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Abstract

Zzyzx is a Byzantine fault-tolerant replicated state ma-

chine protocol that outperforms prior approaches and pro-

vides near-linear throughput scaling. Using a new tech-

nique called Byzantine Locking, Zzyzx allows a client to

extract state from an underlying replicated state machine

and access it via a second protocol specialized for use by a

single client. This second protocol requires just one round-

trip and 2 f +1 responsive servers—compared to Zyzzyva,

this results in 39–43% lower response times and a factor

of 2.2–2.9× higher throughput. Furthermore, the extracted

state can be transferred to other servers, allowing non-

overlapping sets of servers to manage different state. Thus,

Zzyzx allows throughput to be scaled by adding servers

when concurrent data sharing is not common. When data

sharing is common, performance can match that of the un-

derlying replicated state machine protocol.

1. Introduction

As distributed systems grow in size and importance,

they must tolerate complex software bugs and hardware

misbehavior in addition to simple crashes and lost mes-

sages. Byzantine fault-tolerant protocols can tolerate arbi-

trary problems, making them an attractive building block,

but system designers continue to worry that the performance

overheads and scalability limitations are too great. Recent

research has improved performance by exploiting optimism

to improve common cases, but a significant gap still exists.

Zzyzx narrows that gap with a new technique called

Byzantine Locking.1 Layered atop a Byzantine fault-

tolerant replicated state machine protocol (e.g., PBFT [7]

or Zyzzyva [20]), Byzantine Locking temporarily gives a

client exclusive access to state in the replicated state ma-

chine. It uses the underlying replicated state machine pro-

tocol to extract the relevant state and, later, to re-integrate

it. Unlike locking in non-Byzantine fault-tolerant systems,

Byzantine Locking is only a performance tool. To ensure

liveness, locked state is kept on servers, and a client that

tries to access objects locked by another client can request

∗James Hendricks is currently affiliated with Google.
1Pronounced zai-ziks, like Isaac’s, Zzyzx is a populated settlement in

San Bernardino County, California.

that the locks be revoked, forcing both clients back to the

underlying replicated state machine to ensure consistency.

Byzantine Locking provides unprecedented scalability

and efficiency for the common case of infrequent concur-

rent data sharing. Locked state is extracted to a set of

log servers, which can execute on distinct physical com-

puters from the replicas for the underlying replicated state

machine. Thus, multiple log server groups, each running

on distinct physical computers, can manage independently

locked state, allowing throughput to be scaled by adding

computers. Even when log servers and replicas share the

same computers, exclusive access allows clients to execute

operations much more efficiently—just one round-trip with

only 2 f +1 responses, while tolerating f faulty servers.

Experiments, described in Section 6, show that Zzyzx

can provide 39–43% lower latency and a factor of 2.2–2.9×

higher throughput when using the same servers, compared

to Zyzzyva, for operations on locked objects. Postmark [18]

completes 60% more transactions on a Zzyzx-based file sys-

tem than one based on Zyzzyva, and Zzyzx provides a factor

of 1.6× higher throughput for a trace-based metadata work-

load. The benefits of locking outweigh the cost of unlock-

ing after as few as ten operations. Operations on concur-

rently shared data objects do not use the Byzantine Locking

layer—clients just execute the underlying protocol directly.

Thus, except when transitioning objects from unshared to

shared, the common case (unshared) proceeds with maxi-

mal efficiency and the uncommon case is no worse off than

the underlying protocol.

Though Zzyzx provides the same correctness and live-

ness guarantees as PBFT and Zyzzyva under any workload,

Byzantine Locking is most beneficial for services whose

state consists of many objects that are rarely shared. This

characterizes many critical services for which both scala-

bility and Byzantine fault tolerance is desirable. For exam-

ple, the metadata service of most distributed file systems

contains a distinct object for each file or directory, and con-

current sharing is rare [3, 22].

2. Context and related work

Recent years have seen something of an arms race among

researchers seeking to provide application writers with ef-

ficient Byzantine fault-tolerant substrates. Perhaps unin-

tentionally, Castro and Liskov [7] initiated this race by
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PBFT Q/U HQ Zyzzyva Zzyzx RSM Lower Bound

Total servers required 3f+1 5f+1 3f+1 3f+1 3f+1 3f+1 [28]

Responsive servers required 2f+1 4f+1 2f+1 3f+1 2f+1 2f+1

MAC ops at bottleneck server per request 2+(8f+1)/B 2+8f 4+4f 2+3f/B 2 1

Critical-path network 1-way latencies per req. 4 2 4 3 2 2

Throughput scales with added servers No Some∗ Some∗ No Yes –

Figure 1: Comparison of Byzantine fault-tolerant replicated state machine protocols in the absence of faults and contention, along

with commonly accepted lower bounds. Data for PBFT, Q/U, HQ, and Zyzzyva are taken from [20]. Bold entries identify best-known

values. f denotes the number of server faults tolerated, and B denotes the request batch size (see Section 6). “Responsive servers needed”

refers to the number of servers that must respond in order to achieve good performance. ∗The throughput scalability provided by quorum

protocols is limited by the requirement for overlap between valid quorums [23].

proposing a new protocol, PBFT, and labeling it “practi-

cal,” because it performed better than most expected could

be achieved with Byzantine fault-tolerant systems. Their

protocol replaces the digital signatures common in previ-

ous protocols with message authentication codes (MACs)

and also increases efficiency with request batching, link-

level broadcast, and optimistic reads [6]. Still, the protocol

requires four message delays and all-to-all communication

for mutating operations, leaving room for improvement.

Abd-el-Malek et al. [1] proposed Q/U, a quorum-based

Byzantine fault-tolerant protocol that exploits speculation

and quorum constructions to provide throughput that can

increase somewhat with addition of servers. Q/U provides

Byzantine fault-tolerant operations on a collection of ob-

jects. Operations are optimistically executed in just one

round-trip, and object histories are used to resolve issues

created by concurrency or failures. Fortunately, concur-

rency and failures are expected to be rare in many impor-

tant usages, such as the file servers that have been used as

concrete examples in papers on this topic (e.g., [7]). Match-

ing conventional wisdom, analysis of NFS traces from a de-

partmental server [11] confirms that most files are used by

a single client and that, when a file is shared, there is almost

always only one client using it at a time.

Cowling et al. [8] proposed HQ, which uses a hybrid ap-

proach to achieve the benefits of Q/U without increasing

the minimum number of servers (3 f +1 for HQ vs. 5 f +1 for

Q/U). An efficient quorum protocol executes operations un-

less concurrency or failures are detected. Each operation

that encounters such issues then executes a second protocol

to achieve correctness. In reducing the number of servers,

HQ increases the common case number of message delays

for mutating operations to four.

Kotla et al. [20] proposed Zyzzyva, which avoids all-

to-all communication without additional servers, performs

better than HQ under contention, and requires only three

message delays. Unlike other protocols, however, Zyzzyva

requires that all 3 f + 1 nodes are responsive in order to

achieve good performance, making Zyzzyva as slow as the

slowest server. Also, requiring that all 3 f + 1 servers re-

spond to avoid extra work precludes techniques that re-

duce the number of servers needed in practice. For exam-

ple, if only 2 f + 1 servers need be responsive, the f “non-

responsive” servers can be shared by neighboring clusters.

In a recent study of several Byzantine fault-tolerant repli-

cated state machine protocols, Singh et al. concluded that

“one-size-fits-all protocols may be hard if not impossible

to design in practice” [26]. They note that “different per-

formance trade-offs lead to different design choices within

given network conditions.” Indeed, there are several param-

eters to consider, including the total number of replicas, the

number of replicas that must be responsive for good per-

formance, the number of message delays in the common

case, the performance under contention, and the throughput,

which is roughly a function of the numbers of cryptographic

operations and messages per request. Unfortunately, none

of the above protocols score well on all of these metrics,

as shown in Figure 1. PBFT requires four message delays

and all-to-all communication, Q/U requires additional repli-

cas, HQ requires four message delays and performs poorly

under contention, and Zyzzyva performs poorly unless all

nodes are responsive.

How Zzyzx fits in: Like prior systems, Zzyzx is opti-

mized to perform well in environments where faults are rare

and concurrency is uncommon, while providing correct op-

eration under harsher conditions. During benign periods,

Zzyzx performs and scales better than all of the prior ap-

proaches, requiring the minimum possible numbers of mes-

sage delays (two, which equals one round-trip), responsive

servers (2 f +1), and total servers (3 f +1). Zzyzx provides

unprecedented scalability, because it does not require over-

lapping quorums as in prior protocols (HQ and Q/U) that

provide any scaling; non-overlapping server sets can be

used for frequently unshared state. When concurrency is

common, Zzyzx performs similarly to its underlying proto-

col (e.g., Zyzzyva).

Zzyzx takes inspiration from the locking mechanisms

used by many distributed systems to achieve high perfor-

mance in benign environments. For example, GPFS uses

distributed locking to provide clients byte-range locks that



enable its massive parallelism [25]. In benign fault-tolerant

environments, where lockholders may crash or be unrespon-

sive, other clients or servers must be able to break the lock.

To tolerate Byzantine faults, Zzyzx must also ensure that

lock semantics are not violated by faulty servers or clients

and that a broken lock is always detected by correct clients.

By allowing clients to acquire locks, and then only al-

lowing clients that have the lock on given state to execute

operations on it, Zzyzx achieves much higher efficiency

for sequences of operations from that client. Each replica

can proceed on strictly local state, given evidence of lock

ownership, thus avoiding all inter-replica communication.

Also, locked state can be transferred to other servers, allow-

ing non-overlapping sets of servers to handle independently

locked state.

3. Definitions and system model

This paper makes the same assumptions about network

asynchrony and the security of cryptographic primitives

(e.g., MACs, signatures, and hash functions), and offers the

same guarantees of liveness and correctness (linearizabil-

ity), as the most closely related prior works [7, 8, 20].

Zzyzx tolerates up to f Byzantine faulty servers and any

number of Byzantine faulty clients, given 3 f + 1 servers.

As will be discussed, Zzyzx allows physical servers to take

on different roles in the protocol, namely as log servers or

state machine replicas. A log server and replica can be co-

located on a single physical server, or each can be supported

by separate physical servers. Regardless of the mapping of

roles to physical servers, the presentation here assumes that

there are 3 f + 1 log servers, at most f of which fail, and

3 f +1 replicas, at most f of which fail.

Byzantine Locking requires no assumptions about the

behavior of faulty nodes (i.e., Byzantine faults), except that

they are unable to defeat the cryptographic primitives that

correct nodes use to authenticate each others’ messages

(i.e., message authentication codes (MACs) and digital sig-

natures). Moreover, it requires no assumptions about the

synchrony of the network, beyond what the substrate repli-

cated state-machine protocol requires. Because a (deter-

ministic) replicated state machine cannot be guaranteed to

make progress in an asynchronous network environment,

even if only a single benign fault might occur [12], such

protocols generally require the network to be eventually

synchronous [10] in order to ensure liveness. In general,

Byzantine Locking inherits the liveness properties of the

underlying protocol.

As in prior protocols [1, 7, 8, 20], Zzyzx satisfies lin-

earizability [17] from the perspective of correct clients. Lin-

earizability requires that correct clients issue operations se-

quentially, leaving at most one operation outstanding at a

time. The presentation in this paper also assumes this, but

this requirement can be relaxed. Each operation applies to

one or more objects, which are individual components of

state within the state machine.

Two operations are concurrent if neither operation’s re-

sponse precedes the other’s invocation. This paper makes

a distinction between concurrency and contention. An ob-

ject experiences contention if distinct clients submit con-

current requests to the object or interleave requests to it

(even if those requests are not concurrent). For example,

an object experiences frequent contention if two clients al-

ternate writing to it. Low contention can be characterized

by long contention-free runs, where multiple operations on

an object are issued by a single client. It is precisely such

contention-free runs on objects for which Byzantine Lock-

ing is beneficial, since it provides exclusive access to those

objects and enables an optimized protocol to be used to in-

voke operations on them. As such, it is important for perfor-

mance that objects be defined so as to minimize contention.

Zzyzx, HQ [8], and Q/U [1] provide an object-based

state machine interface [15, Appendix A.1.1], which dif-

fers from other protocols [7, 20] in that each request must

include the list of objects that it touches. Specifying which

objects are touched in advance may complicate some opera-

tions (e.g., dereferencing pointers), but it poses no problems

for many applications (e.g., distributed metadata services).

Many replication protocols elect a server as a leader, call-

ing it the primary [7, 20] or sequencer [24, 27]. For simplic-

ity and concreteness, this paper assumes Byzantine Locking

on top of PBFT or Zyzzyva, so certain activities can be rel-

egated to the primary to simplify the protocol. But, Byzan-

tine Locking is not dependent on a primary-based protocol,

and can build on a variety of underlying replicated state ma-

chine protocols.

4. Byzantine Locking and Zzyzx

This section describes Byzantine Locking and Zzyzx at

a high level. Details and a more formal treatment are pro-

vided in the technical report [15, Chapter 5]. Byzantine

Locking provides a client an efficient mechanism to modify

replicated objects by providing the client temporary exclu-

sive access to the object. A client that holds temporary ex-

clusive access to an object is said to have locked the object.

Zzyzx implements Byzantine Locking on top of PBFT [7]

or Zyzzyva [20], as illustrated in Figure 2. In Zzyzx, objects

are unlocked by default. At first, each client sends all op-

erations through PBFT or Zyzzyva (the substrate interface

labeled A in Figure 2). Upon realizing that there is little

contention, the client sends a request through the substrate

interface to lock a set of objects. The substrate interface and

the locking operation are described in Section 4.1.

For subsequent operations that touch only locked ob-

jects, the client uses the log interface (B in Figure 2). The

performance of Zzyzx derives from the simplicity of the log

interface, which is little more than a replicated append-only
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Figure 2: Zzyzx components. The execution of Zzyzx can be di-

vided into three subprotocols, described in Section 4. A) If a client

has not locked the objects needed for an operation, the client uses

a substrate protocol such as PBFT or Zyzzyva (Section 4.1). B) If

a client holds locks for all objects touched by an operation, the

client uses the log interface (Section 4.2). C) If a client tries to

access an object for which another client holds a lock, the unlock

subprotocol is run (Section 4.3).

log. To issue a request, a client increments a sequence num-

ber and sends the request to 3 f +1 log servers, which may

or may not be physically co-located with the substrate in-

terface’s replicas. If the request is in order, each log server

appends the request to its per-client request log, executes

the request on its local state, and returns a response to the

client. If 2 f + 1 log servers provide matching responses,

the operation is complete. The log interface is described in

Section 4.2.

If another client attempts to access a locked object

through the substrate interface, the primary initiates the un-

lock subprotocol (C in Figure 2). The primary sends a mes-

sage to each log server to unlock the object. Log servers

reach agreement on their state using the substrate interface,

mark the object as unlocked, and copy the updated object

back into the replicas. If the client that locked the object

subsequently attempts to access the object through the log

interface, the log server replies with an error code, and the

client retries its request through the substrate interface. The

unlock subprotocol is described in Section 4.3.

4.1. The substrate interface and locking

In Zzyzx, each client maintains a list of locked objects

that is the client’s current best guess as to which objects it

has locked. The list may be inaccurate without impacting

correctness. Each replica maintains a special state machine

object called the lock table. The lock table provides an au-

thoritative description of which client, if any, has currently

locked each object. The lock table also provides some per-

client state, including a counter, vs.

Upon invoking an operation in Zzyzx, a client checks if

any object touched by the operation is not in its list of locked

objects, in which case the client uses the substrate interface.

As in PBFT and Zyzzyva, the client sends its request to the

primary replica. The primary checks if any object touched

by the request is locked. If not, the primary resumes the

substrate protocol, batching requests and sending ordering

messages to the other replicas.

If an object touched by the request is locked, the primary

initiates the unlock subprotocol, described in Section 4.3.

The request is enqueued until all touched objects are un-

locked. As objects are unlocked, the primary dequeues each

enqueued request for which all objects touched by the re-

quest have been unlocked, and resumes the substrate proto-

col as above.

Note that a client can participate in Zzyzx using only the

substrate protocol, and in fact does not need to be aware

of the locking mechanism at all. In general, a replicated

state machine protocol can be upgraded to support Byzan-

tine Locking without affecting legacy clients.

A client can attempt to lock its working set to improve its

performance. To do so, it sends a lock request for each ob-

ject using the substrate protocol. The replicas evaluate a de-

terministic locking policy to determine whether to grant the

lock. If granted, the client adds the object to its list of locked

objects. The replicas also return the value of the per-client

vs counter, which is incremented upon unlock and used to

synchronize state between the log servers and replicas. If

there is little concurrency across a set of objects, the entire

set can be locked in one operation. For example, if each

file in a file system is an object, then a client’s entire home

directory subtree could be locked upon login and the effi-

cient log interface used for nearly all operations. The Zzyzx

prototype uses a simple policy to decide to lock an object:

each replica counts how often a single client accesses an ob-

ject without contention. (The evaluation in Section 6 uses a

threshold of ten.)

4.2. The log interface

Upon invoking an operation in Zzyzx, a client may find

that all objects touched by the operation are in its list of

locked objects, in which case the client uses the log inter-

face. The client increments its request number, which is a

local counter used for each operation issued through the log

interface, and builds a message containing the request, the

request number, and the vs. It then computes a MAC of the

message for each log server. (Large requests are hashed,

and the hash is used in the MACs.) The client sends the

message and all MACs to each log server.

Upon receiving a request, each log server verifies its

MAC. The log server then verifies that the request is in or-

der as follows: If the request number is lower than the most

recent request number for the client, the request is a dupli-

cate and is ignored. If the request number matches the most

recent number, the most recent response is re-sent. If the re-
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Figure 3: Basic communication pattern of Zzyzx versus

Zyzzyva. Operations on locked objects in Zzyzx complete in a

single round-trip to 2 f + 1 log servers. Zyzzyva requires three

message delays, if all 3 f +1 replicas are responsive, or more mes-

sage delays, if some replicas are unresponsive.

quest number is greater than the next in sequence, or if the

vs value is greater than the log server’s value, the log server

must have missed a request or an unlock, so it initiates state

transfer (Section 5.1). If the log server has promised not

to access an object touched by the request (since the object

is in the process of being unlocked, as described in Sec-

tion 4.3), it returns failure.

If the request number is next in sequence, the log server

tries to execute the request. It lazily fetches objects from

replicas as needed by invoking the substrate interface. Of

course, if a log server is co-located with a replica, pointers

to objects may be sufficient. If fetching an object fails be-

cause the object is no longer locked by the client, the log

server returns failure. Otherwise, the log server has a local

copy of each object that is touched by the request. It exe-

cutes the request on its local copy, appends the request, vs,

request number, and the set of MACs to its request log, and

returns a MACed message with the response and the client’s

MACs. (If the returned MACs do not match those sent, the

client re-sends the MACs and a MAC of the MACs [15, Ap-

pendix B.7].) Upon receiving 2 f +1 non-failure responses,

the client returns the majority response.

If any log server returns failure, the client sends a retry

request through the substrate interface, which includes both

the request and the request number. Each replica checks if

the request completed at the log servers before the last exe-

cution of the unlock subprotocol, in which case the replicas

tell the client to wait for a response from a log server. Oth-

erwise, the replicas execute the request.

Figure 3 shows the basic communication pattern of the

log interface in Zzyzx versus Zyzzyva. Zyzzyva requires

50% more network hops than Zzyzx, and Zyzzyva re-

quires all 3 f + 1 servers to be responsive to perform well,

f more than the 2 f + 1 responsive servers required by

Zzyzx. Zzyzx improves upon Zyzzyva further, though, by

removing the bottleneck primary and requiring less cryp-

tography at servers. The latter improvement obviates the

need for batching, a technique used in previous proto-

cols [6, 19, 20, 24] where the primary accumulates requests

before sending them to other replicas. Batching amortizes

the cryptographic overhead of the agreement subprotocol

over many requests, but waiting to batch requests before

execution increases latency in Zyzzyva. Because Byzan-

tine Locking provides clients temporary exclusive access to

objects, each client can order its own requests for locked

objects, avoiding the need for an agreement subprotocol.

4.3. Handling contention

The protocol, as described so far, is a simple combina-

tion of operations issued to PBFT or Zyzzyva (Section 4.1)

and requests appended to a log (Section 4.2). The unlock

subprotocol is what differentiates Byzantine Locking from

prior lease- and lock-like mechanisms in systems such as

Farsite [2] and Chubby [5].

If a request touches an unlocked object (Section 4.1)

or is retried because a log server returned failure (Sec-

tion 4.2), then the client sends the request to the primary

using the substrate interface. The primary checks if the re-

quest touches any locked objects and, if so, initiates the un-

lock subprotocol described in this section. In general, the

unlock subprotocol can unlock multiple objects in a single

execution, but, for clarity, this section describes unlocking

a single object.

The unlock subprotocol consists of a fast path and a

full path, both shown in Figure 4. The fast path requires

just a single round-trip between the primary and 2 f +1 log

servers. Full unlock requires additional communication, but

it is required only when a client or log server is faulty, or

when request logs do not match due to concurrency.

Fast unlock: In the fast unlock path (A in Figure 4), the

primary sends a “Try unlock” message to each log server,

describing the object (or set of objects) being unlocked.

Each log server constructs a message containing the hash

of its request log and a hash of the object. A designated

replier includes the value of the object in its message (as

in replies for PBFT [7]). Once again, if log servers are co-

located with replicas, only a pointer to the object need be

sent. Each log server sends its response to the primary for-

matted as a request to the substrate interface.

Upon receiving 2 f + 1 responses with matching object

and request log hashes and at least one object that matches

the hashes, the primary sends the responses through the sub-

strate protocol, batched with any requests enqueued due to

object contention (see Section 4.1). Each replica marks the

object unlocked, and vs is incremented before the next lock

or full unlock operation. Before sending a response to the

primary, each log server adds the object to a list of objects

it promises not to touch until the next instantiation of the

full unlock subprotocol. This list prevents the log server

from touching potentially unlocked objects in concurrent

appends (see Section 4.2).

The full unlock subprotocol: If request log hashes do

not match in the fast path, the full unlock subprotocol is ex-

ecuted (B in Figure 4). The primary fetches signed request

logs from 2 f + 1 log servers (“Break lock” in Figure 4).
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Figure 4: Unlock message diagram. A) The primary fetches a hash of the request log at 2 f + 1 log servers (“Try Unlock”). If hashes

match, the primary sends the hashes and the conflicting request through the substrate interface (“Issue request”), which unlocks the object.

B) Otherwise, the primary fetches request logs from 2 f + 1 log servers (“Break lock”). The primary then asks each log server to vote on

which requests have valid MACs (“Vote on logs”). Each log server sends its votes via the substrate interface. Replicas choose the longest

sequence of requests with f + 1 votes, and return the chosen request log as a substrate protocol response. Each log server replays that

request log to reach a consistent state (“Choose and replay log”). Finally, as above, the log servers send the primary matching hashes,

which the primary sends with the conflicting request through the substrate interface (“Issue request”). (See Section 4.3.)

(Signatures can be avoided using standard techniques, but

full unlock is rare.) Before sending its request log, a log

server adds the object (or set of objects) being unlocked to

its list of objects that it promises not to touch until the next

full unlock, as in the fast path. Unfortunately, the replicas

cannot verify the MACs stored with each request in the re-

quest logs (Section 4.2). Thus, the primary sends the signed

request logs to the log servers, which “vote” on each request

log entry to prove whether the client invoked each request,

as follows.

Each log server sends a substrate interface request that

lists which request log entries have valid MACs. (“Vote on

logs” in Figure 4.) Replicas create a new log consisting of

the longest sequence of request log entries such that each

touched object is locked and each request has at least f +1

votes, ensuring that the client invoked each request. Repli-

cas return this log to each log server in a substrate interface

response. Each log server replays this request log as needed,

thus reaching a consistent state that matches the state at

other correct log servers. (“Choose and replay log” in Fig-

ure 4.) Each log server then marks the object unlocked,

increments vs, and clears the list of objects it promised not

to touch. Finally, as above, correct log servers send the pri-

mary matching hash values describing their state and the

object to be unlocked. The primary sends these hashes, and

any requests enqueued due to object contention (see Sec-

tion 4.1), in a batch through the substrate protocol. Each

replica marks the object unlocked and increments vs.

The primary sends and each log server checks vs before

each “Try unlock”, “Break lock”, and “Replay log” mes-

sage. If the log server’s vs is greater than the primary’s, then

the message is stale. If the primary’s vs is greater than the

log server’s, the log server missed an unlock, so it initiates

state transfer (Section 5.1).

5. Protocol details

The log servers use checkpointing and state transfer

mechanisms, described in Section 5.1, similar to those in

PBFT [7], HQ [8], and Zyzzyva [20]. Section 5.2 describes

optimizations for read-only requests, more aggressive lock-

ing, lower contention, and preferred quorums. Section 5.3

discusses how Zzyzx can provide near-linear scalability by

deploying additional replicas. In contrast, the throughput of

most Byzantine fault-tolerant protocols cannot be increased

significantly by adding additional replicas, because all re-

quests flow through a bottleneck node (e.g., the primary in

PBFT and Zyzzyva) or overlapping quorums (which pro-

vides limited scalability).

Though this paper assumes that at most f servers (log

servers or replicas) fail, Byzantine Locking (and many other

Byzantine fault-tolerant protocols) can support a hybrid

failure model that allows for different classes of failures.

As in Q/U [1], suppose that at least n− t servers are correct,

and that at least n− b are honest, i.e., either correct or fail

only by crashing; as such, t ≥ b. Then, the total number of

servers is b+2t +1 rather than 3 f +1, and the quorum size

is b+ t +1 rather than 2 f +1. Of course, when f = b = t, it

is the case that b + 2t + 1 = 3 f + 1 and b + t + 1 = 2 f + 1.

The benefit of such a hybrid model is that one additional

server can provide some Byzantine fault-tolerance. (More

generally, b additional servers can tolerate b simultaneous

Byzantine faults.) A hybrid model suits deployments where

arbitrary faults, such as faults due to soft errors, are less

common than crash faults.

5.1. Checkpointing and state transfer

Log servers should checkpoint their state periodically to

truncate their request logs and to limit the amount of work

needed for a full unlock. The full unlock operation acts as



a checkpointing mechanism, because log servers reach an

agreed-upon state. Thus, upon full unlock, requests prior to

the unlock can be purged. The simplest checkpoint protocol

is for log servers to execute the full unlock subprotocol for

a null object at fixed intervals. Zzyzx can also use standard

checkpointing techniques found in Zyzzyva [20] and similar

protocols, which may be more efficient.

If a correct client sends a request number greater than

the next request number in order, the log server must have

missed a request. The log server sends a message to all 3 f

other log servers, asking for missed requests. Upon receiv-

ing matching values for the missing requests and the associ-

ated MACs from f +1 log servers, the log server replays the

missed requests on its local state to catch up. Since 2 f + 1

log servers must have responded to each of the client’s pre-

vious requests, at least f + 1 correct log servers must have

these requests in their request logs. A log server may sub-

stitute a checkpoint in place of prior requests.

5.2. Optimizations

Read-only requests: A client can read objects locked by

another client if all 3 f +1 log servers return the same value,

as in Zyzzyva. If 2 f + 1 log servers return the same value

and the object was not modified since the last checkpoint,

the client can return that value. If the object was modified,

the client can request a checkpoint, which may be less ex-

pensive than the unlock subprotocol.

Aggressive locking: If an object is locked but never

fetched, there is no need to run the unlock subprotocol. The

primary just sends conflicting requests through the standard

substrate protocol, which will deny future fetch requests

pertaining to the previous lock. Thus, aggressively locking

a large set of objects does not lower performance.

Pre-serialization: Section 6.5 finds that Zzyzx outper-

forms Zyzzyva for contention-free runs as short as ten op-

erations. The pre-serializer technique of Singh et al. [27]

could make the break-even point even lower.

Preferred quorums: As in Q/U [1] and HQ [8], Zzyzx

takes advantage of preferred quorums. Rather than send re-

quests to all 3 f +1 log servers for every operation, a client

can send requests to 2 f +1 log servers if all 2 f +1 servers

provide matching responses. This optimization limits the

amount of data sent over the network, which is useful when

the network is bandwidth- or packet-limited, or when the

remaining f replicas are slow. It also frees f servers to pro-

cess other tasks or operations in the common case, thus al-

lowing a factor of up to
3 f+1
2 f+1

higher throughput.

5.3. Scalability through log server groups

There is nothing in Section 4 that requires the group of

replicas used in the Byzantine fault-tolerant replicated state

machine protocol to be hosted on the same servers as the log

servers. Thus, a system can deploy replicas and log servers

on distinct servers. Similarly, the protocol can use multiple

distinct groups of log servers. An operation that spans mul-

tiple log server groups can always be completed through

the substrate interface. The benefit of multiple log server

groups is near linear scalability in the number of servers,

which far exceeds the scalability that can be achieved by

adding servers in prior protocols.

6. Evaluation

This section evaluates the performance of Zzyzx and

compares it with that of Zyzzyva and that of an unrepli-

cated server. Zyzzyva is measured because it outperforms

prior Byzantine fault-tolerant protocols [20, 26]. Zzyzx is

implemented as a module on top of Zyzzyva, which in turn

is a modified version of the PBFT library [7]. For evalua-

tion, MD5 was replaced with SHA1 in Zyzzyva and Zzyzx,

because MD5 is no longer considered secure [29].

Since Zyzzyva does not use Byzantine Locking, replicas

must agree on the order of requests before a response is re-

turned to the client (rather than the client ordering requests

on locked objects). Agreeing on order requires that the pri-

mary generate and send MACs to all 3 f other replicas, which

would be expensive if done for every operation. Thus, the

primary in Zyzzyva accumulates a batch of B requests be-

fore ordering them all by generating a single set of MACs

that is sent to all 3 f other replicas, amortizing the network

and cryptographic cost over several requests. This section

considers Zyzzyva with batch sizes of B=1 and B=10.

The micro-benchmark workload used in Sections 6.2–

6.4 consists of each client process performing a null request

and receiving a null reply. Each client accesses an indepen-

dent set of objects, avoiding contention. A client running

Zzyzx locks each object on first access. The workload is

meant to highlight the overhead found in each protocol, as

well as to provide a basis for comparison by reproducing

prior experiments. Section 6.5 considers the effects of con-

tention, and Section 6.6 evaluates a benchmark and trace-

based workload on a file system that uses Zzyzx for meta-

data operations.

6.1. Experimental setup

All experiments are performed on a set of computers that

each have a 3.0 GHz Intel Xeon processor, 2 gigabytes of

memory, and an Intel PRO/1000 network card. All comput-

ers are connected to an HP ProCurve Switch 2848, which

has a specified internal bandwidth of 96 Gbps (69.3 Mpps).

Each computer runs Linux kernel 2.6.28-7 with default net-

working parameters. Experiments use the Zyzzyva code re-

leased by the protocol’s authors, configured to use all opti-

mizations. Both Zyzzyva and Zzyzx use UDP multicast.

After accounting for the performance difference between

SHA1 and MD5, the this section’s evaluation of Zyzzyva

agrees with that of Kotla et al. [20].
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Figure 5: Throughput vs. servers. Zzyzx’s throughput scales

nearly linearly as servers are added.

A Zyzzyva replica process runs on each of 3 f +1 server

computers. For Zzyzx, except where noted, one Zyzzyva

replica process and one log server process run on each of

3 f + 1 server computers. Zzyzx is measured both with the

preferred quorum optimization of Section 5.2 enabled (la-

beled “Zzyzx”) and with preferred quorums disabled (la-

beled “Zzyzx-NPQ”).

Each physical client computer runs 10 instances of the

client process. This number was chosen so that the client

computer does not become processor-bound. All exper-

iments are run for 90 seconds, with measurements taken

from the middle 60 seconds. The mean of at least 3 runs is

reported, and the standard deviation for all results is within

3% of the mean.

6.2. Scalability

Figure 5 shows the throughput of Zzyzx and Zyzzyva as

the number of servers increases when tolerating one fault.

Zyzzyva cannot use additional servers to improve through-

put, so the dashed line repeats its 4-server throughput for

reference. Although data is only shown for f = 1, the gen-

eral shape of the curve applies when tolerating more faults.

Even with the minimum number of servers (4), Zzyzx

outperforms Zyzzyva by a factor of 2.9× higher through-

put. For Zzyzx, the first 3 f + 1 log servers are co-located

with the Zyzzyva replicas. Additional log servers run on

dedicated computers. Since only 2 f + 1 log servers are in-

volved in each operation and independent log server sets do

not need to overlap, the increase in usable quorums results

in nearly linear scalability.

6.3. Throughput

Figure 6 shows the throughput achieved, while varying

the number of clients, when tolerating a single fault and

when all servers are correct and responsive. Zzyzx sig-

nificantly outperforms all Zyzzyva configurations. Zzyzx’s

maximum throughput is 2.9× that of Zyzzyva’s with B=10,

and higher still compared to Zyzzyva without batching.

When Zzyzx is run on f +1 additional servers (6 total),

it’s maximum throughput is 3.9× that of Zyzzyva with

B=10. Even without preferred quorums, Zzyzx’s maxi-

mum throughput is 2.2× that of Zyzzyva with B=10, due

to Zzyzx’s lower network and cryptographic overhead.

Due to the preferred quorums optimization, Zzyzx pro-

vides higher maximum throughput than the unreplicated

server, which simply generates and verifies a single MAC,

because each log server processes only a fraction (
2 f+1
3 f+1

)

of the requests. With preferred quorums disabled (Zzyzx-

NPQ), Zzyzx provides lower throughput than the unrepli-

cated server due to checkpoint, request log, and network

overheads.

Zzyzx performs as well or better than Zyzzyva for larger

request and response sizes. For larger request sizes, such

as the 4 kB request and null reply found in the 4/0 micro-

benchmark of Castro and Liskov [7], Zzyzx provides 1.3×

higher throughput (
3 f+1
2 f+1

) than Zyzzyva because each log

server processes only a fraction of requests.

6.4. Latency

Figure 7 shows the average latency for a single operation

under varied load. When serving one request, Zzyzx ex-

hibits 39–43% lower latency than Zyzzyva, and Zzyzx con-

tinues to provide lower latency as load increases. The lower

latency is because Zzyzx requires only 2 one-way message

delays (33% fewer than Zyzzyva), each server computes

fewer MACs, and log servers in Zzyzx never wait for a batch

of requests to accumulate before executing a request and re-

turning its response. (Though important for high through-

put, batching increases latency in Zyzzyva.)

6.5. Performance under contention

Figure 8 shows the performance of Zzyzx under con-

tention. For this workload, each client accesses an object

a fixed number of times before the object is unlocked. The

client then procures a new lock and resumes accessing the

object. The experiment identifies the break-even point of

Zzyzx, i.e., the length of the shortest contention-free run for

which Zzyzx outperforms Zyzzyva.

When batching in Zyzzyva is disabled to improve la-

tency, Zzyzx outperforms Zyzzyva for contention-free runs

that average ≥ 10 operations. Zzyzx outperforms Zyzzyva

when batching is enabled (B=10) for contention-free runs

that average ≥ 20 operations. Zzyzx achieves 85–90% of its

top throughput for contention-free runs of 160 operations.

6.6. Postmark and trace-based execution

To compare Zzyzyva and Zzyzx in a full system, we built

a memory-backed file system that can use either Zzyzyva

or Zzyzx for its metadata storage. We focus on file sys-

tem metadata rather than data because efficient protocols

specialized for fault-tolerant block data storage already ex-

ist [13, 16]. Zzyzx completes 566 Postmark [18] transac-

tions per second (TPS) compared to Zyzzyva’s 344 TPS,

an increase of 60%. Postmark produces a workload with
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f = 1 and all servers are responsive. The dashed lines in Figure 8 show throughput with no contention.

many small files, similar to the workload found in a mail

server, and each transaction consists of one or more Zzyzx

or Zyzzyva operations plus some processing time. Be-

cause Postmark is single-threaded, its performance depends

mainly on request response time and does not benefit from

batching.

Metadata operations were extracted from NFS traces of

a large departmental server. Over 14 million metadata op-

erations were considered from the Harvard EECS workload

between Monday 17–Friday 21 of February 2003 [11]. A

matching operation mix was then executed on Zzyzx and

Zyzzyva. Zzyzx was able to use the log interface for 82%

of operations, with an average contention-free run length of

4926 operations. Of the remaining 18% of operations ex-

ecuted through the Zyzzyva substrate interface, 56% were

read-only and used Zyzzyva’s one round-trip read optimiza-

tion. When all operations were executed through Zyzzyva,

the read optimization was used for 55% of operations.

Zzyzx completed operations at a rate of 104.7 kOps/sec, and

Zyzzyva completed operations at a rate of 64.8 kOps/sec.

Thus, Zzyzx provides a factor of 1.6× higher throughput

for this trace-based metadata workload.

7. Additional related work

Recent Byzantine fault-tolerant replicated state machine

protocols build upon several years of prior research. Se-

cureRing uses an unreliable failure detector to provide an

asynchronous Byzantine fault-tolerant group communica-

tion abstraction [19], which can be used to build a repli-

cated state machine. The Rampart toolkit implements an

asynchronous Byzantine fault-tolerant replicated state ma-

chine [24]. The technical report provides further discus-

sion [15, Section 5.1.3].

Guerraoui et al. introduce a modular framework for

Byzantine fault-tolerant replicated state machine protocols

and the Quorum and Chain subprotocols [14]. As in

Zyzzyva, Quorum and Chain require that all 3 f + 1 repli-

cas are responsive. Quorum [14] looks like Zyzzyva [20]

without a pre-serializer [27]. Chain is a pipelined version

of Quorum, which increases throughput but also increases

latency by increasing the number of message delays per re-

quest. Zzyzx is more similar to PBFT and HQ than Quo-

rum or Chain. Zzyzx, PBFT, and HQ each require 2 f + 1

responsive servers of 3 f +1 total. Each have a setup phase

that determines which client will issue the next request on

a set of objects (lock for Zzyzx, write-1 for HQ, and pre-

prepare for PBFT). The difference is that Zzyzx allows

multiple operations on a set of objects after a single setup

phase. Put another way, Zzyzx batches operations for a sin-

gle client.

Farsite [2, 4, 9] uses a Byzantine fault-tolerant replicated

state machine to manage metadata in a distributed file sys-

tem. Farsite issues leases to clients for metadata such that

clients can update metadata locally, which can increase scal-

ability. Upon conflict or timeout, leases are recalled, but

updates may be lost if the client is unreachable. Leasing

schemes do not provide the strong consistency guarantees

expected of replicated state machines (linearizability [17]),

so leasing is not acceptable for some applications. Also,

choosing lease timeouts presents an additional challenge: a

short timeout increases the probability that a client will miss

a lease recall or renewal, but a long timeout may stall other

clients needlessly in case of failure. Farsite expires leases

after a few hours [9], which is acceptable only because Far-

site is not designed for large-scale write sharing [4].

To scale metadata further, Farsite hosts metadata on mul-

tiple independent replicated state machines called directory

groups. To ensure namespace consistency, Farsite uses a

special-purpose subprotocol to support Windows-style re-

names across directory groups [9]. This subprotocol allows

Farsite to scale, but it is inflexible and does not generalize to

other operations. For example, the subprotocol cannot han-

dle POSIX-style renames [9]. Byzantine Locking would

allow Farsite and similar protocols to maintain scalability

without resorting to a special-purpose protocol.

Yin et al. [30] describe an architecture in which agree-

ment on operation order is separated from operation exe-

cution, allowing execution to occur on distinct servers. But,

the replicated state machine protocol is never relieved of the

task of ordering operations, and as such, remains a bottle-



neck. Dividing the state machine into objects, as in Zzyzx,

has been used in many previous systems. For example,

Kotla et al. [21] describe CBASE, which partitions a state

machine into objects and allows each replica to execute op-

erations known to involve only independent state concur-

rently.

8. Conclusion

Byzantine Locking allows creation of efficient and scal-

able Byzantine fault-tolerant services. Compared to the

state-of-the-art (Zyzzyva), Zzyzx delivers a factor of 2.2×–

2.9× higher throughput during concurrency-free and fault-

free operation, given the minimum number of servers

(3 f +1). Moreover, unlike previous Byzantine fault-tolerant

replicated state machine protocols, Zzyzx offers near-linear

scaling of throughput as additional servers are added.
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