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Abstract

TVARAK efficiently implements system-level redundancy for direct-access (DAX) NVM storage. Production storage systems comple-
ment device-level ECC (which covers media errors) with system-checksums and cross-device parity. This system-level redundancy
enables detection of and recovery from data corruption due to device firmware bugs (e.g., reading data from the wrong physical
location). Direct access to NVM penalizes software-only implementations of system-level redundancy, forcing a choice between
lack of data protection or significant performance penalties. Offloading the update and verification of system-level redundancy to
TVARAK, a hardware controller co-located with the last-level cache, enables efficient protection of data from such bugs in mem-
ory controller and NVM DIMM firmware. Simulation-based evaluation with seven data-intensive applications shows TVARAK’s
performance and energy efficiency. For example, TVARAK reduces Redis set-only performance by only 3%, compared to 50%
reduction for a state-of-the-art software-only approach.
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1 Introduction

Non-volatile memory (NVM) storage improves the performance of stateful applications by offering DRAM-
like performance with disk-like durability [7, 8, 16, 19, 74]. Applications that seek to leverage raw NVM
performance eschew conventional file system and block interfaces in favor of direct access (DAX) to NVM.
With DAX, an application maps NVM data into its address space and uses load and store instructions to
access it, eliminating system software overheads from the data path [15, 19, 40, 69, 70].

Production storage systems protect data from various failures. In addition to fail-stop failures like
machine or device crashes, storage systems also need to protect data from silent corruption due to firmware
bugs. Storage device firmware is prone to bugs because of its complexity, and these bugs can cause data
corruption. Such corruption-inducing firmware bugs fall into two broad categories: lost write bugs and
misdirected read or write bugs [10, 11, 31, 52, 65]. Lost write bugs cause the firmware to acknowledge a
write without ever updating the data on the device media. Misdirected read or write bugs cause the firmware
to read or write the data from the wrong location on the device media. Firmware-bug-induced corruption
will go unnoticed even in the presence of device-level ECC, because that ECC is read/written as an atom
with its data during each media access performed by the firmware.

Protection against firmware-bug-induced corruption commonly relies on system-checksums for detec-
tion and cross-device parity for recovery. System-checksums are data checksums that the storage system
computes and verifies at a layer ”above” the device firmware (e.g., the file system), using separate I/O re-
quests than for the corresponding data [10, 52, 75]. Using separate I/O requests for the data and the block
containing its system-checksum (together with system-checksums for other data) reduces the likelihood of
an undetected firmware-bug-induced corruption. This is because a bug is unlikely to affect both in a consis-
tent manner. Thus, the storage system can detect a firmware-bug-induced corruption because of a mismatch
between the two. It can then trigger recovery using the cross-device parity [35, 43, 47, 83]. In this paper, we
use the term redundancy to refer to the combination of system-checksums and cross-device parity.

Production NVM-based storage systems will need such redundancy mechanisms for the same reasons
as conventional storage. NVM device firmware involves increasingly complex functionality, akin to that of
other storage devices, making it susceptible to both lost write and misdirected read/write bugs. However,
most existing NVM storage system designs provide insufficient protection. Although fault-tolerant NVM
file systems [50, 75] efficiently cover data accessed through the file system interfaces, they do not cover
DAX-mapped data. The Pangolin [1] library is an exception, implementing system-checksums and parity for
applications that use its transactional library interface. However, software-only approaches for DAX NVM
redundancy incur significant performance overhead (e.g., 50% slowdown for a Redis set-only workload,
even with Pangolin’s streamlined design).

This paper proposes TVARAK1, a software-managed hardware offload that efficiently maintains redun-
dancy for DAX NVM data. TVARAK co-resides with the last level cache (LLC) controllers and coordinates
with the file system to provide DAX data coverage without application involvement. The file system in-
forms TVARAK when it DAX-maps a file. TVARAK verifies each DAX NVM cache-line read and updates
the redundancy for each DAX NVM cache-line write-back.

TVARAK’s design relies on two key elements to achieve efficient redundancy verification and updates.
First, TVARAK reconciles the mismatch between DAX granularities (typically 64-byte cache lines) and typ-
ical 4KB system-checksum block sizes by introducing cache-line granular system-checksums (only) while
data is DAX-mapped. TVARAK accesses these cache-line granular system-checksums, which are them-
selves packed into cache-line-sized units, via separate NVM accesses. Maintaining these checksums only
for DAX-mapped data limits the resulting space overhead. Second, TVARAK uses caching to reduce the
number of extra NVM accesses for redundancy information. Applications’ data access locality leads to

1TVARAK means accelerator in Hindi.
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reuse of system-checksum and parity cache-lines; TVARAK leverages this reuse with a small dedicated on-
controller cache and configurable LLC partitions for redundancy information.

Simulation-based evaluation with seven applications, each with multiple workloads, demonstrates TVARAK’s
promise of efficient DAX NVM storage redundancy. For Redis, TVARAK incurs only a 3% slowdown for
maintaining redundancy with a set-only workload, in contrast to 50% slowdown with Pangolin’s efficient
software approach, without compromising on coverage or checks. For other applications and workloads,
the results consistently show that TVARAK efficiently updates and verifies system-checksums and parity,
especially in comparison to software-only alternatives. The efficiency benefits are seen in both application
runtimes and energy.

This paper makes three primary contributions. First, it motivates the need for architectural support for
DAX NVM storage redundancy, highlighting the limitations of software-only approaches. Second, it pro-
poses TVARAK, a low-overhead, software-managed hardware offload for DAX NVM storage redundancy. It
describes the challenges for efficient hardware DAX NVM redundancy and how TVARAK overcomes these
challenges with straightforward, effective design. Third, it reports on extensive evaluation of TVARAK’s run-
time, energy, and memory access overheads for seven applications, each under multiple workloads, showing
its efficiency especially in comparison to software-only alternatives.

2 Redundancy Mechanisms and NVM Storage

This section provides background and discusses related work. First, it describes conventional storage redun-
dancy mechanisms for firmware bug resilience. Second, it discusses the need for these mechanisms in NVM
storage systems, the direct-access (DAX) interface to NVM storage, and the challenges in maintaining the
required redundancy with DAX. Third, it discusses related work and where TVARAK fits.

2.1 Redundancy for Firmware Bug Resilience

Production storage systems employ a variety of redundancy mechanisms to address a variety of faults [22,
29, 35, 37, 45, 47, 48, 75, 79, 81]. In this work, we focus on redundancy mechanisms used to detect and
recover from firmware-bug-induced data corruption (specifically, per-page system-checksums and cross-
device parity).

Firmware-bug-induced data corruption: Large-scale studies of deployed storage systems show that
device firmware bugs sometimes lead to data loss or corruption [10, 11, 31, 52, 65]. Device firmware, like
any software, is prone to bugs because of its complex responsibilities (e.g., address translation, dynamic
re-mapping, wear leveling, block caching, request scheduling) that have increased both in number and com-
plexity over time. Research has even proposed embedding the entire file system functionality [32] and
application-specific functionalities [2, 13, 59, 60, 71] in device firmware. Increasing firmware complexity
increases the propensity for bugs, some of which can trigger data loss or corruption.

Corruption-inducing firmware-bugs can be categorized into two broad categories: lost write bugs and
misdirected read/write bugs. A lost write bug causes the firmware to acknowledge a write without ever
updating the media with the write request’s content. An example scenario that can lead to a lost write is if
a write-back firmware cache ”forgets” that a cached block is dirty. Figure 1(a) illustrates a lost write bug.
It first shows (second stage in the time-line) a correct bug-free write to the block stored in the blue media
location. It then shows a second write to the same block, but this one suffers from a lost write bug—the
firmware acknowledges the write but never updates the blue media location. The subsequent read of the
blue block returns the old data to the application.

A misdirected write or misdirected read bug causes the firmware to store data at or read data from an
incorrect media location, respectively. Figure 2(a) illustrates a misdirected write bug. As before, the first
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(b) The fix: having the higher-level system update and verify system-checksums when writing or reading data, in separate requests
to the device, enables detection of a lost write because of mismatch between the data and the system-checksum.

Figure 1: Lost write bug example. Both sub-figures show a time-line for a storage device with three media locations.
The device is shown in an initial state, and then upon completion of higher-level system’s write or read to data (first, a
successful write, then a ”lost write”, then a read) mapped to the same media location. (a) shows how the higher-level
system can consume incorrect (old) data if it trusts the device to never lose an acknowledged write. (b) shows how the
higher-level system can detect a lost write with system-checksums.

write to the block stored in the blue location is performed correctly by the firmware. For this example, the
second write request shown is for the block stored in the green location. But, it encounters a misdirected
write bug wherein the data is incorrectly written to the blue media location. Notice that a misdirected write
bug not only fails to update the intended block, but also corrupts (incorrectly replaces) the data of the block
it incorrectly updates. In the example, the subsequent read to the the block mapped to the blue location
returns this corrupted data.

Although almost all storage devices maintain error-correcting codes (ECCs) to detect corruption due
to random bit flips [17, 30, 68, 77], these ECCs cannot detect firmware-bug-induced corruption [10, 52].
Device-level ECCs are stored together with the data and computed and verified inline by the same firmware
during the actual media update/access. So, in the case of a lost write, the firmware loses the ECC update
along with the corresponding data update, because the data and ECC are written together on the media as
one operation. Similarly, misdirected writes modify the ECC to match the incorrectly updated data and
misdirected reads retrieve the ECC corresponding to the incorrectly read data.

System-checksums for detection: Production storage systems maintain per-page system-checksums to
detect firmware-bug-induced data corruption. System-checksums are updated and verified at a layer above
the firmware, such as the file system, stored in checksum blocks (each containing checksums for many
blocks) separate from the data, and read and written using I/O requests separate from the corresponding
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(b) The fix: having the higher-level system update and verify system-checksums when writing or reading data, in separate requests
to the device, enables enables detection of a misdirected write because of mismatch between the data and the system-checksum.

Figure 2: Misdirected write bug example. Similar construction to Figure 1, but with the second operation being a
write intended for the green location that is misdirected by the firmware to the blue location.

data I/O requests [22, 37, 45, 75, 79, 81]. Separating the storage and accesses for data from corresponding
system-checksums enables detection of firmware-bug-induced corruption, because such bugs are unlikely to
affect both. The probability of a bug affecting both in a consistent fashion (e.g., losing both or misdirecting
both to another corresponding data and system-checksum pair) is even lower.

Figure 1(b) demonstrates how system-checksums enable detection of lost writes. Although the sec-
ond write to the blue block is lost, the write to the checksum block (stored in the orange location) is not.
Thus, upon the data read in the example, which is paired with a corresponding system-checksum read and
verification, the lost write is detected.

Figure 2(b) illustrates how system-checksums enable detection of misdirected writes. A misdirected
write firmware bug is extremely unlikely to affect both the data write to the green block and the correspond-
ing system-checksum write to the orange block in a consistent manner. To do so, the firmware would have
to incorrectly write the system-checksum to a location (block and the offset within the block) that stores
the checksum for the exact block to which it misdirected the data write. In the illustration, the read of the
blue block data, followed by its system-checksum read, results in a verification failure. Similarly, system-
checksums also trigger a verification failure in case of a misdirected read bug, because a bug is unlikely to
affect the both the data its system-checksum read.

Cross-device parity for recovery: To recover from a detected page corruption, storage systems store
parity pages [29,35,43,47,48,83]. Although parity across arbitrarily selected pages suffice for recovery from
firmware-bug-induced corruption, storage systems often implement cross-device parity that enable recovery
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NVM Storage Redundancy Design Checksum
Granularity

Checksum/Parity Update
for DAX data

Checksum Verification
for DAX data

Performance
Overhead

Nova-Fortis [75], Plexistore [50] Page No updates No verification None
Mojim [80], HotPot [64] Page2 On application data flush Background scrubbing Very High

Pangolin [1] Object On application data flush On NVM to DRAM copy High
Anon [34] Page Periodically Background scrubbing Configurable

TVARAK Page On LLC to NVM write On NVM to LLC read Low

Table 1: Trade-offs among TVARAK and previous DAX NVM storage redundancy designs.

from device failures as well.

2.2 NVM Storage Redundancy and Direct Access (DAX)

Non-volatile memory (NVM) refers to a class of memory technologies that have DRAM-like access latency
and granularity but are also durable like disks [3, 14, 26, 38, 56]. NVM devices have orders of magnitude
lower latency and higher bandwidth than conventional storage devices, thereby improving stateful applica-
tions’ performance [7, 8, 16, 19, 36, 73, 74].

Need for firmware-bug resilience in NVM storage: NVM storage systems will be prone to firmware-
bug-induced data corruption and require corresponding redundancy mechanisms, like conventional storage
systems. NVM firmware is susceptible to corruption-inducing bugs, because it is non-trivial and its com-
plexity can only be expected to increase over time. NVM firmware already provides for address translation,
bad block management, wear leveling, request scheduling, and other conventional firmware responsibili-
ties [53,55,56,63]. Looking forward, its complexity will only increase as more NVM-specific functionality
is embedded into the firmware (e.g., reducing NVM writes and wear [12, 21, 41, 76, 84]) and as the push
towards near-data computation [2, 5, 6, 13, 20, 25, 32, 59, 60, 71, 78] continues.

Direct access NVM storage redundancy challenges: Direct-access (DAX) interface to NVM storage
exposes raw NVM performance to applications [1, 19, 34, 40, 42, 51, 58, 64, 69, 75, 80]. DAX-enabled file
systems map NVM-resident files directly into application address spaces; such direct mapping is possible
because of NVM’s DRAM-like access characteristics. DAX enables applications to access persistent data
with load and store instructions, eliminating system software overheads from the data path.

These characteristics, however, pose challenges for maintaining firmware-bug resiliency mechanisms [34].
First, the lack of interposed system software in the data path makes it difficult to efficiently identify data
reads and writes that should trigger a system-checksum verification and system-checksum/parity updates,
respectively. Second, updating and verifying system-checksums for DAX data incurs high overhead because
of the mismatch between DAX’s fine-grained accesses and the typically large blocks (e.g., 4KB pages) over
which checksums are computed for space efficiency.

2.3 Related Work on DAX NVM Storage Redundancy

Existing proposals for maintaining system-checksums and parity in NVM storage systems compromise
on performance, coverage, and/or programming flexibility for DAX-mapped data. Table 1 summarizes
these trade-offs. Two recent fault-tolerant NVM file systems, Nova-Fortis [75] and Plexistore [50], update
and check redundancy during explicit FS calls but do not update or verify redundancy while data is DAX
mapped. Interposing library-based solutions, such as Mojim [80], HotPot [64], and Pangolin [1], can pro-
tect DAX-mapped data if applications use the given library’s transactional interface for all data accesses
and updates. But, software-based redundancy updates on every data update incur large performance over-
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head. Mojim [80] and HotPot [64] would incur very high overhead because of DAX’s fine-grained writes 2.
Pangolin [1] reduces such overhead by eschewing per-page checksums in favor of per-object checksums,
accepting higher space overhead instead, but still incurs performance overheads do to redundancy up-
dates/verifications in software. Anon [34] reduces the performance overhead, potentially arbitrarily, by
delaying and batching the per-page checksum updates. In doing so, however, Anon reduces the coverage
guarantees by introducing windows of vulnerability wherein data can get corrupted silently.

Most existing redundant NVM storage system designs do not verify DAX application data reads with
the corresponding checksum. As shown in the fourth column of Table 1, some do no verification while data is
DAX-mapped, while others’ designs would only accommodate verifying checksums as part of background
scrubbing. Pangolin does verify the checksums when it reads an object into a DRAM buffer, providing
significantly tighter verifications.

The remainder of this paper describes and evaluates TVARAK, a software-managed hardware controller
that provides in-line redundancy maintenance at low overheads and without programming restrictions based
on required use of a given library’s interface. TVARAK updates the redundancy for every write to the NVM
device and verifies system-checksums for every read from the NVM device.

3 TVARAK Design

TVARAK is a hardware controller that is co-located with the last-level cache (LLC) bank controllers. It coor-
dinates with the file system to protect DAX-mapped data from firmware-bug-induced corruptions. We first
outline the goals of TVARAK. We then start by describing a naive redundancy controller design, and improve
its design to reduce its overheads, leading to TVARAK’s design. We end with TVARAK’s architecture, area
overheads, and walk through examples.

3.1 TVARAK’s Goals and Non-Goals

TVARAK intends to enable the following for DAX-mapped NVM data: (i) detection of firmware-bug induced
data corruption, (ii) recovery from such corruptions. To this end, the file system and TVARAK maintain per-
page system-checksums and cross-DIMM parity with page striping, as shown in Figure 3.

TVARAK’s redundancy mechanisms co-exist with other complementary file system redundancy mech-
anisms that each serve a different purpose. These complementary mechanisms do not protect against
firmware-bug-induced corruptions, and TVARAK does not intend to protect against the failures that these
mechanisms cover. Examples of such complementary redundancy mechanisms include remote replication
for machine failures [22, 29, 35, 48], snapshots for user errors [23, 61, 75, 81], and inline sanity checks for
file system bugs [37].

Although not TVARAK’s primary intent, TVARAK also aids in protecting data from random bit flips
and in recovery from DIMM failures. TVARAK can detect random bit flips because it maintains a checksum
over the data. This coverage is in concert with device-level ECCs [17,30,68] that are designed for detecting
and recovering from random bit flips. TVARAK’s cross-DIMM parity also enables recovery from DIMM
failures. The file system and TVARAK ensure that recovery from a DIMM failure does not use corrupted
data/parity from other DIMMs. To that end, the system-checksum for a page is stored in the same DIMM as
the page, and the file system verifies a page’s data with its system-checksum before using it.

2The original Mojim and HotPot designs do not include checksums, only replication, but their designs extend naturally to
include per-page checksums.
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Figure 3: TVARAK coordinates with the file system to maintain per-page system-checksums and cross-DIMM parity
akin to RAID-5 with page striping.

3.2 Basic Redundancy Controller Design

Figure 4 illustrates a basic redundancy controller design that satisfies the requirements for detecting firmware-
bug induced corruptions, as described in Section 2.1. We refer to this basic design as NAIVE, and will
improve NAIVE’s design to build up to TVARAK. NAIVE resides above the device firmware in the data path
(with the LLC bank controllers). The file system informs NAIVE about physical page ranges of a file when it
DAX-maps the file, along with the corresponding system-checksum pages and the parity scheme. For each
cache-line write-back from the LLC and cache-line read into the LLC, NAIVE performs an address range
matching. NAIVE does not do anything for cache-lines that do not belong to a DAX-mapped regions, as il-
lustrated in the leftmost read/write access in Figure 4. The file system continues to maintain the redundancy
for such data [50, 75].

For DAX-mapped cache-lines, NAIVE updates and verifies redundancy using separate accesses from
the corresponding data. The request in the center of Figure 4 shows a DAX cache-line read. To verify the
read, NAIVE reads the entire page (shown with black arrows), computes the page’s checksum, reads the
page’s system-checksum (shown in olive) and verifies that the two match. The rightmost request in Figure 4
shows a cache-line write. NAIVE reads the old data in the cache-line, the old system-checksum, and the old
parity (illustrated using black, olive and pink, respectively). It then computes the data diff using the old and
the new data and uses that to compute the new system-checksum and parity values3. It then writes the new
data, new system-checksum, and the new parity to NVM. NAIVE’s cross-DIMM parity design and the use
of data diffs to update parity is similar to recently proposed RAIM-5b [83].

NAIVE, and consequently TVARAK, assume that the storage servers are equipped with backup power
to flush CPU caches in case of a power failure. The backup power guarantees that NAIVE and TVARAK

can complete the system-checksum and parity writes corresponding to a data write in case of a power
failure, even if they cache this information, as we will describe later. This backup power could either be
from top-of-the-rack batteries with OS/BIOS support to flush caches, or ADR-like support for caches with
cache-controller managed flushing. Both of these designs are common in production systems [4, 18, 23, 33,
46, 49, 82]. Backup power also eliminates the need for durability-induced cache-line flushes and improves
performance [46,82]. We extend this assumption, and the corresponding performance benefits, to the all the
designs we compare TVARAK to in Section 4.

3We assume that the storage system implements incremental system-checksums that can be updated using the data diffs, e.g.,
CRC.
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Figure 4: Basic Design: NAIVE operates only on DAX-mapped data. For DAX-mapped cache-line reads, NAIVE
reads the entire page to compute the checksum, reads the system-checksum, and verifies that the two match. For
cache-line writes, NAIVE reads the old data, system-checksum, and parity, computes the data diff, uses that to compute
the new system-checksum and parity, and writes them back to NVM.

3.3 Efficient Checksum Verification

Verifying system-checksums in NAIVE incurs a high overhead because it has to read the entire page, as
shown in Figure 4. For typical granularities of 4KB checksum pages and and 64B cache lines, NAIVE reads
65× more cache lines (64 cache-line in a page and one for the checksum). Although a smaller checksum
granularity would reduce the checksum verification overhead, doing so would require dedicating more of
the expensive NVM storage for redundant data. For example, per-cache-line checksums would require 64×
more space than per-page checksums. Indeed, the trend in storage system designs is to move towards larger,
rather than smaller, checksum granularities [39, 67, 72].

We introduce DAX-CL-checksums to reconcile the performance overhead of page-granular checksum
verification with the space overhead of cache-line checksums. Adding DAX-CL-checksums to NAIVE

results in the EV (Efficient Verification) design shown in Figure 5. As the name suggests, DAX-CL-
checksums are cache-line granular checksums that EV maintains only when data is DAX-mapped. The
read request in the middle of Figure 5 illustrates that using DAX-CL-checksums reduces the read amplifi-
cation to only 2× from 65× for NAIVE—EV only needs to read the DAX-CL-checksum in addition to the
data to verify the read. The additional space for DAX-CL-checksums is required only for the fraction of
NVM that is DAX-mapped, in contrast to maintaining cache-line-granular or object-granular checksums for
all NVM data at all times [1].

EV accesses DAX-CL-checksums separately from the corresponding data to ensure that the it continues
to provide protection from firmware-bug-induced corruptions. For DAX-mapped cache-line writes, EV
updates the corresponding DAX-CL-checksum as well, using a similar process as that for system-checksums
and parity (rightmost request in Figure 5).

Managing DAX-CL-checksums is simple because EV uses them only while data is DAX-mapped. In
particular, when recovering from any failure or crash, the file system verifies data integrity using system-
checksums rather than DAX-CL-checksums. Thus the file system and EV can afford to lose DAX-CL-
checksums in case of a failure. When the file system DAX-maps a file, EV requests a buffer space for
DAX-CL-checksums. The file system can allocate this buffer space in either NVM or in DRAM; our im-
plementation stores DAX-CL-checksums in NVM. The file system reclaims this space when it unmaps a
file. Unlike page system-checksums, DAX-CL-checksums need not be stored on the same DIMM as its
corresponding data because they are not used to verify data during recovery from a DIMM failure.
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Figure 5: Efficient Checksum Verification: DAX-CL-checksums eliminate the need to read the entire page for DAX
cache-line read verification. Instead, EV only reads the cache-line and its corresponding DAX-CL-checksum.

3.4 Efficient Checksum and Parity Updates

The rightmost request in Figure 5 shows that EV incurs 4 extra NVM reads and writes for each cache-
line write to update the redundancy. To reduce these NVM accesses, we note that redundancy information
is cache-friendly. Checksums are typically small and multiple checksums fit in one cache line. In our
implementation of 4 byte CRC-32C checksums, one 64 byte cache-line holds 16 checksums. DAX-CL-
checksums for consecutive cache-lines and system-checksums for consecutive physical pages in a DIMM
belong to the same cache-line. Access locality in data leads to reuse of DAX-CL-checksum and system-
checksum cache-lines. Similarly, accesses to logically consecutive pages lead reuse of parity cache-lines
because they belong to the same RAID stripe.

Figure 6 shows EVU (Efficient Verification and Updates) that, in addition to EV, caches the redun-
dancy data, i.e., system-checksums, DAX-CL-checksums, and parity, in a small on-controller cache. EVU
does not cache the corresponding NVM data because the LLC already does that. EVU also uses a parti-
tion of the LLC to increase its cache space for redundancy information (not shown in the figure). Using
a reserved LLC partition for caching redundancy information limits the interference with application data.
EVU can insert up to 3 redundancy cache-lines (checksum, DAX-CL-checksum, and parity) per data cache-
line write-back. If EVU were to share the entire LLC for caching redundancy information, each of these
redundancy cache-lines could force out application data. Reserving a partition for redundancy information
eliminates this possibility because EVU can only evict a redundancy cache-line when inserting a new one.

EVU also eliminates the need to fetch the old data from NVM to compute the data diff. Cache-lines in
the LLC become dirty when they are evicted from the L2. Since the LLC already contains the soon-to-be-old
data value, EVU uses it to compute the data diff and stores this diff in a LLC partition. This enables EVU
to directly use this data diff upon a LLC cache-line write back (shown as maroon arrows from EVU to LLC
in the rightmost request in Figure 6). Upon an eviction from the LLC data diff partition (e.g., to insert a new
data diff), EVU writes-back the corresponding data without evicting it from the LLC, and marks the data
cache-line as clean in the LLC. This ensures that the future eviction of the data cache-line would not require
EVU to read the old data either, while allowing for reuse of the data in the LLC.

EVU’s LLC partitions (for caching redundancy and storing data diffs) are completely decoupled from
the application data partitions. The cache controllers do not lookup application data in EVU’s partitions,
and EVU does not look up redundancy or data diff cache-lines in application data partitions.
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Figure 6: Efficient Checksum and Parity Updates: EVU caches redundancy cache-line in an on-controller cache
and a LLC partition (not shown). EVU also uses a LLC partition to store data diffs, eliminating the need to read the
old data from NVM upon cache-line write-backs.

3.5 Putting it all together with TVARAK

Figure 7 shows TVARAK’s components, which are based on EVU’s design. One TVARAK controller co-
resides with each LLC cache bank. Each TVARAK controller consists of comparators for address range
matching and adders for checksum and parity computations. TVARAK includes a small on-controller cache
for redundancy data and uses LLC way-partitions for caching redundancy data and storing data diffs. The
controllers use MESI coherence protocol for sharing the redundancy cache-lines between their private
caches.

Area Overhead: The on-controller cache dominates TVARAK’s area overhead because its other com-
ponents (comparators and adders) only require small logic units. In our evaluation with 2MB LLC cache
banks, each TVARAK controller consists of a 4KB cache. This implies that TVARAK’s area is only 0.2% of
the LLC. TVARAK’s design of caching redundancy in an LLC partition instead of using its own large cache
keeps TVARAK’s dedicated area overheads low, without compromising on performance (Section 4).

Life of DAX-mapped cache-lines with TVARAK: For a DAX-mapped cache-line read, TVARAK com-
putes the corresponding DAX-CL-checksum address and looks it up in the on-controller cache. Upon a miss,
it looks up the DAX-CL-checksum in the LLC redundancy partition. If it misses in the LLC partition as
well, TVARAK reads the DAX-CL-checksum from NVM and caches it. TVARAK read the data cache-line
from NVM, computes its checksum, and verifies it with the DAX-CL-checksum. If the checksum verifica-
tion succeeds, TVARAK hands over the data to the bank controller. In case of an error, TVARAK raises an
interrupt that traps into the OS; the file system then initiates a recovery using the cross-DIMM parity.

On a DAX-mapped cache-line write, TVARAK computes the corresponding system-checksum, DAX-
CL-checksum, and parity addresses and reads them following the same process as above. TVARAK retrieves
the data diff from the LLC bank partition and uses that to compute the new system-checksum, DAX-CL-
checksum, and parity. TVARAK stores the updated redundancy information in the on-controller cache, and
writes-back the data cache-line to NVM. TVARAK can safely cache the updated redundancy information
because it assumes that servers are equipped with backup power to flush caches to persistence in case of a
power failure (Section 3.2).

TVARAK fills an important gap in NVM storage redundancy with simple architectural changes. We
believe that TVARAK can be easily integrated in storage server chips, specially because integrating NVM
devices into servers already requires changing the on-chip memory controller to support the new DDR-T
protocol [28].
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Figure 7: TVARAK is co-resides with the LLC bank controllers. It includes comparators to identify cache-line that be-
long to DAX-mapped pages and adders to compute checksums and parity. It includes a small on-controller redundancy
cache that is backed by a LLC partition. TVARAK also stores the data diffs to compute checksums and parity.

4 Evaluation

We evaluate TVARAK with 7 applications and with multiple workloads for each application. Table 2 de-
scribes our applications and their workloads. Redis [58], Intel PMDK’s [27] tree-based key-value stores
(C-Tree, B-Tree, and RB-Tree), and N-Store [7] are NVM applications with complex access patterns. We
also use fio [9] to generate synthetic sequential and random access patterns, and stream [66] for sequential
access memory-bandwidth intensive microbenchmarks.

We compare TVARAK with three alternatives: Baseline, TxB-Object-Csums, and TxB-Page-Csums.
Baseline implements no redundancy mechanisms. TxB-Object-Csums and TxB-Page-Csums are software-
only redundancy approaches; TxB-Object-Csums is based on Pangolin [1] and TxB-Page-Csums is based
on Mojim [80] and HotPot [64]. Both TxB-Object-Csums and TxB-Page-Csums update system-checksums
and parity when applications inform the interposing library after completing a write, which is typically at
a transaction boundary (TxB). TxB-Object-Csums maintains system-checksums at an object granularity,
whereas TxB-Page-Csums maintains system-checksums at a page granularity. TxB-Object-Csums does not
need to read the entire page to compute the system-checksum after a write; it computes the new system-
checksum from the new data directly. However, TxB-Object-Csums has higher space overhead because of
object-granular checksums. Neither TxB-Page-Csums nor our TxB-Object-Csums verify the data read by an
application with the corresponding system-checksum; thus, our TxB-Object-Csums should overpredict per-
formance for Pangolin’s approach (which includes read verification). TVARAK updates system-checksums
and parity upon every write-back from the LLC to the NVM, and verifies system-checksums upon every
read from the NVM to the LLC. As mentioned in Section 3.2, we assume battery-backed CPU caches and
none of the designs flush cache-lines for durability.

Methodology: We use zsim [62] to simulate a system similar to Intel Westmere processors [62]. Ta-
ble 3 details our simulation parameters. We simulate 12 OOO cores, each with 32KB private L1 and 256KB
private L2 caches. The cores share a 24MB last level cache (LLC) with 12 banks of 2MB each. The sim-
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Redis Set-only and get-only with 1–6 parallel instances
C-Tree Insert-only, update-only, 50:50 updates:reads, and read-only with 12 parallel instances
B-Tree Insert-only, update-only, 50:50 updates:reads, and read-only with 12 parallel instances

RB-Tree Insert-only, update-only, 50:50 updates:reads, and read-only with 12 parallel instances
Fio Sequential and random reads and writes with 12 threads

Stream 4 memory bandwidth intensive kernels with 12 threads

Table 2: Applications and their workloads.

Cores
12 cores, x86-64 ISA, 2.27 GHz,
Westmere-like OOO [62]

L1-D caches
32KB, 8-way set-associative, 4 cycle latency,
LRU replacement, 15/33 pJ per hit/miss [44]

L1-I caches
32KB, 4-way set-associative, 3 cycle latency,
LRU replacement, 15/33 pJ per hit/miss [44]

L2 caches
256KB, 8-way set-associative, 7 cycle latency,
LRU replacement, 46/94 pJ per hit/miss [44]

L3 cache

24MB (12 2MB banks), 16-way set-associative,
27 cycle latency, shared and inclusive,
MESI coherence, 64B lines
LRU replacement, 240/500 pJ per hit/miss [44]

DRAM 6 DDR DIMMs, 15ns reads/writes

NVM
4 DDR DIMMs, 60ns reads, 150ns writes [38]
1.6/9 nJ per read/write [38]

TVARAK

4KB on-controller cache with 1 cycle latency, 15/33 pJ per hit/miss
2 cycle latency for address range matching
1 cycle per checksum/parity computation and verification,
2 ways (out of 16) reserved for caching redundancy information,
1 way (out of 16) for storing data diffs.

Table 3: Simulation Parameters

ulated system consists of 6 DRAM DIMMs and 4 NVM DIMMs. For NVM DIMMs, we use the latency
and energy parameters derived by Lee et al. [38] (60/150 ns read/write latency, 1.6/9 nJ per read/write). We
evaluate the impact of changing the number of NVM DIMMs and the underlying NVM technology (and the
associated performance characteristics) in Section 4.8. We use a fixed-work methodology and perform the
same amount of application work for each design: baseline, TVARAK, TxB-Object-Csums, and TxB-Page-
Csums. Unless stated otherwise, we present the average of three runs for each data point with root mean
square error bars.

4.1 Key Evaluation Takeaways

We highlight the key takeaways from our results before describing each application’s results in detail.

• TVARAK provides efficient redundancy updates for application data writes, e.g., with only 1.5% over-
head over baseline that provides no redundancy for a insert-only workload with tree-based key-value
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stores (C-Tree, B-Tree, RB-Tree).

• TVARAK verifies all application data reads, unlike most existing solutions, and does so efficiently.
For example, in comparison to baseline that does not verify any reads, TVARAK slows down Redis
get-only workload by only 3%.

• TVARAK benefits from application data access locality because that leads to better cache usage for re-
dundancy information. For example, for synthetic fio benchmarks, TVARAK has negligible overheads
with sequential accesses, but 2% overhead for random reads and 33% for random writes, compared to
baseline.

• TVARAK outperforms existing software-only redundancy mechanisms. For example, for Nstore work-
loads, TxB-Object-Csums is 33–53% slower than TVARAK, and TxB-Page-Csums is 180–390%
slower than TVARAK.

• TVARAK’s efficiency comes without an increase in (dedicated) space requirements. TxB-Object-
Csums outperforms TxB-Page-Csums but at the cost of higher space overhead for per-object check-
sums. TVARAK instead uses DAX-CL-checksums that improve performance without demanding ded-
icated storage.

4.2 Redis

Redis is a widely used single-threaded in-memory key-value store that uses a hashtable as its primary data
structure [57]. We modify Redis (v3.1) to use a persistent memory heap using Intel PMDK’s libpmemobj
library [27], building upon an open-source implementation [58]. We vary the number of Redis instances,
each of which operate independently. We use the redis-benchmark utility to spawn 100 clients that together
generate 1 million requests per Redis instance. We use set-only and get-only workloads. We show the results
only for 6 Redis instances for ease or presentation; the trends are the same for 1–6 Redis instances that we
evaluated.

Figure 8(a) shows the runtime for Redis set-only and get-only workloads. In comparison to base-
line, that maintains no redundancy, TVARAK increases the runtime by only 3% for both the workloads. In
contrast, TxB-Object-Csums typically increases the runtime by 50% and TxB-Page-Csums by 200% over
the baseline for the set-only workload. For get-only workloads, TxB-Object-Csums and TxB-Page-Csums
increase the runtime for by a maximum of 5% and 28% over baseline, respectively. This increase for TxB-
Object-Csums and TxB-Page-Csums, despite them not verifying any application data reads, is because Redis
use libpmemobj transactions for get requests as well; these transactions lead to persistent metadata writes
(e.g., to set the transaction state as started or committed). Redis uses transactions for get requests because
it uses an incremental hashing design wherein it rehashes its hashtable incrementally upon each request.
The incremental rehashing can lead to writes for get requests also. We do not change Redis’ behavior to
eliminate these transactions to suit our get-only workload which wouldn’t actually trigger a rehashing.

Figures 8(b) to 8(d) show the energy, NVM accesses and cache accesses. The energy results are similar
to that for runtime. For the set-only workload, TVARAK performs more NVM accesses than TxB-Object-
Csums because TVARAK does not cache the data or redundancy information in the L1 and L2 caches;
TxB-Object-Csums instead performs more cache accesses. Even though TxB-Page-Csums can and does use
the caches (demonstrated by TxB-Page-Csums’s more than 200× more cache accesses than baseline), it also
requires more NVM accesses because it needs to read the entire page to compute the page-granular system-
checksums. For get-only workloads, TVARAK performs more NVM accesses than both TxB-Object-Csums
and TxB-Page-Csums because it verifies the application data reads with DAX-CL-checksums.
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Figure 8: Runtime, energy, and NVM and cache accesses for various Redis (Figures 8(a) to 8(d)), tree-based key-
value data structures (Figures 8(e) to 8(h)), N-Store (Figures 8(i) to 8(l)), Fio (Figures 8(m) to 8(p)), and Stream
(Figures 8(q) to 8(t)) workloads. We divide NVM accesses into data and redundancy information accesses, and cache
accesses into L1, L2, LLC, and on-TVARAK cache.
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4.3 Key-value Data Structures

We use three persistent memory key-value data structures, namely C-Tree, B-Tree, and RB-Tree, from Intel
PMDK [27]. We use PMDK’s pmembench utility to generate insert-only, update-only, balanced (50:50
updates:reads), and read-only workloads. We stress the NVM usage by using 12 instances of each data-
structure; each instance is driven by a single threaded workload generator. Having 12 independent instances
of single-threaded workloads allows us to remove locks from the data-structures and increase the workload
throughput. We show the results for insert-only and balanced workloads; the trends are the same for other
workloads.

Figures 8(e) to 8(h) show the runtime, energy, and NVM and cache accesses for the different workloads
and data-structures. For the insert-only workload, TVARAK increases the runtime by a maximum of 1.5%
(for RB-Tree) over the baseline while updating the redundancy for all inserted tuples. In contrast, TxB-
Object-Csums and TxB-Page-Csums increase the runtime by 43% and 171% over the baseline, respectively.
For the balanced workload, TVARAK updates the redundancy for tuple updates and also verifies tuple reads
with system-checksums with only 5% increase in runtime over the baseline for C-Tree and B-Tree. TxB-
Object-Csums incurs a 20% increase in runtime over baseline for just updating the redundancy upon tuple
updates; TxB-Page-Csums performs even worse.

4.4 N-Store

N-Store is a NVM-optimized relational DBMS. We use update-heavy (90:10 updates:reads), balanced (50:50
updates:reads) and read-heavy (10:90 updates:reads) YCSB workloads with high skew (90% of transactions
go to 10% of tuples) [7]. We use 4 client threads to drive the workload and perform a total of 800000
transactions. For N-Store, we present results from a single run with no error bars.

Figures 8(i) to 8(l) show runtime and energy, and NVM and cache accesses. TVARAK increases the
runtime by 27% and 41% over the baseline for the read-heavy and update-heavy workloads, respectively.
TVARAK’s overheads are higher with N-Store, than with Redis or key-value structures, because N-Store uses
a linked list based write-ahead log that leads to a random write access pattern for update transactions. Each
update transaction allocates and writes to a linked list node. Because the linked list layout is not sequential
in NVM, TVARAK incurs cache-misses for the redundancy information and performs more NVM accesses.
The random write access pattern also affects TxB-Object-Csums and TxB-Page-Csums, with a 70%–117%
and 264%–600% longer runtime than baseline, respectively. This is because the TxB-Object-Csums and
TxB-Page-Csums also incur misses for for redundancy information in the L1, L2 and LLC caches and have
to perform more NVM accesses for random writes.

4.5 Fio Benchmarks

Fio is a file system benchmarking tool that supports multiple access patterns [9]. We use fio’s libpmem
engine that accesses DAX-mapped NVM file data using load and store instructions. We use sequential
and random read and write workloads with a 64B access granularity. We use 12 concurrent threads with
each thread performing 32MB worth of accesses (reads or writes). Each thread accesses data from a non-
overlapping 512MB region, and no cache-line is accessed twice.

Figures 8(m) to 8(p) show the results for fio. As already discussed above in the context of N-Store,
random access pattern in the application hurt TVARAK because of poor reuse for redundancy cache-lines
with random accesses. This trend is visible for fio as well—whereas TVARAK has essentially the same
runtime as baseline for sequential accesses, TVARAK increases the runtime by 2% and 33% over baseline
for random reads and writes, respectively. However, TVARAK still outperforms TxB-Object-Csums and
TxB-Page-Csums for the write workloads. For read workloads, TxB-Object-Csums and TxB-Page-Csums
have no impact because they do not verify application data reads. For the random write workload, TVARAK
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incurs a higher energy overhead than TxB-Object-Csums. This is because the energy required for additional
NVM accesses that TVARAK generates exceed that required for the additional cache accesses that TxB-
Object-Csums generates.

4.6 Stream Benchmarks

Stream is a memory bandwidth stress tool [66] that is part of the HPC Challenge suite [24]. Stream com-
prises of four sequential access kernels: (i) Copy data from one array to another, (ii) Scale elements from
one array by a constant factor and write them in a second array, (iii) Add elements from two arrays and write
them in a third array, and (iv) Triad which is a combination of Add and Scale: it scales the elements from
one array, adds them to the corresponding elements from the second array, and stores the values in a third
array. We modify stream to store and access data in persistent memory. We use 12 concurrent threads that
operate on non-overlapping regions of the arrays. Each array has a size of 128MB.

Figures 8(q) to 8(t) show the results for the four kernels. The trends are similar to the preceding results.
TVARAK, TxB-Object-Csums, and TxB-Page-Csums increase the runtime by 6%–21%, 700%–1200%, and
1800%–3200% over the baseline, respectively. The absolute value of the overheads are higher for all the
designs because the baseline already saturates the NVM bandwidth, unlike the real-world applications con-
sidered above that consume the data in more complex fashions. The impact of computation complexity is
clear even across the four microbenchmarks: copy is the simplest kernel, followed by scale, add, and triad.
Consequently, the overheads for all the designs are highest for the copy kernel and lowest for the triad kernel.

4.7 Impact of TVARAK’s Design Choices

We break down the impact of TVARAK’s design choices, namely, using DAX-CL-checksum, caching redun-
dancy information, and storing data diff in LLC. We present the results for one workload from each of the
above applications: set-only workload with 6 instances for Redis, insert-only workload for C-Tree, balanced
workload for N-Store, random write workload for fio, and triad kernel for stream.

Figure 9 shows the performance for the naive design, and then adds individual design elements, i.e.,
DAX-CL-checksums, redundancy caching, and storing data diffs in LLC. With all the design elements, we
get the complete TVARAK design. For Redis, C-Tree and stream’s triad kernel, all of TVARAK’s design
choices improve performance. This is the case for B-Tree, RB-Tree, other stream kernels, and fio sequential
access workloads as well (not shown in the figure). For N-Store and fio random write workload, redundancy
caching and storing data diffs in the LLC hurt performance. This is because taking away cache space from
application data creates more NVM accesses than that saved by caching the redundancy data and storing
the data diffs in LLC for N-Store and fio random writes—their random access patterns lead to poor reuse of
redundancy cache-lines.

This evaluation highlights the importance of choosing the LLC partition space that TVARAK uses to
cache redundancy information or to store data diffs. We leave dynamically adapting the partition sizes based
on the workload characteristics for future work. The partition sizes can be adapted either by TVARAK using
set duelling [54], or by the OS by application profiling.

4.8 Sensitivity Analysis

We evaluate the sensitivity of TVARAK to the size of LLC partitions that it can use for caching redundancy
information and storing data diffs. We present the results for one workload from each of the set of appli-
cations, namely, set-only workload with 6 instances for Redis, insert-only workload for C-Tree, balanced
workload for N-Store, random write workload for fio, and triad kernel for stream.

16



Baseline
Naive
 + DAX-CL-Csums

 + Redundancy-Caching
 + Data Diffs in LLC ( = Tvarak)

Re
di

s
Se

t O
nl

y

C-
Tr

ee
In

se
rt 

On
ly

NS
to

re
Ba

la
nc

ed

Fi
o 

Ra
nd

om
W

rit
e

St
re

am
Tr

ia
d

Application Workload

0.0

0.5

1.0

1.5

2.0
No

rm
al

ize
d 

Ru
nt

im
e

2 3 4 25 2

Figure 9: Impact of TVARAK’s Design Choices: We evaluate the impact of TVARAK’s design optimizations with
one workload for each application. We present the results for the naive design and then add optimizations, DAX-CL-
checksums, redundancy caching, and data diffs in LLC. With all the optimizations enabled, we get TVARAK.

Figure 10(a) shows the impact of changing the number of LLC ways (out of 16) that TVARAK can use
for caching redundancy information. Redis and C-Tree are largely unaffected by the redundancy partition
size, with Redis benefitting marginally from reserving 2 ways instead of 1. Stream and fio, being synthetic
memory stressing microbenchmarks, demonstrate that dedicating a larger partition for redundancy caching
improves TVARAK’s performance because of the increased cache space. N-Store is cache-sensitive and
taking away the cache from application data for redundancy hurts its performance.

Figure 10(b) shows the sensitivity of TVARAK to the number of ways reserved for storing data diffs.
As with the sensitivity to redundancy information partition size, changing the data diff partition size has
negligible impact on Redis and C-Tree. For N-Store, increasing the number of ways reserved for storing
data diffs hurts performance because N-Store is cache-sensitive. Stream and fio show an interesting pattern,
increasing the number of data diff ways from 1 to 4 hurts performance, but increasing it to 6 or 8 improves
performance (although the performance remains worse than reserving just 1 way). This is because dedicating
more ways for storing data diffs has two contradicting effect. It reduces the number of write-backs due to
data diff evictions, but it also causes more write-backs because of the reduced cache space for application
data. Their combined effect dictates the overall performance.

We also evaluate the impact of increasing the number of NVM DIMMs and changing the underlying
NVM technology on baseline, TVARAK, TxB-Object-Csums, and TxB-Page-Csums. The relative perfor-
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(b) Sensitivity to number of ways for storing data diffs.

Figure 10: Impact of changing the number of LLC ways (out of 16) that TVARAK can use for caching redundancy
data and for storing data diffs.

mance trends stay the same with both of these changes; we do not show the results here for brevity. As an
example, even with 8 NVM DIMMs or with improved NVM performance by considering battery-backed
DRAM as NVM, TVARAK continues to outperform TxB-Object-Csums and TxB-Page-Csums by orders of
magnitude for the stream microbenchmarks.

5 Conclusion

TVARAK efficiently maintains system-checksums and cross-device parity for DAX NVM storage, address-
ing controller and firmware imperfections expected to arise with NVM as they have with other storage
technologies. As a hardware offload, managed by the storage software, TVARAK does so with minimal
overhead and much more efficiently that software-only approaches. Since system-level redundancy is ex-
pected from production storage, TVARAK is an important step towards the use of DAX NVM as primary
storage.
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Increasing PCM Main Memory Lifetime. In Proceedings of the Conference on Design, Automation
and Test in Europe, DATE ’10, pages 914–919, 3001 Leuven, Belgium, Belgium, 2010. European
Design and Automation Association.

[22] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pages 29–43, New York,
NY, USA, 2003. ACM.

[23] Dave Hitz, James Lau, and Michael Malcolm. File system design for an nfs file server appliance.
In Proceedings of the USENIX Winter 1994 Technical Conference on USENIX Winter 1994 Technical
Conference, WTEC’94, pages 19–19, Berkeley, CA, USA, 1994. USENIX Association.

[24] HPC Challenge Benchmark. https://icl.utk.edu/hpcc/.

[25] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose, and O. Mutlu. Accelerating
pointer chasing in 3d-stacked memory: Challenges, mechanisms, evaluation. In 2016 IEEE 34th
International Conference on Computer Design (ICCD), pages 25–32, Oct 2016.

[26] Intel and Micron Produce Breakthrough Memory Tehcnology. https://newsroom.intel.com/

news-releases/intel-and-micron-produce-breakthrough-memory-technology/.

20

https://icl.utk.edu/hpcc/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/


[27] PMDK: Intel Persistent Memory Development Kit. http://pmem.io.

[28] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman Memaripour, Yun Joon Soh,
Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and Steven Swanson. Basic Performance
Measurements of the Intel Optane DC Persistent Memory Module. CoRR, abs/1903.05714, 2019.

[29] Minwen Ji, Alistair C Veitch, and John Wilkes. Seneca: remote mirroring done write. In USENIX
Annual Technical Conference, General Track, ATC’03, pages 253–268, 2003.

[30] X. Jian and R. Kumar. Adaptive Reliability Chipkill Correct (ARCC). In 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA), pages 270–281, Feb 2013.

[31] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady Kanevsky. Are Disks the Dominant Con-
tributor for Storage Failures?: A Comprehensive Study of Storage Subsystem Failure Characteristics.
Trans. Storage, 4(3):7:1–7:25, November 2008.

[32] Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Yuangang Wang, Jun Xu,
and Gopinath Palani. Designing a True Direct-access File System with DevFS. In Proceedings of the
16th USENIX Conference on File and Storage Technologies, FAST’18, pages 241–255, Berkeley, CA,
USA, 2018. USENIX Association.

[33] Rajat Kateja, Anirudh Badam, Sriram Govindan, Bikash Sharma, and Greg Ganger. Viyojit: Decou-
pling Battery and DRAM Capacities for Battery-Backed DRAM. In Proceedings of the 44th Annual
International Symposium on Computer Architecture, ISCA ’17, pages 613–626, New York, NY, USA,
2017. ACM.

[34] Rajat Kateja, Andy Pavlo, and Greg Ganger. Lazy redundancy for nvm storage: Handing the
performance-reliability tradeoff to applications. Parallel Data Lab Technical Report CMU-PDL-19-
101. https://www.pdl.cmu.edu/PDL-FTP/NVM/CMU-PDL-19-101.pdf.

[35] Kimberly Keeton, Cipriano Santos, Dirk Beyer, Jeffrey Chase, and John Wilkes. Designing for Dis-
asters. In Proceedings of the 3rd USENIX Conference on File and Storage Technologies, FAST’04,
pages 5–5, Berkeley, CA, USA, 2004. USENIX Association.

[36] Hideaki Kimura. FOEDUS: OLTP Engine for a Thousand Cores and NVRAM. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, SIGMOD ’15, pages 691–
706, New York, NY, USA, 2015. ACM.

[37] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and Sumith Makam. High-performance Metadata In-
tegrity Protection in the WAFL Copy-on-write File System. In Proceedings of the 15th Usenix Confer-
ence on File and Storage Technologies, FAST’17, pages 197–211, Berkeley, CA, USA, 2017. USENIX
Association.

[38] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting Phase Change Memory As
a Scalable Dram Alternative. In Proceedings of the 36th Annual International Symposium on Computer
Architecture, ISCA ’09, pages 2–13, New York, NY, USA, 2009. ACM.

[39] LWN: Linux and 4K disk sectors. https://web.archive.org/web/20131005191108/http://

lwn.net/Articles/322777/.

[40] Supporting filesystems in persistent memory. https://lwn.net/Articles/610174/.

21

http://pmem.io
https://www.pdl.cmu.edu/PDL-FTP/NVM/CMU-PDL-19-101.pdf
https://web.archive.org/web/20131005191108/http://lwn.net/Articles/322777/
https://web.archive.org/web/20131005191108/http://lwn.net/Articles/322777/
https://lwn.net/Articles/610174/


[41] Sihang Liu, Korakit Seemakhupt, Gennady Pekhimenko, Aasheesh Kolli, and Samira Khan. Janus:
Optimizing Memory and Storage Support for Non-volatile Memory Systems. In Proceedings of the
46th International Symposium on Computer Architecture, ISCA ’19, pages 143–156, New York, NY,
USA, 2019. ACM.

[42] Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. Persistent Memcached: Bringing
Legacy Code to Byte-addressable Persistent Memory. In Proceedings of the 9th USENIX Conference
on Hot Topics in Storage and File Systems, HotStorage’17, pages 4–4, Berkeley, CA, USA, 2017.
USENIX Association.
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