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ABSTRACT
We consider a parallel computational model, the Parallel Persistent
Memory model, comprised of P processors, each with a fast local

ephemeral memory of limited size, and sharing a large persistent

memory. The model allows for each processor to fault at any time

(with bounded probability), and possibly restart. When a processor

faults, all of its state and local ephemeral memory is lost, but the

persistent memory remains. This model is motivated by upcoming

non-volatile memories that are nearly as fast as existing random

access memory, are accessible at the granularity of cache lines,

and have the capability of surviving power outages. It is further

motivated by the observation that in large parallel systems, failure

of processors and their caches is not unusual.

We present several results for the model, using an approach that

breaks a computation into capsules, each of which can be safely run

multiple times. For the single-processor version we describe how

to simulate any program in the RAM, the external memory model,

or the ideal cache model with an expected constant factor over-

head. For the multiprocessor version we describe how to efficiently

implement a work-stealing scheduler within the model such that

it handles both soft faults, with a processor restarting, and hard

faults, with a processor permanently failing. For any multithreaded

fork-join computation that is race free, write-after-read conflict

free and hasW work, D depth, and C maximum capsule work in

the absence of faults, the scheduler guarantees a time bound on the

model ofO
(
W
PA +

DP
PA

⌈
log

1/(Cf )W
⌉)

in expectation, where P is the

maximum number of processors, PA is the average number, and

f ≤ 1/(2C) is the probability a processor faults between successive

persistent memory accesses. Within the model, and using the pro-

posed methods, we develop efficient algorithms for parallel prefix

sums, merging, sorting, and matrix multiply.
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1 INTRODUCTION
In this paper, we consider a parallel computational model, the Par-
allel Persistent Memory (Parallel-PM) model, that consists of P pro-

cessors, each with a fast local ephemeral memory of limited sizeM ,

and sharing a large slower persistent memory. As in the external

memory model [4, 5], each processor runs a standard instruction set

from its ephemeral memory and has instructions for transferring

blocks of size B to and from the persistent memory. The cost of an

algorithm is calculated based on the number of such transfers. A

key difference, however, is that the model allows for individual pro-

cessors to fault at any time. If a processor faults, all of its processor

state and local ephemeral memory is lost, but the persistent mem-

ory remains. We consider both the case where the processor restarts

(soft faults) and the case where it never restarts (hard faults).

The model is motivated by two complimentary trends. Firstly, it

is motivated by upcoming non-volatile memories that are nearly as

fast as existing random access memory (DRAM), are accessed via

loads and stores at the granularity of cache lines, have large capacity

(more bits per unit area than existing random access memory), and

have the capability of surviving power outages and other failures

without losing data (the memory is non-volatile or persistent). For
example, Intel’s 3D-Xpoint memory technology, currently available

as an SSD, is scheduled to be available as such a random access

memory in 2019. While such memories are expected to be the

pervasive type of memory [50, 52, 56], each processor will still

have a small amount of cache and other fast memory implemented

with traditional volatile memory technologies (SRAM or DRAM).

Secondly, it is motivated by the fact that in current and upcoming

large parallel systems the probability that an individual processor

faults is not negligible, requiring some form of fault tolerance [17].

In this paper, we first consider a single processor version of the

model, the PM model, and give conditions under which programs

are robust against faults. In particular, we identify that breaking a

computation into “capsules” that have no write-after-read conflicts

(writing a location that was read earlier within the same capsule) is

sufficient, when combined with our approach to restarting faulting

capsules from their beginning, due to its idempotent behavior. We

then show that RAM algorithms, external memory algorithms, and

cache-oblivious algorithms [31] can all be implemented asymp-

totically efficiently on the model. This involves a simulation that

breaks the computations into capsules and buffers writes, which

are handled in the next capsule. However, the simulation is likely

not practical. We therefore consider a programming methodology

in which the algorithm designer can identify capsule boundaries,

and ensure that the capsules are free of write-after-read conflicts.

We then consider our multiprocessor counterpart, the Parallel-

PM described above, and consider conditions under which programs

are correct when the processors are interacting through the shared

memory. We identify that if capsules are free of write-after-read
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conflicts and atomic, in a way that we define, then each capsule

acts as if it ran once despite many possible restarts. Furthermore

we identify that a compare-and-swap (CAS) instruction is not safe

in the PM model, but that a compare-and-modify (CAM), which

does not see its result, is safe.

The most significant result in the paper is a work-stealing sched-

uler that can be used on the Parallel-PM. Our scheduler is based on

the scheduler of Arora, Blumofe, and Plaxton (ABP) [5]. The key

challenges in adopting it to handle faults are (i) modifying it so that

it only uses CAMs instead of CASs, (ii) ensuring that each stolen

task gets executed despite faults, (iii) properly handling hard faults,

and (iv) ensuring its efficiency in the presence of soft or hard faults.

Without a CAS, and to avoid blocking, handling faults requires

that processors help the processor that is part way through a steal.

Handling hard faults further requires being able to steal a thread

from a processor that was part way through executing the thread.

Based on the scheduler we show that any race-free, write-after-

read conflict free multithreaded fork-join program with workW ,

depth D, and maximum capsule work C will run in expected time:

O

(
W

PA
+ D

(
P

PA

)⌈
log

1/(Cf )W
⌉)
.

Here P is the maximum number of processors, PA the average

number, and f ≤ 1/(2C) an upper bound on the probability a

processor faults between successive persistent memory accesses.

This bound differs from the ABP result only in the log
1/(Cf )W

factor on the depth term, due to faults along the critical path.

Finally, we present Parallel-PM algorithms for prefix-sums, merg-

ing, sorting, andmatrix multiply that satisfy the required conditions.

The results for prefix-sums, merging, and sorting are work-optimal,

matching lower bounds for the external memory model. Impor-

tantly, these algorithms are only slight modifications from known

parallel I/O efficient algorithms [15]. The main change is ensur-

ing that they write their partial results to a separate location from

where they read them so that they avoid write-after-read conflicts.

Related Work. Because of its importance to future computing,

the computer systems community (including companies such as

Intel and HP) have been hard at work trying to solve the issues

arising when fast nonvolatile memories (such as caches) sit be-

tween the processor and a large persistent memory [10, 11, 19–

21, 23, 28, 30, 32, 33, 36–39, 44–47, 51, 53, 55]. Standard caches

are write-back, meaning that a write to a memory location will

make it only as far as the cache, until at some later point the up-

dated cache line gets flushed out to the persistent memory. Thus,

when a processor crashes, some writes (those still in the cache)

are lost while other writes are not. The above prior work includes

schemes for encapsulating updates to persistent memory in ei-

ther transactions or lock-protected failure atomic sections and using

various forms of (undo, redo, resume) logging to ensure correct

recovery. The intermittent computing community works on the

related problem of small systems that will crash due to power

loss [7, 16, 25, 26, 35, 48, 49, 54]. Lucia and Ransford [48] describe

how faults and restarting lead to errors that will not occur in a

faultless setting. Several of these works [25, 26, 48, 49, 54] break

code into small chunks, referred to as tasks, and work to ensure

progress at that granularity. Avoiding write-after-read conflicts

is often the key step towards ensuring that tasks are idempotent.

Because these works target intermittent computing systems, which

are designed to be small and energy efficient, they do not consider

multithreaded programs, concurrency, or synchronization. In con-

trast to this flurry of recent systems research, there is relatively

little work from the theory/algorithms community aimed at this

setting [27, 40, 41, 52]. David et al. [27] presents concurrent data

structures (e.g., for skip-lists) that avoid the overheads of logging.

Izraelevitz et al. [40, 41] presents efficient techniques for ensuring

that the data in persistent memory captures a consistent cut in the

happens-before graph of the program’s execution, via the explicit

use of instructions that flush cache lines to persistent memory (such

as Intel’s CLFLUSH instruction [38]). Nawab et al. [52] defines peri-
odically persistent data structures, which combine mechanisms for

tracking proper write ordering with a periodic flush of all cache

lines to persistent memory. None of this work defines an algorith-

mic cost model, presents a work-stealing scheduler, or provides the

provable bounds in this paper.

There is a very large body of research on models and algorithms

where processors and/or memory can fault, but to our knowledge,

none of it (other than the works mentioned above) fits the setting

we study with its two classes of memory (local volatile and shared

nonvolatile). Papers focusing on memory faults (e.g., [1, 22, 29]

among a long list of such papers) consider models in which indi-

vidual memory locations can fault. Papers focusing on processor

faults (e.g., [6] among an even longer list of such papers) either do

not consider memory faults or assume that all memory is volatile.

Write-back Caches. Note that while the PM models are defined

using explicit external read and external write instructions, they

are also appropriate for modeling the (write-back) cache setting

described above, as follows. Explicit instructions, such as CLFLUSH,
are used to ensure that an external write indeed writes to the persis-

tent memory. Writes that are intended to be solely in local memory,

on the other hand, could end up being evicted from the cache and

written back to persistent memory. However, for programs that are

race-free and well-formed, as defined in Section 3, our approach

preserves its correctness properties.

2 THE PERSISTENT MEMORY MODEL
Single Processor. We assume a two-layer memory model with

a small fast ephemeral memory of size M (in words) and a large

slower persistent memory of sizeMp ≫ M . The two memories are

partitioned into blocks of B words. Instructions include standard

RAM instructions that work on single words within the processor

registers (a processor has O(1) registers) and ephemeral memory,

as well as two (external) memory transfer instructions: an external
read that transfers a block from persistent memory into ephemeral

memory, and an external write that transfers a block from ephemeral

memory to persistent memory. We assume that the words contain

Θ(logMp ) bits. These assumptions are effectively the same as in

the (M,B) external memory model [2].

We further assume that the processor can fault between any

two instructions,
1
and that after faulting, the processor restarts. On

restart, the ephemeral memory and processor registers can be in an

arbitrary state, but the persistent memory is in the same state as im-

mediately before the fault. To enable forward progress, we assume

1
For simplicity, we assume that individual instructions are atomic.



there is a fixed memory location in the persistent memory referred

to as the restart pointer location, containing a restart pointer. On
restart, the processor loads the restart pointer from the persistent

memory into a register, which we refer to as the base register, and
then loads the location pointed to by the restart pointer (the restart
instruction) and jumps to that location, i.e., sets it as the program

counter. The processor then proceeds as normal. As it executes, the

processor can update the restart pointer to be the current program

counter, at the cost of an external write, in order to limit how far

the processor will fall back on a fault. We refer to this model as the

(single processor) (M,B) persistent memory (PM) model.

The basic model can be parameterized based on the cost of the

various instructions. Throughout this paper, and in the spirit of

the external memory model [2] and the ideal cache model [31], we

assume that external reads and writes take unit cost and all other

instructions have no cost.
2
We further assume that the program is

constant size and that either the program is loaded from persistent

memory into ephemeral memory at restart, or that there is a small

cache for the program itself, which is also lost in the case of a fault.

Thus, faulting and restarting (loading the base register and jumping

to the restart instruction, and fetching the code) takes a constant

number of external memory transfers.

The processor’s computation can be viewed as partitioned into

capsules: each capsule corresponds to a maximally contiguous se-

quence of instructions running on the processor while the restart

pointer location contains the same restart pointer. The last instruc-

tion of every capsule is therefore a write of a new restart pointer.

We refer to writing a new restart pointer as installing a capsule. We

assume that the next instructions after this write, which are at the

start of the next capsule, do exactly the same as a restart does—i.e.,

load the restart pointer into the base pointer, load the start instruc-

tion pointed to by base pointer, and jump to it. The capsule is active
while its restart pointer is installed. Whenever the processor faults,

it will restart using the restart pointer of the active capsule, i.e.,

the capsule will be restarted as it was the first time. We define

the capsule work to be the number of external reads and writes in

the capsule, assuming no faults. Note that, akin to checkpointing,

there is a tension between the desire for high work capsules that

amortize the capsule start/restart overheads and the desire for low

work capsules that lessen the repeated work on restart.

In our analysis, we consider two ways to count the total cost. We

say that the faultless work (or work),W , is the number of external

memory transfers assuming no faults. We say that the total work
(or fault-tolerant work),Wf , is the number of external transfers for

an actual run including all transfers due to having to restart.Wf can

only be definedwith respect to an assumed fault model. In this paper,

for analyzing costs, we assume that the probability of faulting by a

processor between any two consecutive non-zero cost instructions

(i.e., external reads or writes) is bounded by f ≤ 1/2, and that

faults are independent events. We will specify f to ensure that a

maximum work capsule fails with at most constant probability.

We assume throughout the paper that instructions are determin-

istic, i.e., each instruction is a function from the values of registers

2
The results in this paper can be readily extended to a setting (an Asymmetric PM
model) where external writes are more costly than external reads, as in prior work on

algorithms for NVM [8, 9, 12, 13, 18, 42]; for simplicity, we study here the simpler PM

model because such asymmetry is not the focus of this paper.
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Figure 1: The Parallel Persistent Memory Model

and memory locations that it reads to the registers and memory

locations that it writes.

Multiple Processors. The Parallel-PM consists of P processors

each with its own fast local ephemeral memory of sizeM , but shar-

ing a single slower persistent memory of size Mp (see Figure 1).

Each processor works as in the single processor PM, and the pro-

cessors run asynchronously. Any processor can fault between two

of its instructions, and each has its own restart pointer location

in the persistent memory. When a processor faults, the processor

restarts like it would in the single processor case. We refer to this

as a soft fault. We also allow for a hard fault, in which the processor

faults and then never restarts—we say that such a processor is dead.
We assume that other processors can detect when a processor has

hard faulted using a liveness oracle isLive(procId). We allow for

concurrent reads and writes to the shared persistent memory, and

assume that all instructions involving the persistent memory are

sequentially consistent.

The Parallel-PM includes a compare-and-swap (CAS) instruction.

The CAS takes a pointer to a location of aword in persistentmemory

and two values in registers. If the first value equals the value at

the location, it atomically swaps the value at the location and the

value in the second register, and the CAS is successful. Otherwise, no
swap occurs and the CAS is unsuccessful. Even though the persistent
memory is organized in blocks, we assume that the CAS is on a

single word within a block.

The (faultless) workW and the total workWf are as defined

in the sequential model but summed across all processors. The

(faultless) time T (and the fault-tolerant or total time Tf ) is the
maximum faultless work (total work, respectively) done by any

one processor. Without faults, this is effectively the same as the

parallel external memory model [4]. In analyzing correctness, we

allow for arbitrary delays between any two successive instructions

by a processor. However, for our time bounds and our results on

work stealing we make similar assumptions as made in [5]. These

are described in Section 6.

MultithreadedComputations.Our aim is to supportmultithreaded

dynamic parallelism layered on top of the Parallel-PM. We consider

the same form of multithreaded computations as considered by

Arora, Blumofe, and Plaxton (ABP) [5]. In the model, a computa-

tion starts as a single thread. On each step, a thread can run an

instruction, fork a new thread, or join with another thread. Such

a computation can be viewed as a DAG, with an edge between

instructions, a pair of out-edges at a fork, and a pair of in-edges at

a join. As with ABP, we assume that each node in the DAG has out-

degree at most two. In the multithreaded model, the (faultless) work



W is the work summed across all threads in the absence of faults,

and the total workWf is the summed work including faults. In

addition, we define the (faultless) depth D (and the fault-tolerant or
total depth Df ) to be the maximum work (total work, respectively)

along any path in the DAG. The goal of our work-stealing scheduler

(Section 6) is to efficiently map computations in the multithreaded

model into the Parallel-PM.

3 ROBUSTNESS ON A SINGLE PROCESSOR
In this section, we discuss how to run programs on the single pro-

cessor PM model so that they complete the computation properly.

Our goal is to structure the computation and its partitioning into

capsules in a way that is sufficient to ensure correctness regardless

of faults. Specifically, our goal is that each capsule is a sequence of

instructions that will look from an external view like it has been

run exactly once after its completion, regardless of the number of

times it was partially run due to faults and restarts. We say that

a capsule is idempotent if, when it completes, regardless of how

many times it faults and restarts, all modifications to the persistent

memory are consistent with running once from the initial state (i.e.,

the state of the persistent memory, the ephemeral memory, and

the registers at the start of the capsule).

There are various means to guarantee that a capsule is idempo-

tent, and here we consider a natural one. We say that a capsule

has a write-after-read conflict if the first transfer from a block in

persistent memory is a read (called an “exposed” read), and later

there is a write to the same block. Avoiding such a conflict is im-

portant because if a location in the persistent memory is read and

later written, then on restart the capsule would see the new value

instead of the old one. We say a capsule is well-formed if the first

access to each word in the registers or ephemeral memory is a write.

Being well-formed means that a capsule will not read the undefined

values from registers and ephemeral memory after a fault. We say

that a capsule is write-after-read conflict free if it is well-formed and

had no write-after-read conflicts.

Theorem 3.1. With a single processor, all write-after-read conflict
free capsules are idempotent.

Proof. On restarting, the capsule cannot read any persistent

memory written by previous faults on the capsule, because we

restart from the beginning of the capsule and the exposed read lo-

cations are disjoint from the write locations. Moreover, the capsule

cannot read the state of the ephemeral memory because a write is

required before a read (well-formedness). Therefore, the first time a

capsule runs and every time a capsule restarts it has the same visible

state, and because the processor instructions are deterministic, will

repeat exactly the same instructions with the same results. □

An immediate question is whether a standard processing model

such as the RAM can be simulated efficiently on the PM model.

The following theorem, whose proof is in the full version of the

paper [14], shows that the PM can simulate the RAM model with

only constant overheads.

Theorem 3.2. Any RAM computation taking t time can be sim-
ulated on the (O(1),B) PM model with f ≤ 1/c for some constant
c ≥ 2, using O(t) expected total work, for any B (B = 1 is sufficient).

Although the RAM simulation is linear in the number of instruc-

tions, our goal is to create algorithms that require asymptotically

fewer reads and writes to persistent memory. We therefore consider

efficiently simulating external memory algorithms in the model.

Theorem 3.3. Any (M,B) external memory computation with t
external accesses can be simulated on the (O(M),B) PM model with
f ≤ B/(cM) for some constant c ≥ 2, using O(t) expected total work.

Proof. The simulation consists of rounds each of which has a

simulation capsule and a commit capsule. It maps the ephemeral

memory of the source program to part of the ephemeral memory,

and the external memory to the persistent memory. It keeps the reg-

isters in the ephemeral memory, and keeps space for two copies of

the simulated ephemeral memory and the registers in the persistent

memory, which it swaps back and forth between.

The simulation capsule simulates some number of steps of the

source program. It starts by reading in one of the two copies of

the ephemeral memory and registers. Then during the simulation

all instructions are applied within their corresponding memories,

except for writes from the ephemeral memory to the persistent

memory. These writes, instead of being written immediately, are

buffered in the ephemeral memory. This means that all reads from

the external memory have to first check the buffer. The simulation

also maintains a count of the number of reads and writes to the

external memory within a capsule. When this count reachesM/B,
the simulation “closes” the capsule. The closing is done by writing

out the simulated ephemeral memory, the registers, and the write

buffer to persistent memory. For ephemeral memory and registers,

this is the other copy from the one that is read. The capsule finishes

by installing a commit capsule.

The commit capsule reads in the write buffer from the closed

capsule to ephemeral memory, and applies all the writes to their

appropriate locations of the simulated external memory in the

persistent memory. When the commit capsule is done, it installs

the next simulation capsule.

This simulation is write-after-read conflict free because the only

writes during a simulation capsule are to the copy of ephemeral

memory, registers, andwrite buffer. Thewrite buffer has no conflicts

since it is not read, and the ephemeral memory and registers have

no conflicts since they swap back and forth. There are no conflicts

in the commit capsules because they read from write buffer and

write to the simulated external memory. The simulation is therefore

write-after-read conflict free.

To see the claimed time and space bounds, we note that the

ephemeral memory need only be a constant factor bigger than the

simulated ephemeral memory because the write buffer can only

contain M entries. Each round requires only O(M/B) reads and
writes to the persistent memory because the simulating capsules

only need the stored copy of the ephemeral memory, do at most

M/B reads, and then do at most O(M/B) writes to the other stored

copy. The commit capsule does at mostM/B simulated writes, each

requiring a read from and write to the persistent memory. Because

each round simulates M/B reads and writes to external memory

at the cost of O(M/B) reads and writes to persistent memory, the

faultless work across all capsules is bounded by O(t). Because the
probability that a capsule faults is bounded by themaximum capsule

work, O(M/B), when f ≤ B/(cM), there is a constant c such that



the probability of a capsule faulting is less than 1. Since the faults

are independent, the expected total work is a constant factor greater

than the faultless work, giving the stated bounds. □

It is also possible to simulate the ideal cache model [31] in the

PM model. The ideal cache model is similar to the external memory

model, but assumes that the fast memory is managed as a fully

associative cache. It assumes a cache of sizeM is organized in blocks

of size B and has an optimal replacement policy. The ideal cache

model makes it possible to design cache-oblivious algorithms [31].

Due to the following result, whose proof is in the full version of

the paper [14], these algorithms are also efficient in the PM model.

Theorem 3.4. Any (M,B) ideal cache computation with t cache
misses can be simulated on the (O(M),B) PMmodel with f ≤ B/(cM)

for a constant c ≥ 2, using O(t) expected total work.

4 PROGRAMMING FOR ROBUSTNESS
This simulation of the external memory is not completely satisfac-

tory because its overhead, although constant, could be significant.

It can be more convenient and certainly more efficient to program

directly for the model. Here we describe one protocol for this pur-

pose. It can greatly reduce the overhead of using the PM model. It

is also useful in the context of the parallel model.

Our protocol is designed so capsules begin and end at the bound-

aries of certain function calls, whichwe refer to as persistent function
calls. Non-persistent calls are ephemeral. We assume function calls

can be marked as persistent or ephemeral, by the user or possibly

compiler. Once a persistent call is made, the callee will never re-

vert back further than the call itself, and after a return the caller

will never revert back further than the return. All persistent calls

require a constant number of external reads and writes on the call

and on the return. In an ephemeral function call a fault in a callee

can roll back to before the call, and similarly a fault after a return

can roll back to before the return. All ephemeral calls are handled

completely in the ephemeral memory and therefore by themselves

do not require any external reads or writes. In addition to the per-

sistent function call we assume a commit command that forces a

capsule boundary at that point. As with a persistent call, the commit

requires a constant number of external reads and writes.

We assume that all user code between persistent boundaries

is write-after-read conflict free, or otherwise idempotent. This re-

quires a style of programming in which results are copied instead

of overwritten. For sequential programs, this increases the space

requirements of an algorithm by at most a factor of two. Persistent

counters can be implemented by placing a commit between read-

ing the old value and writing the new. In the algorithms that we

describe in Section 7, this style is very natural.

Implementing persistent function calls requires some care with

a standard stack protocol. Here we outline one way to modify a

standard stack discipline to work. We describe how to do this is

some detail using closures [3] in the full paper [14].

The stack is organized in stack frames stored in the persistent

memory. The first location in each stack frame is a pointer to the

first instruction to run, and it is followed by slots for its arguments,

for values returned to it, a pointer to the parent frame, and a pointer

to code to execute for the parent when the function returns. When

making a call, the parent can fill in the frame of the child. In particu-

lar the instruction to start at (in the first location), the arguments, a

pointer to itself, and the instruction to run on return. As in standard

protocols it must also save local variables to its own frame it needs

on return. When making a call, the parent can install a the child

frame as the new capsule.

On return, the child can fill in the result in the parent frame, and

also fill in the instruction to run on return in the first slot of the

parent frame. It can then install the parent frame as the new capsule.

Arguments should not be modified in place since this would not

be write-after-read conflict free. Local variable and return results

that are available when returning from a function call must also

not be modified for the same reason. A commit command can be

implemented by creating a function for the code after the commit,

and calling it. Standard tail-recursion optimizations can then return

directly to the parent of the caller. The main difference of this

calling convention from a standard one is keeping an instruction

pointer with each frame, and ensuring local variables do not have

any write-after-read conflicts. It also means the built in call/ret

instruction on certain architectures likely cannot be used.

Memory allocation can be implemented in various ways in a

write-after-read conflict freemanner. Oneway is for thememory for

a capsule to be allocated starting at a base pointer that is stored in

the closure. Memory is allocated one after the other, using a pointer

kept in local memory (avoiding the need for a write-after-read

conflict to persistent memory in order to update it). In this way, the

allocations are the same addresses in memory each time the capsule

restarts. At the end of the capsule, the final value of the pointer

is stored in the closure for the next capsule. For the Parallel-PM,

each processor allocates from its own pool of persistent memory,

using this approach. In the case where a processor takes over for

a hard-faulting processor, any allocations while the taking-over

processor is executing on behalf of the faulted processor will be

from the pool of the faulted processor.

5 ROBUSTNESS ON MULTIPLE PROCESSORS
With multiple processors our previous definition of idempotent is

inadequate since the other processors can read or write persistent

memory locations while a capsule is running. For example, even

though the final values written by a capsule c might be idempotent,

other processors can observe intermediate values while c is running
and therefore act differently than if c was run just once.We therefore

consider a stronger variant of idempotency that in addition to

requiring that its final effects on memory are if it ran once, requires

that it acts as if it ran atomically. The requirement of atomicity is

not necessary for correctness, but sufficient for what we need and

allows a simple definition. We give an example of how it can be

relaxed at the end of the section.

More formally we consider the history of a computation, which

is an interleaving of the persistent memory instructions from each

of the processors, and which abides by the sequential semantics

of the memory. The history includes the additional instructions

due to faults (i.e., it is a complete trace of instructions that actually

happened). A capsule within a history is invoked at the instruc-

tion it is installed and responds at the instruction that installs the

next capsule on the processor. All instructions of a capsule, and



possibly other instructions from other processors, fall between the

invocation and response.

We say that a capsule in a history is atomically idempotent if

(1) (atomic) all its instructions can be moved in the history to

be adjacent somewhere between its invocation and response

without violating the memory semantics, and

(2) (idempotent) the instructions are idempotent at the spot they

are moved to—i.e., their effect on memory is as if the capsule

ran just once without fault.

As with a single processor, we now consider conditions under

which capsules are ensured to be idempotent, in this case atomically.

Akin to standard definitions of conflict, race, and race free, we say

that two persistent memory instructions on separate processors

conflict if they are on the same block and one is a write. For a

capsule within a history we say that one of its instructions has

a race if it conflicts with another instruction that is between the

invocation and response of that capsule. A capsule in a history is

race free if none of its instructions have a race.

Theorem 5.1. Any capsule that is write-after-read conflict free
and race free in a history is atomically idempotent.

Proof. Because the capsule is race free we can move its in-

structions to be adjacent at any point between the invocation and

response without affecting the memory semantics. Once moved to

that point, the idempotence follows from Theorem 3.1 because the

capsule is write-after-read conflict free. □

This property is useful for user code if one can ensure that the

capsules are race free via synchronization. We use this extensively

in our algorithms. However the requirement of being race free is

insufficient in general because synchronizations themselves require

races. In fact the only way to ensure race freedom throughout a

computation would be to have no processor ever write a location

that another processor ever reads or writes. We therefore consider

some other conditions that are sufficient for atomic idempotence.

Racy Read Capsule. We first consider a racy read capsule, which
reads one location from persistent memory and writes its value to

another location in persistent memory. The capsule can have other

instructions, but none of them can depend on the value that is read.

A racy read capsule is atomically idempotent if all its instructions

except for the read are race free. This is true because we can move

all instructions of the capsule, with possible repeats due to faults,

to the position of the last read. The capsule will then properly

act like the read and write happened just once. Because races are

allowed on the read location, there can be multiple writes by other

processors of different values to the read location, and different

such values can be read anytime the racy read capsule is restarted.

However, because the write location is race free, no other processor

can “witness” these possible writes of different values to the write

location. Thus, the copy capsule is atomically idempotent. A copy

capsule is a useful primitive for copying from a volatile location

that could be written at any point into a processor private location

that will be stable once copied. Then when the processor private

location is used in a future capsule, it will stay the same however

many times the capsule faults and restarts. We make significant use

of this in the work-stealing scheduler.

Racy Write Capsule. We also consider a racy write capsule, for
which the only instruction with a race is a write instruction to

persistent memory, and the instruction races only with either read

instructions or other write instructions, but not both kinds. Such a

capsule can be shown to be atomically idempotent. In the former

case (races only with reads), then in any history, the value in the

write location during the capsule transitions from an old value to

a new value exactly once no matter how many times the capsule

is restarted. Thus, for the purposes of showing atomicity, we can

move all the instructions of the capsule to immediately before the

first read that sees the new value, or to the end of the capsule if

there is no such read. Although the first time the new value is

written (and read by other processors) may be part of a capsule

execution that subsequently faulted, the effect on memory is as if

the capsule ran just once without fault (idempotency). In the latter

case (races only with other writes), then if in the history the racy

write capsule is the last writer before the end of the capsule, we can

move all the instructions of the capsule to the end of the capsule,

otherwise we can move all the instructions to the beginning of the

capsule, satisfying atomicity and idempotency.

Compare-and-Modify (CAM) Instruction. We now consider

idempotency of the CAS instruction. Recall that we assume that

a CAS is part of the machine model. We cannot assume the CAS

is race free because the whole purpose of the operation is to act

atomically in the presence of a race. Unfortunately it seems hard to

efficiently simulate a CAS at the user level when there are faults.

The problem is that a CAS writes two locations, the two that it

swaps. In the standard non-faulty model one is local (a register)

and therefore the CAS involves a single shared memory modifica-

tion and a local register update. Unfortunately in the Parallel-PM

model, the processor could fault immediately before or after the

CAS instruction. On restart the local register is lost and therefore

the information about whether it succeeded is lost. Looking at the

shared location does not help since identical CAS instructions from

other processors might have been applied to the location, and the

capsule cannot distinguish its success from their success.

Instead of using a CAS, here we show how to use a weaker

instruction, a compare-and modify (CAM). A CAM is simply a CAS

for which no subsequent instruction in the capsule reads the local

result (i.e., the swapped value).
3
Furthermore, we restrict the usage

of a CAM. For a capsule within a history we say a writew (including

a CAS or CAM) to persistent memory is non-reverting if no other

conflicting write between w and the capsule’s response changes

the value back to its value before w . We define a CAM capsule as
a capsule that contains one non-reverting CAM and may contain

other write-after-read conflict free and race free instructions.

Theorem 5.2. A CAM capsule is atomically idempotent.

Proof. Assume that the CAM is non-reverting and all other

instructions in the capsule are write-after-read conflict free and race

free. Due to faults the CAM can repeat multiple times, but it can only

succeed in changing the target value at most once. This is because

the CAM is non-reverting so once the target value is changed, it

could not be changed back. Therefore if the CAM ever succeeds, for

the purpose of showing atomicity, in the history we move all the

3
Some CAS instructions in practice return a boolean to indicate success; in such cases,

the boolean cannot be read either.
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void claimOwnership(
int jobId, int style) {

int old = defaults[style];
int new = getProcNum();
int* target = &jobOwners[jobId];
CAM(target, old, new);
currentJob = jobId;

}

void claimOwnership(
int jobId, int style) {

int old = defaults[style];
int new = getProcNum();
int* target = &jobOwners[jobId];
CAM(target, old, new);
currentJob = jobId;

}

Figure 2: CAM Capsule Example. In CAM capsules, earlier
faulting runs of the capsule may perform work that is visi-
ble to the rest of the system.

instructions of the capsule (including the instructions from faulty

runs) to the point of the successful CAM. This does not affect the

memory semantics because none of the other instructions have

races, and any of the other CAMs were unsuccessful and therefore

also have no affect on memory. At the point of the successful CAM

the capsule acts like it ran once because it is write-after-read conflict

free—other than the CAM, which succeeded just once. If the CAM

never succeeds, the capsule is conflict free and race free because

the CAM did not do any writes, so Theorem 5.1 applies. □

The example CAM capsule in Figure 2 shows one of the interest-

ing properties of idempotence: unlike transactions or checkpoint-

ing, earlier runs that faulted can make changes to the memory that

are seen or used by other processes. Similarly, these earlier runs

can affect the results of the successful run, as long as the result is

equivalent to a non-faulty run.

A CAM can be used to implement a form of test-and-set in a

constant number of instructions. In particular, we will assume a

location can either be unset, or the value of a process identifier or
other unique identifier. A process can then use a CAM to condi-

tionally swap such a location from unset to its unique identifier.

The process can then check if it “won” by seeing if its identifier

is in the location. We make heavy use of this in the work-stealing

scheduler to atomically “steal” a job from another queue. It can also

be used at the join point of two threads in fork-join parallelism to

determine who got there last (the one whose CAM from unset was
unsuccessful) and hence needs to run the code after the join.

Racy Multiread Capsule. It is also possible to design capsules

that are idempotent without the requirement of atomicity. By way

of example, we discuss the racy multiread capsule. This capsule
consists of multiple racy read capsules that have been combined

together into a single capsule. Concurrent processes may write to

locations that the capsule is reading between reads, which violates

atomicity. Despite this, a racy multiread capsule is idempotent since

the results of the final successful run of the capsule will overwrite

any results of partial runs. We make use of the snapshot capsule

in the work-stealing scheduler to reduce the number of capsules

required. It is not needed for correctness.

6 WORK STEALING
We show how to implement an efficient version of work stealing

(WS) in the Parallel-PM model. Our results are based on the work-

stealing scheduler of Arora, Blumofe, and Plaxton (ABP) [5] and

therefore work in a multiprogrammed environment where the num-

ber of active processors can change. As in their work, we require

some assumptions about the machine, which we summarize here.

The schedule is a two-level scheduler in which the work-stealing

scheduler, under our control, maps threads to processes, and an ad-

versarial operating system scheduler maps processes to processors.

The OS scheduler can change the number of allocated processors

and which processes are scheduled on those processors during the

computation, perhaps giving processors to other users. The number

of processes and the maximum number of processors used is given

by P . The average number that are allocated to the user is PA.
The quanta for scheduling is at least the time for two scheduling

steps where each step takes a small constant number of instructions.

In our case we cannot guarantee that the quanta is big enough to

capture two steps since the processor could fault. However it is

sufficient to show that with constant probability two scheduling

steps complete within the quanta, which we can show.

The available instruction set contains a yield-to-all instruction.

This instruction tells the OS that it must schedule all other processes

that have not hard faulted before (or at the same time) as the process

that executes the instruction. It is used to ensure that processors

that are doing useful work have preference over ones who run out

of work and need to steal.

Our schedule differs from the ABP scheduler in some crucial

ways since our model allowing processors to fault. First, our sched-

uler cannot use a CAS, for reasons described in Section 5, and

instead must use a CAM. ABP uses a CAS and we see no direct

translation to using a CAM. Second, our scheduler has to handle soft

faults anywhere in either the scheduler or the user program. This

requires some care to maintain idempotence. Third, our scheduler

has to handle hard faults. In particular it has to be able to steal from

a processor that hard faults while it is running a thread. It cannot

restart the thread from scratch, but needs to start from the previous

capsule boundary (a thread can consist of multiple capsules).

Our scheduler is also similar to the ABP scheduler in some cru-

cial ways. In particular it uses a work-stealing double ended work

queue and takes a constant number of instructions for the popTop,

popBottom, and pushBottom functions. This is important in prov-

ing the performance bounds and allows us to leverage much of

their analysis. An important difference in the performance analysis

is that faults can increase both the total work and the total depth.

Because faults can happen anywhere this holds for the user work

and for the scheduler. The expected work is only increased by a con-

stant factor, which is not a serious issue. However, for total depth,

expectations cannot be carried through the maximum implied by

parallel execution. We therefore need to consider high probability

bounds.

6.1 The Scheduler Interface
For handling faults, and in particular hard faults, the interaction

of the scheduler and threads is slightly different from that of ABP.



We assume that when a thread finishes it jumps to the scheduler.4

When a thread forks another thread, it calls a fork function, which
pushes the new thread on the bottom of the work queue and returns

to the calling thread. When the scheduler starts a thread it jumps

to it (actually a capsule representing the code to run for the thread).

Recall that when the thread is done it jumps back to the scheduler.

These are the only interactions of threads and the scheduler—i.e.

jumping to a thread from the scheduler, forking a new thread within

a thread, and jumping back to the scheduler from a thread on com-

pletion. All of these occur at capsule boundaries, but a thread itself

can consist of many capsules. We assume that at a join (synchro-

nization) point of threads whichever one arrives last continues the

code after the join and therefore that thread need not interact with

the scheduler. The other threads that arrive at the join earlier finish

and jump to the scheduler. In our setup, therefore, a thread is never

blocked, assuming the fork function is non-blocking.

6.2 WS-Deque
A work-stealing deque (WS-deque) is a concurrent deque support-

ing a limited interface. Here we used a similar interface to ABP. In

particular the interface supports popTop, pushBottom, and popBot-

tom. Any number of concurrent processors can execute popTop, but

only one process can execute either pushBottom or popBottom. The

idea is only the process owning the deque will work on the bottom.

The deque is linearizable except that popTop can return empty even

if the deque is not-empty. However this can only happen if another

concurrent popTop succeeds with a linearization point when the

popTop is live, i.e., from invocation to response.

We provide an implementation of a idempotent WS-deque in

Figure 3. Our implementation maintains an array of tagged entries

that refer to threads that the processor has either enabled or stolen

while working on the computation. The tag is simply a counter that

is used to avoid the ABA problem [34]. An entry consists of one of

the following states:

• empty: An empty entry is one that has not been associated

with a thread yet. Newly created elements in the array are

initialized to empty.

• local: A local entry refers to a thread that is currently being

run by the processor that owns this WS-Deque. We need to

track local entries to deal with processors that have a hard

fault (i.e., never restart).

• job: A job entry is equivalent to the values found in the orig-

inal implementation of the WS-Deque. It contains a thread

(i.e., a capsule to jump to start the thread).

• taken: A taken entry refers to a thread that has already been

or is in the process of being stolen. It contains a pointer to

the entry that the thief is using to hold the stolen thread,

and the tag of that entry at the time of the steal.

The transition table for the entry states is shown in Figure 4.

In addition to this array of entries, we maintain pointers to the

top and the bottom of the deque, which is a contiguous region of the

array. As new threads are forked by the owner process, new entries

will be added to the bottom of the deque using the pushBottom

function. The bottom pointer will be updated to these new entries.

The top pointer will move down on the deque as threads are stolen.

This implementation does not delete elements at the top of the

4
Note that jumping to a thread is the same as installing a capsule.

1 P = number of procs
2 S = stack size

4 struct procState {
5 union entry = empty
6 | local
7 | job of continuation
8 | taken of ⟨entry*,int ⟩

10 ⟨int ,entry ⟩ stack[S];
11 int top;
12 int bot;
13 int ownerID;

15 inline int getStep(i) { return stack[i].first; }

17 inline void clearBottom () {
18 stack[bot] = ⟨getStep(bot)+1, empty ⟩ ; }

20 void helpPopTop () {
21 int t = top;
22 switch(stack[t]) {
23 case ⟨_, taken(ps,i) ⟩ :
24 // Set thief state.
25 CAM(ps, ⟨i,empty ⟩ , ⟨i+1,local ⟩ );
26 CAM(&top , t, t+1); // Increment top.
27 } }

29 // Steal from current process , if possible.
30 // If a steal happens , location e is set to "local"
31 // & a job is returned. Otherwise NULL is returned.
32 continuation popTop(entry* e, int c) {
33 helpPopTop ();
34 int i = top;
35 ⟨int , entry ⟩ old = stack[i];
36 commit;
37 switch(old) {
38 // No jobs to steal and no ongoing local work.
39 case ⟨j, empty ⟩ : return NULL;
40 // Someone else stole in meantime. Help it.
41 case ⟨j, taken(_) ⟩ :
42 helpPopTop (); return NULL;
43 // Job available , try to steal it with a CAM.
44 case ⟨j, job(f) ⟩ :
45 ⟨int , entry ⟩ new = ⟨j+1, taken(e,c) ⟩ ;
46 CAM(&stack[i], old , new);
47 helpPopTop ();
48 if (stack[i] != new) return NULL;
49 return f;
50 // No jobs to steal , but there is local work.
51 case ⟨j, local ⟩ :
52 // Try to steal local work if process is dead.
53 if (! isLive(ownerID) && stack[i] == old) {
54 commit;
55 ⟨int , entry ⟩ new = ⟨j+1,taken(e,c) ⟩ ;
56 stack[i+1] = ⟨getStep(i+1)+1, empty ⟩ ;
57 CAM(&stack[i], old , new);
58 helpPopTop ();
59 if (stack[i] != new) return NULL;
60 return getActiveCapsule(ownerID );
61 }
62 // Otherwise , return NULL.
63 return NULL;
64 } }

66 void pushBottom(continuation f) {
67 int b = bot;
68 int t1 = getStep(b+1);
69 int t2 = getStep(b);
70 commit;
71 if (stack[b] == ⟨t2, local ⟩ ) {
72 stack[b+1] = ⟨t1+1, local ⟩ ;
73 bot = b + 1;
74 CAM(&stack[b], ⟨t2, local ⟩ , ⟨t2+1, job(f) ⟩
75 } else if (stack[b+1]. second == empty) {
76 states[getProcNum ()]. pushBottom(f);
77 }
78 return;
79 }



80 continuation popBottom () {
81 int b = bot;
82 ⟨int , entry ⟩ old = stack[b-1];
83 commit;
84 if (old == ⟨j, job(f) ⟩ ) {
85 CAM(&stack[b-1], old , ⟨j+1,local ⟩ );
86 if (stack[b-1] == ⟨j+1, local ⟩ ) {
87 bot = b-1;
88 return f;
89 } }
90 // If we fail to grab a job , return NULL.
91 return NULL;
92 }

94 ^ findWork () {
95 // Try to take from local stack first.
96 continuation f = popBottom ();
97 if (f) GOTO(f);
98 // If nothing locally , randomly steal.
99 while (true) {
100 yield ();
101 int victim = rand(P);
102 int i = getStep(bot);
103 continuation g
104 = states[victim ]. popTop (&stack[bot],i);
105 if (g) GOTO(g);
106 }
107 }
108 }

110 procState states[P]; // Stack for each process.

112 // User call to fork.
113 void fork(continuation f) {
114 // Pushes job onto the correct stack.
115 states[getProcNum ()]. pushBottom(f);
116 }

118 // Return to scheduler when any job finishes.
119 ^ scheduler () {
120 // Mark the completion of local thread.
121 states[getProcNum ()]. clearBottom ();
122 // Find work on the correct stack.
123 GOTO(states[getProcNum ()]. findWork ());
124 }

Figure 3: Fault-tolerant WS-Deque Implementation. Jumps
are marked as GOTO and functions that are jumped to and do
not return (technically continuations) are marked with a ˆ.
All CAM instructions occur in separate capsules, similar to
function calls.

New State

Empty Local Job Taken

Old State

Empty - ✓
Local ✓ - ✓ ✓
Job ✓ - ✓

Taken -

Figure 4: Entry state transition diagram

deque, even after steals. This means that we do not need to worry

about entries being deleted in the process of a steal attempt, but

does mean that maintaining P WS-Deques for a computation with

span T∞ requires O(PT∞) storage space.

Our implementation of the WS-Deque maintains a consistent

structure that is useful for proving its correctness and efficiency. The

elements of our WS-Deque are always ordered from the beginning

to the end of the array as follows:

(1) A non-negative number of taken entries. These entries refer to

threads that have been stolen, or possibly in the case of the last

taken entry, to a thread that is in the process of being stolen.

(2) A non-negative number of job entries. These entries refer to

threads that the process has enabled that have not been stolen

or started since their enabling.

(3) Zero, one, or two local entries. If a process has one local entry, it

is the entry that the process is currently working on. Processes

can momentarily have two local entries during the pushBottom

function, before the earlier one is changed to a job. If a process

has zero local entries, that means the process has completed the

execution of its local work and is in the process of acquiring

more work through popBottom or stealing, or it is dead.

(4) A non-negative number of empty entries. These entries are

available to store new threads as they are forked during the

computation.

We can also relate the top and bottom pointers of the WS-Deque

(i.e. the range of the deque) to this array structure. The top pointer

will point to the last taken entry in the array if a steal is in process.

Otherwise, it will point to the first entry after the taken entries.

At the end of a capsule, the bottom pointer will point to the local

entry if it exists, or the first empty entry after the jobs otherwise.

The bottom pointer can also point to the last job in the array or the

earlier local entry during a call to pushBottom.

6.3 Algorithm Overview and Rationale
We now give an overview and rationale of correctness of our work-

stealing scheduler under the Parallel-PM.

Each process is initialized with an empty WS-Deque containing

enough empty entries to complete the computation. The top and

bottom pointers of each WS-Deque are set to the first entry. One

process is assigned the root thread. This process installs the first

capsule of this thread, and sets its first entry to local. All other
processes install the findWork capsule.

Once computation begins, the adversary chooses processes to

schedule according to the rules of the yield instruction described

in ABP, with the additional restriction that dead processes cannot

be scheduled. When a process is scheduled, it continues running

its code. This code may be scheduler code or user code.

If the process is running user code, this continues until the

code calls fork or terminates. Calls to fork result in the newly

enabled thread being pushed onto the bottom of the process’ WS-

Deque. When the user code terminates, the process returns to the

scheduler function.
The scheduler code works to find new threads for the process to

work on. It begins by calling the popBottom function to try and find
a thread on the owner’s WS-Deque. If popBottom finds a thread,

the process works on that thread as described above. Otherwise, the

process begins to make steal attempts using the popTop function
on random victim stacks. In a faultless setting, our work-stealing

scheduler fuctions like that of ABP. We use the additional infor-

mation stored in the WS-Deques and the configuration of capsule

boundaries to provide fault tolerance.

We provide correctness in a setting with soft faults using idempo-

tent capsules. Each capsule in the scheduler is an instance of one of

the capsules discussed in Section 5. This means that processes can

fault and restart without affecting the correctness of the scheduler.



Providing correctness in a setting with hard faults is more chal-

lenging. This requires the scheduler to ensure that work being done

by processes that hard fault is picked up in the same capsule that the

fault ocurred during by exactly one other process. We handle this

by allowing thieves to steal local entries from dead processes. A

process can check whether another process is dead using a liveness

oracle isLive(procId).
The liveness oracle might be constructed by implementing a

counter and a flag for each process. Each process updates its counter

after a constant number of steps (this does not have to be synchro-

nized). If the time since a counter has last updated passes some

threshold, the process is considered dead and its flag is set. If the

process restarts, it can notice that it was marked as dead, clear

its flag, and enter the system with a new empty WS-Deque. Con-

structing such an oracle does not require a global clock or tight

synchronization.

By handling these high level challenges, along with some of the

more subtle challenges that occur when trying to provide exactly-

once semantics in the face of both soft and hard faults, we reach

the following result.

Theorem 6.1. The implementation of work stealing provided in
Figure 3 correctly schedules work according to the specification in
Section 6.

The proof, appearing in the full version of the paper [14], deals

with the many possible code interleavings that arise when consid-

ering combinations of faulting and concurrency. We discuss our

methods for ensuring that work is neither duplicated during capsule

retries after soft faults or dropped due to hard faults. In particu-

lar, we spend considerable time ensuring that recovery from hard

faults during interaction with the bottom of theWS-Deque happens

correctly.

6.4 Time Bounds
We now analyze bounds on runtime based on the work-stealing

scheduler under the assumptions mentioned at the start of the

section (scheduled in fixed quanta, and supporting a yield-to-all

instruction).

As with ABP, we consider the total amount of work done by

a computation, and the depth of the computation, also called the

critical path length. In our case we haveW , the work assuming

no faults, andWf , the work including faults. In algorithm analysis

the user analyzes the first, but in determining the runtime we care

about the second. Similarly we have both D, a depth assuming no

faults, and Df , a depth with faults.

For the time bounds we can leverage the proof of ABP. In partic-

ular as in their algorithm our popTop, popBottom, and pushBottom

functions all take O(1) work without faults. With our deque, op-

erations take expected O(1) work. Also as with their version, our

popTop is unsuccessful (returns Null when there is work) only if

another popTop is successful during the attempt. The one place

where their proof breaks down in our setup is the assumption that

a constant sized quanta can always capture two steal attempts. Be-

cause our processors can fault multiple times, we cannot guarantee

this. However in their proof this is needed to show that for every

P steal attempts, with probability at least 1/4, at least 1/4 of the

non-empty deques are successfully stolen from ([5], Lemma 8). In

our case a constant fraction (1 − O(1) · f )2 of adjacent pairs of

steal attempts will not fault at all and therefore count as a steal

attempt. For analysis we can assume that if either steals in a pair

faults, then the steal is unsuccessful. This gives a similar result, only

with a different constant, i.e., with probability at least 1/4, at least

(1 −O(1) · f )2/4 of the non-empty deques are successfully stolen

from. We note that hard faults affect the average number of active

processors PA. However they otherwise have no asymptotic affect

in our bounds because a hard fault in our scheduler is effectively

the same as forking a thread onto the bottom of a work-queue and

then finishing.

ABP show that their work-stealing scheduler runs in expected

time O(W /PA + DP/PA). To apply their results we need to plug

inWf forW because that is the actual work done, and Df for D
because that is actual depth. While boundingWf to be within a

constant factor ofW is straightforward, bounding Df is trickier

because we cannot sum expectations to get the depth bound (the

depth is a maximum over paths lengths). Instead we show that with

some high probability no capsule faults more than some number

of times l . We then simply multiply the depth by l . By making the

probability sufficiently high, we can pessimistically assume that in

the unlikely even that any capsule faults more than l times then,

the depth is as large as the work. This idea leads to the following

theorem.

Theorem 6.2. Consider any multithreaded computation withW
work,D depth, andC maximum capsule work (all assuming no faults)
for which all capsules are atomically idempotent. On the Parallel-PM
with P processors, PA average number of active processors, and fault
probability bounded by f ≤ 1/(2C), the expected total time Tf for
the computation is

O

(
W

PA
+ D

(
P

PA

)⌈
log

1/(Cf )W
⌉)
.

Proof. We must account for faults in both the computation and

the work-stealing scheduler. The work-stealing scheduler has O(1)
maximum capsule work, which we assume is at mostC . Because we
assume all faults are independent, the probability that a capsule will

run l or more times is upper bounded by (C f )l . Therefore if there
are κ capsules in the computation including the capsules executed

as part of the scheduler, the probability that any one runs more than

l times is upper bounded byκ(C f )l (by the union bound). If wewant

to bound this probability by some ϵ , we haveκ(C f )l ≤ ϵ . Solving for
l and using κ ≤ 2W gives l ≤ ⌈log

1/(Cf )(2W /ϵ)⌉. This means that

with probability at most ϵ , Df ≤ D log
1/(Cf )(2W /ϵ). If we set ϵ =

2/W thenDf ≤ 2D log
1/(Cf )W . Nowwe assume that if any capsule

faults l times or more that the depth of the computation equals the

work. This gives (P/PA)(2/W )W + (1 − 2/W )2D ⌈log
1/(Cf )W ⌉) as

the expected value of the second term of the ABP bound, which is

bounded by O((P/PA)D ⌈log
1/(Cf )W ⌉). Because the expected total

work for the first term isWf ≤ (1/(1−C f ))W , and givenC f ≤ 1/2,

the theorem follows. □

This time bound differs from the ABP bound only in the extra

log
1/(Cf )W factor. If we assume PA is a constant fraction of P then

the expected time simplifies to O(W /P + D ⌈log
1/(Cf )W ⌉).



7 FAULT-TOLERANT ALGORITHMS
In this section, we outline how to implement several algorithms

for the Parallel-PM model. The algorithms are all based on binary

fork-join parallelism (i.e., nested parallelism), and hence fit within

the multithreaded model. We state all results in terms of faultless

work and depth. The results can be used with Theorem 6.2 to derive

bounds on time for the Parallel-PM. Recall that in the Parallel-

PM model, external reads and writes are unit cost, and all other

instructions have no cost (accounting for other instructions would

not be hard). The algorithms that we use are already race-free.

Making themwrite-after-read conflict free simply involves ensuring

that reads and writes are to different locations. All capsules of the

algorithms are therefore atomically idempodent. The base case for

each of our variants of the algorithms is done sequentially within

the ephemeral memory.

Prefix Sum. Given n elements {a1, · · · ,an } and an associative

operator “+”, the prefix sum algorithm computes a list of prefix

sums {p1, · · · ,pn } such that pi =
∑i
j=1 aj . Prefix sum is one of

the most commonly-used building blocks in parallel algorithm

design [43].

We note that the standard prefix sum algorithm [43] works

well in our setting. The algorithm consists of two phases—the up-

sweep phase and the down-sweep phase, both based on divide-and-

conquer. The up-sweep phase bisects the list, computes the sum

of each sublist recursively, adds the two partial sums as the sum

of the overall list, and stores the sum in the persistent memory.

After the up-sweep phase finishes, we run the down-sweep phase

with the same bisection of the list and recursion. Each recursive

call in this phase has a temporary parameter t , which is initiated as

0 for the initial call. Then within each function, we pass t to the left
recursive call and t + LeftSum for the right recursive call, where

LeftSum is the sum of the left sublist computed from the up-sweep

phase. In both sweeps the recursion stops when the sublist has no

more than B elements, and we sequentially process it using O(1)
memory transfers. For the base case in the down-sweep phase, we

set the first element pi to be t + ai , and then sequentially compute

the rest of the prefix sums for this block. The correctness of pi
follows from how t is computed along the path to ai .

This algorithm fits the Parallel-PM model in a straightforward

manner. We can place the body of each function call (without the

recursive calls) in an individual capsule. In the up-sweep phase, a

capsule reads from two memory locations and stores the sum back

to another location. In the down-sweep phase, it reads from at most

one memory location, updates t , and passes t to the recursive calls.

Defining capsules in this way provides write-after-read conflict-

freedom and limits the maximum capsule work to a constant.

Theorem 7.1. The prefix sum of an array of sizen can be computed
in O(n/B) work, O(logn) depth, and O(1) maximum capsule work,
using only atomically-idempotent capsules.

Merging.Amerging algorithm takes the input of two sorted arrays

A and B of size lA and lB (lA + lB = n), and returns a sorted array

containing the elements in both input lists. We use an algorithm

on the Parallel-PM model based on the classic divide-and-conquer

algorithm [15].

The first step of the algorithm is to allocate the output array

of sizen. Then the algorithm conducts dual binary searches of the ar-

rays in parallel to find the elements ranked {n2/3, 2n2/3, 3n2/3, . . . , (n1/3−

1)n2/3} among the set of keys from both arrays, and recurses on

each pair of subarrays until the base case when there are no more

than B elements left (and we switch to a sequential version). We

put each of the binary searches into a capsule, as well as each base

case. These capsules are write-after-read conflict free because the

output of each capsule is written to a different subarray. Based on

the analysis in [15] we have the following theorem.

Theorem 7.2. Merging two sorted arrays of overall size n can be
done inO(n/B)work,O(logn) depth, andO(logn)maximum capsule
work, using only atomically-idempotent capsules.

Sorting. Using the merging algorithm in Section 7, we can im-

plement a fault-tolerant mergesort with O((n/B) log(n/M)) work

and maximum capsule work O(logn). However, this is not opti-
mal. We now outline a samplesort algorithm with improved work

O(n/B · logM n), based on the algorithm in [15].

The sorting algorithm first splits the set of elements into

√
n

subarrays of size

√
n and recursively sorts each of the subarrays.

The recursion terminates when the subarray size is less thanM , and

the algorithm then sequentially sorts within a single capsule. Then

the algorithm samples every logn’th element from each subarray.

These samples are sorted using mergesort, and

√
n pivots are picked

from the result using a fixed stride. The next step is to merge

each

√
n-size subarray with the sorted pivots to determine bucket

boundaries within each subarray. Once the subarrays have been

split, prefix sums and matrix transposes are used to determine the

location in the buckets where each segment of the subarray is to be

sent. After that, the keys need to be moved to the buckets, using a

bucket transpose algorithm. We can use our prefix sum algorithm

and the divide-and-conquer bucket transpose algorithm from [15],

where the base case is a matrix of size less than M , and in the

base case the transpose is done sequentially within a single capsule

(note that this assumesM > B2 to be efficient). The last step is to

recursively sort the elements within each bucket. All steps can be

made write-after-read conflict free by writing to locations separate

than those being read. By applying the analysis in [15] with the

change that the base cases (for the recursive sort and the transpose)

are when the size fits in the ephemeral memory, and that the base

case is done sequentially, we obtain the following theorem.

Theorem 7.3. Sorting n elements can be done in O(n/B · logM n)
work,O((M/B+logn) logM n) depth, andO(M/B)maximum capsule
work, using only atomically-idempotent capsules.

It is possible that the logn term in the depth could be reduced

using a sort by Cole and Ramachandran [24].

Matrix Multiplication. Due to space constraints, our Parallel-PM
algorithm for matrix multiply is given in the full version of this

paper [14], and here we only introduce our result.

Theorem 7.4. Multiplying two square matrices of size n can be
done in O(n3/(B

√
M)) work, O(M/B + log

2 n) depth, and O(M/B)
maximum capsule work, using only atomically-idempotent capsules.

The algorithm is a slight modification of the classic 8-way divide-

and conquer approach [31]. The computation is made race-free by

setting correct capsule boundaries.



8 CONCLUSION
In this paper, we describe the Parallel Persistent Memory model,

which characterizes faults as loss of data in individual processors

and their associated volatile memory. For this paper, we consider

an external memory model view of algorithm cost, but the model

could easily be adapted to support other traditional cost models.

We also provide a general strategy for designing programs based

on capsules that perform properly when faults occur. We specify

a condition of being atomically idempotent that is sufficient for

correctness, and provide examples of atomic idempotent capsules

that can be used to generate more complex programs. We use these

capsules to build a work-stealing scheduler that can run programs

in a parallel system while tolerating both hard and soft faults with

only a modest increase in the total cost of the computation. We

also provide several algorithms designed to support fault tolerance

using our capsule methodology. We believe that the techniques

in this paper can provide a practical way to provide the desirable

quality of fault tolerance without requiring significant changes to

hardware or software.
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