ATLAS: A Scalable and High-Performance Scheduling Algorithm
for Multiple Memory Controllers

Yoongu Kim Dongsu Han Onur Mutlu Mor Harchol-Balter

Carnegie Mellon University

Abstract

cores and main memory that prioritizes and schedules memery
quests. Cutting-edge processors [21, 2, 20, 54] employipleilt

Modern chip multiprocessor (CMP) systems employ multiple memory controllers each of which controls a different mortichan-

memory controllers to control access to main memory. Sdiedul-

ing algorithmemployed by these memory controllers has a signifi-

cant effect on system throughput, so choosing an efficiaetsting
algorithm is important. The scheduling algorithm also neéal be
scalable — as the number of cores increases, the number obrgem
controllers shared by the cores should also increase toigeosuf-
ficient bandwidth to feed the cores. Unfortunately, presimemory
scheduling algorithms are inefficient with respect to systierough-
put and/or are designed for a single memory controller anchdb
scale well to multiple memory controllers, requiring sifizant fine-
grained coordination among controllers.

This paper proposes ATLAS (Adaptive per-Thread Least-

Attained-Service memory scheduling), a fundamentally mam-
ory scheduling technique that improves system throughjthbut
requiring significant coordination among memory contradle The
key idea is to periodically order threads based on the sertiry
have attained from the memory controllers so far, and ptizeithose
threads that have attained tHeastservice over others in each pe-
riod. The idea of favoring threads with least-attainedvéee is bor-
rowed from the queueing theory literature, where, in theternof a
single-server queue it is known that least-attained-seraptimally
schedules jobs, assuming a Pareto (or any decreasing haate
workload distribution. After verifying that our workloadisve this
characteristic, we show that our implementation of leas&iaed-
service thread prioritization reduces the time the coresgpstalling
and significantly improves system throughput. Furthermenece
the periods over which we accumulate the attained serviedamy,
the controllers coordinate very infrequently to form thelering of
threads, thereby making ATLAS scalable to many controllers

nel) of main memory. To provide large physical memory space t
each core, each core can access the memory controlled byfany o
the memory controllers. As a result, different cores cottesith
each other in multiple controllers. Ideally, the schedyliigorithm
employed by a memory controller in a multiple-memory-colhér
system should have three properti€y: the MC should maximize
system performance (throughput) without starving any €dii¢ the

MC should be able to communicate with the system software, en
forcing the thread priority structure dictated by the systoftware,
allowing the implementation of the QoS/fairness policigs) the
MC should be scalable to a large number of memory controllers
its implementation should not require significant coortlova and
information exchange between different controllers tovigte high
system performance.

Unfortunately, no previous scheduling algorithm satisfidis
these requirements. Some existing scheduling algoriti6s 30,
45] do not require coordination among multiple controlldrst re-
sult in low system performance (throughput) in multi-coystems.
Other scheduling algorithms [35, 36] provide higher systieraugh-
put and are configurable, but they require significant coatithn
to achieve these benefits when implemented in a multiple-ongm
controller system. As we show in this paper, the best previou
algorithm in terms of system throughput, parallelism-aviatch
scheduling (PAR-BS) [36], is not scalable because it regsignifi-
cant coordination (information exchange) between difiereemory
controllers that may be located far apart on the chip. Coatthn
is important because controllers need to agree on a comisisiek-
ing of threads to ensure threads are serviced in the same iorde
each controller. This is needed to preserve bank-levelllpbsan
of each thread and thereby ensure high system throughpate Si
thread ranking is computed at the beginning of every batcreof
quests (approximately every 2000 cycles), either perathieforma-
tion within each controller needs to Weequentlybroadcast to all

We evaluate ATLAS on a wide variety of multiprogrammed SPECcontrollers, or a global meta-controller needs to be desighat fre-
2006 workloads and systems with 4-32 cores and 1-16 memary co quently gathers thread information from each controllemputes a

trollers, and compare its performance to five previouslyposed
scheduling algorithms. Averaged over 32 workloads on a @#-c
system with 4 controllers, ATLAS improves instruction aigtgout
by 10.8%, and system throughput by 8.4%, compared to PARh8S,
best previous CMP memory scheduling algorithm. ATLAS foper
mance benefit increases as the number of cores increases.

1. Introduction

thread ranking, and broadcasts the ranking to all conteolldeither
option is scalable to a large number of controllers. Ideatsywould
like memory controllers to exchange as little informatierpassible
when scheduling memory requests because coordinatiorsiaddi-
tional hardware complexity and power consumption cospe@ally
in a large scale many-core system with potentially tenginenfs of
memory controllers.

Our goal in this paper is to design a configurable memory
scheduling algorithm that provides the highest systemutinput

is a shared resource among the cores. Memory requests made kﬁﬁ

different cores interfere with each other in the main memsyy-
tem, causing bank/row-buffer/bus conflicts [35] and sezilad) each
core’s otherwise parallel accesses in banks [36]. As thesthrin
the number of cores integrated on-chip far exceeds the briowvetff-
chip pin bandwidth [24], contention for main memory congstto
increase, making main memory bandwidth one of the majotesott
necks in increasing overall system performance. If reguisim
different cores are not properly prioritized in the main nogynsys-
tem, overall system throughput can degrade and some candseca
denied service for long time periods [32].

is end, we develop a fundamentally new approach to memory
scheduling, called ATLAS (Adaptive per-Thread Least-ibal-
Service memory scheduling).

Key ldeas and Basic OperationATLAS is based on two key
principles: Least-Attained-Service (LAS) based thread ranking
maximize system throughput, andang time quantunto provide
scalability. The basic mechanism is as follows. Executimetis di-
vided into long time intervals or periods, callgdanta During each
quantum, controllers keep track of how much service eadathhas
attained from the memory system. At the beginning of a quantu
controllers coordinate to determine a consistent rankintyreads,

The memory controller (MC) is the intermediary between the where threads that have attained the least service from émeony

controllers so far are ranked highest. During the course gqfan-
tum, every controller uses this ranking to prioritize highenked
threads’ requests (i.e. threads that have attained the deadce)
over other requests when making scheduling decisions. dée i
of favoring threads with least-attained-service is bogdvirom the
queueing theory literature, where, in the context of a sirggrver
queue itis known that least-attained-service optimalhesitiles jobs
whose size (service requirement) is unknown, assuming etdar
(or any decreasing hazard rate) workload distribution. eAfteri-
fying that our workloads have these characteristics, wavsthat
our implementation of least-attained-service threadrjtization re-
duces the time the cores spend stalling and significantlydugs
system throughput. Thread ranking also enables ATLAS tairens
each thread’s bank-level parallelism is preserved, thyepebserving
single-thread performance. In addition to high systemuphput,
ATLAS achieves 1) high scalability to a large number of meynor
controllers because long quanta ensure that informationagge be-
tween controllers is very infrequent, 2) starvation-fre@dby using

quest experiences additional delay, thereby increasmgrie spent
by the core stalling. To maximize system performance, mgmor
scheduling algorithms need to minimize the total time cagsnd
stalling by controlling inter-core interference.

Parallelism-aware batch scheduling (PAR-BS) [36] is thetbe
previous CMP memory scheduling algorithm that attempts itd-m
mize the average stall time by scheduling the thread witisitoetest
stall-time first at a given instant during execution. Since #@m-
pare to it extensively, we briefly describe its operation. RPBS
operates using two principles. First, it forms a batch ofuesis
among the outstanding ones in the DRAM request buffers and pr
oritizes that batch over all other requests to prevent atemv. Sec-
ond, when a batch is formed, it forms a ranking of threads dase
on their estimated stall time. The thread with the shortestug
of memory requests (number of memory requests to any bank) is
heuristically considered to be the thread with the shogtsktime
(i.e. the shorter job) and is ranked higher than others. ByiGag
higher-ranked threads first within a batch, PAR-BS aims tart)

thresholding which forces the servicing of a request that has been prove system throughput and 2) preserve the bank-levalipbsm

outstanding for too long.

of each thread, thereby preserving the benefits of laterieyatace

Results Our extensive experimental evaluation shows that AT- techniques. PAR-BS was shown to provide the highest systam p

LAS provides the highest system throughput compared to fige p
vious memory schedulers in both single-controller and iplek
controller systems. Compared to the best previous memabidsd-

formance compared to a wide variety of memory scheduling-alg
rithms using a single memory controller. Unfortunately RPBS's,
as well as several other scheduling algorithms’, scatghidilimited

ing algorithm, PAR-BS, ATLAS improves system throughput by with multiple memory controllers, as we show below.

8.4% on a 24-core system with 4-MCs and by 10.8% on a 32-core

system with 4 MCs for a diverse set of multiprogrammed wakig
We show that ATLAS requires significantly less coordinatlme:
tween memory controllers than PAR-BS and is therefore mome s
able. We describe the reasons for performance and scaldisine-
fits and compare our work extensively (both qualitativeld auan-
titatively) to five previous memory scheduling algorithmsawide
variety of systems with 4-32 cores and 1-16 memory contslle
Contributions We make the following new contributions:

e We show that coordination across multiple memory contrslle
is important to make good scheduling decisions that maxmiz
system performance, and that frequent coordination hinsteal-
ability of memory request scheduling algorithms. We prapos
a novel, scalable, high-performance memory request stihgdu
algorithm that significantly reduces the amount of coortiama
needed between controllers. By monitoring thread behavier

2.2. Need for Coordination between Multiple Mem-
ory Controllers in Previous Schedulers

Modern multi-core systems employ multiple memory conéncll
While previous proposals for memory scheduling algorithmese
focused on reducing inter-thread interference in a sing® Mis
now necessary to do the same for multiple MCs. The key aspatt t
distinguishes a multiple-MC system from a single-MC sysisthe
need for coordination among MCs. Without coordination helsiC
is oblivious of others and prone to make locally greedy salied
decisions that conflict with other MCs’ decisions [33]. Sfieally,
coordination is defined to be the exchange of informationvben
MCs so that they agree upon and make globally beneficiale@uaist
of purely local) scheduling decisions.

Figure 1 illustrates the need for coordination by compathre

|0ng periods of time (quanta)’ our proposed scheme performsperformance of two uncoordinated MCs against two coordihat

well even in the absence of coordination.

e We introduce the concept dkast-Attained-Service (LAS) based
memory request schedulimg maximize system throughput. We
analyze the characteristics of a large number of workloads i

MCs. We assume that the MCs each implement PAR-BS, but later
present analysis for other scheduling algorithms in Secfio For
illustration purposes, we will assume that a thread canicoaicom-
putation only when all of its memory requests are servicéitst,

terms of memory access behavior, and, based on this analyconsider the case where the two MCs are uncoordinated, shown
sis, provide a theoretical basis for why LAS scheduling im- Figure 1 (left). Each controller forms a ranking of threadseéxd

proves system throughput within the context of memory retjue
scheduling.

e We qualitatively and quantitatively compare the ATLAS athe
uler to five previously proposed schedulers and show thawoit p

purely on information about its own DRAM request buffersorfr
the perspective of MCO, Thread 0 and Thread 1 have queuédkeofjt
one and two memory requests, respectively. Therefore rdicepto
the heuristic used by PAR-BS, Thread 0 is deemed to be théeshor

able than the best previously-proposed memory accessidehed
PAR-BS, in that it does not require frequent and large inform
tion exchange between multiple memory controllers.

2. Background and Motivation
2.1. Background on CMP Memory Scheduling

Long-latency memory accesses are a significant performance
iter in modern systems. When an instruction misses in thiddasl

if MCO was the only controller in the system, MCO neglects
that Thread Q’s queue length in MC1 is larger and hence Thoead
is actually the longer job from the viewpoint of the entiremuay
system. As a result, both Thread 0 and Thread 1 experienee thr
bank access latencies until all their memory requests avecsd.

In contrast, if the two MCs were coordinated (i.e. aware &f th
gueue lengths of each thread in each other’s request byff¢0
would realize that Thread 0 has a queue length of 3 requeBt€ih
and therefore no matter what it does, Thread 0 would expegien
three bank access latencies. Therefore, MCO would rankathte

cache and needs to access memory, the processor soon stals o higher and service it first even though it has a larger quengtie

its instruction window becomes full [25, 34]. This probleecomes
more severe when multiple cores/threasisare the memory system.
Since cores’ memory requests interfere with each otheramtam-
ory controllers and DRAM banks/buses/row-buffers, eaale’sae-

lwithout loss of generality, we will assume one core can eleome
thread, and use the terms core and thread interchangeably.

than Thread 0 in MCQ'’s buffers. Doing so reduces Thread &k st
time to two bank access latencies without affecting Threadtall

2For simplicity and to ease understanding, this diagramratist many
details of the DRAM system, such as data bus conflicts andativebuffer.
Our evaluations model the DRAM system faithfully with allsgbank/row-
buffer conflicts, queueing delays, and timing constraints.

Uncoordinated Controllers

MCO MC1
Ti-Req | 4 T0-Req |5 &
T1-Req Tg TO-Req Tg
TO-Req || § TO-Req |! §

BANKO | [BANKL | | | [BANKO | | BANK1 |

MCO [To-Req] T1-Req] T1-Req)

Memory Service
Timeline

MC1 [T0-Req] T0-Req] T0-Req)

Time

STALL
STALL

Time’

Thread Execution To

Timeline M

Figure 1. Conceptual example showing the importance of coor

time, leading to an overall improvement in system perforoeqmas
shown in Figure 1 (right).

The critical observation is that, when the controllers anage
of each others’ state, they can take coordinated actionsdha im-
prove system performanciowever, coordination does not come for
free. There are two ways to achieve coordination: 1) a ckzrech
meta-controller can collect information from all contes, deter-
mine a thread ranking, and broadcast this ranking to allroets,
2) each controller sends its information to every other e, and
each controller independently computes the same rankisgdban
this information. In either caséor the scheduling algorithm to be
scalable to tens/hundreds of controllers, it is preferableommuni-
cate a small amount of information, as infrequently as pgaedbe-
tween the controllerslf communication is frequent, the pressure on
the links connecting the controllers increases and othéfiameed-
ing these links can be delayed. Furthermore, the on-chiwarkt
may be unable to provide latency guarantees to supportérecax-
change of information. This particularly pertains to caskere MCs
are placed far apart on the die and the on-chip network distbe-
tween them are large [1].

For example, in PAR-BS, at the end of every batch, each con-

troller needs to send two pieces of its local information ithex a
centralized meta-controller or to every other controlésach thread’s

1) maximum number of requests to any bank, 2) total number of

requests. WithV threads and\/ controllers, the amount of infor-
mation to be sent to a centralized meta-controller (and theuat
of information the meta-controller sends back) is on theepraf
O(N - M). All this information needs to be transmitted via the on-
chip network, which requires time. Since batches are veoytgthe
average batch length is 2000 cycles) and their length ddehaoge
significantly as N and M increases, PAR-BS quickly becomesain
able as N and M increases: the time it takes to communicate-inf
mation between controllers to determine the ranking quiskarts
exceeding the length of the batch for which the ranking neede
computed, leading to an ineffective algorithm.

Our goal in this work is to fundamentally re-design the memory
scheduling algorithm such that it provides high systemubhput
yet requires little or no coordination among controllerd #merefore
scales well to multiple-memory-controller systems.

2.3. Background on the Pareto Distribution and
LAS

Many empirical measurements of computer workloads have

found that the service requirements of jobs follow a Paréstrie

Coordinated Controllers

MCO MC1
T0-Req | A8 T0-Req |5 &
T1-Req T§ TO-Req Tg
Ti-Req| '3 TO-Req |! §

BANKO | [BANK1 | | | [BANKO | [BANK1 |

Mco [T1-Reg| Ti-Req| T0-Req]

Memory Service
Timeline

MC1 { T0-Reg] TO-Req| TO-Req]
Time
Thread Execution 0 STALL
Timeline -

cycle

Time

dinating the actions of multiple memory controllers

bution. Examples include Unix process lifetimes [16], siné&files
transferred through the Web [9, 10], sizes of files storednixUile
systems [23], durations of FTP transfers in the Internei,[48d
CPU requirements for supercomputing jobs [48].
Mathematically, a Pareto distribution with parametés defined
by:
Probability{Job size> x} = k-2~

wherek, a > 0 are constants. Practically, a Pareto distribution has
3 important characteristics [15[i) very high (or infinite) variability,

(ii) the heavy-tailed property (also known as “mice and eleiant
whereby just 1% of the largest jobs (the elephants) compeatfehe
total load, andiii) decreasing hazard rat§DHR), which roughly
states that the longer a job has run so far, the longer it iscieg to
run. Thus, if a job has run for a short time so far, then it iseetpd to
end soon, but the longer the job runs without completing)dhger

it is expected to continue running. It is this DHR propertgttis
exploited by LAS scheduling.

It is well-known that scheduling to favor jobs which will cem
plete soonest — Shortest-Remaining-Processing-Time TpRAs
optimal for minimizing latency [47] since it minimizes thember
of jobs in the system. However in many situations, includimaf in
this paper, the job’s size (service requirement) is not kmewpri-
ori. Fortunately, if the job sizes follow a distribution WiDHR,
then favoring those jobs which have received the leastseso far
is equivalent to favoring jobs which are expected to conepdsion-
est. The Least-Attained-Service (LAS) scheduling polidgnitizes
those jobs which have attained the least service so far. kAfBav-
ably optimal under job size distributions with DHR, and uakum
job sizes [44]. The LAS policy has been applied in variousirsgs,
most notably flow scheduling, where the flow duration is nakn
a priori, but prioritizing towards flows which have transted the
fewest packets so far ends up favoring short flows (via the PHIR-
erty of flow durations) [42, 5, 49].

3. Mechanism

This section builds step-by-step the basic ideas and rothoat
are used to arrive at the ATLAS scheduling algorithm, whiafisies
our goals of high system throughput with little coordinativeeded
between the controllers. Section 3.1 provides the finalltiegual-
gorithm and describes its qualitative properties.

Motivating Ideas During its life cycle, a thread alternates be-
tween two episodes as shown in Figure 2omBmory episodavhere

the thread is waiting for at least one memory reqde®tcompute

Pareto distribution is obvious from the linear fit on the log-scale.

episodewhere there are no memory requests by the thread. Instruc-Note that theR? value is very high, indicating that the Pareto distri-

tion throughput (Instructions Per Cycle) is high during toenpute
episode, but low during the memory episode. When a threadl is i
its memory episode, it is waiting for at least one memory exfjto

be serviced and, as mentioned previously, is likely to bkestade-
grading core utilization. Therefore, to maximize systenotighput,
our goal in designing a scalable memory scheduling algamiib to
minimize the time threads spend in their memory episodes.

2
o0
c 3
28
iz
3E
[
£
Time
[[Memory episode I Compute episode I I

Figure 2. Memory vs. compute episodes in a thread’s executio ntime

Shortest-Remaining-Memory-Episode SchedulingTo mini-
mize the time threads spend in memory episodes, we want 1o pri
oritize the thread whose memory episode will end soonestprBy
oritizing any other thread in the memory controller (i.eneavhose
memory episode will end later), or by prioritizing none, thiteads
experience prolonged memory episodes and contribute itteytb
overall system throughput. Prioritizing the thread whosenmary
episode will complete soonest is reminiscent of SRPT (8kbrt
Remaining-Processing-Time) scheduling, which is proyaptimal
for job scheduling in a single-server queue, see Sectian 2.3

How to Predict Which Memaory Episode will End SoonestUn-
fortunately, the MC does not know which thread’s memory egés
will end soonest. The lengths of memory episodes are not know
a priori and are hard to predict because a thread may iitieile
a few outstanding memory requests, but may continuouslgrgés
more requests as soon as some are serviced and, eventuallgut
to have a very long memory episode. But, what the MC does kaow i
the attained service of an episoddtained servicés defined as the
total amount of memory service (in cycles) that a memoryaztgs
has received since it started, see Figure 3.

@
@
o O
£ 3
g
3E
[
£
i Time
()| Memonyepisode | Compute episode |]
Attained Remaining

service service

Figure 3. Attained service versus remaining service within
episode, viewed at time T

a memory

Thekey pointhat we exploit is that thattainedservice of a mem-
ory episode is an excellent predictor of tkenaining length (service)
of the memory episodé,the memory episode lengths follow a distri-
bution with decreasing hazard rate (DHF9pecifically, as explained
in Section 2.3, under DHR, the longer the attained servigegiven
memory episode, the longer its expected remaining servitéev
Thus, under DHR, favoring episodes with least attainedee(LAS
scheduling) will result in favoring memory episodes whicii end
soonest.

bution is indeed a good fit. We found that 26 of the 29 SPEC 2006
benchmarks have Pareto-distributed memory episode length

Because of the DHR property of episode lengths, maximal
throughput is achieved by a LAS policy which favors thosed#uls
with smallest attained memory episode time.

Taking Long-Term Thread Behavior into Account Favoring
threads whose memory episodes will end soonest will cdytaiax-
imize system throughput in the short term. However it does no
takelonger-termthread behavior into account. The issue is that a
thread does not consist of a single memory-plus-compute clpat
rather many cycles, and different threads can have diffdoemg-
term memoryintensities where the intensity denotes the long-run
fraction of time spent in memory episodes. Consider an el@mp
where two threads, A and B, of differing memory-intensityg ahar-
ing the memory. Thread A is a highigemory-intensivéhread with
many short memory episodes and even shorter compute episode
between the memory episodes. On the other hand, Thread Biyav
memory non-intensiv@read that has a few longer memory episodes,
with very long compute episodes in between. If we perfornied s
ple LAS scheduling, Thread A would be prioritized and wowddch
its compute episode faster. However, since its comput@éeis so
short, soon afterwards it would go back to stalling in anothemory
episode, thereby hindering system throughput. On the dtaed,
if the memory scheduler prioritizes Thread B’s episode,e@ldrB
would reach its very long compute episode faster and afteiwia
would not compete with Thread A in memory for a long time. Henc
itis clear that one would like to service Thread B first beeadsing
so would result in very long stretches of compute episoddss i§
in contrast to the short-term optimizations made by pesage LAS
scheduling.

To take into account both short-term and long-term optitrozs,
we generalize the notion of LAS to include a larger time ivéthan
just a single episode. The ATLAS (Adaptive per-Thread LA®nm
ory controller divides time into large but fixed-length intals called
quanta During each quantum, the memory controller tracks each
thread’s total attained service for that quantum. At theirg@gg of
the next quantum, the memory controltanksthe threads based on
their attained service in the past, weighting the attaireise in
the recent past quanta more heavily than the attained sdarvalder
quanta. Specifically, for any given thread, we define:

Total AS; = aTotal AS;—1 + (1 —) AS; Q)

AS;: Attained service during quantum i alone (reset at the bemig of a quantum)
Total AS,;: Total attained service summed over all quanta up to the drghantum i
(reset at a context switch)

Herea is a paramete® < a < 1, where lowera indicates a
stronger bias towards the most recent quantum. We genersdly
a = 0.875, but evaluate the effect of differentin Section 7.3.

During the course of quantumt 1, the controller uses the above
thread ranking based dfiotal AS;, favoring threads with lower
Total AS;, that is lower total attained service. Observe that when
using thread-based attained service, the memory-intefi$ivead A
gets served a lot at the beginning, since Thread B is idle. édew
once Thread B starts a memory episode, Thread B has the latvest
tained service, since Thread A has at this point alreadyraatated
a lot of service. In fact, Thread B is able to complete its mgmo
episode, entering a long compute episode, before Threaddhid-

Fortunately, our measurements show that memory episode!€d again.

lengths indeed follow a distribution with DHR, namely a Rare
distribution. We collected statistics on memory episodegihs
across tens of SPEC 2006 workloads and found that memorydepis
lengths consistently follow a Pareto (DHR) distributionigire 4
shows the distribution of memory episode lengths for thegge-
sentative SPEC 2006 applications, soplex, bzip2, and lgalcThe

3There may be multiple outstanding requests by a thread dtrestase
of techniques that exploit memory-level parallelism, sastout-of-order ex-
ecution, runahead execution, and non-blocking caches.

Multiple Memory Controllers When there are multiple mem-
ory controllers, the attained service of a thread is the sfithe
individual service it has received from each MC. As a restlthe
beginning of a new quantum, each MC needs to coordinate witr o
MCs to determine a consistent thread ranking across all N\0©s-
trollers achieve this coordination by sending the locaintd ser-
vice of each thread to a centralized agent in the on-chiporitihat
computes the global attained service of each thread, forrasla
ing based on least-attained-service, and broadcastsrtkimgsback
to each controller. Since the quantum is relatively longdasion-

°©
©

P
o

r {Mem. episode length > z}
W

!
A

A A
= _ <= =
% 10" % 10"
k= 2z
5})
= - < =
z 107 5107
a2, 2
))
£ 10° £ 10°
= o
& 10" %107

2 4 6 8 2 3
10

=
o

10 10

z (cycles)

(a) 450.soplex

strated in our experimental results, Section 7.3), coetr®heed to
coordinate very infrequently, making the approach scalabl

More Advantages of LAS-Based Thread Rankind_AS-based
thread ranking provides two major benefits. First, as erplai
above, it maximizes system throughput within a quantum hyi-mi
mizing the time spent in memory episodes. Second, it ensheds
a thread’s concurrent requests are serviced in paralldlamtem-
ory banks instead of being serialized due to inter-thretatfigrence,
thereby preserving the bank-level parallelism of eachatthri36].
It is important to note that thread ranking does not implyt tie
memory requests of a lower-ranked thread are serviced dtdy a
those of higher-ranked threads have all been serviced. divark

ranked thread has a request to a bank where there are no-higher 5:

ranked thread’s requests, then the lower-ranked threadisest is
scheduled.

Guaranteeing Starvation FreedomSince the thread that was
serviced least in the past is assigned the highest rankimtgdmext
guantum, ATLAS ensures that no thread is left behind for tow|
However, this non-starvation guarantee can take a whilake &f-
fect because the rankings are not updated very frequermtigrovide
a stricter non-starvation guarantee, ATLAS uessholding when
a memory request has not been servicedlfaycles after entering
the memory controller, it is prioritized over all requestdle em-
pirically find that a threshold value & = 100K cycles provides
a reasonable non-starvation guarantee while retaininy sygtem
throughput (Section 7.3).

3.1. Putting It All Together: The ATLAS Algorithm

Rule 1 summarizes the ATLAS scheduling algorithm by showing
the request prioritization rules employed by each memonyrodier
when scheduling requests. Each controller maximizes sypter-
formance (via least-attained-service scheduling andogtiud row-
buffer locality) and prevents starvation (via threshojdand updat-
ing attained service values at the end of each quantum).

Rule 2 describes the actions taken by controllers at the &énd o
each quantum to determine a consistent LAS-based rankinggm
all threads. Note that each controller keeps only the ASevalihe
last quantum for each hardware thread. The meta-contikdieps
the TotalAS value for each thread and performs the computati
shown in Equation 1.

Rule 1 ATLAS: Request prioritization in each memory controller

1: TH—Over-threshold-requests-first: Requests that have been
outstanding for more than T cycles in the memory controlier a
prioritized over all others (to prevent starvation for agdime).

. LAS—Higher-LAS-rank-thread-first: Requests from threads
with higher LAS-based-rank are prioritized over requestenf
threads with lower LAS-based rank (to maximize system perfo
mance and preserve per-thread bank-level parallelism).

. RH—Row-hit-first: Row-hit requests are prioritized over row-
conflict/closed requests (to exploit row buffer locality).

. FCFS—Oldest-first: Older requests are prioritized over
younger requests.

10*
z (cycles)

(b) 401.bzip2
Figure 4. Pareto distribution of memory episode lengths in t

P
=
o

10°
z (cycles)

10

(c) 454.calculix
hree applications

Rule 2 ATLAS: Coordination at the end of a quantum

1: Each MC sends each thread’s local attained service (AS)in th

last quantum to a central meta-controller. Afterwards, Afie

is reset.

Meta-controller accumulates all local AS values for eackatd

and updates the TotalAS value of each thread according ta-Equ

tion 1.

: Meta-controller ranks threads based on TotalAS valuesatts
with lower TotalAS values are ranked higher.

4: Meta-controller broadcasts the ranking to all controllers

Each MC updates thread ranks when it receives the broadcast

ranking. New ranking is used for scheduling in the next quan-

tum.

2:

3.2. Support for System Software

So far, we described ATLAS assuming all threads are of equal

importance. If this is the case, ATLAS aims to maximize syste
throughput by prioritizing memory non-intensive threadsraothers.

However, this is not the right prioritization choice if sortteeads

are more important (i.e. have higheeight or thread priority) than
others. To enforce thread weights, system software contates
thread weights to the ATLAS memory controller, as in [35, .36]
When updating the attained service of a thread, ATLAS sdiles
attained service with the weight of the thread as follows:

(1-a)

— - AS; 2
thread_weight S)

Total AS; = aTotal AS;_1 +

Observe that a thread with a higher weight appears as if it at-

tained less service than it really did, causing such threadse
favored. Section 7.6 quantitatively evaluates ATLAS's urp for

thread weights.

In addition, we make the quantum length and starvation tinlels
(in terms of cycles) configurable by system software suchititan
enforce a desired balance between system throughput anddai

4. Qualitative Comparison with Previous

Scheduling Algorithms

We compare the basic properties of the ATLAS scheduler with
major previous memory scheduling algorithms. The fundaaien
difference of ATLAS from all previous algorithms is thad previous
memory scheduling algorithm tries to prioritize threads thking
into account their long-term memory intensigiming to prioritize
memory non-intensive threads over memory-intensive ttes@athe
long run. Previous memory scheduling algorithms have omeare
of the following shortcomings: 1) their system throughpgiiaw
mainly because they perform locally greedy schedulinghgy tre-
quire very high coordination between multiple MCs, 3) thepend
on heuristics that become increasingly inaccurate as theau of
MCs or the number of threads in the system increases.

First-come-first-serve (FCFS)services memory requests in ar-
rival order. Therefore, unlike ATLAS, it does not distinghibe-
tween different threads or different memory episodes. F{R8r-

Register [Description and Purpose [

Size (additional bits)

Per-request registersin each controller

Over-threshold Whether or not the request is over threshold

1

Thread-rank The thread rank associated with the request

log, NumThreads (=5)

Thread-ID ID of the thread that generated the request

log, NumThreads (=5)

Register in each controller

QuantumDuration [How many cycles left in the quantum [

log, QuantumLength (=24)

Per-thread registersin each controller

Local-AS | Local Attained Service of the thread in the controll¢r

Per-thread registersin meta-controller

TotalAS [Total Attained Service of the thread

|
log, (QuantumLength - NumBanks) (=26) |
|
|

[Togy (NumControllers - QuantumLength - NumBanks) (=28)

Table 1. Additional state (over FR-FCFS) required for a poss

ently favors memory-intensive threads because their sgusatu-
rally appear older to the memory controller as they arrivearfoe-
quently than requests of non-intensive threads. In adgitfCFS
does not exploit row-buffer locality, nor does it preserank-level
parallelism of threads across banks or controllers. As altei
leads to low system throughput [38, 35, 36] even though itireg
no coordination across controllers.

First-ready FCFS (FR-FCFS)[59, 46, 45] is commonly imple-
mented in existing controllers. It prioritizes: 1) row-héquests over
all others, 2) older requests over younger ones. By praamti row-
hit requests, it aims to maximize DRAM throughput, but asvaho
in previous work [35, 36, 32] this thread-unaware policydeo low
system throughput and starvation of threads with low rofebpuo-
cality. FR-FCFS also shares the shortcomings of FCFS asibledc
above.

Fair queueing memory scheduler (FQM)[38, 41] is based on
the fair queueing algorithm [11] from computer networks. att
tempts to partition memory bandwidth equally among thredes
each thread, in each bank, FQM keeps a counter cuifaghl time
and increases this counter when a memory request of thedtisea
serviced. FQM prioritizes the thread with the earliestuaittime,
trying to balance each thread’s progress in each bank. Asudtre
FQM does not take into account the long-term memory intgrait
threads and therefore cannot prioritize memory non-imiertereads
over others. In addition, FQM 1) degrades bank-level paliath of
each thread because each bank makes scheduling decisiepsin
dently, 2) does not exploit row-buffer locality to a largeent, both
of which lead to low system throughput compared to other dahe
ing algorithms [35, 36]. Since each bank acts independenf@M,
FQM does not require coordination across controllers,liattomes
at the expense of relatively low system performance.

Stall-time fair memory scheduler (STFM) [35] estimates the
slowdown of each thread compared to when it is run alone bp-qua
tifying the interference between threads. If unfairnesh@memory
controller is greater than a threshold, it prioritizes thead that has

been slowed down the most. STFM has three shortcomings com

pared to ATLAS. First, like FQM, it does not consider the lelegm
memory-intensity and does not preserve bank-level péisatieof
threads. Second, it is designed for a single memory coatralhd
requires extensive and very fine-grained coordination aymm-
trollers to be effective. To estimate a thread’s slowdowhF &
keeps a per-thread interference counter, which is incréesdeoy a
certain amount each time another thread’s request is stdtedu
stead of a request from this thread. The amount of incremegermtls
on the estimate of bank-level parallelism of the thread értfemory
system at that particular instant. In a multiple-MC systbt@s need
to coordinate to determine this amount of increment sin¢teeat’s
bank-level parallelism in the entire system cannot be lpdadown
by a single-MC. This coordination is very fine-grained beseait
happens when a request is scheduled. Third, STFM quantiéesm
ory interference using heuristics that are only approxiomstof the
true value [35, 36]. Compared to a single-MC system, a imaHhiiC
system supports many more threads that interfere with etfen m
increasingly complex ways. As a result, the accuracy ofrexted
memory interference values (especially bank-level peliaih) de-
grades in a multiple-MC system (as shown for a multi-bankesys
in [36]).

Parallelism-aware batch scheduling (PAR-BS)36] was de-
scribed previously in Section 2.1. Compared to ATLAS, PAR-B

ible ATLAS implementation

has three shortcomings. First, in contrast to the long qumarsize in
ATLAS, the batch duration in PAR-BS (on averag2000 cycles) is
not large enough to capture the entirety of a memory episbilere-
fore, a relatively short memory episode may be broken intzgs
and serviced separately across batches, causing longedepi (or
memory-intensive threads) to be prioritized over shonésaes (or
non-intensive threads). Second, since the batch size i, SPAR-
BS’s coordination overhead to form a thread ranking at the @&hn
each batch is very significant as described in Section 2.2ngak
unscalable to a large number of controlléfBhird, PAR-BS’s mech-
anisms become increasingly inaccurate as the number afdfignd
MCs in the system increases. When a thread has requeststio mul
ple banks, the bank to which it has the most requests is ceresid
by PAR-BS to dominate the memory latency of that thread. &her
fore, to prioritize shorter threads within a batch, PAR-BSigns the
highest rank to the thread that has the lowest number of stg|te
any bank. In reality, the bank to which the thread has the mest
guests may service those requests more quickly than thelmhé&s
because other banks might be very heavily loaded wigimy other
less-intensive threadsequests. As more threads compete for more
MCs, such load imbalance across banks potentially growsesudts

in suboptimal thread ranking in PAR-BS.

5. Implementation and Hardware Cost

ATLAS requires the implementation of request prioritipati
rules in each controller (Rule 1) as well as coordinationaoftmllers
at the end of each quantum (Rule 2). Modern FR-FCFS-based con
trollers already implement request prioritization pakithat take
into account row-hit status and age of each request. ATLA% ad
to them the consideration of the thread-rank and over-ioldssta-
tus of a request. Whether a request is over-threshold isndieted
by comparing its age to threshald as done in some existing con-
trollers [52] to prevent starvation.

To implement quanta, each memory controller keeps a quantum

duration counter. To enable LAS-based thread ranking, eaoh

troller needs to maintain the localS (attained service) value for
each threadAS for a thread is incremented every cycle by the num-
ber of banks that are servicing that thread’s requests. é\ettd of a
quantum, each thread’s localS value is sent to the meta-controller
and then reset to zero. The meta-controller keepgthiel AS value

for each thread and updates it as specified in Equation 1.

Table 1 shows the additional state information required By A
LAS. Assuming a 24-core CMP with 4 MCs, each of which with
128-entry request buffers and 4 banks, one meta-contralfet a
qguantum length of 10M cycles, the extra hardware stateudict
storage needed for Thread-IDs, required to implement ATIb&S
yond FR-FCFS is 8,896 bits. None of the logic required by ABLA
is on the critical path of execution because the MC makes isidac
only every DRAM cycle.

6. Evaluation Methodology

We evaluate ATLAS using an in-house cycle-precise x86 CMP
simulator. The functional front-end of the simulator is é&&on
Pin [28] and iDNA [4]. We model the memory system in detail,

“Note that there is no easy way to increase batch size in PAReBSuse
thread ranking within a batch is formed based on the reqeestently in the
DRAM request buffers.

Processor pipeline 5 GHz processor, 128-entry instruction window (64

-entsysqueue, 64-entry store queue), 12-stage pipeline

Fetch/Exec/Commit width 3 instructions per cycle in each core; only 1 can be a memoeyation
L1 Caches 32 K-byte per-core, 4-way set associative, 32-byte blozk,s2-cycle latency
L2 Caches 512 K-byte per core, 8-way set associative, 32-byte blank, di2-cycle latency, 32 MSHRs

Each DRAM controller (on-chip)

FR-FCFS; 128-entry request buffer, 64-entry write datddoufeads prioritized over writes, XOR-based addressaiok mapping [14, 57]

DRAM chip parameters Micron DDR2-800 timing parameters (see [3X}; 1=

15ns,t rc p=15ns,t r p=15ns,B L /2=10ns; 4 banks, 2K-byte row-buffer per bar

DIMM configuration

Single-rank, 8 DRAM chips put together on a DIMM (dual indimemory module) to provide a 64-bit wide channel to DRAM

Round-trip L2 miss latency

For a 64-byte cache line, uncontended: row-buffer hit: 4208 cycles), closed: 60ns (300 cycles), conflict: 80ns @@les)

Cores and DRAM controllers 4-32 cores, 1-16 independent DRAM controllers (1

contrdikes 6.4 GB/s peak DRAM bandwidth)

Table 2. Baseline CMP and memo

ry system configuration

Benchmark L2MPKI RBhitrate Mem-fraction Epi. length # Benchmark L2 MPKI RB hitrate ~ Mem-fraction Epi. length
1 429.mcf 107.87 9.0% 99.2% 33512 14 401.bzip2 5.29 63.1% 52.3% 810
2 450.soplex 52.89 68.3% 99.4% 4553 15 464.h264ref 2.38 77.8% 35.9% 751
3 462.libquantum 52.88 98.4% 100.0% 200 M 16 435.gromacs 2.14 55.6% 40.6% 498
4 459.GemsFDTD 49.72 11.7% 99.2% 1970 17 445.gobmk 0.73 45.8% 18.6% 483
5 470.Ibm 45.68 48.5% 94.0% 1049 18 458.sjeng 0.38 1.8% 17.3% 437
6 437 leslie3d 32.38 42.6% 94.4% 2255 19 403.gcc 0.33 45.5% 6.2% 588
7 433.milc 27.90 62.7% 99.1% 1118 20 481.wrf 0.25 62.5% 10.5% 339
8 482.sphinx3 25.00 72.7% 96.6% 805 21 447 dealll 0.21 65.0% 6.3% 345
9 483.xalancbmk 23.25 42.8% 90.0% 309 22 444.namd 0.19 82.3% 4.6% 424
10 436.cactusADM 22.23 1.5% 86.3% 1276 23 400.perlbench 0.12 54.9% 2.1% 867
11 471.omnetpp 9.66 29.2% 82.0% 4607 24 454 calculix 0.10 67.0% 2.9% 334
12 473.astar 8.57 35.4% 86.5% 526 25 465.tonto 0.05 73.3% 0.9% 587
13 456.hmmer 5.63 32.4% 77.3% 815 26 453.povray 0.03 74.3% 0.7% 320

Table 3. Benchmark characteristics when run on the baseline
Fraction of execution time spent in memory episodes; Epigtle: Average length

faithfully capturing bandwidth limitations, contenticend enforcing
bank/port/channel/bus conflicts. Table 2 shows the majokRnd
processor parameters in the baseline configuration. Our evaiu-
ations are done on a 24-core system with 4 memory controllers

Workloads We use the SPEC CPU2006 benchmarks for evalua-
tion® We compiled each benchmark using gcc 4.1.2 with -O3 op-
timizations and chose a representative simulation phasg &in-
Points [39]. Table 3 shows benchmark characteristics.

(L2 MPKI: L2 Misses per 1000 Instructions; RB Hit Rate: Rowffeu hit rate; Mem-fraction:

of memory episodes in cycles)

Parameters of Evaluated SchemeBor ATLAS, we use a quan-

tum length of 10M cyclesqy = 0.875, andT' = 100K cycles. For

STFM and PAR-BS, we use the best parameters described in [35,
36].

7. Results
We first present the performance of ATLAS in comparison with

We classified the benchmarks into two categories: memory-four previously proposed scheduling algorithms (FCFS,HEHES,

intensive (those with greater than 10 L2 misses per 100flictidns
using the baseline L2 cache) and memory non-intensive (@
than 10 MPKI). We form multi-programmed workloads of varyin
heterogeneity. For our main evaluations on the 24-coreBysive
use 32 workloads, each comprising 24 benchmarks, of whicrd 2
memory-intensive and 12 are non-intensive. This providgsad
mix of heavy and light applications in terms of memory bebavi
that is likely to be a common mix in future many-core based sys
tems, e.g. in cloud computing. Table 4 lists eight of the espnta-
tive workloads that we show results for in Section 7. As wdesttee
number of cores (i.e. benchmarks in a workload), we keeprtw f
tion of memory-intensive benchmarks constant (at 50%)énvitbrk-
load. We use 32 workloads to evaluate each core-contrai@figu-
ration. We also varied the fraction of memory-intensivedienarks
in each workload from 0%, 25%, 50%, 75%, 100% and constructed
32 workloads for each category to evaluate the effect of ASlw#th
varying memory load, for the experiments described in $acti2.
Experiments and Metrics We run each simulation for 200 mil-
lion cycles. During the simulation, if a benchmark finishéohits
representative instructions before others, its stasistie collected
but it continues to execute so that it exerts pressure on #maary
system. We use two main metrics to evaluate performalmsgruc-
tion throughputis the average number of instructions retired by all
cores per cycle during the entire run. We measystem through-
put using the commonly-employedeighted speedumetric [51],
which sums the Instructions Per Cycle (IPC) slowdown experd

STFM, and PAR-BS) implemented in each controller and arlliglea
coordinated version of the PAR-BS algorithm (referred tdPAR-
BSc) on a baseline with 24 cores and 4 memory controllersAR-P
BSc, each controller is assumed to have instant global letyd
about the information available to every other controléerd based
on this each controller determines a consistent rankingretids at
the beginning of a batch. As such, this algorithm is ideialiahd
un-implementable (because it assumes instantaneoud glubal-
edge). However, since this algorithm provides an upper dam
what is achievable with the addition of coordination to joess
scheduling algorithms, we provide comparisons to it in owale
ation for thoroughness.

Figure 5 shows the instruction and system throughput peavid
by the six algorithms on eight representative workloads avet-
aged over all 32 workloads run on the 24-core system with 4 mem
ory controllers. On average, ATLAS provides 10.8% highstrinc-
tion throughput and 8.4% higher system throughput compgred
the best previous implementable algorithm, PAR-BS, whighi&
icantly outperforms FCFS, FR-FCFS, and STFM. Even compared
to the un-implementable, idealized coordinated PAR-BSH, A4S
provides 7.3%/5.3% higher average instruction/systeroutnput.
The performance improvement of ATLAS is consistent acrdss a
32 workloads we studied. ATLAS’s maximum and minimum sys-
tem performance improvement over PAR-BS is 14.5% and 3.4%, r
spectively. Note that ATLAS improves average instructystem
throughput by 17.1%/13.2% over the commonly-implementBd F

by each benchmark compared to when it is run alone for the samd=CFS algorithm. We conclude that ATLAS performs better thiam

number of instructions as it executed in the multi-prograadnwvork-
load:
IPOffLa7‘ed

Sys. Throughput = Weighted Speedup = Z TpCalone

i

®)

5410.bwaves, 416.gamess, and 434.zeusmp are not includeddsewe
were not able to collect representative traces for them.

vious scheduling algorithms.

Figure 6 compares the instruction/system throughput ofstke
algorithms while varying the number of memory controllersni
1 to 16 in the 24-core system. Percentages on top of bars indi-
cate ATLAS’s improvement over the best previous implemiglieta
algorithm (STFM in single-MC and PAR-BS in multiple-MC sys-
tems). As expected, as the number of MCs increases, ovggmll s
tem performance also increases because the memory syspem ex

[Workload [[Memory-intensive benchmarks [Memory non-intensive benchmarks
A cactusADM, GemsFDTDs(2), Ibm, leslie(2), mcf, milc, sog®, xalancbmk(2) | astar, bzip2, calculix(3), deall, gobmk(2), omnetpp(®&ng, tonto
B GemsFDTDs, Ibm, leslie, libquantum, mcf(2), milc, sopBx6phinx3(2) astar(3), bzip2(2), calculix(2), dealll, hmmer, namd, rayy wrf
C cactusADM, GemsFDTD(2), Ibm(3), mcf, milc(2), soplex(&phinx3, bzip2(2), dealll(2), gcc(2), h264ref, hmmer, perl, sjetogto(2)
D GemsFDTD(3), Ibm, leslie, libquantum, milc, soplex, spddi8), xalancbmk bzip2, dealll, calculix, gobmk, gromacs, h264ref(2), hmmperl, povray, sjeng, wrf
E GemsFDTD(2), leslie(2), mcf(2), soplex(2), sphinx3, xalamk(3) astar(2), dealll, gcc(2), hmmer, namd(2), perl(2), wrf(2)
F GemsFDTD, Ibm, leslie(2), libquantum(3), mcf(2), milcham3, xalancbmk astar(2), bzip2, dealll, gcc(3), gobmk, sjeng, tonto(2¥, w
G cactusADM, Ibm, leslie(4), libquantum , mcf, sphinx3(33Jancbmk astar, bzip2(2), gobmk, hmmer(3), omnetpp, perl(2), ppwanto
H cactusADM, GemsFDTD, libquantum, mcf(4), milc(2), spt8nxalancbmk(2) astar(3), bzip2, gcc, hmmer, namd, sjeng, tonto(3), wrf

Table 4. Eight representative workloads evaluated (

Instruction throughput

B C D E H

Workloads
Figure 5. ATLAS vs. other algorithms on 8 sample workloads an

F G

Instruction throughput

Number of memory controllers
Figure 6. Performance of ATLAS vs. other algorithms on the 24

riences lighter load per controller at the expense of irszdasys-
tem cost due to increased pin count. ATLAS provides the high-
est instruction/system throughput in all cases. HoweVvetLAS's
performance advantage over PAR-BS increases when memuody ba
width becomes more scarce, i.e. MCs are more heavily loa&fEd:
LAS'’s instruction/system throughput improvement over PBR is
14.8%/9.8% on a system with two MCs and 7.6%/5.9% on a costly
system with 8 MCs. On a single-MC system, ATLAS performs
22.4%/17.0% better than STFM, the best previous algorithmthiat
system. We conclude that ATLAS is more effective than presio
algorithms at utilizing the scarce memory bandwidth.

Analysis Several observations are in order from the above results:

figure in parentheses denotes the number of instances sgawne

System throughput

D E

Workloads

F G

H

C AVG

d averaged over 32 workloads on the 24-core system with 4-MCs

16

=
S

-
N

10

=)

System throughput

o
T

4

Number of memory controllers
-core system with varying number of memory controllers

single MC but not scalable to multiple MCs.

Third, the idealized coordinated version of PAR-BS (caédr-
BSc), which we have developed, outperforms the uncoorgéhat
PAR-BS by 3.3%/3.0% on average in terms of instructionfyst
throughput because it ensures consistent thread pradidiz across
all controllers. However, both PAR-BS and PAR-BSc suffemir
three shortcomings. First, they perform request batchingafine
a granularity compared to ATLAS (see Section 4). Secondr the
shortest stall-time-first heuristic used for thread ragkiecomes in-
creasingly inaccurate with a large number of threads (setddet).
Third, since batches are formed based on request counts)esat
are not balanced across controllers due to request couratamie

First, as expected, FCFS and FR-FCFS policies, which areamong controllers. This causes some controllers to oppisttcally

thread-unaware and prone to starvation, perform significarorse
than PAR-BS and ATLAS, which are thread-aware, starvafiiea;
and aimed to optimize system performance. Even though FRSFC
maximizes DRAM throughput by exploiting row-buffer lodgliits
performance improvement over FCFS is small (0.3%), becalise
ways prioritizing row-hit requests over others leads t@d#us with
high row-buffer locality to deny service to threads with loow-
buffer locality, leading to degradations in system thrqugh

Second, STFM, provides lower system performance than FR-

FCFS or FCFS in multiple-MC systems even though it perforats b
ter than all algorithms but ATLAS in the single-MC system.iSTis
because each MC implements the STFM algorithm by itselfauth
any coordination. As a result, each MC computes a differkent-s

service requests while others are obeying thread rankiaglirig to
conflicting thread prioritization decisions among corian.

7.1. Scalability with Cores and Memory Controllers

Figure 7 compares the performance of ATLAS with PAR-BS and
the idealistic PAR-BSc when core count is varied from 4 to 82
have results for FCFS, FR-FCFS, and STFM for all configunatio
but do not show these due to space constraints. PAR-BS gwovid
significantly better system performance than any of thegersghms
for all configurations. The percentages on top of each corsfigu

down value for each thread and aims to balance the slowdofvns otion show the performance improvement of ATLAS over the ienpl

threads locally, instead of all controllers computing aginslow-
down value for each thread and consistently trying to baldhead
slowdowns. Unfortunately, the slowdown a thread expessria
one controller is usually significantly different from thiatexperi-
ences in another, which causes the MCs to make conflictiregathr
prioritization decisions. Section 4 shows that it is difficto de-
sign a coordinated version of STFM as it incurs high coortitima
costs due to the amount of information that needs to be egetan
between controllers every DRAM cycle. Note that with a senghn-
troller, STFM outperforms FCFS, FR-FCFS, and PAR-BS by #5.2
23.6%, 5.4% on average, proving that the algorithm is gffedor a

mentable PAR-BS. Each graph presents system performasigisre
averaged over 32 workloads on each core configuration withng
number of memory controllers; we did not tune ATLAS paramsete
in any configuration. We make several major observatiorrst,FAT-
LAS outperforms all other algorithms for all configuratioi®econd,
ATLAS'’s performance improvement over PAR-BS increaseshas t
number of cores increases. For example, if the MC count il fize
4, ATLAS outperforms PAR-BS by 1.1%, 3.5%, 4.0%, 8.4%, 10.8%
respectively in the 4, 8, 16, 24, and 32-core systems. HehEe,
LAS’s benefits are likely to become more significant as cotent®
increase with each technology generation.

4-core 8-core

16-core

24-core 32-core

'WPAR-BS BIPAR-BSc HIATLAS 'WPAR-BS WIPAR-BSc HIATLAS

2ol e
i

System throughput
O N B OO ® O N

2 2
Number of MCs Number of MCs

7.2. Effect of Memory-Intensity in the Workload

Figure 8 compares ATLAS'’s performance to other scheduling a

gorithms on the 24-core 4-MC system as the number of memory-

intensive benchmarks in each workload is varied betweerd®dn
which varies the load on the memory controllers. All benchman
an intensity class were selected randomly, and experimeresper-
formed for 32 different workload mixes for each memory-irgity
configuration.

Three major conclusions can be made from the results. First
ATLAS provides the highest system performance comparetigo t
best previous algorithm (both PAR-BS and PAR-BSc) for dfledi
ent types of workload mixes: respectively 3.5%, 6.1%, 8.2%%,
and 4.4% higher performance than PAR-BS for workload mixés w
0, 6, 12, 18, and 24 memory-intensive workloads. Second A&
performance improvement is highest when the workload mixase
heterogeneous in terms of memory intensity, e.g. when 18amf1
the 24 benchmarks in the workload are memory intensive. iBhis
because scheduling decisions have more potential to ira@ystem
performance when workloads are more varied: ATLAS assibas t
memory-intensive threads lower rankings and prevents grmaony
episodes of the other threads from being stuck behind looges.
Therefore the majority of the threads are quickly serviced ee-
turned to their compute episodes. Third, when a workloacists
of all memory-intensive or all memory non-intensive threadT-
LAS'’s performance improvement is less pronounced becautel
disparity between the memory episode lengths of threadsvisr| 2)
scheduling decisions have less of an impact on system peafoze
due to too light or too heavy load. However, ATLAS is still atib
distinguish and prioritize threads that are of lower memiatgnsity
and, hence, still outperforms previous scheduling algoritin such
workload mixes. We conclude that ATLAS is effective for ayer
wide variety of workloads but provides the highest improeais in
more heterogeneous workload mixes, which will likely be ¢oen-
mon composition of workloads run on future many-core system

B PAR-BS
B PAR-BSc
@ ATLAS

System throughput

Number of memory-intensive benchmarks in a workload

Figure 8. ATLAS performance on the 24-core 4-MC system when n umber

of memory-intensive benchmarks in each workload is varied

7.3. Analysis of ATLAS

Effect of Coordination in ATLAS Figure 9 compares the perfor-
mance of an uncoordinated version of ATLAS where each cbetro
performs local LAS-based thread ranking based on locahatdaser-
vice values of each thread to the performance of (coordinai&-

'WPAR-BS BIPAR-BSC BIATLAS

Numb:r of MCs
Figure 7. ATLAS performance with varying number of cores and

'WPAR-BS WIPAR-BSc HIATLAS 'WPAR-BS BPAR-BSC BIATLAS
1 8:1%

5
hp!

System throughput

4 4
Number of MCs Number of MCs

memory controllers

we note that the uncoordinated version of ATLAS still pr@sde-
spectively 7.5% and 4.5% higher performance than uncoatelih
PAR-BS and ideally coordinated PAR-BSc. If the hardwarelosad
required for coordination is not desirable in a system, ABL&an
be implemented in each controller independently, whidhysélds
significant system performance improvements over previeesha-
nisms.

ATLAS does not benefit from coordination as much as PAR-BS
does because ATLAS uses a very long time quantum (10M cycles)

'compared to PAR-BS’s short batches2K cycles). A long time

guantum balances the fluctuation of load (and hence attagmwite)
across different MCs and therefore the MCs are more likeay tim
PAR-BS to independently form a similar ranking of threadthwt
coordinating. On the other hand, short batches in PAR-BSalre
nerable to short-term load imbalance of threads acrosspleuMCs:
because threads’ accesses to memory are bursty, one MClmaight
higher load for one thread while another has low load, legtbrvery
different rankings without coordination. We conclude tloatg-time
qguanta reduce the need for coordination in ATLAS, but ATLAIS s
benefits from coordination.

ATLAS is a scheduling algorithm specifically designed tompe
ate with minimal coordination among multiple memory coliéns.
Therefore, it is unsurprising that ATLAS shows a reducedefien
from coordination. This should not be used as a basis toedigcr
coordination for scheduling algorithms in general. Pattidy, Fig-
ure 5 shows that an idealized coordinated version of PAR-BS p
vides 3.3%/3.0% gain in instruction/system throughput oveoor-
dinated PAR-BS.

Effect of Coordination Overhead We varied the time it takes
to perform coordination (as described in Rule 2) betweerttben-
trollers in our baseline system from 100 to 10,000 cycles faMad
that the system performance changed only negligibly wittrdima-
tion overhead. This is due to two reasons: 1) coordinatitantzy is
negligible compared to the 10M-cycle quantum size, 2) thesise
tent ranking in the previous interval continues to be used coor-
dination completes.

Effect of Quantum Length Figure 10(a) shows the performance
of ATLAS as quantum size is varied from 1K to 25M cycles, as-
suming there is no coordination overhead among controller&
longer quantum has three advantages: 1) it reduces theicatoth
overhead among controllers, 2) it increases the probplii#t large
memory episodes fit within a quantum, thereby enabling thaipr
zation of shorter episodes over longer ones, 3) it ensureadhank-
ing stays stable for a long time, thereby taking into acctang-term
memory-intensity behavior of threads in scheduling. Ondtreer
hand, a short quantum can capture more fine-grained chamgfes i
phase behavior of workloads by more frequently changind f®-
based ranking. Results show that system performance sesedth
guantum size because taking into account long-term threhewuor
provides more opportunity to improve system throughputil time
guantum size becomes too large (25M cycles). Very small tyman
sizes lead to very low performance because thread rankiaigges
too frequently, leading to degradations in both bank-lgeehllelism
and ability to exploit long-term thread behavior.

Effect of History Weight («) A large o ensures attained service

LAS for 32 workloads on the baseline system. The results showvalues from prior quanta are retained longer and persigtaffect

that coordination provides 1.2%/0.8% instruction/systeraughput
improvement in ATLAS, suggesting that it is beneficial to &iav
LAS-based ranking that is consistent across controllerswéyer,

the ranking for future quanta, causing TotalAS to changg siewly
over time. Therefore, a large allows ATLAS to better distinguish
memory-intensive threads since it does not easily forgat tihey

B ATLASu
B ATLAS

Instruction throughput

A B C D F G H AVG

E
Workloads

W ATLASu
B ATLAS

System throughput

A B C D F G H

E
Workloads

Figure 9. Performance of ATLAS with and without coordinatio n

T 12.
W1K 10K E100K OIM W10M H25M

oo,

M0.000 H0.250 W0/500 H0.750 M0.999
mo.1

m0.625..000.

W1K 10K E100K O1M M10M Minfinity

(a) Quantum length

(b) History weight

(c) Starvation threshold

Figure 10. ATLAS performance with varied ATLAS parameters

have amassed large amounts of attained service in the pasheO
other hand, too large andegrades the adaptivity of ATLAS to phase
behavior for the exact same reasons. Even when a threaditrass
into a memory-intensive phase and starts to accumulatéfisant
amounts of attained service, its ranking will still remaigthfor sub-
sequent quanta since its historical attained service isepad to be
low.

Figure 10(b) shows that system performance increasesias
creases. In our benchmarks, we do not see degradation wigh ve

large a values because we found that per-thread memory intensity

behavior stays relatively constant over long time periddewever,
using a too-highw value can make the memory scheduling algorithm
vulnerable to performance attacks by malicious programsititen-
tionally deny service to others by exploiting the fact thze tilgo-
rithm is not adaptive and unfairly favors threads that haentmem-
ory non-intensive in the past. To prevent this, we chaose 0.875
which balances long-term attained service and the lasttqoes at-
tained service in our evaluations.

Effect of Starvation Threshold (T") Figure 10(c) shows system
performance as the starvation threshold is varied from boesand
to infinite cycles. WhefT" is too low, system performance degrades
significantly because scheduling becomes similar to fostesfirst-
serve since many requests are forced to be serviced duesthtid
violations and therefore the advantages of LAS-based mgnéi-
der is lost. Wher" becomes too large, the strict starvation-freedom
guarantee is lost, but system performance stays very sitoilaur
default threshold]” = 100, 000. This is because LAS-based rank-
ing by itself provides a way of reducing starvation becauaeved
threads become highly-ranked since their attained seiviemaller.
However, we still use a starvation threshold, which can béigared
by system software, to strictly guarantee non-starvation.

7.4. Effect of ATLAS on Fairness

fairness by appropriately configuring the thread weighas &TLAS
supports (Section 3.2).

—
IS

c12
3
S 10]
3
il
E 6
£
= 4
©
)
0
A B C D E F G H AVG
Workloads
Figure 11. Max. slowdown of ATLAS vs. others on 24-core 4-MC's ystem
0.30
o 025
S
o
$ 0.20 W FCFS
5 g L
v 0.15 O PAR-BS
S W PAR-BSc
£ 0.10 B ATLAS
T
T 005
0.00 A B C D E F G H AVG
Workloads
Figure 12. Harmonic speedup of ATLAS vs. others on 24-core 4- MC system

7.5. Sensitivity to System Parameters

Effect of Memory Address Mapping All results presented so
far assume a cache-block-interleaved memory addresshenes
where logically consecutive cache blocks are mapped toecurise
MCs. Although this addressing scheme is less likely to expbov-
buffer locality, it takes advantage of the higher memorydvaidth
by maximizing bank-level parallelism. As a comparison,uf@5

We evaluate the fairness of ATLAS using two separate metrics shows performance averaged over 32 workloads when rows (2 KB
maximum slowdown and harmonic speedup [13]. The maximum chunks), instead of blocks (64-byte chunks), are inteddaacross

slowdown of a workload is defined as the maximum of the inverse
speedups (i.e., slowdowns) of all comprising threads. for dl-
gorithms that provide similar performance, the one thatideto

MCs, thereby trading off bank-level parallelism in favor rafw-
buffer locality. Two conclusions are in order: 1) blockeérieaving
and row-interleaving perform very similarly in our benchinaet

a smaller maximum slowdown is more desirable. The harmonic with PAR-BS, 2) ATLAS provides 3.5% performance improveinen

speedup of a workload is defined as the harmonic mean of spgedu
of all comprising threads (higher harmonic-speedup cateslwith
higher fairness in providing speedup [29]). Figures 11 a2dsHow
that maximum slowdown increases by 20.3% and harmonic sijpeed
decreases by 10.5%.

It is important to note that ATLAS is unfair to memory-intéres
threads that are likely to be less affected by additionalyigian non-
intensive ones. While memory-intensive threads suffehwégard
to fairness, overall system throughput increases significa For
threads that require fairness guarantees, system soféaarensure

over PAR-BS, when row-interleaving is used, versus 8.4%nwhe
block-interleaving is used. ATLAS’s performance benefihigher
with block-interleaving than with row-interleaving becauATLAS

is able to exploit the higher bank-level parallelism preddy in-
terleaved blocks better than PAR-BS for each thread duesttotig
guantum sizes. Since bank-level parallelism of each thiekmv to
begin with when row-interleaving is used, the potential®LAS to
exploit bank-level parallelism for each thread is lower. ¥gaclude
that ATLAS is beneficial regardless of the memory addresspingp
scheme.

HIbm: wé\ght—l
Bibm: weight-2
0.25@tbm: weight:

System throughput

9.0
Block-interleaving
Memory addressing scheme

Row-interleaving

FR-FCFS

Figure 13. Performance of ATLAS with cache-
block-interleaving vs. row-interleaving on the
24-core system with 4 MCs

Figure 14. Evaluation of ATLAS vs. PAR-BS and STFM with diffe

STFM PAR-BS PAR-BSc ATLAS

rent thread weights

L2 Cache Size 1

tor |

512KB | 1MB

2 MB 4 MB 5ns 7.5ns | 15ns | 22.5ns | 30ns

| System Throughput Improvement over PAR-BS 8.4% | 7.1% |

6.0% | 6.4% || 44% | 5.9% | 8.4% | 8.8% | 10.2% |

Table 5. Sensitivity of system performance of ATLAS to L2 cac

Effect of Cache Size and Memory LatencyTable 5 shows sys-

tem performance improvement of ATLAS compared to PAR-BS as

cache size and memory latency of the baseline system arpenéde
dently varied. Results show that ATLAS significantly impesvper-
formance over a wide variety of cache sizes and memory letenc

7.6. Evaluation of System Software Support

We evaluate how effectively ATLAS can enforce system-level
thread weights to provide differentiated services. We rdic@pies
of the Ibm benchmark on our baseline 24-core 4-MC systemravhe
there are six thread-weight classes each with 4 Ilbm copies.pfi-
ority classes respectively have weights 1, 2, 3, 4, 5, 6. reid4
shows the speedup experienced by each of the 24 Ibm copies co

FCFS are thread-unaware, they are unable to differentitigden
Ibm copies. With STFM, weights are not fully enforced—-thégheis
correlated with thread’s speedup, but the relationshiwéen weight
and speedup is sub-linear. In fact, STFM has difficulty digtishing
between weights 4, 5, and 6 because controllers are noticated;

a thread with higher weight can be better prioritized in ometioller
than in another. Both uncoordinated and idealized cooteéhBAR-
BS are able to enforce weights, but the relationship betwesight
and speedup is exponential. ATLAS provides a linear ratatip
between thread weight and speedup, which makes it easiez-to d
sign system software algorithms because system softwaneaaon
about the speedup of a thread based on the weight it assighs to
thread.

8. Other Related Work

Memory SchedulingWe have already qualitatively and/or quan-
titatively compared ATLAS to major previous schedulingalthms
(FCFS, FR-FCFS [59, 46, 45], FQM [38, 41], STFM [35], PAR-
BS [36]) and shown that ATLAS provides significant perforroan
and scalability benefits over them. Other scheduling atigaors [17,
55, 30, 56, 18, 37, 58, 50, 22] have been proposed to improveNDR
throughput in single-threaded, multi-threaded, or stiegmystems.
None of these works consider the existence of multiple cdimge
threads sharing the memory controllers (as happens in a-couét
system).

Other Work on Memory Controllers Abts et al. [1] examined
the placement of MCs in the on-chip network to improve perfor
mance predictability. Lee et al. [27] proposed adaptiveriization
policies between prefetches and demands in the memoryotientr
for efficient bandwidth utilization. Several previous weid 4, 43,
53, 57] examined different physical-to-bank address nrappiech-
anisms to improve performance obtained from the memonesyst
Otherworks [6, 37, 7, 8, 26, 12, 19, 3] have examined diffenegm-
ory controller design choices, such as row buffer openédgmlicies
and power management techniques. All of these mechaniss-ar
thogonal to memory scheduling and can be applied in coripmct
with ATLAS.

he size and main memory latency

9. Conclusions

We introduced ATLAS, a fundamentally new approach to de-
signing a high-performance memory scheduling algorithncfop-
multiprocessor (CMP) systems that is scalable to a verglatmnber
of memory controllers. Previous memory scheduling albomi ei-
ther provide low CMP system throughput and/or are desigoed f
single memory controller and do not scale well to multiplenmoey
controllers, requiring significant fine-grained coordioatamong
controllers, as we demonstrate in this paper. ATLAS tracksy
term memory intensity of threads and uses this informatiomake
thread prioritization decisions at coarse-grained irtisvthereby
reducing the need for frequent coordination. To maximizs- sy
tem throughput, ATLAS leverages the idea of least-attas®dtice

pared to when it is run alone. Since FCES (not shown) and FRn_q(LAS) based scheduling from queueing theory to prioritizéAeen

different threads sharing the main memory system. We aadhe
characteristics of a large number of workloads in terms ofniory

access behavior, and, based on this analysis, provide eetfoad
basis for why LAS scheduling improves system throughpuhiwit
the context of memory request scheduling. To our knowledde,
LAS is the first memory scheduling algorithm that providespi@gh

system throughput while requiring very little or no coomtion be-
tween memory controllers.

Our extensive evaluations across a very wide variety of ivaids
and system configurations show that ATLAS provides the highe
system throughput compared to five previous memory schegluli
algorithms on systems with both single and multiple memamy-c
trollers. ATLAS'’s performance benefit over the best presicon-
trollers is robust across 4 to 32-core systems with 1 to 16 ongm
controllers. ATLAS'’s performance benefit increases as tiraber
of cores increases. We conclude that ATLAS can be a flexibld; s
able, and high-performance memory scheduling substrataditi-
core systems.

Acknowledgements

Yoongu Kim and Dongsu Han are supported by Ph.D. fellowships
from KFAS (Korea Foundation for Advanced Studies). Thigezsh
was partially supported by CyLab at Carnegie Mellon Uniitgi@nd
the Gigascale Systems Research Center, one of six reseanshh
funded under the Focus Center Research Program (FCRP),ia Sem
conductor Research Corporation entity.

References
[1] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson, and M. Hpasti.
Achieving predictable performance through better memanmytroller
placement in many-core CMPs. IBCA-36 2009.
[2] Advanced Micro Devices. AMD’s six-core Opteron procassht t p:
//techreport.comarticles.x/ 17005, 2009.

[3] N. Aggarwal, J. F. Cantin, M. H. Lipasti, and J. E. Smithovwrer-
efficient DRAM speculation. IiHPCA-14 2008.
[4] S.Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Myrk&yDrinic,

D. Mihotka, and J. Chau. Framework for instruction-levating and
analysis of programs. IMEE, 2006.

(5]

(6]

(7]

9]

[10]

[11]
[12]
[13]
[14]
[15]
[16]

[17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

[28]

[29]

[30]

(31]

[32]
(33]

[34]

E. W. Biersack, B. Schroeder, and G. Urvoy-Keller. Salied) in prac-
tice. Performance Evaluation Review, Special Issue on “New Rersp
tives in Scheduling”34(4), March 2007.

F. Briggs, M. Cekleov, K. Creta, M. Khare, S. Kulick, A. Kuar,
L. P. Looi, C. Natarajan, S. Radhakrishnan, and L. RankitelIn
870: A building block for cost-effective, scalable serveEEE Micro,
22(2):36-47, 2002.

F. Briggs, S. Chittor, and K. Cheng. Micro-architectdeghniques in
the Intel E8870 scalable memory controllerViiMPI-3, 2004.

P. Conway and B. Hughes. The AMD Opteron northbridge itecture.
IEEE Micro, 27(2):10-21, 2007.

M. E. Crovella and A. Bestavros. Self-similarity in WdrWide Web
traffic: Evidence and possible caus#ESEE/ACM TON 5(6):835-846,
1997.

M. E. Crovella, M. S. Taqqu, and A. Bestavros. Heavyegprobability
distributions in the world wide web. IA Practical Guide To Heavy
Tails, chapter 1, pages 1-23. Chapman & Hall, New York, 1998.
A. Demers, S. Keshav, and S. Shenker. Analysis and sitionl of a fair
queueing algorithm. I$IGCOMM 1989.

B. Diniz, D. O. G. Neto, W. Meira Jr., and R. Bianchini.niting the
power consumption of main memory. IBCA-34 2007.

S. Eyerman and L. Eeckhout. System-level performanegrios for
multiprogram workloaddEEE Micro, 28(3):42-53, 2008.

J. M. Frailong, W. Jalby, and J. Lenfant. XOR-Schemeg$eRible data
organization in parallel memories. I6PP, 1985.

M. Harchol-Balter. Task assignment with unknown dimatJ. ACM
49(2):260-288, March 2002.

M. Harchol-Balter and A. Downey. Exploiting procestetime distri-
butions for dynamic load balancing. 8iIGMETRICS1996.

S. I. Hong, S. A. McKee, M. H. Salinas, R. H. Klenke, J. Hyld,
and W. A. Wulf. Access order and effective bandwidth forains on a
direct rambus memory. IHPCA-5 1999.

I. Hur and C. Lin. Adaptive history-based memory scHedk In
MICRO-37 2004.

I. Hur and C. Lin. A comprehensive approach to DRAM powran-
agement. IHPCA-14 2008.

IBM. PowerXCell 8i Processor. http://ww.ibm conl
t echnol ogy/ resour ces/ t echnol ogy_cel | _pdf _

Power XCel | _PB_7May2008_pub. pdf .

Intel. Intel Core 7 Processor.http://ww.intel.conl
product s/ processor/ corei 7/ speci fications. htm

E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana. $gifimizing
memory controllers: A reinforcement learning approachlSGA-35
2008.

G. Irlam. Unix file size survey - 1993. Available dtttp: -
/I www. base. com gor doni / uf s93. ht ml , September 1994.
ITRS. International Technology Roadmap for Semicartdrs,
2008 Update. http://ww. itrs. net/Links/ 20081 TRS/
Updat e/ 2008Tabl es_FOCUS_B. xI s.

T. Karkhanis and J. E. Smith. A day in the life of a datalmamiss. In
WMPI-2, 2002.

A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power awzage allo-
cation. INASPLOS-1X2000.

C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prdfedgvare
DRAM controllers. INMICRO-41, 2008.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Loey S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building custordipeogram
analysis tools with dynamic instrumentation.RaDI, 2005.

K. Luo, J. Gummaraju, and M. Franklin. Balancing thopghand fair-
ness in SMT processors. IBPASS$2001.

S. A. McKee, W. A. Wulf, J. H. Aylor, M. H. Salinas, R. H. Khke,
S. 1. Hong, and D. A. B. Weikle. Dynamic access ordering fozamned
computationslEEE TG 49(11):1255-1271, Nov. 2000.

Micron. 1Gb DDR2 SDRAM Component: MT47H128M8HQ-25. Ma
2007. http://downl oad. m cron. con pdf/ dat asheet s/
dr am ddr 2/ 1GbDDR2. pdf .

T. Moscibroda and O. Mutlu. Memory performance attadRenial of
memory service in multi-core systems.WSENIX SECURIT,Y2007.
T. Moscibroda and O. Mutlu. Distributed order schedgliand its ap-
plication to multi-core DRAM controllers. IRODC, 2008.

O. Mutlu, H. Kim, and Y. N. Patt. Efficient runahead exton: Power-

[35]

[36]

[37]

(38]

[39]

[40]
[41]
[42]

[43]
[44]

[45]
[46]
[47]

[48]

[49]
[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

efficient memory latency toleranc=EE Micro, 26(1):10-20, 2006.
O. Mutlu and T. Moscibroda. Stall-time fair memory assecheduling
for chip multiprocessors. IMICRO-4Q 2007.

O. Mutlu and T. Moscibroda. Parallelism-aware batchesiuling: En-
hancing both performance and fairness of shared DRAM systém
ISCA-36 2008.

C. Natarajan, B. Christenson, and F. Briggs. A study effgrmance
impact of memory controller features in multi-processawvee envi-
ronment. INWMPI-3 2004.

K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith.r Egieuing
memory systems. IMICRO-39 2006.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and Arlganidhi.
Pinpointing representative portions of large Intel Itamiprograms with
dynamic instrumentation. INMICRO-37 2004.

V. Paxson and S. Floyd. Wide-area traffic: The failuréofsson mod-
eling. [IEEE/ACM TON pages 226244, June 1995.

N. Rafique, W.-T. Lim, and M. Thottethodi. Effective negement of
DRAM bandwidth in multicore processors. RACT-16 2007.

I. A. Rai, G. Urvoy-Keller, and E. W. Biersack. Analysaf LAS
scheduling for job size distributions with high variance.SIGMET-
RICS 2003.

B. R. Rau. Pseudo-randomly interleaved memorySI@A-18 1991.

R. Righter and J. Shanthikumar. Scheduling multiclsisgjle server
queueing systems to stochastically maximize the numbenafessful
departuresProbability in the Engineering and Information Sciences
3:967-978, 19809.

S. Rixner. Memory controller optimizations for webgers. InMICRO-
37, 2004.

S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and JO®ens. Mem-
ory access scheduling. IBCA-27 2000.

L. E. Schrage. A proof of the optimality of the shortesirmaining pro-
cessing time disciplingOperations Resear¢ti6:678—690, 1968.

B. Schroeder and M. Harchol-Balter. Evaluation of tassignment
policies for supercomputing servers: The case for load lankiang and
fairness Cluster Computing: The Journal of Networks, Software Tools
and Applications7(2):151-161, April 2004.

A. Shaikh, J. Rexford, and K. G. Shin. Load-sensitivetiing of long-
lived IP flows. INSIGCOMM 1999.

J. Shao and B. T. Davis. A burst scheduling access reoglenecha-
nism. InHPCA-13 2007.

A. Snavely and D. M. Tullsen. Symbiotic jobschedulirg & simulta-
neous multithreading processor.ASPLOS-1X2000.

Sun Microsystems. OpenSPARC T1 Microarchitecture cSjpa-
tion. http://opensparc-t1. sunsource. net/specs/
OpenSPARCT1_M cro_Arch. pdf.

M. Valero, T. Lang, J. M. Llaberia, M. Peiron, E. Aygugdand J. J.
Navarra. Increasing the number of strides for conflict-freetor access.
InISCA-19 1992.

D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown IIl, and A. Agarwal. Oniphinter-
connection architecture of the tile proces$BEE Micro, 27(5):15-31,
2007.

C. Zhang and S. A. McKee. Hardware-only stream prefatghnd dy-
namic access ordering. 1€S, 2000.

L. Zhang, Z. Fang, M. Parker, B. K. Mathew, L. SchaelickeB. Carter,
W. C. Hsieh, and S. A. McKee. The impulse memory controlEEE
TC, 50(11):1117-1132, Nov. 2001.

Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based patgleav-
ing scheme to reduce row-buffer conflicts and exploit datality. In
MICRO-33 2000.

Z. Zhu and Z. Zhang. A performance comparison of DRAM rogm
system optimizations for SMT processorsHRCA-11, 2005.

W. K. Zuravleff and T. Robinson. Controller for a synohous DRAM
that maximizes throughput by allowing memory requests amm-c
mands to be issued out of order. U.S. Patent Number 5,630\02%
1997.

