
Lazy Redundancy for NVM Storage: Handing
the Performance-Reliability Tradeoff to Applications

Rajat Kateja, Andy Pavlo, Greg Ganger
Carnegie Mellon University

CMU-PDL-19-101

April 2019

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Lazy redundancy maintenance can provide direct access non-volatile memory (NVM) with low-overhead data integrity features. The
ANON library lazily maintains redundancy (per-page checksums and cross-page parity) for applications that exploit fine-grained
direct load/store access to NVM data. To do so, ANON repurposes page table dirty bits to identify pages where redundancy must be
updated, addressing the consistency challenges of using dirty bits across crashes. A periodic background thread updates outdated
redundancy at a dataset-specific frequency chosen to tune the performance vs. time-to-coverage tradeoff. This approach avoids
critical path interpositioning and often amortizes redundancy updates across many stores to a page, enabling ANON to maintain
redundancy at just a few percent overhead. For example, MongoDB’s YCSB throughput drops by less than 2% when using ANON

with a 30 sec period and by only 3–7% with a 1 sec period. Compared to the state-of-the-art approach, ANON with a 30 sec period
increases the throughput by up to 1.8× for Redis with YCSB workloads and by up to 4.2× for write-only microbenchmarks.

Acknowledgments: We thank the members and companies of the PDL Consortium (Alibaba Group, Amazon, Datrium, Dell EMC, Facebook,
Google, Hewlett Packard Enterprise, Hitachi, IBM Research, Intel, Micron, Microsoft Research, NetApp, Oracle, Salesforce, Samsung, Seagate,
Two Sigma, Veritas and Western Digital) for their interest, insights, feedback, and support.



Keywords: NVM, DAX, asynchronous redundancy



1 Introduction

Non-volatile memory (NVM) changes the way performance-sensitive applications interact with persistent
data. NVM storage technologies combine DRAM-like access latencies and granularities with disk-like
durability [40, 60, 1, 11, 9]. Applications using direct-access NVM storage map NVM files into their
address spaces and access data with load and store instructions, rather than indirectly via file system or
block I/O interfaces.

Production storage means more than just non-volatility and performance. A number of features that
bolster and simplify storage management efforts are often expected. Whereas some features extend to direct
access NVM storage trivially (e.g., background scrubbing, defragmentation), others with data access inter-
dependencies do not. Most notably, conventional mechanisms for block checksums and cross-component
redundancy fit poorly.

Maintaining such data integrity for direct-access NVM storage, without forfeiting NVM advantages,
imposes two challenges. First, access via load and store instructions bypasses the system software, remov-
ing the straightforward ability to detect and act on data changes (e.g., to update redundancy information).
Second, NVM’s cache-line granular writes increase the overhead of updating redundancy information (e.g.,
checksums) that is computed over sizeable data regions (e.g., pages) to increase effectiveness and space
efficiency.

This paper describes ANON, a framework providing data integrity features for direct access NVM
storage: (i) per-page checksums and (ii) cross-page parity. ANON embraces a lazy approach to reduce
overhead and creates a tunable trade-off between performance and quicker coverage for the newest data.
Akin to asynchronous remote replication [18, 51, 37, 34], ANON moves redundancy updates out of the
critical path, reducing interference with foreground accesses and amortizing the overhead over multiple
fine-grained updates. For example, instead of re-computing a per-page checksum on each store or cache line
flush, ANON invalidates the outdated checksum and recomputes it within the configured amount of time.
While some deployments may demand full coverage and accept its high overheads (e.g., 48% lower Redis
throughput), ANON provides control over this behavior.

A key challenge with software-maintained redundancy for direct access NVM storage is efficient and
robust detection of updates. Approaches such as interpositioning libraries or use of write-protect mech-
anisms introduce unacceptable overheads (up to 73% throughput reduction in our experiments). Instead,
ANON uses the page table’s dirty bits. Conceptually straightforward, this repurposing of the dirty bits re-
quires care to avoid gaps in detection of pages with outdated checksums and parity. Unlike the traditional
use case of dirty bits, ANON must ensure that they are consistent with the NVM pages across power and
kernel failures, and despite write-back caching of data and page table entries (in TLBs and/or CPU caches).

We implement ANON as a user-space library with a supporting kernel module to provide OS interfaces
for bulk fetching and clearing of dirty bits. Experiments with two NoSQL DBMSs (Redis and MongoDB)
and five microbenchmark applications confirm that ANON can efficiently provide data integrity for direct
access NVM storage. Aggressively updating checksums and parity every second with ANON reduces Mon-
goDB’s YCSB throughput by only 3–7%. This overhead drops below 2% with a 30 sec window. For
YCSB workloads with Redis, ANON is up to 1.8× faster than updating checksums and parity at transaction
boundaries [73, 65].

This paper makes three main contributions. First, we identify lazy redundancy maintenance as an
important addition to the toolbox of data integrity designs for direct access NVM, providing a tunable trade-
off between performance and time-to-coverage. Second, we describe ANON and its efficient and robust lazy
redundancy maintenance via careful use of dirty bits. Third, we quantify ANON’s efficacy via extensive
evaluation using seven macro- and micro-benchmarks, demonstrating unprecedented efficiency for per-page
checksums and cross-page parity on direct access NVM storage.

1



2 Direct-access NVM & Storage Mgmt

This section describes direct-access (DAX) NVM usage model, and the impact of direct access on storage
management features. NVM refers to a class of memory technologies that have access latencies comparable
to DRAM and retain their contents across power outages like disks. Various NVM technologies, such as
3D-XPoint [1], Memristors [11], PCM [40, 60], and battery-backed DRAM [9, 16], are either already in-use
or expected to be available soon [32]. In this paper, we focus on NVM that is accessible like DRAM DIMMs
rather than like a disk [48]. That is, NVM that resides on the memory bus, with load/store accessible data
that moves between CPU caches and NVM at a cache-line granularity. Accessing NVM via the file system
interface incurs high overheads due to system calls, data copying and inefficient general-purpose file system
code.
DAX NVM Usage Model: The interface that offers the best performance with NVM storage is direct-access
(DAX), wherein NVM pages are mapped into application address spaces and accessed via load and store
instructions. File systems that map a NVM file into the application address space, bypassing the page cache,
on a mmap system call are referred to as DAX file systems and said to support DAX-mmap [41, 22]. DAX
enables applications to leverage the high performance durability of NVMs by eliminating the page cache and
OS software overheads. DAX is widely used for adding persistence to conventionally volatile in-memory
DBMSs [44, 62, 73, 57].

DAX-mmap helps applications realize NVM performance benefits, but requires careful reasoning to
ensure data consistency. Volatile processor caches can write-back data in arbitrary order, forcing applications
to use use cache-line flushes and memory fences for durability and ordering. Transactional NVM access
libraries ease this burden by exposing simple transactional APIs to applications and ensuring consistency
on their behalf [33, 13, 67, 28, 8]. Alternatively, the system can be equipped with enough battery to allow
flushing of cached writes to NVM before any shutdown [47, 75, 52]. Our work assumes this option, though
we also evaluate the non-battery case in Section 5.4.
Storage Management for DAX NVM: Administrators rely on and expect a variety of storage management
features to avoid data loss [64, 58, 74, 25] and theft [35, 69, 63, 7], reduce cost [76, 17, 59, 66, 39], and
handle failures [50, 25, 51, 37, 34]. As NVM storage matures for use in production environments, it will be
expected to provide these features as well.

We categorize storage management features into four groups based on their inter-relationships with
foreground data accesses (application reads and/or writes): (i) Background scan/reorganization features,
like scrubbing and defragmentation, occur independently of reads and writes. (ii) Space efficiency features,
like compression, deduplication, and tiering, track data access recency to estimate data temperature; they
can potentially be involved with read operations (e.g., when reading compressed data). (iii) Data redundancy
features like block checksums and cross-component redundancy are inter-dependent on writes; they may be
involved with reads depending on how they are used (e.g., if reads require a checksum verification). (iv)
Security features like encryption are directly involved in servicing of reads and writes.

Software bypass for DAX NVM has different implications for different categories of management
features. For example, software bypass has no effect on background operations like scrubbing and defrag-
mentation, because they do not depend on or impact any data accesses.

Space efficiency features track data accesses, but the loss of this information does not affect their
correctness—only performance (e.g., if a hot page is compressed). Consequently, supporting space effi-
ciency features for DAX NVM is not overly complex. NVM storage systems can use page table accessed
bits to track data accesses and not be concerned with occasionally losing this information (e.g., due to a
power failure).

Data redundancy and security features have a strong dependency on write accesses—not knowing about
data updates impacts their correctness. Data security features warrant hardware support, because of their
significant computational overheads and need in the critical path (e.g., to decrypt on read). Introducing

2



software encryption in the data path would annihilate the performance benefits of DAX NVM storage.
Recent works have proposed hardware support for NVM encryption [10, 72, 42].

Data redundancy features, on the other hand, do not need hardware support. Unlike data security
features, they have no impact on read accesses if redundancy is not checked on every read, but instead
used for background scrubbing to detect corruptions and reconstruction to repair erasures. The benefits
of software-managed redundancy features, such as their broader coverage and configurability [58, 74, 25],
remain a viable target for DAX NVM. Current approaches rely on interposing on writes [73, 65], introducing
significant performance and programming limitations. Section 3 motivates ANON’s alternate approach, that
provides a robust low-overhead solution by weakening the reliability guarantees.

3 Data Redundancy for DAX NVM

This section describes the challenges in maintaining redundancy1 for DAX NVM, the solution design space
and the state-of-the art solutions. We then motivate ANON’s lazy redundancy approach that exposes the
performance-reliability tradeoff to applications.

3.1 DAX NVM Redundancy Challenges

Maintaining redundancy for DAX NVM is challenging for two reasons: (i) hardware controlled data move-
ment, and (ii) cache-line granular writes.
Hardware Controlled Data Movement: Applications’ data writes to DAX NVM bypass system software.
This lack of software control makes it challenging for the storage system to identify updated NVM pages
that need to be checksummed and made redundant. A hardware implementation of data reliability features
in the memory subsystem could address this challenge, but may not provide the configuration flexibility or
end-to-end data reliability required of production storage [58, 74, 25].
Cache-line Granular Writes: Incongruence in the size of writes and the size of blocks over which check-
sums and redundancy are usually computed increases the overhead of maintaining them for DAX NVM
storage. Storage systems compute redundancy over sizeable blocks (e.g., per-page checksums and cross-
page redundancy) for space efficiency. Cache-line granular writes require reading (at least) an entire block
to update the checksum and redundancy. Whereas RAID systems solve a similar “small write” problem
by reading the data before updating it [50], DAX NVM storage systems cannot use this solution. As dis-
cussed above, direct access to NVM bypasses system software, prohibiting the use of pre-write values for
incremental checksum and redundancy updates.

3.2 Solution Design Space and Tradeoffs

Table 1 summarizes the design space of DAX NVM data redundancy solutions and their tradeoffs. The
design space is defined by two choices (i) how are data updates identified? and (ii) when is data redundancy
updated?

Previous solutions require applications to explicitly inform the storage software about data updates.
For example, Mojim [73] and HotPot [65] replicate updated data at transaction boundaries (referred to as
commit points). This explicit notification enables strong reliability guarantees but has two drawbacks. First,
it imposes restrictions on the programming model, requiring the use of a file system or transactional library
interface. All change points in NVM-accessing software must be modified to report updates, since any that
are missed can lead to blind use of stale redundancy. Second, updating data redundancy for each notification

1We use redundancy to mean information required to both detect and correct corruptions. Typically, this would be block/page
checksums for detection and parity or replicated blocks/pages for correction.

3



DAX NVM
Redundancy Solution

Data Update
Identification

Redundancy
Updates

Critical
Path
Interpos-
itioning

Programming
Model

Max. Window of
Non-Redundancy

Mojim [73], HotPot [65]
Application
Instrumentation

Transaction
Boundaries

Yes Restrictive None

Mojim, HotPot augmented
with Lazy Redundancy

Application
Instrumentation

Lazily Yes Restrictive Configurable

ANON w/ Volatile
Dirty Bits (Section 5.4)

Write Protection Lazily Yes Non-restrictive Configurable

ANON Dirty Bits Lazily No Non-restrictive Configurable

Table 1: Design space of solutions for DAX NVM data redundancy and associated consequences.

imposes a high overhead due to the small update granularities. Our experiments in Section 5.1 demonstrate
up to 48% lower throughput for YCSB workloads with Redis using this approach.

Prioritizing greater reliability over performance and ease of programming may not be the desired trade-
off for all applications. Indeed, many applications use storage systems that relax some reliability guarantees
in favour of performance [18, 51, 37, 34]. A lazy redundancy scheme, wherein redundancy is updated with
a configurable delay, allows applications to choose their desired performance-reliability tradeoff. Increasing
the delay amortizes redundancy update overheads over multiple writes, but also increases the window not
covered by that redundancy.

Delaying the redundancy updates in existing methods improves their performance but does not elim-
inate the restricted programming model. Moreover, it requires updating metadata at each notification to
identify pages. Our measurements indicated that this overhead on the critical path negates most of the
benefits of a lazy scheme.

Updated pages can instead be identified by using page write protections. The storage system can map
NVM data as read-only and use page faults to identify data updates. The storage system can record pending
modifications before making the page writable, and then lazily make the page read-only again and update
its redundancy. This approach does not impose any programming restrictions and performs better that state-
of-the-art solutions, even when the latter also delay redundancy computations. But, processing the write
protection page faults still incurs substantial overhead, as shown in Section 5.4.

ANON embraces an asynchronous approach to identifying updated data, in addition to delaying the
redundancy updates. ANON repurposes page table entry dirty bits to identify updated pages after-the-fact.
Removing critical path processing (either in the form of notifications or write protection page faults) enables
ANON to perform better than both of the delayed redundancy computation approaches described above.

3.3 Implications of Lazy Redundancy

Delaying redundancy updates naturally reduces the coverage of that redundancy. ANON’s lazy redundancy
scheme protects data at rest from corruption or loss (e.g., due to a firmware bug that loses/misdirects a page
write when wear leveling) at all times other than when it is both updated and non-redundant. For a data
corruption to go undetected, a page has to be updated after a redundancy verification and corrupted before a
redundancy update and verification. While any such windows without coverage are unacceptable for some
data, we believe that many cases cannot tolerate the corresponding performance overheads and would benefit
from covering most data most of the time at low overheads.

To put the coverage of lazy redundancy into context, we evaluate the fraction of uncovered data for

4



A B C D E F G H
Filesystem Volumes

0.00

0.10

0.20
Hi

gh
es

t F
ra

ct
io

n 
of

Di
rt

y 
Pa

ge
s 

in
 a

ny
60

 S
ec

on
d 

Pe
rio

d

(a) Azure Blob Storage

A B C D E F G
Filesystem Volumes

0.00

0.10

0.20

Hi
gh

es
t F

ra
ct

io
n 

of
Di

rt
y 

Pa
ge

s 
in

 a
ny

60
 S

ec
on

d 
Pe

rio
d

(b) Cosmos

A B C D E F
Filesystem Volumes

0.00

0.10

0.20

Hi
gh

es
t F

ra
ct

io
n 

of
Di

rt
y 

Pa
ge

s 
in

 a
ny

60
 S

ec
on

d 
Pe

rio
d

(c) Page Rank

A B C D E F
Filesystem Volumes

0.00

0.10

0.20

Hi
gh

es
t F

ra
ct

io
n 

of
Di

rt
y 

Pa
ge

s 
in

 a
ny

60
 S

ec
on

d 
Pe

rio
d

(d) Search Index Serving

Figure 1: Highest fraction of pages written in any 60 second period for four datacenter applications.

four Microsoft datacenter applications (based on the data reported in Viyojit [36]) and an online transaction
processing (OLTP) web application. Figure 1 presents the maximum fraction of pages updated within any
60 second period over the span of 24 hours (3.5 hours for the Cosmos case) for 27 filesystem volumes. The
maximum amount of data that would be at risk with a 60 second redundancy update period is less than 7%
for all volumes except one in the Page Rank trace, for which it is 20%2.

We also analyzed a trace of SQL queries to a large university’s admissions website over two admission
cycles [43]. We look at the fraction of “change queries” (i.e., INSERT, DELETE, and UPDATE queries) that
alter the database state. Figure 2(a) shows the maximum fraction of change queries; no 60 second period
has more than 50% of change queries. Figure 2(b) shows a CDF of the fraction of change queries; 32% of
all the 60 second periods in the four months had no change queries, implying that no part of the database
would be at risk due to a lazy redundancy scheme in those periods.

4 ANON Design and Implementation

ANON lazily maintains redundancy for direct access NVM storage using per-page checksums and cross-
page parity. By delaying the redundancy computation, ANON amortizes the overhead over multiple NVM
writes. The core idea of ANON is to repurpose the page table’s dirty bits to identify pages that require
re-computation of their redundancy. ANON clears a page’s dirty bit when it updates page redundancy;

2Viyojit’s [36] data only allows us to report the worst-case values and for a period of at least 60 seconds. The fraction updated
would be significantly smaller for shorter periods and for non-worst-case periods.

5



Nov-16 Dec-16 Nov-17 Dec-17
Month

0.0

0.4

0.8

Hi
gh

es
t F

ra
ct

io
n 

of
Ch

an
ge

 Q
ue

rie
s 

in
 a

ny
60

 S
ec

on
d 

Pe
rio

d

(a) Highest fraction of change queries in any 60 seconds
period.

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of Change Queries

0.0

0.4

0.8

CD
F

(b) CDF of fraction of change queries in all 60 second peri-
ods.

Figure 2: Fraction of change queries (i.e., INSERT, UPDATE, and DELETE queries) that alter the database state for
a large university’s graduate school admissions’ website.

any subsequent write to the page sets the dirty bit that ANON uses to check if the previously computed
redundancy is outdated.

4.1 Lazy Checksums and Parity

ANON uses a background thread to periodically update per-page checksums and cross-page parity. Figure 3
illustrates how delaying the computation of per-page checksums (and cross-page parity, not shown in the
example) amortizes the computation overhead over multiple cache line writes. The time line shows three
cache line writes to a particular page before ANON checksums the page, performing a single computation,
instead of three, for the three writes. The reduced computation, and the associated performance benefit,
come with a (tunable) window of vulnerability. As shown in the figure, lazy checksumming leave a page
written to between two successive updates with an outdated checksum. ANON verifies page checksums and
repairs corrupted pages using parity pages in a background scrubbing thread.

ANON’s lazy redundancy maintenance requires identifying pages that are updated between two succes-
sive invocations of its redundancy-updating thread. Writes to DAX NVM bypass system software, leaving
NVM storage systems unaware of data updates that outdate their redundancy. We now describe how ANON

repurposes the dirty bits, that are set by the CPU when executing store instructions, to identify pages with
stale redundancy.

4.2 Repurposing Dirty Bits

The conventional use-case of dirty bits is irrelevant for DAX NVM pages, making them available for re-
purposing. The dirty bit is conventionally used to identify updated, or “dirtied”, in-memory pages that the
storage system needs to write back to persistent storage. In case of DAX NVM storage, the file system maps
NVM-resident files into application address spaces using the virtual memory system [22, 41]. Consequently,
even though each mapped page has a corresponding dirty bit, the conventional semantic of these dirty bits
is irrelevant because the pages already reside in persistent NVM storage.

ANON repurposes dirty bits to determine pages that have been written to since their checksum and
parity were last computed. When a file is first DAX mapped, its page’s dirty bits are unset and checksums
and parity are up-to-date (potentially computed during initialization for newly created files). Each successive
invocation of ANON’s background redundancy-updating thread computes checksum and parity only for

6



t = 0 Cache Line 
Writes

DAX Mapped 
NVM Page

Checksum: Up-to-date(✔) 
or Outdated(❌)?

Compute 
Checksum

✔ ❌ ❌ ❌ ✔

Figure 3: Lazy Checksum Computation Example – By computing per-page checksums lazily, ANON amortizes
the computation overhead over multiple cache-line writes to the same NVM page. The reduced computations, and
associated performance benefit, come with a window of vulnerability.

pages with their dirty bit set and clears their dirty bit again.
Crash-Consistency Challenge: Repurposing dirty bits to identify outdated redundancy poses a non-trivial
challenge of storing dirty bits crash-consistently. In their conventional usage, losing dirty bits across crashes
(e.g., power failures) is acceptable because the data that remains on the persistent storage after a crash is
self-identifiable as not-dirty. Such self-identification is not possible in our repurposed use of dirty bits.
A straightforward extension of identifying pages as dirty or not depending on whether they match their
checksum defeats the purpose of checksums; if a non-dirty page (i.e., with up-to-date checksum and parity)
gets corrupted and does not match its checksum, it will be classified as dirty, whereas in a correct design, it
should be flagged as corrupted and repaired using the parity. Ensuring crash-consistency of dirty bits requires
that dirty bits survive various failures, including but not limited to power failures and kernel crashes. We
delineate how this can be achieved with non-intrusive hardware and OS support.
Saving Dirty Bits Across Power Failures: We envision systems that maintain dirty bits across power
failures by storing page tables persistently in NVM Upon reboot after a power failure, ANON extracts the
dirty bit information from the persistent page tables. The OS then discards the page tables, because the
processes that the page tables belong to do not survive across reboots.

For an efficient design of persistent page table, we envision systems that employ a battery to include
TLBs and CPU caches in the persistence domain. If the TLBs and caches were to be volatile, the memory
management unit (MMU) would need to ensure that every page table entry modification is synchronously
written back to NVM. The MMU would also need to complete the write-back of dirty bits no later than
the write-back of the corresponding page data. Such synchronous write-backs are not guaranteed [31], and
supporting them would adversely affect performance and NVM device wear [47, 75]. Using battery-backed
TLBs and caches eliminates the need for synchronously flushing page table updates, reducing the perfor-
mance penalty and NVM device wear.
Saving Dirty Bits Across Kernel Crashes: Dirty bits must also be saved across reboots, even due to kernel
failures. To do so, following the Otherworld approach [19], the kernel would flush TLBs and processor
caches in appropriate handlers prior to rebooting the system, e.g., in the panic and non-maskable interrupt
(NMI) handler for kernel panics and deadlocks respectively (x86 systems support using a a watchdog that
generates a NMI to trigger reboot for deadlocked kernels [53]). Such OS support requires only small modifi-
cations (e.g., a single wbinvd instruction to flush processor caches), and imposes no overhead during normal
system operation.
Shadow Dirty Bits for Synchronization-Free Foreground Accesses: Even with hardware and OS sup-
port for crash-consistent dirty bits, ANON needs to carefully orchestrate the non-atomic two-step process of

7



Application Thread 

A1: Write to Page
A2: Write to Page

Checksum 
Computation Thread 

C1: Update Checksum
C2: Clear Dirty Bit

Potential Interleaved 
Execution

A1: Write to Page
C1: Update Checksum

A2: Write to Page
C2: Clear Dirty Bit

(a) A write can happen after updating the checksum and before
clearing the dirty bit. This would cause the dirty bit to be cleared
even when the checksum is not up-to-date with the latest write to
the page.

Application Thread 

A1: Write to Page
A2: Write to Page

Checksum 
Computation Thread 

C1: Clear Dirty Bit
C2: Update Checksum

Potential Interleaved 
Execution and Crash

A1: Write to Page
C1: Clear Dirty Bit

A2: Write to Page
C2: Clear Dirty Bit

Crash

(b) A crash after clearing the dirty bit and before updating the
checksum would cause an incorrectly flagged data corruption.
(Upon reboot, the dirty bit would be unset but the page data will
not match its checksum).

Figure 4: Performing the checksum update and clearing of dirty bit in either order, without any safeguards, is incorrect.

updating a page’s redundancy and clearing its dirty bit; performing these two steps without any additional
safeguard would be incorrect. As shown in Figure 4(a), dirty bit could be incorrectly cleared for a page with
outdated checksums because of interleaving of ANON’s background and application’s foreground thread.
Reversing the order of the two steps is not safe either, as shown in Figure 4(b). If the system crashes after
the dirty bit is cleared but before the checksum is updated, ANON would incorrectly identify a data cor-
ruption upon reboot (dirty bit is cleared but page’s checksum is outdated). Write-protecting pages before
updating their checksum can solve this problem, but would impact foreground data accesses. Instead, ANON

makes a persistent shadow copy of the dirty bit before clearing it, and clears this shadow copy only after
completing the redundancy update; if ANON finds either of the dirty bit or its shadow copy to be set for a
page, it knows that the page’s redundancy is outdated.

4.3 Implementation

We implement ANON as a user-space library with an API that allows applications to configure the type
and frequency of checksum and parity computations for their DAX NVM files. The library uses a periodic
background thread that checks and clears the dirty bits using new system calls that we implement, and
performs the checksum and parity updates for the dirty pages. Our implementation uses a stripe size of five
pages, with four consecutive data pages and one parity page. The stripes are statically determined at the
time of file creation. Figure 5 shows the key components of our implementation.
New System Calls: We implement two new system calls, getDirtyBits and clearDirtyBits, to check
and clear the dirty bits for pages in a memory range, respectively. getDirtyBits returns a bitvector that
has the dirty bits for pages in the input memory range. clearDirtyBits accepts a dirty bitvector as its
parameter in addition to a memory range. It clears the dirty bit for a page in the memory range only if the
corresponding bit is set in the input dirty bitvector. Since ANON is unaware of pages dirtied in between the
checking and clearing and will not update their redundancy, it clears the dirty bits only for pages that were
dirty when initially checked.
Batched Checking and Clearing: ANON’s userspace library checks and clears dirty bits for multiple NVM
pages (e.g., 512 in our experiments) as a batch for efficiency. Both checking and clearing of dirty bits require
a system call and traversing the hierarchical page table; clearing dirty bits further requires invalidating
the corresponding TLB entries. Each of these is a costly operation, as evinced by prior research [3], and
demonstrated by our experiments (Section 5.3). Batching allows pages to share the system call, fractions of
the page table walk, and the TLB invalidation. We found that batching reduced the amount of time spent in
checking/clearing dirty bits by up to two orders of magnitude.
Algorithm: Algorithm 1 details the steps that ANON’s userspace background thread performs on each
invocation. ANON loops over all the N pages in a given DAX NVM file in increments of B pages; B being

8



Virtual Memory System FS DAX mmap()

ANON Userspace Library
(per-page checksums, and cross-page parity)

Application (e.g., Redis)

Check/clear 
dirty bits

ANON Kernel Module 
(read/reset dirty bits)

User 
Space

File Data

Type and Frequency of 
checksums and parity

Checksums and Parity
Meta Checksum

Kernel 
Space

NVM

Figure 5: ANON’s Implementation: The user space library performs the checksum and parity computations with a
period that is set by the application. The kernel module checks and clears the dirty bits when requested by the user
space library.
the batch size for which ANON checks the dirty bits using a single system call (Line 2). ANON stores a
persistent shadow copy of the dirty bits (Line 3) and then clears them (Line 5). ANON updates the checksum
of each dirty page (Line 11), and the parity of a group of P page if either of them is dirty (Line 15). ANON

stores the checksums and parity separately from the data (Figure 5) and then clears the shadow copy of the
dirty bits (Line 19). ANON then updates a meta-checksum (checksum of the page checksums) after every
iteration (Line 21 and Figure 5).

As a performance optimization, instead of recording a shadow copy of the dirty bit for each page, we
use a single dirty bitvector of size B along with the current batch’s starting page number (Line 3 and Line 4).
Together, the starting page number and the dirty bitvector copy suffice to store shadow copies of the dirty
bits for pages in the current batch; pages not in the current batch do not need a shadow copy of their dirty
bits because their dirty bits are not being cleared. Having a single dirty bitvector improves performance by
reducing cache pollution.
Notes: Our implementation of ANON leverages hardware-support whenever possible. We use CRC-32C
checksums and employ the crc32q instruction when available. Similarly, we use SIMD instructions for
computing the parity whenever possible (e.g., by operating on 256-byte words in our experiments). We never
flush cache lines for persistence because our assumed system model consists of battery-backed processor
caches (and TLBs) as discussed earlier. We do, however, use fences to ensure ordering between updates. For
example, the fence at Line 18 ensures that checksums and parity are written before the dirty bits’ shadow
copy is cleared. We extend the same performance benefits (e.g., no cache line flushes and SIMD parity
computations) to the alternatives that we compare ANON with in our evaluation.

5 Evaluation

We demonstrate ANON’s efficacy using seven macro- and micro-benchmarks. We first evaluate ANON

using Yahoo! Cloud Serving Benchmark (YCSB) [15] workloads with Redis [61] and MongoDB [45]. We

9



Algorithm 1: Checksum and Parity Update Thread
Parameter: Batch Size, B
Parameter: Number of Pages in File, N
Parameter: Number of Pages in a Parity Group, P

1 for i← 0 to N increment by B do
2 dirtyBitvector← checkDirtyBits(i, i+B);
3 dirtyBitvectorCopy← dirtyBitvector;
4 currentBatchStartingPage← i;
5 clearDirtyBits(i, i+B, dirtyBitvector);
6 for j ← i to i+B increment by P do
7 for k ← j to j + P increment by 1 do
8 updateParity← False;
9 if bitIsSet(dirtyBitvector, k − i) then

10 updateParity← True;
11 computePageChecksum(k);
12 end
13 end
14 if updateParity then
15 computeParity(j, j + P);
16 end
17 end
18 memoryFence;
19 dirtyBitvectorCopy← 0;
20 end
21 computeMetaChecksum();

then evaluate ANON using fio microbenchmarks [6] and get-/put-only microbenchmarks with four key-
value (KV) data structures. Following that, we dissect the cost of checking and clearing dirty bits, and
demonstrate the benefit of batching these operations. Lastly, we describe and evaluate ANON’s fallback
write protection mechanism to identify stale redundancy for systems that lack the hardware or OS support
for crash-consistent dirty bits.

We compare ANON with two alternate designs: (i) Baseline—no checksums and parity, and (ii) TxBoundary—
update checksums and parity at transaction boundaries. Baseline corresponds to the best performance but
provides no redundancy guarantees. TxBoundary ensures that redundancy is updated when data is persisted,
and is the design used by Mojim [73] and HotPot [65]. Unless mentioned otherwise, we use a 512 page batch
size for checking/clearing dirty bits.

To fairly quantify ANON’s overhead, we run the application (e.g., Redis, MongoDB) and ANON’s
background redundancy update thread on the same single core. Each data point in our results is an average
of three runs with root mean square error bars. We perform all our experiments on a dual-socket Intel Xeon
Silver 4114 machine with Linux 4.4.0 kernel. The system has 192 GB DRAM, from which we emulate and
use 64 GB as NVM [56].

5.1 YCSB with Redis and MongoDB

Redis [61] and MongoDB [45] are widely used open-source NoSQL DBMSs. We modify Redis (v3.1) to
use DAX NVM files for its data heap. We use an open-source MongoDB (v3.5) storage engine (PMSE [57])
that does the same. Our implementation for Redis uses Intel PMDK’s libpmemobj library [33]. We imple-
ment TxBoundary in libpmemobj allowing us to compare ANON with Baseline and TxBoundary for Redis.
For MongoDB, we compare ANON with only Baseline; PMSE uses Intel PMDK’s libpmemobj++ library
for which we we did not implement TxBoundary.
Experimental Setup: We use YCSB workloads and measure the impact on workload throughput, and up-
date latency. We use update-only (100% updates), balanced (50% updates) and read-heavy (5% updates)

10



TX BOUNDARY BASELINE
Checksum and Parity Thread Period (seconds)

1 10 30

100:0 50:50 5:95
YCSB Workload (updates:reads)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 T

hr
ou

gh
pu

t 41 K-ops/s 41 K-ops/s 48 K-ops/s

(a) Throughput

100:0 50:50 5:95
YCSB Workload (updates:reads)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

La
te

nc
y 

(m
s)

(b) Average Latency

100:0 50:50 5:95
YCSB Workload (updates:reads)

0

4

8

12

16

9
9t
h
 %

-il
e 

La
te

nc
y 

(m
s)

(c) Tail Latency

Figure 6: YCSB (Zipf Access) with Redis – Throughput and update latency of YCSB workloads with Redis. We
normalize throughputs to that of Baseline and annotate the graph with Baseline throughput.

100:0 50:50 5:95
YCSB Workload (updates:reads)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 T

hr
ou

gh
pu

t 17 K-ops/s 21 K-ops/s 30 K-ops/s

(a) Throughput

100:0 50:50 5:95
YCSB Workload (updates:reads)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e 

La
te

nc
y 

(m
s)

(b) Average Latency

100:0 50:50 5:95
YCSB Workload

0

2

4

99
th

 %
-il

e 
La

te
nc

y 
(m

s)

(c) Tail Latency

Figure 7: YCSB (Zipf Access) with MongoDB – Throughput and update latency of YCSB workloads with Mon-
goDB. We normalize throughputs to that of Baseline and annotate the graph with Baseline throughput.
workloads with Zipf and uniform random access patterns. We initialize the DBMSs with 1M (1 × 220)
key-value pairs and run the workloads for five minutes. YCSB workload generator and the DBMSs run on
different sockets.
YCSB (Zipf Access) with Redis Results: Figure 6 presents throughput and update latencies for YCSB
Zipf workloads with Redis. We normalize the throughputs to that of Baseline and annotate the Baseline
throughput. ANON reduces throughput by 1–5% for a checksum and parity computation period of 30 sec
and by 4–23% for a period of 1 sec. Increasing the delay between computations allows ANON to amortize
the computations over more writes to the same pages, improving its performance. TxBoundary imposes 9–
48% reduction in throughput because it updates redundancy at the end of every transaction, performing up to
14× more computations than ANON. TxBoundary’s inline redundancy updates increase the average latency
by 16–93%. In contrast, ANON’s out-of-critical-path redundancy updates increase the average latency by
a maximum of 5% for a period of 30 sec. The increase in tail latency with ANON is because it shares the
same core with Redis – when the OS schedules ANON, ongoing Redis transactions stall, increasing the tail
latency. This can be avoided if ANON was run on a separate dedicated core. As expected, the throughput
and latency overheads are lowest, and Baseline performance is best for the read-heavy workload.
YCSB (Zipf Access) with MongoDB Results: Figure 7 presents the throughput and update latencies for
YCSB Zipf workloads with MongoDB. We normalize the throughput to that of Baseline and annotate the
Baseline throughput. MongoDB has lower throughput than Redis for both Baseline and ANON. This is be-
cause MongoDB’s storage engine, PMSE [57], uses a B+Tree index whereas Redis uses a chaining hashtable
index; our workloads consist of only point-queries, for which hashtables perform better than B+Tree. Even
with aggressive checksum and parity updates every second, ANON reduces the throughput by only 3–7%,
and increases the average latency by only 3–8%. Increasing ANON’s redundancy update delay further im-

11



TX BOUNDARY BASELINE
Checksum and Parity Thread Period (seconds)

1 10 30

100:0 50:50 5:95
YCSB Workload (updates:reads)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 T

hr
ou

gh
pu

t 41 K-ops/s 42 K-ops/s 47 K-ops/s

(a) Throughput with Redis

100:0 50:50 5:95
YCSB Workload (updates:reads)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 T

hr
ou

gh
pu

t 17 K-ops/s 20 K-ops/s 29 K-ops/s

(b) Throughput with MongoDB

Figure 8: YCSB (Random Access) with Redis and MongoDB – Throughput normalized to that of Baseline.
proves performance by reducing the number of computations. The high impact on tail latency (e.g., up to
1.4× for the update-only workload) is because ANON and MongoDB share the same core. For the read-
heavy workload, the increase in tail latency is only 0.4–5% because ANON’s computation thread runs, and
stalls MongoDB, only for small durations.
YCSB (Random Access) with Redis and MongoDB: Figure 8 presents the normalized throughput for
YCSB workloads with uniform random access patterns with Redis and MongoDB. For Redis, ANON re-
duces the throughput by 5–10% for a period of 30 sec compared to 9–49% with TxBoundary. When updat-
ing redundancy every second, ANON suffers from a higher overhead than TxBoundary for read-heavy and
balanced workloads. This is because the reduction in the number of computations is not enough to offset the
overhead of periodic checking/clearing of dirty bits. For MongoDB, ANON imposes a throughput reduction
of 2–13%. ANON reduces throughput more for random access workloads than Zipf access workloads with
both Redis and MongoDB. This is because, as corroborated by microbenchmarks in Section 5.2, Zipf work-
loads offer more opportunities for ANON to reduce computations as a larger fraction of the writes go to the
same page.

5.2 Fio and Key-Value Microbenchmarks

We now evaluate ANON’s performance using fio [6] microbenchmarks and synthetic get-/put-only mi-
crobenchmarks with four key-value (KV) data structures.
Fio Experimental Setup: We use fio with its libpmem engine [24]. The libpmem engine reads/writes DAX
NVM files at a cache line granularity. We use write-only and read-only workloads with a 16 GB file and
three access patterns: uniform random, sequential, and Zipf. The workloads perform reads/writes equal to
the file size. The random and sequential workloads choose previously unread/unwritten cache lines, conse-
quently reading/writing each cache line in the entire file exactly once. We compare ANON with Baseline
and TxBoundary.
Fio Results: Figure 9 shows the normalized throughput for the two workloads with three access patterns
each. We annotate the graphs with Baseline throughput. For write-only workloads, ANON reduces through-
put by 0.5–56% with higher overheads for more frequent computations. TxBoundary has a 6–66% through-
put reduction. ANON’s overheads are highest for the random workload and lowest for the sequential work-
load; sequential workloads offer the best opportunity to reduce computations because successive cache line
writes belong to the same page. Even for random workloads, the overhead is only 10% with a redundancy
update delay of 60 secs. ANON reduces the throughput by only up to 3% for read-only workloads, demon-

12



TX BOUNDARY BASELINE
Checksum and Parity Thread Period (seconds)

1 10 30 60

Random Zipf Sequential
Access Pattern

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 T

hr
ou

gh
pu

t 113 MB/s 198 MB/s 264 MB/s

(a) Write Only Workload

Random Zipf Sequential
Access Pattern

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 T

hr
ou

gh
pu

t 119 MB/s 212 MB/s 308 MB/s

(b) Read Only Workload

Figure 9: Fio Microbenchmarks – Throughputs (normalized to that of Baseline) for write-only and read-only work-
loads with different access patterns.
strating that ANON’s background checking of dirty bits is low-overhead.
KV Microbenchmark Experimental Setup: We use synthetic get- and put-only microbenchmarks with
four KV data structures: B+Tree, chaining hashmap, Red-Black Tree (RB Tree) and FP Tree [49]. We
use PMDK’s [33] B+Tree, hashmap, and RB Tree implementations and its pmembench utility to gener-
ate workloads. We populate these three data structures with one million KV pairs, run the workloads for
60 secs, and compare ANON with Baseline and TxBoundary. We use the FP Tree implementation from
Intel’s pmemkv [30] library and its db bench utility to generate the workloads. We initialize the FP Tree
with 20 million KV pairs, run the workloads for 60 secs, and compare ANON with Baseline (we did not
implement TxBoundary for pmemkv).
KV Microbenchmark Results: Figure 10 shows the normalized throughput for the four data structures
with put-only and get-only workloads, with annotated Baseline throughput in K-ops/s. For the put-only
workload, ANON reduces throughput by a maximum of 4% when updating redundancy every second for
B+Tree, hashmap and RB Tree, compared to 60–74% reduction with TxBoundary. For FP Tree, ANON

reduces throughput by 13–37% for computation periods of 1 to 10 secs. Increasing the period to 30 secs
reduces ANON’s overhead for FP Tree to 9% (not shown in the graph).

Among the four data structures, hashmap performs the best because our workloads only contain point-
queries. Hashmap’s superior performance implies that it performs the highest number of writes for our fixed
duration put-only workload. Hence the overhead of TxBoundary is highest for hashmap. FP Tree Baseline
has the lowest throughput because its implementation deletes and re-allocates a key-value pair instead of
overwriting the value for put operations. This also causes higher overhead when using ANON because
deletes and allocations write to the persistent allocator state. For get-only workload, ANON imposes only
1–2% throughput reduction, reinforcing ANON’s efficacy in checking dirty bits.

5.3 Cost of Checking/Clearing Dirty Bits

To better understand the cost of checking and clearing dirty bits, we break down the cost into its constituent
components: (i) system call, (ii) page table walk to desired page table entries, (iii) reading/resetting the
dirty bits, and (iv) TLB invalidation after clearing dirty bits. We also demonstrate the benefits of batching
multiple pages when checking and clearing the dirty bits.
Experimental Setup: We use fio with its libpmem engine described above. We use the write-only workload
with 64-byte writes and uniform random access pattern. We configure ANON to check/clear the dirty bits
every second. We measure the average amount of time spent in each of the components for a single invoca-

13



TX BOUNDARY BASELINE
Checksum and Parity Thread Period (seconds)

1 5 10

B+ Tree Hashmap RB Tree FP Tree
Data Structure

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 T

hr
ou

gh
pu

t 561 1046 569 114

(a) Put Only Workload

B+ Tree Hashmap RB Tree FP Tree
Data Structure

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 T

hr
ou

gh
pu

t 899 2956 907 430

(b) Get Only Workload

Figure 10: KV Microbenchmarks – Throughput for KV workloads with various data structures. We normalize the
throughputs to that of Baseline, which is annotated in K-ops/s.
tion of ANON’s background thread. We vary the batch size to demonstrate the impact of batching.
Results: Figure 11(a) presents the time spent in various components of checking and clearing dirty bits.
The batch size is set to 512 pages for this experiment. Doubling the file size, and consequently the number
of pages in a file, roughly doubles the amount of time spent in each of the components. This is because the
number of system calls, page walks, and reads of the dirty bits are all directly proportional to the number
of pages in the file. The number of pages for which the dirty bit is cleared, and the number of TLB invali-
dations depends on the workload’s access pattern. For the uniform random access workload, these are also
directly proportional to the number of pages in the file. We also find that resetting the dirty bits is costlier
than reading them.

Figure 11(b) presents the impact of batch size for a 16 GB file. As the batch size increases, the time
spent in checking/clearing dirty bits decreases with diminishing marginal returns. This decrease is because
the number of system calls reduce and larger fractions of the page table walks are shared between the pages
in the same batch. The benefits are diminishing with increasing batch size because of the fixed cost of
reading all the dirty bits and resetting the ones that are found to be set.

5.4 ANON with Volatile Dirty Bits

Repurposing dirty bits to identify pages with stale redundancy requires hardware and OS support that may
not be universally available. In absence of such support, ANON uses write protections. We briefly discuss
this design and present its evaluation using Redis with YCSB Zipf workloads and fio write-only microbench-
marks.

If ANON cannot rely on dirty bits across crashes, it write protects pages after updating their checksum
and parity. ANON registers a page fault handler and gets notified when an application attempts to write to
a read-only page. In the page fault handler, ANON persistently records that the page is going to be dirtied,
out-dating its redundancy. In essence, ANON implements its own crash-consistent dirty bits. The rest of
ANON’s design remains the same as previously described.
Experimental Setup: We consider two system models, (i) Volatile Caches—systems with no battery backup
for CPU caches, and (ii) Battery-Backed Caches—systems with battery backed CPU caches. Volatile caches
necessitate using write protections; battery-backed caches may or may not depending on whether the OS
offers the additional support for repurposing and storing dirty bits crash-consistently. Battery-backed caches
offer performance benefits for ANON as well as for Baseline and TxBoundary by eliminating the need for
cache line flushes.

14



Clearing Dirty Bits Checking Dirty Bits
Clearing Dirty Bits: Invalidate TLBs
Clearing Dirty Bits: Reset Bits
Clearing Dirty Bits: Page Walks
Clearing Dirty Bits: System Calls

Checking Dirty Bits: Read Bits
Checking Dirty Bits: Page Walks
Checking Dirty Bits: System Calls
Iterate over File

1 2 4 8 16
File Size (GB)

0

20

40

60

Ti
m

e 
pe

r I
nv

oc
at

io
n 

(m
s)

(a) Breakdown of Time Spent

64 128 256 512 1K 2K
Batch Size (bytes)

0

40

80

120

Ti
m

e 
pe

r I
nv

oc
at

io
n 

(m
s)

(b) Impact of Batch Size

Figure 11: Cost of Checking/Clearing Dirty Bits – 11(a) shows the time spent in each component of check-
ing/clearing dirty bits for a batch size of 512 pages and increasing file sizes. 11(b) shows that increasing the batch size
reduces the time spent in checking/clearing dirty bits with diminishing returns.
Results: Figure 12 presents the throughput for TxBoundary, ANON (with write protection and with dirty
bits), and Baseline for Redis with YCSB Zipf workloads (Section 5.1) and fio random write-only workloads
(Section 5.2). Using write protections reduces ANON’s throughput by 4–66% compared to when using dirty
bits (in the battery-backed caches case). With volatile caches, ANON also has to perform cache line flushes
for durability This further reduces ANON’s throughput by 2–35%. Baseline and TxBoundary throughput
also reduce by 5–35% and 18–32% respectively when battery backup is removed. ANON with write protec-
tions performs worse than TxBoundary for fio’s random write workload because the overhead of repeated
write protections and page faults outweighs the benefits of lazy redundancy.

5.5 Summary of Results

ANON’s lazy redundancy approach increases Redis’ YCSB throughput by up to 1.8×, and write-only mi-
crobenchmarks’ throughput by up to 7.5× compared to the state-of-the-art TxBoundary design. ANON

reduces MongoDB’s YCSB throughput by only 3-7% for a period of one sec, and by <2% for a period of
30 secs. ANON’s performance improves with increasing delay between computations, with increasing ratio
of reads, and increasing spatial locality of writes. ANON’s periodic checking of dirty bits reduces throughput
by a maximum of 3%.

6 Related Work

State-of-the-art software support for NVM data redundancy falls into two categories. First, systems like
NOVA-Fortis [71] and NetApp’s Pelxistore [55] support checksums and replication only for data that is
accessed via the file system interface. In contrast, ANON supports both for DAX NVM. Nova-Fortis does
support snapshots of DAX NVM data via copy-on-write of write-protected snapshot pages. As shown

15



Volatile Caches
TX BOUNDARY 
ANON w/ Write Protection 
(30 seconds period)
BASELINE 

Battery-Backed Caches
TX BOUNDARY
ANON w/ Write Protection
(30 seconds period)
ANON w/ Dirty Bits
(30 seconds period)
BASELINE

100:0 50:50 5:95
YCSB Workload (updates:reads)

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (K

-o
ps

/s
ec

)

(a) YCSB (Zipf) with Redis

Random Zipf Sequential
Access Pattern

0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (M

B/
s)

(b) Fio Workloads

Figure 12: ANON with Volatile Dirty Bits – Throughput of YCSB Zipf workloads and fio write-only workloads.
Volatile caches correspond to systems that require applications to perform cache line flushes for durability. With
volatile caches, ANON cannot use dirty bits and has to use write protections. Battery-backed caches do not require
cache line flushes for durability. ANON can use dirty bits if the required OS support is present, or fall back to using
write protections.
in Section 5.4, using write protection as a foundation for providing checksums and redundancy reduces
throughput significantly (up to 73%).

Second, systems like Mojim [73] and HotPot [65] replicate DAX NVM data when the application
requests that data be persisted, as with the TxBoundary approach in our experiments. In contrast, ANON

does not require any application modifications and provides a tunable performance-reliability tradeoff (e.g.,
1.8× higher Redis throughput with a 30 sec delay in redundancy updates).

Prior works have described mechanisms to protect DAX NVM data from stray writes. Privilege levels,
process isolation, and SMAP protect applications and kernel from each others stray writes [22]. Mapping
data as read only and toggling its write protection before and after a write reduces the probability of an
application or kernel corrupting its own data [9]. Protection keys [27, 54, 29] reduce the overhead of toggling
write protections. These mechanisms are complementary to, and can be used in conjunction with ANON’s
software managed redundancy.

ANON’s system model of using battery-backed TLB and CPU caches conforms to the widespread
use of batteries to treat inherently volatile mediums as durable. Systems have used battery-backup for
DRAM [68, 9, 21, 16, 2, 36], CPU caches [52, 75], and the entire system state (including DRAM, CPU
caches and registers, and TLBs) [47]. Similarly, ANON’s modification of kernel panic handlers to flush page
tables borrows from prior works on supporting OS/hypervisor microreboots [19, 23] and kernel dumps [26]
using modified panic handlers.

Lazy enhancement of data reliability has a long history in HDD/SSD-based storage systems [18, 51,
37, 34]. For example, many systems with remote replication support treat a write as complete after it is
stored on the primary machine, and then send it to the remote replica in the background. Some systems will

16



put data into a write-back cache and then store it redundantly across multiple disks in the background. Like
ANON, these systems embrace a model in which the fullest form of supported reliability is in place only
after some time, in order to avoid delaying foreground operation. Unlike ANON, these systems do not face
the challenges of direct load/store access to NVM storage.

7 Future Work: NVM Controller Managed Dirty Bits

We discuss how additional hardware support can make ANON’s design simpler and more efficient. Re-
purposing the dirty bits to identify stale checksums and parity poses correctness as well as performance
challenges. Maintaining dirty bits durably in NVM using NVM controller (independent of the page table
entry dirty bits, which remain as is) can address both of these challenges. The dirty bit corresponding to a
given NVM page could be set by the NVM controller when the page is written to, and the OS would be able
to clear it. This would also eliminate the need for safeguards against power failures and kernel crashes, sim-
plifying the robustness of ANON’s repurposed dirty bits. We leave the design of NVM controller managed
dirty bits and exploration of its benefits for future work.

8 Conclusion

ANON provides a tunable performance-reliability tradeoff for direct access NVM data integrity features.
ANON embraces an asynchronous approach to data redundancy, offloading per-page checksum and cross-
page parity computations to a periodic background thread. ANON repurposes page table entry dirty bits to
robustly identify pages with stale redundancy, despite power failures, OS crashes, and concurrent foreground
application activity. As a result, the overhead of using ANON is small and tunable: 3–8% for MongoDB’s
YCSB throughput with a 1-second period and <2% with a 30-second period. Compared to state-of-the-art
approaches, it allows 1.8× higher YCSB throughput for Redis and 4.2× higher for write-only microbench-
marks. ANON’s ability to efficiently maintain data redundancy fills a critical gap as direct access NVM
storage moves toward production use.

References

[1] Intel Optane/Micron 3d-XPoint Memory. http://www.intel.com/content/www/us/en/

architecture-and-technology/non-volatile-memory.html.

[2] AGIGARAM Non-Volatile System. http://www.agigatech.com/agigaram.php.

[3] Nadav Amit. Optimizing the TLB Shootdown Algorithm with Page Access Tracking. In Proceedings
of the 2017 USENIX Conference on Usenix Annual Technical Conference, USENIX ATC ’17, pages
27–39, Berkeley, CA, USA, 2017. USENIX Association.

[4] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. Let’s talk about storage &#38; recovery
methods for non-volatile memory database systems. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’15, pages 707–722, New York, NY, USA,
2015. ACM.

[5] Joy Arulraj, Matthew Perron, and Andrew Pavlo. Write-behind Logging. Proc. VLDB Endow.,
10(4):337–348, November 2016.

[6] Jens Axboe. Fio-flexible I/O tester. URL https://github.com/axboe/fio, 2014.

17

http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://www.agigatech.com/agigaram.php


[7] Matt Blaze. A Cryptographic File System for UNIX. In Proceedings of the 1st ACM Conference on
Computer and Communications Security, CCS ’93, pages 9–16, New York, NY, USA, 1993. ACM.

[8] Bill Bridge. NVM support for C applications, 2015. Available at http://www.snia.org/sites/
default/files/BillBridgeNVMSummit2015Slides.pdf.

[9] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra, Christopher Aycock, Gurushankar Rajamani,
and David Lowell. The Rio File Cache: Surviving Operating System Crashes. In Proceedings of the
Seventh International Conference on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS VII, pages 74–83, New York, NY, USA, 1996. ACM.

[10] Siddhartha Chhabra and Yan Solihin. i-NVMM: A Secure Non-volatile Main Memory System with
Incremental Encryption. In Proceedings of the 38th Annual International Symposium on Computer
Architecture, ISCA ’11, pages 177–188, New York, NY, USA, 2011. ACM.

[11] L.O. Chua. Memristor-the missing circuit element. Circuit Theory, IEEE Transactions on, 18(5):507–
519, Sep 1971.

[12] Peloton Database Management Systems. http://pelotondb.org.

[13] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. NV-Heaps: Making Persistent Objects Fast and Safe with Next-generation, Non-
volatile Memories. In Proceedings of the Sixteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS XVI, pages 105–118, New York, NY,
USA, 2011. ACM.

[14] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug Burger,
and Derrick Coetzee. Better I/O Through Byte-addressable, Persistent Memory. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09, pages 133–146, New
York, NY, USA, 2009. ACM.

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. Bench-
marking Cloud Serving Systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC ’10’, pages 143–154, New York, NY, USA, 2010. ACM.

[16] G. Copeland, T. Keller, R. Krishnamurthy, and M. Smith. The case for safe ram. In Proceedings of the
15th International Conference on Very Large Data Bases, VLDB ’89, pages 327–335, San Francisco,
CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[17] Biplob Debnath and and. ChunkStash: Speeding up Inline Storage Deduplication using Flash Memory.
USENIX, June 2010.

[18] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman,
Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo: Ama-
zon’s Highly Available Key-value Store. In Proceedings of Twenty-first ACM SIGOPS Symposium on
Operating Systems Principles, SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.

[19] Alex Depoutovitch and Michael Stumm. Otherworld: Giving Applications a Chance to Survive OS
Kernel Crashes. In Proceedings of the 5th European Conference on Computer Systems, EuroSys ’10,
pages 181–194, New York, NY, USA, 2010. ACM.

18

http://www.snia.org/sites/default/files/BillBridgeNVMSummit2015Slides.pdf
http://www.snia.org/sites/default/files/BillBridgeNVMSummit2015Slides.pdf
http://pelotondb.org


[20] Mingkai Dong and Haibo Chen. Soft Updates Made Simple and Fast on Non-volatile Memory. In
2017 USENIX Annual Technical Conference (USENIX ATC 17), pages 719–731, Santa Clara, CA,
2017. USENIX Association.

[21] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No Compromises: Distributed Transactions with Con-
sistency, Availability, and Performance. In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP ’15, pages 54–70, New York, NY, USA, 2015. ACM.

[22] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh
Sankaran, and Jeff Jackson. System Software for Persistent Memory. In Proceedings of the Ninth
European Conference on Computer Systems, EuroSys ’14, pages 15:1–15:15, New York, NY, USA,
2014. ACM.

[23] David Fiala, Frank Mueller, Kurt Ferreira, and Christian Engelmann. Mini-Ckpts: Surviving OS Fail-
ures in Persistent Memory. In Proceedings of the 2016 International Conference on Supercomputing,
ICS ’16, pages 7:1–7:14, New York, NY, USA, 2016. ACM.

[24] Running FIO with pmem engines. https://pmem.io/2018/06/25/fio-tutorial.html.

[25] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pages 29–43, New York,
NY, USA, 2003. ACM.

[26] Vivek Goyal, Eric W Biederman, and Hariprasad Nellitheertha. Kdump, a kexec-based kernel crash
dumping mechanism. In Proc. of the Linux Symposium. Citeseer, 2005.

[27] Charles Gray, Matthew Chapman, Peter Chubb, David Mosberger-Tang, and Gernot Heiser. Itaniuma
system implementors tale. In Proceedings of the 2005 Annual USENIX Technical Conference, ATC’05,
pages 264–278, 2005.

[28] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and Thomas Moscibroda. Log-structured Non-
volatile Main Memory. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC ’17, pages 703–717, Berkeley, CA, USA, 2017. USENIX Association.

[29] Intel Software Developer’s Manual: describes protection keys in Section 4.6.2. http://www.intel.
com/sdm.

[30] PMEMKV: Key/Value Datastore for Persistent Memory. https://github.com/pmem/pmemkv.

[31] Intel Software Developer’s Manual: describes caching of page table entries in Section 4.10. http:

//www.intel.com/sdm.

[32] Intel and Micron Produce Breakthrough Memory Tehcnology. https://newsroom.intel.com/

news-releases/intel-and-micron-produce-breakthrough-memory-technology/.

[33] PMDK: Intel Persistent Memory Development Kit. http://pmem.io.

[34] Minwen Ji, Alistair C Veitch, and John Wilkes. Seneca: remote mirroring done write. In USENIX
Annual Technical Conference, General Track, ATC’03, pages 253–268, 2003.

[35] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and Kevin Fu. Plutus: Scalable
Secure File Sharing on Untrusted Storage. In Proceedings of the 2Nd USENIX Conference on File and
Storage Technologies, FAST ’03, pages 29–42, Berkeley, CA, USA, 2003. USENIX Association.

19

https://pmem.io/2018/06/25/fio-tutorial.html
http://www.intel.com/sdm
http://www.intel.com/sdm
https://github.com/pmem/pmemkv
http://www.intel.com/sdm
http://www.intel.com/sdm
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
http://pmem.io


[36] Rajat Kateja, Anirudh Badam, Sriram Govindan, Bikash Sharma, and Greg Ganger. Viyojit: Decou-
pling Battery and DRAM Capacities for Battery-Backed DRAM. In Proceedings of the 44th Annual
International Symposium on Computer Architecture, ISCA ’17, pages 613–626, New York, NY, USA,
2017. ACM.

[37] Kimberly Keeton, Cipriano Santos, Dirk Beyer, Jeffrey Chase, and John Wilkes. Designing for Dis-
asters. In Proceedings of the 3rd USENIX Conference on File and Storage Technologies, FAST’04,
pages 5–5, Berkeley, CA, USA, 2004. USENIX Association.

[38] Hideaki Kimura. FOEDUS: OLTP Engine for a Thousand Cores and NVRAM. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, SIGMOD ’15, pages 691–
706, New York, NY, USA, 2015. ACM.

[39] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, and Thomas Anderson.
Strata: A Cross Media File System. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 460–477, New York, NY, USA, 2017. ACM.

[40] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting Phase Change Memory As
a Scalable Dram Alternative. In Proceedings of the 36th Annual International Symposium on Computer
Architecture, ISCA ’09, pages 2–13, New York, NY, USA, 2009. ACM.

[41] Supporting filesystems in persistent memory. https://lwn.net/Articles/610174/.

[42] S. Liu, A. Kolli, J. Ren, and S. Khan. Crash Consistency in Encrypted Non-volatile Main Memory Sys-
tems. In 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA),
pages 310–323, Feb 2018.

[43] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and Geoffrey J. Gordon.
Query-based Workload Forecasting for Self-Driving Database Management Systems. In Proceedings
of the 2018 International Conference on Management of Data, SIGMOD ’18, pages 631–645, New
York, NY, USA, 2018. ACM.

[44] Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. Persistent Memcached: Bringing
Legacy Code to Byte-addressable Persistent Memory. In Proceedings of the 9th USENIX Conference
on Hot Topics in Storage and File Systems, HotStorage’17, pages 4–4, Berkeley, CA, USA, 2017.
USENIX Association.

[45] MongoDB. http://www.mongodb.com/.

[46] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and Kimberly Keeton.
An Analysis of Persistent Memory Use with WHISPER. In Proceedings of the Twenty-Second Inter-
national Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’17, pages 135–148, New York, NY, USA, 2017. ACM.

[47] Dushyanth Narayanan and Orion Hodson. Whole-system Persistence. In Proceedings of the Seven-
teenth International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVII, pages 401–410, New York, NY, USA, 2012. ACM.

[48] Intel Optane Memory SSDs. https://www.intel.com/content/www/us/en/

architecture-and-technology/optane-memory.html.

20

https://lwn.net/Articles/610174/
http://www.mongodb.com/
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html


[49] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang Lehner. FPTree: A
Hybrid SCM-DRAM Persistent and Concurrent B-Tree for Storage Class Memory. In Proceedings of
the 2016 International Conference on Management of Data, SIGMOD ’16, pages 371–386, New York,
NY, USA, 2016. ACM.

[50] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant Arrays of Inexpensive
Disks (RAID). In Proceedings of the 1988 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’88, pages 109–116, New York, NY, USA, 1988. ACM.

[51] R. Hugo Patterson, Stephen Manley, Mike Federwisch, Dave Hitz, Steve Kleiman, and Shane Owara.
SnapMirror: File-System-Based Asynchronous Mirroring for Disaster Recovery. In Proceedings of
the 1st USENIX Conference on File and Storage Technologies, FAST ’02, Berkeley, CA, USA, 2002.
USENIX Association.

[52] Deprecating the PCOMMIT instruction. https://software.intel.com/en-us/blogs/2016/

09/12/deprecate-pcommit-instruction.

[53] Linux documentation: lockup-watchdogs. https://github.com/torvalds/linux/blob/

master/Documentation/lockup-watchdogs.txt.

[54] Memory Protection Keys Man Page. http://man7.org/linux/man-pages/man7/pkeys.7.html.

[55] Plexistore keynote presentation at NVMW 2018. http://nvmw.ucsd.edu/nvmw18-program/

unzip/current/nvmw2018-paper97-presentations-slides.pptx.

[56] Persistent Memory Emulation. http://pmem.io/2016/02/22/pm-emulation.html.

[57] Persistent Memory Storage Engine. https://github.com/pmem/pmse.

[58] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. IRON File Systems. In Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles, SOSP ’05, pages 206–220, New York, NY, USA,
2005. ACM.

[59] Sean Quinlan and Sean Dorward. Venti: A New Approach to Archival Data Storage. In Proceedings of
the 1st USENIX Conference on File and Storage Technologies, FAST ’02, Berkeley, CA, USA, 2002.
USENIX Association.

[60] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable High Performance
Main Memory System Using Phase-change Memory Technology. In Proceedings of the 36th Annual
International Symposium on Computer Architecture, ISCA ’09, pages 24–33, New York, NY, USA,
2009. ACM.

[61] Redis: in-memory key value store. http://redis.io/.

[62] Redis PMEM: Redis, enhanced to use PMDK’s libpmemobj. https://github.com/pmem/redis.

[63] Erik Riedel, Mahesh Kallahalla, and Ram Swaminathan. A Framework for Evaluating Storage System
Security. In Proceedings of the 1st USENIX Conference on File and Storage Technologies, FAST’02,
pages 2–2, Berkeley, CA, USA, 2002. USENIX Association.

[64] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill. Understanding Latent Sector Errors and How
to Protect Against Them. ACM Trans. Storage, 6(3):9:1–9:23, September 2010.

21

https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://github.com/torvalds/linux/blob/master/Documentation/lockup-watchdogs.txt
https://github.com/torvalds/linux/blob/master/Documentation/lockup-watchdogs.txt
http://man7.org/linux/man-pages/man7/pkeys.7.html
http://nvmw.ucsd.edu/nvmw18-program/unzip/current/nvmw2018-paper97-presentations-slides.pptx
http://nvmw.ucsd.edu/nvmw18-program/unzip/current/nvmw2018-paper97-presentations-slides.pptx
http://pmem.io/2016/02/22/pm-emulation.html
https://github.com/pmem/pmse
http://redis.io/
https://github.com/pmem/redis


[65] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Distributed Shared Persistent Memory. In Proceed-
ings of the 2017 Symposium on Cloud Computing, SoCC ’17, pages 323–337, New York, NY, USA,
2017. ACM.

[66] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, and Kai Li. RIPQ: Advanced Photo Caching
on Flash for Facebook. In Proceedings of the 13th USENIX Conference on File and Storage Technolo-
gies, FAST’15, pages 373–386, Berkeley, CA, USA, 2015. USENIX Association.

[67] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight Persistent Memory.
In Proceedings of the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVI, pages 91–104, New York, NY, USA, 2011. ACM.

[68] An-I Andy Wang, Geoff Kuenning, Peter Reiher, and Gerald Popek. The conquest file system: Better
performance through a disk/persistent-ram hybrid design. Trans. Storage, 2(3):309–348, August 2006.

[69] Charles P Wright, Michael C Martino, and Erez Zadok. Ncryptfs: A secure and convenient crypto-
graphic file system. In USENIX Annual Technical Conference, General Track, ATC’03, pages 197–210,
2003.

[70] Jian Xu and Steven Swanson. NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile
Main Memories. In 14th USENIX Conference on File and Storage Technologies (FAST 16), pages
323–338, Santa Clara, CA, 2016. USENIX Association.

[71] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah, Amit Borase, Tamires Brito
Da Silva, Steven Swanson, and Andy Rudoff. NOVA-Fortis: A Fault-Tolerant Non-Volatile Main
Memory File System. In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP
’17, pages 478–496, New York, NY, USA, 2017. ACM.

[72] Vinson Young, Prashant J. Nair, and Moinuddin K. Qureshi. DEUCE: Write-Efficient Encryption for
Non-Volatile Memories. In Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’15, pages 33–44, New York,
NY, USA, 2015. ACM.

[73] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swanson. Mojim: A Reliable and
Highly-Available Non-Volatile Memory System. In Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’15,
pages 3–18, New York, NY, USA, 2015. ACM.

[74] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. End-
to-end Data Integrity for File Systems: A ZFS Case Study. In Proceedings of the 8th USENIX Con-
ference on File and Storage Technologies, FAST’10, pages 3–3, Berkeley, CA, USA, 2010. USENIX
Association.

[75] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi. Kiln: Closing the Per-
formance Gap Between Systems with and Without Persistence Support. In Proceedings of the 46th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-46, pages 421–432, New
York, NY, USA, 2013. ACM.

[76] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the Disk Bottleneck in the Data Domain Dedu-
plication File System. In Proceedings of the 6th USENIX Conference on File and Storage Technologies,
FAST’08, pages 18:1–18:14, Berkeley, CA, USA, 2008. USENIX Association.

22


	Introduction
	Direct-access NVM & Storage Mgmt
	Data Redundancy for DAX NVM
	DAX NVM Redundancy Challenges
	Solution Design Space and Tradeoffs
	Implications of Lazy Redundancy

	Anon Design and Implementation
	Lazy Checksums and Parity
	Repurposing Dirty Bits
	Implementation

	Evaluation
	YCSB with Redis and MongoDB
	Fio and Key-Value Microbenchmarks
	Cost of Checking/Clearing Dirty Bits
	Anon with Volatile Dirty Bits
	Summary of Results

	Related Work
	Future Work: NVM Controller Managed Dirty Bits
	Conclusion

