to offload re-reads of files to which small
changes (e.g., an append or metadata modification) have
been made. Any such change will soon invalidate the entire
file from the client cache, since freshness checks are done at
whole-file granularity. Thus, client re-reads become server
accesses, and this policy will allow them to be offloadable
from the parent server. For some environments, including
one of the two traces studied, such re-reads represent a sig-
nificant portion of the entire server workload. Enabling of-
floads of such re-reads on this trace allows 75% of all opera-
tions and 52% of all data transfers to be offloaded. For both
traces, this policy offloads almost all possible data transfers,
given the read-only nature of Cuckoo offloading. The third
policy additionally replicates high read:write ratio files, but
offers little extra benefit.

The remainder of this paper is organized as follows. Sec-
tion 2 overviews load balancing via layered clustering and
discusses related work. Section 3 details the evaluation
methodology. Section 4 describes the traces used in this
study. Section 5 evaluates and compares the replication
policies.

2. Background and related work

This section motivates our study of replication policies
for layered clustering. It discusses approaches to load bal-
ancing, the Cuckoo model of layered clustering, and related
work.

2.1. Load balancing and layered clustering

A balanced load benefits from the CPU, memory, disk,
and network bandwidth capabilities of all servers, with-
out one server becoming a bottleneck. This subsection de-
scribes three distributed file system architectures and how
they provide for load balancing.

In traditional distributed file systems, such as NFS [5,
18] or CIFS [13], each server exports one or more file sys-
tems to clients. Clients mount exported file systems into
their local namespace, allowing applications to use them
transparently. Multiple servers can be used, with each one
independently exporting file systems. Clients send requests
for any given remote file to the server that exports the file
system containing it. Thus, each server’s load is dictated
by the popularity of the portion of the namespace that it
exports. Imbalance is common, and significant effort and
downtime are needed to better balance loads. Specifically,
portions of the namespace must be redistributed amongst

the servers, and client mountpoints must be modified. Con-
ventional wisdom says that such balancing is rarely per-
formed.

In cluster file systems, a set of servers collectively ex-
port file systems to clients. Files and metadata are spread
across the servers, via, for instance, striping [4, 9] or map-
ping tables [1], and clients send requests to the appropriate
server(s). Cluster file systems have a number of advantages
over the traditional model, including effective load balanc-
ing in most designs.

Layered clustering can offer some of the benefits of full
cluster file systems, without their requirement for client-
side changes and traditional server replacement. By sliding
an intermediary component (the clustering switch in Fig-
ure 1) into place, existing servers are made to work together
with no other changes. Unmodified clients continue to use
traditional protocols (e.g., NFS or CIFS), and servers con-
tinue to own and export independent file systems. Inter-
mediary software (or networking hardware) transparently
translates selected requests into other requests of the same
protocol. Responses to these requests are translated (if nec-
essary) and delivered back to the original client.

2.2. The Cuckoo model of layered clustering

Cuckoo [12] is a layered clustering model in which file
servers export file systems just as in traditional configura-
tions, and each parent server remains the one authoritative
repository. So, all traditional management activities remain
unchanged.1 The clustering switch uses a replication policy
to periodically replicate popular objects onto one or more
surrogate2 servers based on analysis of past activity. An of-
floading policy is used to determine when a parent server
is busy and what requests to offload from that parent server
to surrogates with replicas. Requests are offloaded to repli-
cas by simply mapping the filehandles, rerouting the request
content, and fixing a few server-specific fields. Previous
work [12] details how this load shedding can be done in
about two thousand lines of C code.

The practical value of this approach depends mainly on
how effective it is at providing the desired load balancing
features. For load balancing in this manner to be effective,
three things must be true of the environment. First, a sig-
nificant fraction of a server’s workload must be offloadable.
Second, the process of offloading must be efficient. Third,
it should be possible to determine when a server is busy and

1There is one exception to this. Cuckoo-style layered clustering as-
sumes that all updates to served objects are via the client-server protocol
passing through the clustering switch. If there is a local access path, the
layered clustering infrastructure may act on out-of-date information be-
cause it doesn’t see those updates. Note that this does not affect back-up
and other read-only access.

2Cuckoo hens lay their eggs in the nests of other species, leaving those
birds to incubate and raise the chicks as surrogate parents [3].

hence when requests should be offloaded from that server.
This paper focuses on the first requirement, since prior work
(e.g., [2, 12, 21]) has established the second, and the third
is relatively straightforward.

A replication policy determines which objects to repli-
cate, seeking to maximize the amount of a server’s work-
load that is offloadable while avoiding undo implementa-
tion complexity. As such, our replication policies allow
only read operations, including directory lookups and at-
tribute reads, to be offloaded. Such a policy eliminates im-
plementation concerns related to ensuring consistency by
using the parent server when there are any updates. Previ-
ous studies indicate that such operations make up a large
percentage of the requests in real environments. For ex-
ample, Gibson et al. [8] report breakdowns for substantial
NFS and AFS environments in which read operations com-
prise 85–94% of all requests and 78–79% of all server CPU
cycles. Other file system workload studies [16, 20] report
similar dominance of read activity. For read offloading to
help, however, it is also necessary for a substantial frac-
tion of these read requests to go to data that are modified
infrequently—otherwise, the replicas will rarely be up-to-
date when needed.

The use of Cuckoo-style layered clustering for read of-
floading can not provide as much load balancing as true
clustering. In particular, all updates to objects must be per-
formed at their parent server, bounding the set of offload-
able operations. Still, as our evaluations show, it can effec-
tively provide significant load balancing in traditional server
environments. Further, it does so without the sharp invest-
ment and administrative burdens of transitioning from tra-
ditional servers to clusters.

2.3. Related work

There has been a huge amount of work in distributed file
systems. Here, we focus on particularly relevant categories
of related work.

Layered clustering builds on the proxy concept [17], us-
ing interpositioning to add clustering to an existing client-
server protocol. Several groups and companies have de-
veloped layered clustering systems. For example, Rainfin-
ity [15] offers “file switches” that aggregate standard file
servers into a single namespace. Anypoint [21], Mirage [2],
Cuckoo [12], and Katsurashima et al.’s “NAS switch” [11]
are research systems that aggregate an ensemble of NFS
servers into a single virtual server by redirecting client re-
quests to the appropriate server. However, despite the exis-
tence of these systems, we are aware of no previous com-
parative studies of replication policies for them.

Layered clustering is analogous to the web server clus-
tering support offered in some network switches, which can
improve load balancing in Internet server farms [14]. Do-

ing this for file servers does require more effort, because of
frequent updates and long-lived interactions (either via ses-
sions or via server-specific filehandles), but should provide
similar benefits.

AFS [10] provides several administrative features that
would make layered clustering less necessary. Most no-
tably, a set of AFS servers provide a uniform namespace
broken up into directory subtrees called volumes. The
client’s view of the file system is independent of which
servers serve which volumes, and transparent volume mi-
gration is supported. Further, read-only volumes can be
replicated on multiple servers, and clients can send their
requests to any replica. Read offloading via layered clus-
tering goes beyond this by allowing servers to shed load for
read-write volumes as well, but is of greater value to less so-
phisticated (yet much more popular) systems like NFS and
CIFS.

Another approach, sometimes used in large installations,
is to have unmodified clients interact with a set of front-
end file servers that share a collection of back-end storage
components. Caching and consistency issues could be sub-
stantial, but are usually avoided by having different servers
use different portions of each storage component. This ap-
proach can provide load balancing for the storage compo-
nents as well as fault tolerance via “fail over.”

3. Evaluation methodology

We analyze traces of real NFS activity to evaluate repli-
cation policies for Cuckoo-style load balancing. This sec-
tion describes the metrics used, the methodologies for eval-
uating benefits, and limitations.

Metrics: We evaluate replication policies along three
axes: offloadable operations, offloadable data transfers, and
implementation complexity.

Offloadable operations refers to the percent of all opera-
tions sent to a parent server that can be offloaded to surro-
gates. Recall that all updates must be executed on the parent
server, so they cannot be offloaded. Reads to replicated data
and metadata can be offloaded. This metric is an indication
of the amount of CPU work that can be saved at the parent
server.

Offloadable data transfers refers to the percent of all data
transferred from a parent server that can be offloaded to sur-
rogates. This metric is an indication of the amount of disk
work and network bandwidth that can be saved at the parent
server.

Implementation complexity is a qualitative metric that
refers to the intricacy of the replication policy and the work
required to maintain replica consistency in the face of up-
dates.

We determine the upper-bounds of offloadable opera-
tions and data transfers by assuming an offloading pol-

icy that offloads requests whenever possible, regardless of
whether or not the parent server is busy. Assuming this “al-
ways offload” policy allows us to quantify the potential util-
ity of each replication policy without interference from of-
floading policy artifacts.

Replication policy knowledge: Operations can only be
offloaded if the data they access has been replicated to a
surrogate. We envision periodic replication of data chosen
by the replication policy, which means that the policy must
make decisions with imperfect knowledge of the (future)
request stream.

In evaluating replication policies, we consider two cases:
oracular and history-based. The oracular replication results
represent the best case for a replication policy in which
decisions can be made knowing the future request stream.
It eliminates ambiguity caused by imperfect predictions of
which objects will meet a policy’s criteria for replication.
The history-based replication results represent one (simple)
implementable approach to using history to predict future
access patterns. Specifically, the behavior of period n is
used as the prediction of period n+1.

Assumptions and limitations: Our replication policy
comparisons focus on each policy’s potential benefit to an
overloaded parent server, ignoring issues that are indepen-
dent of replication policy. For example, we do not consider
the impact of offloading on surrogates. Also, we do not con-
sider the effect of load placed on the system during replica
creation. Such replica creation can be done during idle pe-
riods (e.g., overnight), which are common in the mid-sized
environments targeted by layered clustering.

4. Traces used

We use week-long NFS traces from two real environ-
ments for our evaluations of replication policies. This sec-
tion describes the two traces and some primary character-
istics, highlighting aspects that help explain the evaluation
results.

4.1. Environments traced

EECS: The EECS trace captures NFS traffic observed
at a Network Appliance filer between Sunday, October 21st

2001 and Saturday, October 27th 2001. This filer serves
home directories for the Electrical Engineering and Com-
puter Science (EECS) Department at Harvard University. It
sees an engineering workload of “research, software devel-
opment, and course work”[6]. Typical client systems are
UNIX or Windows NT workstations with at least 128 MB
of RAM and locally installed system software and utilities.
This environment is specifically noted not to contain e-mail
or backup traffic. Detailed characterization of this environ-
ment can be found in [6].

Table 1. Operation breakdowns for the EECS
and DEAS week-long trace periods.

EECS DEAS

Total ops 28,742,622 198,646,288

Upper-bound
offloadable

67.2% 80.4%

Operations seen to long-lived and created objects

Getattr 19.9% 7.0% 25.7% 1.4%
Lookup 39.5% 0.7% 4.3% 0.1%
Read 7.0% 4.3% 49.7% 0.2%
Readdir 0.8% 0.1% 0.7% 0.0%
Write 2.5% 13.7% 14.7% 1.2%
Other 3.1% 1.4% 1.5% 0.5%
Total 72.8% 27.2% 96.6% 3.4%

DEAS: The DEAS trace captures NFS traffic observed
at another Network Appliance filer at Harvard University
between Sunday, February 2nd 2003 and Saturday, Febru-
ary 8th 2003. This filer serves the home directories of the
Department of Engineering and Applied Sciences (DEAS).
It sees a heterogenous workload of research and develop-
ment combined with e-mail and a small amount of WWW
traffic. Hence, the workload seen in the DEAS environment
can be best described as a combination of that seen in the
EECS environment and e-mail traffic. The volume of traffic
seen by the DEAS filer over any given period exceeds that
seen to the EECS filer by an order of magnitude. Detailed
characterization of this environment (over different time pe-
riods) can be found in [7].

The e-mail traffic seen in DEAS affects the filer’s work-
load greatly. The e-mail inboxes stored by the DEAS filer
are always read sequentially from beginning to end. These
sequential scans generate many Read operations, account-
ing for half of all operations seen to this server. These same
sequential Reads also induce a large amount of data to be
read from the DEAS filer. Since Writes to these e-mail
inboxes are always appends, the ratio of Reads to Writes
is very high. For all the policies we analyzed, these effects
cause layered clustering to be more effective for DEAS than
for EECS.

4.2. Trace characteristics

Because of their different activity levels and workloads,
the DEAS and EECS traces exhibit different characteristics
in terms of data transferred, distribution of NFS operations,
and number of NFS operations seen. This section describes
these different characteristics.
4.2.1. Operation breakdown. Table 1 shows the breakdown
of NFS operations in the EECS and DEAS traces. The op-
erations are binned into two categories: operations seen to

Table 2. Breakdown of data transferred during the EECS and DEAS week-long trace periods.
Long-lived files Created files

Trace Total data Data written Data read Populating data Data written Data read

EECS 10/21/01–10/27/01 92.4 GB 5.5% 14.2% 1.4% 57.1% 21.8%
DEAS 02/02/03–02/08/03 321.1 GB 30.6% 54.4% 0.1% 12.8% 2.1%

long-lived objects and operations seen to newly-created ob-
jects. Long-lived objects are objects that exist at the begin-
ning of the week-long trace period, whereas created objects
are objects that are created during the week-long trace pe-
riod.

The upper-bound on offloadable operations field of Ta-
ble 1 lists the maximum percent of all operations that can be
offloaded from the EECS or DEAS filers during these trace
periods. This value assumes a scenario where replication is
performed at the beginning of the week and the replication
period is one week (nearly the same percentage is observed
with daily replication). In this scenario, only long-lived ob-
jects will be considered for replication and so the upper-
bound on offloadable operations is the sum of the read op-
erations (i.e., Getattrs, Lookups, Reads, and Readdirs)
seen to long-lived objects in Table 1. This value is 67.2% in
the EECS trace and 80.4% in the DEAS trace. It represents
the largest percent of offloadable operations that any repli-
cation policy can hope to achieve assuming Cuckoo-style
layered clustering.

In the EECS trace, the majority of operations to cre-
ated objects are Writes. Conversely, the majority of op-
erations to long-lived objects are metadata operations such
as Getattrs and Lookups. Writes dominate operations
to created objects for two reasons. First, files in NFS are
empty when initially created and must be populated by a set
of Populating Writes3. Second, many created objects are
temporary files and logs that see a large number of Writes
and few or no Reads.

Unlike the EECS trace, where only 72.8% of operations
access long-lived objects (versus created objects), 96.6% of
all operations access long-lived objects in the DEAS trace.
This difference is due to Reads seen in the DEAS trace to
the long-lived e-mail inboxes.

Finally, we note that offloadable operations in the EECS
trace are composed mostly of metadata operations (i.e.,
Getattrs and Lookups). In the DEAS trace, on the
other hand, most offloadable operations are data accesses
(Reads).
4.2.2. Data transferred breakdown. Table 2 shows the break-
down of data transferred within Read and Write operations
in the traces. Both the contributions to total data transferred
from/to long-lived and from/to created files are shown. Also

3Populating Writes are contiguous Write operations seen immediately
after a Create. They populate a file with data.

shown is the contribution to total data transferred by popu-
lating Writes that are used to fill newly created files with
data.

Due to the amount of read traffic seen to the e-mail in-
boxes, the DEAS trace presents a much greater opportunity
for data transfer offloading than the EECS trace. The upper-
bound on offloadable data transfers is the maximum percent
of all data transfers that can be offloaded and is represented
by the data read from long-lived files column of Table 2.
This value is 14.2% in the EECS trace and 54.4% in the
DEAS trace. Data read from created files is not offload-
able since these objects could not have been replicated in
advance.

5. Analysis of replication policies

This section describes and analyzes three replication
policies, each more aggressive than the previous. The first
only replicates read-only objects. The second additionally
replicates read-only sections of files, even if they are not en-
tirely read-only. The third additionally replicates read/write
data, if the read:write ratio is above a threshold. The goal,
of course, is to maximize offloadable operations and data
transfers without excessive implementation complexity.

A replication policy identifies objects that should be
replicated. We describe each policy in two parts: ranking
scheme and criteria for replication. The ranking scheme im-
poses a partial order on objects being considered for repli-
cation. The criteria for replication specifies the minimum
rank and other attributes an object must possess in order to
be replicated.

5.1 Policy one: Replicate read-only objects

Ranking scheme: Rank objects in descending order by
number of total operations seen.

Criteria for replication: Replicate the N highest-ranked
objects that are read-only.

Policy one is simple and requires minimal work for con-
sistency. Objects are ranked by the total number operations
that they see. The N highest-ranked read-only objects are
replicated. Any write operation to a replicated object is per-
formed at the parent server and also invalidates all replicas
of that object.

10
0

10
2

10
4

10
6

0

5

10

15

20

10
0

10
2

10
4

10
6

0

5

10

15

20

+ Readdir
+ Read
+ Lookup
Getattr

EECS 10/21/01 - 10/27/01

DEAS 02/02/03 - 02/08/03

of highest-ranked read-only objects replicated

%
of

to
ta

lo
ps

of
flo

ad
ab

le

Figure 2. Policy one: offloadable operations.

Our evaluation of this policy finds that its simplicity pre-
vents it from providing much benefit in terms of offloadable
operations and data transfers. Though this policy does not
show much promise, analyzing it yields several insights re-
garding what constitutes a good replication policy. We use
these insights to formulate the next replication policy.
5.1.1. Oracular replication: offloadable operations. The
graphs in Figure 2 show the percent of all operations that
can be offloaded by replicating the N highest-ranked read-
only objects. When all such objects are replicated, the par-
ent server can offload 19.6% of all operations in the EECS
trace and 12.9% in the DEAS trace.

Comparing these values to the upper-bounds on offload-
able operations (67.2% and 80.4%, respectively, from Ta-
ble 1), we see that policy one leaves much to be desired.
It fails to achieve the additional 47.6% (EECS) or 67.5%
(DEAS) of all operations that could be offloaded.

The majority of offloadable operations in both traces are
metadata operations, specifically Getattrs and Lookups.
Offloadable data operations (i.e, Reads) make up less than
4% of all operations in the EECS trace and less than 1% of
all operations in the DEAS trace. Getattrs and Lookups
are frequently issued by NFS clients in order to determine
whether a locally cached object has become inconsistent.
The large contribution of such metadata operations to the
offloadable operations total suggests that policy one tends
to replicate objects that are already effectively cached by
NFS clients. The fact that very few data operations are seen
to these replicas supports this observation.

Another issue with policy one is its ranking scheme,
which prioritizes objects based on the number of opera-

10
0

10
2

10
4

10
6

0

2

4

6

8

10
EECS 10/21/01 − 10/27/01
DEAS 02/02/03 − 02/08/03

of highest-ranked read-only objects replicated

%
of

to
ta

lx
fe

rs
of

flo
ad

ab
le

Figure 3. Policy one: offloadable transfers.

tions. Not surprisingly, the objects that see the most op-
erations are usually the ones that are cached effectively at
the clients. Thus, when the number of objects replicated
(N) is decreased, an even larger percentage of offloadable
operations are Getattrs and Lookups issued by clients to
check cache consistency.
5.1.2. Oracular evaluation: offloadable data transfers. Fig-
ure 3 shows the percent of data transferred from objects
that can be offloaded as a result of replicating the first N
highest-ranked read-only objects. When all such objects
are replicated, the parent server can offload 7.8% of all data
transfers in the EECS trace and 3.0% in the DEAS trace.
Comparing these values to the upper-bounds on offloadable
data transfers (14.2% and 54.4%, from Table 2), we again
see that policy one leaves much room for improvement: an-
other 6.4% of all data transfers for EECS and another 51.4%
for DEAS.

Since policy one tends to replicate objects that are very
effectively cached by NFS clients, NFS clients are never
forced to refresh their cached copy of these objects because
they never change. Hence, any given client will usually only
have to read data from an object replicated by this policy
once. This overlap between client-cached objects and ob-
jects replicated by policy one prevents offloading of a suf-
ficient percentage of data transfers to approach the upper-
bound. Large amounts of read sharing (i.e., many clients
reading the same data) would compensate for this shortcom-
ing, but read sharing is not common in these traces (or most
NFS environments). From this, we conclude that a replica-
tion policy that aims to offload a large percentage of data
transfers should aim to replicate objects that cannot be ef-
fectively cached by clients.
5.1.3. Summary and analysis. Replication policy one stands
out because it is simple and has minimal consistency re-

quirements. But, its simplicity comes at a price. We have
shown that this policy has a tendency to replicate objects
that are effectively cached by clients. As a result, few data
transfers can be offloaded and most offloadable operations
are metadata accesses.

Analysis of this replication policy yields important in-
sights. Most important is that different objects should be
replicated depending on whether the goal of a particular pol-
icy is to reduce a data transfer (disk or network) or a CPU
bottleneck.

A replication policy that aims to alleviate a data transfer
bottleneck should seek to replicate objects that cannot be
cached effectively by NFS clients. This is because the act of
caching is in itself a replication policy that attempts to min-
imize data transfers. As well, the ranking scheme should
focus on data transfers rather than operations. If reducing
CPU load is the primary concern, it is enough to replicate
the objects that see the most operations.

Finally, analysis of policy one suggests that updates to
metadata should not invalidate entire replicas; instead meta-
data should be kept consistent. This prevents a small meta-
data update from invalidating replicas that possess large
read-only data sections.

The next section presents a replication policy that utilizes
the insights gained from analysis of policy one. Specifically,
a type of object that cannot be cached effectively by clients
is identified and targeted.

5.2 Policy two: Replicate read-only directories
and read-only sections of read-mostly files

Ranking scheme: Rank files in descending order by the
amount of data read. Rank directories in descending
order by total number of operations seen.

Criteria for replication: Replicate the read-only sections
of the N highest-ranked files with read-only percentage
(ROP) ≥ K. A file’s ROP (Equation 1) quantifies the
percentage of a file’s data that is not written. Also,
replicate the M highest-ranked read-only directories.

ROP =
File Size−Size o f RW Sections

File Size
×100 (1)

Policy two is slightly more complex than policy one in
that some effort is required to keep the metadata of repli-
cated objects consistent. Policy two extends policy one
by additionally replicating read-only sections of some read-
mostly files. Like policy one, writes to a replicated section
of an object are performed at the parent server for the ob-
ject and invalidate corresponding replicas. But metadata up-
dates and writes to non-replicated sections cause the meta-
data of partially replicated objects to be updated (e.g., with
new length and mtime information). This small increase in

implementation complexity yields a large gain in offload-
able operations and data transfers.

The insights gained from analysis of policy one are re-
flected in policy two’s ranking scheme and criteria for repli-
cation. Most importantly, different ranking schemes and
criteria are used for directories and for files. Since most di-
rectory accesses are metadata operations, policy two ranks
directories by number of operations. Conversely, since files
are the sole targets of data transfers, policy two implicitly
assigns a high rank to files that are not cached effectively
by clients. The criteria for replication for directories and
files aim to replicate the subset of the highest-ranked ob-
jects that are easiest to keep consistent: read-only directo-
ries and read-mostly files. Read-mostly files are not com-
pletely read-only (read-only files are very effectively cached
by clients), but rather files whose data consists primarily of
read-only sections and a few read-write sections.

Read-mostly files are excellent candidates for replication
in a NFS layered-clustering system that aims to maximize
offloadable data transfers. These files cannot be cached ef-
fectively by clients, since the Getattr and Lookup opera-
tions used by clients to maintain cache consistency reveal
only the last modified time of the entire file. A small write
to a file forces clients that have parts of the file cached to
discard all cached portions of it, regardless of whether or
not those cached portions were actually made inconsistent
by the write. Read-mostly files suffer most from this NFS
caching limitation because clients are forced to re-fetch the
large read-only sections whenever the small read-write sec-
tions are modified. As a result, replication of the read-only
sections of read-mostly files should maximize the number
of offloadable data transfers from a parent server.

For our evaluation of policy two, we assume that all read-
only directories are replicated. This is because we have al-
ready evaluated policy two’s ranking scheme and criteria
for directories in our analysis of policy one. Our evaluation
of policy two reveals that, when assuming oracular replica-
tion, it is able to offload a percentage of data transfers that
approaches the upper-bound in both traces. With regard to
offloadable operations, this policy performs better than pol-
icy one in both traces, but it performs especially well in
the DEAS trace where it is able to offload a percentage of
all operations that approaches the upper-bound. The per-
formance of history-based replication in the DEAS trace is
similar to that of oracular replication, but it fares less well
in the EECS trace.
5.2.1. Oracular replication: offloadable operations. Figure 4
shows the percent of offloadable operations in both traces as
a function of minimum ROP and the number of read-only
sections of files replicated. The graphs in the top row show
the contribution to offloadable operations by Read opera-
tions. The graphs in the bottom row show the contribution
by Getattr, Lookup, and Readdir operations.

96
98
100

10
0 10

1 10
2 10

3 10
4 10

5 10
6

0

20

40

60

96
98
100

10
0 10

1 10
2 10

3 10
4 10

5 10
6

0

20

40

60

96
98

100
10

0 10
1 10

2 10
3 10

4 10
5 10

6

0

20

40

60

96
98

100
10

0 10
1 10

2 10
3 10

4 10
5 10

6

0

20

40

60

Other offloadable operations

EECS 10/21/01 - 10/27/01: offloadable Reads

Other offloadable operations

DEAS 02/02/03 - 02/08/03: offloadable Reads

of highest-ranked files replicated# of highest-ranked files replicated

Min. ROP

Min. ROP

%
of

to
ta

lo
ps

of
flo

ad
ab

le

%
of

to
ta

lo
ps

of
flo

ad
ab

le

Figure 4. Policy two: offloadable operations.

The graphs show that there is minimal benefit in con-
sidering for replication the read-only sections of files with
ROP < 99%. Such files contribute negligible amounts to
both offloadable metadata and data operations.

Replication of the read-only sections of just the one thou-
sand highest-ranked files with ROP ≥ 99% enables offload-
ing 12.6% of all operations in the EECS trace and 72.6%
of all operations in the DEAS trace. Replicating read-only
sections of all files with ROP ≥ 99% increases these values
significantly (from 12.6% to 23.9%) in EECS and slightly
(from 72.6% to 74.5%) in DEAS. Policy two fails to cap-
ture the additional 43.3% of all operations that could be
offloaded in the EECS trace. However, only 5.9% more
operations could be offloaded in the DEAS trace. In gen-
eral, policy two performs better in the DEAS trace because
a large fraction of the operations in DEAS are offloadable
Reads which policy two is very adept at capturing.
5.2.2. Oracular replication: offloadable data transfers. Fig-
ure 5 shows the percent of data transfers in each trace that
can be offloaded as a function of both the minimum ROP
value and number of read-only sections of files replicated.
The graphs show that replication of the read-only sections
of just the one thousand highest-ranked files with ROP ≥
99% enables this policy to offload a percent of data in both
the EECS trace (12.6%) and the DEAS trace (51.6%) that
approaches the upper-bound. Only 1.6% (EECS) or 2.8%
(DEAS) more data transfers could be offloaded. When read-
only sections of all files with ROP ≥ 99% are considered
for replication, these differences decrease to less than 2%
for both traces.

The data transfer graphs highlight the benefit of replicat-

96
98

100
10

0 10
1 10

2 10
3 10

4 10
5 10

6

0

20

40

60

96
98

100
10

0 10
1 10

2 10
3 10

4 10
5 10

6

0

20

40

60

EECS 10/21/01 - 10/27/01

DEAS 02/02/03 - 02/08/03

of highest-ranked files replicated

Min. ROP

%
of

to
ta

lx
fe

rs
of

flo
ad

ab
le

Figure 5. Policy two: offloadable transfers.

ing read-mostly files. The graphs show that read-only files
(files with ROP == 100%) account for only a small per-
centage of offloadable data transfers regardless of the num-
ber of files considered for replication. When read-mostly
files (files with ROP just less than 100%) are considered in
addition to the read-only files, the graphs show a dramatic
increase in offloadable data transfers, quickly approaching
the upper-bound as more files are considered. This high-
lights an important insight: most of the data read from long-

Table 3. Policy two: oracular replication vs. history-based replication (EECS).

Monday Tuesday Wednesday Thursday Friday Saturday
Oracular History Oracular History Oracular History Oracular History Oracular History Oracular History

Getattrs 3.3% 3.4% 5.3% 3.5% 7.7% 7.4% 6.5% 5.4% 7.3% 5.2% 7.0% 6.4%
Lookups 1.6% 2.6% 9.8% 1.7% 6.8% 6.2% 10.3% 5.4% 1.5% 3.7% 7.4% 0.9%
Readdirs 0.2% 0.1% 0.5% 0.2% 0.3% 0.2% 0.5% 0.3% 0.2% 0.2% 0.2% 0.1%
Reads 6.0% 3.1% 6.1% 3.9% 4.9% 3.7% 5.1% 3.0% 4.0% 3.2% 6.4% 2.5%
Data transfers 10.2% 5.4% 8.6% 5.9% 25.3% 17.7% 21.4% 14.0% 9.9% 7.7% 14.0% 5.5%

Table 4. Policy two: oracular replication vs. history-based replication (DEAS).

Monday Tuesday Wednesday Thursday Friday Saturday
Oracular History Oracular History Oracular History Oracular History Oracular History Oracular History

Getattrs 18.6% 17.0% 19.6% 19.8% 20.5% 19.6% 21.1% 16.5% 20.8% 16.7% 33.3% 31.7%
Lookups 1.2% 1.1% 1.3% 1.2% 1.6% 1.3% 5.9% 1.3% 5.8% 1.3% 2.2% 2.1%
Readdirs 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 1.5% 0.0% 1.3% 0.4% 0.0% 0.0%
Reads 53.1% 48.7% 53.0% 52.5% 51.0% 51.0% 45.8% 45.2% 42.9% 42.6% 41.2% 41.1%
Data transfers 63.5% 45.1% 63.3% 61.0% 71.0% 68.0% 70.3% 67.5% 74.3% 71.9% 65.5% 64.0%

lived files come from the read-only sections of read-mostly
files rather than from the read-write sections.

5.2.3. History-based replication: offloadable operations and
data transfers. Our evaluation of policy two, so far, has as-
sumed perfect knowledge of the future request stream when
choosing which objects should be replicated. This section
looks at policy two when it must base replication decisions
on analysis of past traces. Specifically, we consider the sit-
uation in which policy two makes replication decisions for
day n + 1 based on the files that meet the criteria for repli-
cation on day n. For this analysis, we assume that the read-
only sections of the one thousand highest-ranked files with
ROP ≥ 99% are replicated and that all read-only directo-
ries are also replicated. This evaluation offers an indication
of how effectively policy two can be implemented in a real
system.

Tables 3 and 4 compare the performance of policy two
when using oracular replication and history-based replica-
tion for each day of the traces except Sunday (day one).
The performance of history-based replication is very simi-
lar to that of oracular replication in the DEAS trace. For the
EECS trace, however, history-based replication yields only
mediocre results.

In four cases, history-based replication offloads more
Lookups or Getattrs than oracular replication. This is an
artifact of the ranking scheme and criteria used for direc-
tories by policy two. History-based replication replicates
directories known to be read-only on day n and allows of-
floading on day n+1 until the directory is written, whereas
oracular replication can only replicate directories that are

read-only on day n + 1. Hence, history-based replication
can potentially offload more operations than oracular repli-
cation for directories that are read-only on day n and read-
write on day n+1.

Performance of any type of replication (oracular or
history-based) is limited on the EECS trace, because its
metadata heavy workload is not very conducive to offload-
ing. Though we believe that a better history-based predic-
tion scheme would yield results closer to oracular for the
EECS trace, the key insight here is that when layered clus-
tering offers substantial benefits (as with the DEAS trace), a
simple history-based replication scheme is sufficient to cap-
ture these benefits.
5.2.4. Summary and analysis. Policy two requires a small
amount of effort to keep metadata consistent on replicas.
However, by replicating a small number of read-only sec-
tions of read-mostly files, policy two is able to offload a per-
centage of data transfers that approaches the upper-bounds
for both traces. With regard to offloadable operations, pol-
icy two outperforms policy one both the EECS and DEAS
traces and approaches the upper-bound in the DEAS trace.

Finally, our analysis of history-based replication shows
that, when many offloadable data transfers exist (as in
DEAS), history-based replication exposes them effectively.

5.3 Policy three: Replicate read-only directories
and read-only/read-write sections of files

We analyzed a third policy, which extends policy two to
replicate read-write sections of files if the read-write sec-
tions exhibit a high ratio of data read to data written. It is

more complicated than policy two in that it requires both
data and metadata sections of replicas to be kept consistent.
Due to the additional data replicated, we expected that this
policy would be capable of offloading more operations and
data transfers, but we found that policy three performs no
better than policy two on both traces.

The extra ability of policy three to replicate read-write
sections did not yield a benefit because, in both traces, the
majority of offloadable operations and data transfers for
long-lived files come from their read-only sections. Ad-
ditionally, very few of the read-write sections of long-lived
files exhibit a high read-write ratio. Simply put, policy three
offers more expressive power than is required for the EECS
and DEAS traces.

6. Summary

Layered clustering is a promising method for balancing
load across unmodified NFS or CIFS servers, when using
the right replication policy. Although simple replication of
read-only objects offers minimal potential benefit, replica-
tion of read-only portions of read-mostly objects can of-
fer significant opportunities for offloading of all requests
(24%–75%) and all data transfers (14%–52%). The key
insight is that this replication policy captures objects that
are invalidated in client caches, allowing re-reads to be of-
floaded. By doing so, this replication policy provides a
good balance between offloadable work enabled and effort
required to maintain consistency.

Acknowledgements

We thank Dan Ellard and Margo Seltzer for sharing the
NFS traces. We thank Mike Mesnier for thoughtful com-
ments. We thank the members and companies of the PDL
Consortium (including APC, EMC, Equallogic, Hewlett-
Packard, Hitachi, IBM, Intel, Microsoft, Network Appli-
ance, Oracle, Panasas, Seagate, and Sun) for their interest,
insights, feedback, and support. This material is based on
research sponsored in part by the National Science Founda-
tion, via grant #CNS-0326453, and by the Army Research
Office, under agreement number DAAD19–02–1–0389.

References

[1] T. E. Anderson, et al. Serverless network file systems. ACM Trans-
actions on Computer Systems, 14(1):41–79. ACM, February 1996.

[2] S. Baker and J. H. Hartman. The Mirage NFS router. Technical
Report TR02–04. Department of Computer Science, The University
of Arizona, November 2002.

[3] M. Brooke and T. R. Birkhead. The Cambridge encyclopedia of or-
nithology. Cambridge University Press, 1991.

[4] L.-F. Cabrera and D. D. E. Long. Swift: using distributed disk strip-
ing to provide high I/O data rates. Computing Systems, 4(4):405–436,
Fall 1991.

[5] B. Callaghan, et al. RFC 1813 - NFS version 3 protocol specification.
RFC–1813. Network Working Group, June 1995.

[6] D. Ellard, et al. Passive NFS tracing of email and research workloads.
Conference on File and Storage Technologies. USENIX Association,
31 March–02 April 2003.

[7] D. Ellard and M. Seltzer. New NFS tracing tools and techniques
for system analysis. Systems Administration Conference. Usenix
Association, 26–31 October 2003.

[8] G. A. Gibson, et al. File server scaling with network-attached secure
disks. ACM SIGMETRICS Conference on Measurement and Mod-
eling of Computer Systems. Published as Performance Evaluation
Review, 25(1):272–284. ACM, June 1997.

[9] J. H. Hartman and J. K. Ousterhout. The Zebra striped network file
system. ACM Symposium on Operating System Principles. ACM,
5–8 December 1993.

[10] J. H. Howard, et al. Scale and performance in a distributed file sys-
tem. ACM Transactions on Computer Systems (TOCS), 6(1):51–81.
ACM, February 1988.

[11] W. Katsurashima, et al. NAS switch: a novel CIFS server virtualiza-
tion. IEEE Symposium on Mass Storage Systems. IEEE, 7–10 April
2003.

[12] A. J. Klosterman and G. Ganger. Cuckoo: layered clustering for
NFS. Technical Report CMU–CS–02–183. Carnegie Mellon Uni-
versity, October 2002.

[13] P. J. Leach. A Common Internet File System (CIFS/1.0) Protocol
(Working Draft). Technical report. Internet Engineering Task Force,
December 1997.

[14] V. S. Pai, et al. Locality-aware request distribution in cluster-
based network servers. Architectural Support for Programming Lan-
guages and Operating Systems. Published as SIGPLAN Notices,
33(11):205–216. ACM, 3–7 October 1998.

[15] Rainfinity. www.rainfinity.com.

[16] D. Roselli, et al. A comparison of file system workloads. USENIX
Annual Technical Conference. USENIX Association, 18–23 June
2000.

[17] M. Shapiro. Structure and encapsulation in distributed systems: the
proxy principle. International Conference on Distributed Computing
Systems. IEEE, Catalog number 86CH22293-9, May 1986.

[18] Sun Microsystems, Inc. NFS: network file system protocol specifica-
tion. RFC–1094. Network Working Group, March 1989.

[19] C. A. Thekkath, et al. Frangipani: a scalable distributed file sys-
tem. ACM Symposium on Operating System Principles. Published
as Operating Systems Review, 31(5):224–237. ACM, 1997.

[20] W. Vogels. File system usage in Windows NT 4.0. ACM Symposium
on Operating System Principles. Published as Operating System Re-
view, 33(5):93–109. ACM, December 1999.

[21] K. G. Yocum, et al. Anypoint: extensible transport switching on the
edge. USENIX Symposium on Internet Technologies and Systems.
USENIX Association, 26–28 March 2003.

