Design and Implementation of Self-Securing Network Interbce
Applications

Stanley M. Bielski

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree
Master of Science

Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, Pennsylvania
December 2005

Design and Implementation of Self-Securing Network Interbce
Applications

Approved by:

Professor Gregory R. Ganger

Professor Dawn Song

Date Approved

ACKNOWLEDGEMENTS

| would like to thank my advisor, Professor Gregory R. Garfgehis kindness and mentorship
throughout my stay at Carnegie Mellon. Greg's tireless wethkic and inexhaustible enthusiasm
have been a continual source of inspiration for me and halpetieshape me as a researcher and
a person. Without his tremendous faith, support, and tggethis work would never have been

possible.

| would like to thank the staff, students and faculty of thedHal Data Lab: you all have
contributed to making this environment a great place to veordt learn. Specifically, | would like
to thank William Courtright for helping me pursue my degreevould also like to thank Karen
Lindenfelser for all the work she does behind the scenesy’'t taagine the PDL without Karen!
This thesis also wouldn’t have been possible without GreggnBmou’s work on the Siphon kernel
and Chris Long’s work on Castellan: it was a pleasure workiitg both of you. | would also like to
thank Dawn Song for volunteering to be the second readelisthbsis. | would also like to thank
the members and companies of the PDL Consortium (includimgrcan Power Conversion, EMC,
EqualLogic, Hewlett-Packard Labs, Hitachi, IBM, Intel, dbsoft, Network Appliance, Oracle,

Panasas, Seagate and Sun) for their interest, insightthdelk, and support.

Lastly, I would like to thank my mother, my father, and my lwat | love yinz guyz and trying

to make you proud brings out the best in me. Thank you all!

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

INTRODUCTION

TOWARDS PER-MACHINE PERIMETERS

2.1 Threatmodel

2.2 Self-Securing Nls

2.3 Self-securing Nl features

2.4 Self-securing NI Administrative Features

2.5 Costs, limitations, and weaknesses

SELF-SECURING NI SOFTWARE DESIGN

3.2 Basic design achievingthesegoals

3.3 DISCUSSION e e e

IMPLEMENTATION

4.1 Aself-securing Nl prototype
4.2 Prototype implementation

4.3 Basicoverheads

EXAMPLE APPLICATIONS

5.1 Detecting IP-based propagation

5.2 Detecting claim-and-hold DoS attacks

5.3 Detecting TTLmisuse
5.4 Detecting IP fragmentation misuse

5.5 Otherscanners e

19

19

19

25

26

VI RELATED WORK

VIl CONCLUSION

36

38

LIST OF FIGURES

Self-securing network interfaces. aa 5
Self-securing NI software architecture 15
Example of &si phonconf 22
Example of scanner conf 22

Vi

1

2

LIST OF TABLES

Network API exported to scanner applications.

Base performance of the self-securing Nl prototype.

Vii

16

25

CHAPTER|

INTRODUCTION

As the Internet grows, and as Internet applications becomme mbiquitous and complex, net-
works intrusions will similarly increase in scale, freqagnand sophistication. The task of properly
securing a network against this evolving threat requiresrije of disparate technological solutions
(e.g. firewalls, proxies, network intrusion detecton systeanti-virus software) and administrative
efforts (e.g. software patching, policy enforcement, mekwmonitoring). Unfortunately, even a
network with a state-of-the-art security infrastructungl a team of expert administrators is still vul-
nerable to attacks that exploit the lack of cohesion andtadiédjpy inherent in this security model.
Since centralized security infrastructure is often sharess a set of many networked hosts, it
often lacks the resources and multiple vantage points igedtiagnose and contain threats that fly
under the radar of traditional security models. For exaipdelitional network security leaves the
protected intranet unprotected from an intruder who gess {be outer defenses. Moreover, often
there is no centralized infrastructure for informatiormshg and coordination among security com-
ponents; the administrator must manually correlate sép#wg files and independently configure
separate components. These time-consuming and errog-pasks increase the time required to
respond to a security incident, opening the window for aoldil attacks.

In response to these concerns, this thesis presents a remeltg platform that narrows the
architectural gaps between traditional network securdsimpeters in a highly scalable and fault-
isolated manner while providing administrators with a diengnd powerful interface for configu-
ration and coordination of security policies across midtipetwork components. The heart of this
platform is the concept adelf-securing network interfaces (SS-NIs) [15, 16].

Network interfaces (NIs) are components that sit betweensa $ystem and the rest of the in-
tranet, such as network interface cards (NIC) or local dwikorts. The role of the NI in a computer
system is to move packets between the system’s componeahthemetwork. Asdf-securing NI

additionally examines the packets being moved and enfarewgork security policies.

Self-securing NIs have a number of advantages over firepktd at LAN boundaries. First,
distributing firewall functionality among end-points [28}oids a central bottleneck and protects
systems from local machines as well as those on the WAN. Seeanisbehaving host can be throt-
tled at its source. As with firewalls, a self-securing NI @tes independently of host software; its
checks and rules remain in effect even when the correspgiidist OS is compromised. Third, and
most exciting, each NI can focus on a single host’s traffiggitig deeper into the lower-bandwidth,
less noisy signal comprised of fewer aggregated commuoicahannels. For example, recon-
struction of application-level streams and inter-coniogectelationships becomes feasible without
excessive cost. This allows the NI to more accurately shadgertant host OS structures (e.g., IP
route information, DNS caches, and TCP connection statesjtereby more definitively identify

suspicious behavior.

Digging deeply into network traffic, as promoted here, wikatly increase the codebase ex-
ecuting in an NI. Further, it will inevitably lead to lessgett and less-hardened implementations
of scanning code (which we refer to smnners), particularly code that examines the application-
level exchanges. As a result, well-designed system saftigsareeded for self-securing Nls, both to
simplify scanner implementations and to contain rogue rseen(whether buggy or compromised).

This thesis describes a software architecture that adebdssh issues.

One perceived drawback of using self-securing NI's is thditehal administrative effort re-
quired to manage and configure them. We address this congedederibing our management
infrastructure callecCastellan. Castellan provides administrators with a GUI-based toa@asily
perform most administrative tasks, such as installing andstialling SS-NI software, updating and
managing SS-NI policy configurations, and viewing feedbfiokn SS-NI's in the form ofalerts.
Additionally, Castellan has the capability to autononlicabordinate feedback among different de-
vices and alter the network’s security policy based on thégiback. By minimizing response time

required for containment, Castellan can reduce windowsilpfarability in the network.

This thesis makes four main contributions: First, it makesase for NI-embedded intrusion
detection and containment functionality. Second, it dbssrthe design of NI system software for
supporting such functionality. Third, it discusses our liempentation of NI system software and the

Castellan administrative console. Fourth, it describeersé promising applications for detecting

and containing network threats enabled by the placementlbEscuring Nis at the host's LAN

access point.

The remainder of this thesis is organized as follows. Se@idiscusses the concept of SS-NIs
in further detail and describes related work. Section 3iless the design and architecture of SS-
NlIs and Castellan. Section 4 discusses our prototype ingiéation of SS-NI system software and
management software. Section 5 describes applicationsawedeveloped on the SS-NI platform.
Section 6 discusses related work. Section 7 concludeshtbgist by reflecting on our experiences

and identifying areas of future work.

CHAPTER I

TOWARDS PER-MACHINE PERIMETERS

The common network security approach maintains an outémpter (perhaps with a firewall,
some proxies, and a NIDS) around a protected intranet. $tdggiood first line of defense against
network attacks. But, it leaves the entire intranet widendjpean attacker who gains control of any
machine within the perimeter. This section expands on tiisat model, self-securing Nls, how

they help, and their weaknesses.

2.1 Threat model

The threat that this thesis is most concerned with is a mstdtje attack. In the first stage,
the attacker compromises any host on the inside of the igitnagrimeter — the attacker subverts
its software system, gaining the ability to run arbitrarftware on it with OS-level privileges. In
the second stage, the attacker uses the internal machittadk ather machines on the intranet or
Internet.

This form of two-stage attack is of concern because only tsedtage need infiltrate intranet-
perimeter defenses; actions taken in the second stage dwasst that perimeter. Worse, the first
stage need not be technical at all; an attacker can use sogaleering, bribery, a discovered
modem on a desktop, or theft (e.g., of a password or inseapteg) for the first stage. Finding
a single hole is unlikely to be difficult in any sizable orgeation. Once internal access is gained,
the second stage is free to use known, NIDS-detectablensyainerabilities, since it does not
enter the view of the perimeter defenses. In some envirotsp&nown attacks launched out of
the organization may also proceed unencumbered; this depanwhether the NIDS and firewall
policies are equally restrictive in both directions.

The main focus of this work is on stopping the second stageudh swo-stage attacks. A
key characteristic of the threat model described is thatattecker has software control over a

machine inside the intranet, but does not have physicalsadceits hardware. This thesis is not

[Ssni]

[SSNT]

2F

Deskiops, /
sorvars, | Lo

ete. ‘\ Area

“ Network /

Area

etc. Area
Network ‘ Network / Firewall

Firewall

and and
Xll\lbﬁ i E\HD\
(a) Conventional security configu- (b) Addition of self-securing NiIs

ration

(a) shows the common network security configuration, wherein a firewall and a NIDS
protect LAN systems from some WAN attacks. (b) shows the addition of self-securing
NIs, one for each LAN system.
Figure 1: Self-securing network interfaces.
specifically trying to address insider attacks, in whichattacker would also have physical access

to the hardware and its network connections.

2.2 Self-Securing Nls

A countermeasure to the two-stage attack scenario mustthaveroperties: (1) it must be
isolated from the system software of the first stage’s targjete it would otherwise be highly
vulnerable in exactly the situations we want it to functiand (2) it must be close to its host in the

network path, or it will be unable to assist with intranet zonment:

A host's network interfaces (NIs) have the two propertiescdéed above, so this work focuses
on these components as good places to add a security perirketrethe purposes of this thesis,
components labeled as “NIs” will have three properties: tfiBy will perform the base packet
moving function, (2) they will do so from behind a simple iritese with few additional services,
and (3) they will be isolated (i.e., compromise indepenydfzain the remainder of the host software.
Examples of such Nls include NICs, DSL or cable modems, anémlilators within a virtual
machine monitor [39]. Leaf switches also have these prigsefor the hosts directly connected to

them.

IMany of the schemes explored here could be also used at teet@dgtect second-stage attacks from inside to out.
The goal of internal containment requires finer-grainednpeters. As discussed below, distributed firewalls can also
protect intranet nodes from internal attacks, though thagtrbe extended to what we call self-securing NIs in order to
benefit from the containment and source-specific detectiatufes described.

An NI is defined to be aelf-securing NI (SS-NI) if it internally monitors and enforces policies
on packets forwarded in each direction. With proper pdlidgieplace, a SS-NI can be an effective
countermeasure to the two-stage attack scenario. SinceNd §®erates independently of host soft-
ware, its policies continue to be enforced even while thé @&sis compromised. Through its ability
to control host traffic at its source, a SS-NI can contain etistving hosts and mitigate the threat
they pose to other hosts on the network. Moreover, no changfeethost interface is necessary;
these security functions can occur transparently withinNih (except, of course, when suspicious
activity is actively filtered). For traditional NlIs, whictkxehange link-level messages (e.g., Ethernet
frames), examination of higher-level network protocolletges requires reconstruction within the
SS-NI software. Although this work is redundant with reggedhe host’s network stack, it allows
SS-Nis to be deployed with no client software modificatioar Nis that offload higher-level proto-
cols (e.qg., IP security or TCP) from the host [9, 10], redumdeork becomes unnecessary because

the only instance of the work is already within the NI.

Self-securing NIs enforce policies set by the network adstriator, much like distributed fire-
walls [14, 20, 1]. Configuration and management of SS-Nlsi$gomed over a secure channel in
the network. Alerts about suspicious activity are sent tiatstrative systems via the same secure
channels. These administrative systems can log alertsiraahan aggregate view of individual NI
observations, notify administrators, and even distrimée policies in response to observations if
so configured. In order to properly guard against the twgestttack model, even the host OS and
its most-privileged users must not be able to reconfigurasabte the NI's policies. Of course, for
a SS-NI to be effective, one must assume that neither thengginative console nor the Nl itself are

compromised.

As with any intrusion detection system, policy-setting austrators must balance the desire
for containment with the damage caused by acting on falgenalaSelf-securing NlIs can watch
for suspicious traffic and generate alerts transparently, iBthey are configured to block or delay

suspicious traffic, they may disrupt legitimate user atstivi

2.3 Self-securing NI features

The SS-NI architecture described above has several featina¢ combine to make it a com-
pelling design point. This subsection highlights six. Twidleem, scalability and full coverage,
result from distributing the functionality among the enif® [20]. Two, host independence and
host containment, result from the NI being close to and yeaise from the vulnerable host soft-
ware [14]. Two, less aggregation and more per-link res@jrbaild on the scalability benefit but

are worthy of independent mention.

Scalability. The work of checking network traffic is distributed among émelpoints. Each end-
point's Nl is responsible for checking only the traffic to a@noim that one endpoint. The marginal
cost of the required NI resources is relatively low for conmaesktop network links, [14], partic-
ularly when their utilization is considered. More impotiginthe total available resources for ex-
amining traffic necessarily scales with the number of noddké network, since each node should
be connected to the network by its own SS-NI. Distributinghstunctionality among end-points
avoids the bottleneck inherent in a centralized firewalffiumation. Moreover, the cost of equiva-
lent aggregate resources in a such a configuration makeseaxgamsive (in throughput or dollars)
or limits the checking that they can do. This argument is mikehcost-effectiveness arguments for

clusters over supercomputers [4].

Full coverage. Each host system is protected from all other machines by3tdE including
those inside the same LAN. In contrast, a firewall placedal#N'’s edge protects local systems
only from attackers outside the LAN. Thus, SS-NIs can addsesne insider attacks in addition to

Internet attacks, since only the one host system is insigléltls boundary.

Host independence Like network firewalls, SS-NIs operate independently ofneuble host
software. As such, their policies are exclusively configupy an adminstrative console over the
network. So, even compromising the host OS will not allowrgruder to disable the SS-NI func-
tionality. This property is important because successiiniders and viruses commonly disable any

host-based mechanisms in an attempt to hide their presence.

Host containment. Self-securing Nls offer a powerful control to network adisirators: the

ability to throttle network traffic at its sources. Thus, tsosn the LAN or WAN can be protected

from a misbehaving host operating behind a SS-NI. For exajrgphost whose security status is
guestionable could have its network access slowed, filtenetlocked entirely. This feature dis-
tinguishes SS-NiIs from distributed firewalls, which protegainst internal machines by protecting
targets rather than containing sources. While for somelataenarios this strategy may be suf-
ficient, the extra visibility and control offered at the Nintage point of a compromised host can
be exploited to reduce detection assumptions. For exara@s-NI can see misuse of low-level
networking features, as is the case in many deception at@tiNIDSs, and be used to normalize
this problematic traffic. Doing this at the source leveratieseffort involved in detecting NIDS

deception attacks, since both SS-NIs and NIDSs requirdasistate tracking.

Less aggregation.Connected to only one host system, a SS-NI investigatestiviedy simple
signal of network traffic. In comparison, a firewall at a nethvedge must deal with a noisier signal
consisting of many aggregated communication channels.clHager signal may allow a SS-NI to
more effectively notice strange network behavior. Additthy, the NI's position in a single host’s
communication path means that it can fail closed withoueaskly affecting the communications
of its intranet neighbors. Among other things, this add¥sssoncerns of overloading attacks on
its NIDS—such overloading slows down the NI, and thus the,hHast does not cause it to miss
packets. Thus, a misbehaving host using this tactic on litsseuring NI is denying service only

to itself.

More per-link resources. Because each SS-NI focuses on only one host's traffic, mere ag
gressive investigation of network traffic is feasible. Altigh this is really a consequence of the
scalability feature, it is sufficiently important to drawtaexplicitly. Also, note that not all traffic
must be examined in depth; for example, a SS-NI could deociéggamine e-mail and web traffic in

depth while allowing NFS and Quake traffic to pass immedjatel

2.4 Self-securing NI Administrative Features

Using the NI as a security perimeter can also be a boon forrasimators, allowing the imple-
mentation of powerful and desirable network managementifes. Since NIs require no changes

to host software, SS-NIs provide administrators with a amif platform for managing per-host

network security policies (such as firewalling and netwartkusion detection rules) across a het-
erogeneous set of host operating systems. This is featyrartigularly valuable for protecting
or containing legacy hosts running deprecated operatiates)s that do not support the software

needed to enforce desired security policies.

An additional benefit is the ability to rapidly deploy bardaifor known vulnerabilities. The
holes exploited by many network attacks are known and publicwell in advance of the actual
attacks. For example, the infamous “Internet worm” of 1988 exploited a known buffer overflow
weakness (in théi nger d application), and the more recent Code Red worms did the gmme
Microsoft’s 1IS server). In each case, the particular owerfattack was well-known ahead of time,
but the software fixes were slow to be deployed and admitdstraemained vulnerable until patches
were constructed and installed. By creating SS-NI politidsok for network service requests that
would trigger such overflows, one can prevent them from riegcthe system until patches are
provided. We think a SS-NI is an ideal place for such bandaiie it requires no change to the

host software, but a host-based mechanism would also work.

SS-Nls also give administrators additional vantage padntghe network. This allows for a
more complete view of traffic circulating in the intranetrihdoes traditional infrastructure such as
firewalls or NIDSs. The ability to correlate observationsnfr multiple SS-NIs could prove to be
an invaluable resource for a number of administrative taks instance, if observations suggest
a network host is acting suspicious, flexible policy managetacross SS-NIs would allow an
administrator to dynamically deploy more fine-grained loggo capture that host’s traffic patterns.
This data could be useful in diagnosing the cause of the almarmdehavior. Moreover, if the host
is actually compromised, logs from SS-NIs can be used in dmatibn with logs from HIDSs or

NIDSs as the basis for a forensic analysis of the securitgdbre

2.5 Costs, limitations, and weaknesses

SS-Nis are promising, but there is no silver bullet for netwsecurity. SS-NIs can only detect
attacks that use the network and, like most intrusion dietectystems [5], are susceptible to both
false positives and false negatives. Containment respdadalse positives yields denial of service,

and failure to notice false negatives leaves intruders taatkd.

Like any NIDS component, a SS-NI is subject to a number ofck#td31]. Most insertion
attacks are either detectable signals (when from the hodfpasubject to normalization [17, 22].
DoS attacks on the NI's detection capabilities are condeidddoS on the host; for attacks launched

from the host, this is an ideal scenario.

As the codebase inside the NI increases, it will inevitaldgdme more vulnerable to many of
the same attacks as host systems, such as buffer overflomspr@mised scanning code sees the
traffic it scans (by design) and will most likely be able tokéaformation about it via some covert
channel. Assuming that the scanning code decides whetbdrdfiic it scans can be forwarded,
malicious scanning code can certainly perform a deniaesfdce attack on that traffic. The largest
concerns, however, revolve around the potential for mahémiddle attacks and for effects on
other traffic. In traditional passive NIDS components, sDd$ and man-in-the-middle attacks are
not a problem. Although we know of no way to completely pravéis, the software design of our

prototype attempts to reduce the power of individual saamprograms.

Beyond these fundamental limitations, there are also akyeactical costs and limitations.
First, the NI, which is usually a commodity component, wabjuire additional CPU and memory
resources for most of the attack detection and containmemhgles above. Although the marginal
cost for extra resources in a low-end component is smabl, fiton-zero. Providers and adminis-
trators will have to consider the trade-off between cost seclrity in choosing which scanners
to employ. Second, additional administrative overheadsramlved in configuring and managing
SS-Nis. The extra work should be small, given appropriataiaidtrative tools, but again will be
non-zero. Third, like any in-network mechanism, a SS-Nhearsee inside encrypted traffic. While
IP security functionality may be offloaded onto NI hardwamemiany systems, most application-
level uses of encryption will make some portion of netwoglfic opaque. If and when encryption
becomes more widely utilized, it may reduce the set of agtéicht can be identified from within the
NI. Fourth, each SS-NI inherently has only a local view ofwaak activity, which prevents it from
seeing patterns of access across systems. For examplesanot port scans that go from system to
system are easier to see at aggregation points. Some sitiesctvill show up at the administra-
tive system when it receives similar alerts from multiple!I8IS. But, more global patterns are an

example of why SS-NIs should be viewed as complementaryde-émtated protections; it should

10

be stressed that SS-NlIs are meant to augment existing heseourity infrastructure, not replace it.
Fifth, for host-embedded Nis, a physical intruder can bgpasf-securing NlIs by simply replacing
them (or plugging a new system into the network). The netmgrknfrastructure itself does not

share this problem, giving switches an advantage as hom&sStiI functionality.

11

CHAPTER Il

SELF-SECURING NI SOFTWARE DESIGN

Self-securing NlIs offer exciting possibilities for detegt and containing network security prob-
lems. But, the promise will only be realized if the requiredtware can be embedded into network
interfaces effectively. In particular, flexibile suppaot fvide-variety of network traffic analyses will
involve a substantial body of new software in the NI. Furtiseme of this software will need to be
constructed and deployed rapidly in response to new netsaxidrity threats. These characteristics
will require an NI software system that simplifies the progmaing task and mitigates the dangers

created by potentially buggy software running within the NI

This section discusses design issues for SS-NI systemareftwit expresses major goals, de-
scribes a software structure, and discusses its merits. n€kiesection describes a system that

implements this structure.

3.1 Goals

The overall goal of SS-NIs is to improve system and netwodusty. Clearly, therefore, they
should not create more difficult security problems than thdgress. In addition, writing software
to address new network security problems should not reguicessive expertise. Other goals for
NI-embedded software include minimizing the impact on @énd exchanges and minimizing the

hardware resources required.

Containing compromised scanning code.As the codebase inside the NI increases, it will
inevitably become more vulnerable to many of the same attaslhost systems, including resource
exhaustion, buffer overflows, and so on. This fact is pakity true for code that scans application-
level exchanges or responds to a new attack, since thatstelsilikely to be expertly implemented
or extensively tested. Thus, a critical goal for SS-NI saftsvis to contain compromised scanning

code. That is, the system software within the NI should be &blimit the damage that malicious

12

scanning code can cause, working on the assumption thayibmpossible for a network attacker

to subvert it (e.g., by performing a buffer overflow attack).

Assuming that the scanning code decides whether the triedtiains can be forwarded, malicious
scanning code can certainly perform a denial-of-servitachkton that traffic. Malicious scanning
code also sees the traffic (by design) and will most likely bk d@o leak information about it
via some covert channel. The largest concerns revolve drthenpotential for man-in-the-middle
attacks and for effects on other traffic. The main goal is tv@nt malicious scanning code from
executing these attacks: such code should not be able sxeetle real stream with its own arbitrary
messages and should not be able to read or filter traffic bepamevhich it was originally permitted

to control.

Reduced programming burden. One anticipates scanning code being written by non-experts
(i.e., people who do not normally write NI software or othecwrity-critical software). To assist
programmers, the NI system software should provide ses\aoel interfaces that hide unnecessary
details and reduce the burden. In the worst case, progragnmein scanning code should be as easy

as programming network applications with sockets.

Containing broken scanning codelmperfect scanning code can fail in various ways. Beyond
preventing security violations, it is also important tolfésolate one such piece of code from the
others. This goal devolves to the basic protection bouadaaind bounded resource utilization

commonly required in multi-programmed systems.

Transparency in common case.Although not a fundamental requirement, one design goal
is for SS-NI functionality to not affect legitimate commuating parties. Detection can occur by
passively observing network traffic as it flows from end to.efsctive changes of traffic occur only

when needed to enforce a containment policy.

Efficiency. Efficiency is always a concern when embedding new functityniagito a system. In
this case, the security benefits will be weighed against dlsé af the additional CPU and memory
resources needed in the NI. Thus, one goal is to avoid undaféciencies. In particular, non-
scanned traffic should incur little to no overhead, and thstesy-induced overhead for scanned

streams should be minimal. Comprehensive scanning codégearther hand, can require as many

13

resources as necessary to make their decisions — admioistan choose to employ such scan-

ning code (or not) based on the associated trade-off beta@strand security.

Reduced managemenent burdenlf SS-NIs are to be embraced by network administrators,
their management interface should have a minimal learniingecwhile being sophisticated enough
to provide powerful features. For this purpose, a streadligraphical user interace (GUI) that
hides low-level management interactions is highly desératNetwork administrators should be
able to painlessly install, remove, or update scanning .cddereover, administrators should be
able to easily define policies to contain compromised or umakioning scanning code, such as
setting allowances for resource consumption or traffic jEsions. Alerts produced by scanning
code should be written in a well-understood and uniform trrand these alerts should be stored in
a centralized repository to facilitate their perusal angtaation. One anticipates the need for rapid
response capabilities (corresponding to the current Efyvgdranoia, for instance), so administrators
should be able to introduce bulk policy changes or updatés avsingle command. Well-designed
management applications not only reduce the burden of asknaition, they also increase security

by enabling an administrator to quickly anticipate, detantd contain breaches.

3.2 Basic design achieving these goals

This section describes a system software architectureSex S that addresses the above goals.
As illustrated in Figure 2, the architecture is much like &%, with a trusted kernel and a collection
of untrusted applications. The trusted NI kernel managesrdlal network interface resources,
including the host and network links. The application psses, called scanners, use the network
API offered by the NI kernel to get access to selected netwraifkic and to convey detection and
containment decisions. An additional application process visible in Figure 2, is the scanner
manager. The scanner manager is responsible for launctémgers, monitoring them for failure
or misbehavior, and enforcing their resource restrictibmeugh interaction with the kernel. The
administrative console communicates with the scanner gaaraver a secure channel to push policy

changes and receive alerts from scanner applications.

Scanners. Non-trivial traffic scanning code is encapsulated into mapion processes called

scanners. This allows the NI kernel to fault-isolate theomtil their resource usage, and bound

14

E-Mail .. Web . DNS Usage
Scanner Scanner Scanner

Decision Makers

Self-Securing NI

NI kernel

Transport Protocol Reconstruction

host network
link link
HOST =« -‘- “- » NETWORK

A “NI kernel” manages the host and network links. Scanners run as application pro-
cesses. Scanner access to network traffic is limited to the APl exported by the NI kernel.

Figure 2: Self-securing NI software architecture
their access to network traffic. With a well-designed AP, M1 kernel can also simplify the task of
writing scanning code by hiding some unnecessary detadpestocol reconstruction work. In this
design, programming a scanner should be similar to progiagam application using sockets, both
in terms of effort required and basic expertise required. o@irse, scanners that look at network

protocols in detail, rather than application-level exales) will involve detailed knowledge of those

protocols.)

Scanner interface. Table 1 lists the basic components of the network API expdoiethe NI
kernel. With this interface, scanners can examine spedifiwark traffic, alert administrators to

potential problems, and prevent unacceptable traffic freaching its target.

The interface has four main components. First, scannersutsaribe to particular network

traffic, which asks the NI kernel faread and/orcont ai n rights; the desired traffic is specified

15

Command| Description \

Subscribe | Ask to scan particular network data
Read Retrieve more from subscribe buffers
Pass Allow scanned data to be forwarded
Cut Drop scanned data

Kill Terminate the scanned session (if TGP)
Inject Insert pre-registered data and forward
Alert Send an alert message to administrator

This interface allows an authorized scanner to examine and block specific traffic, but
bounds the power gained by a rogue scanner. Pass, cut, kill, and inject can only be used
by scanners with both read and contain rights.

Table 1. Network API exported to scanner applications.
with a packet filter language [26]. The NI kernel grants asamdy if the administrator's configu-
ration for the particular scanner allows #. In addition to the basic packet capture mechanism,
the interface should allow a scanner to subscribe to thegtisgam of TCP connections, hiding the

stream reconstruction work in the NI kernel.

Second, scanners ask the NI kernel for more data vieadhcommand. With each data item

returned, the NI kernel also indicates whether it was semtrtiyg the host.

Third, for subscriptions witltont ai n rights, a decision for each data unit must be conveyed
back to the kernel. The data unit can eitherpassed along (i.e., forwarded to its destination) or
cut (i.e., dropped without forwarding). For a data stream stipton, cut and pass refer to data
within the stream; in the base case, they refer to specifiwithehl packets. For TCP connections,

a scanner can also decidekitl the connection.

Fourth, a scanner canject pre-registered data into scanned communications, whichima
volve insertion into a TCP stream or generation of an indigigpacket. A scanner can also send an

alert, coupled with arbitrary information or even copies of paské an administrative system.

The scanner interface simplifies programming, allows resrgspowers, and yet restricts the
damage a rogue scanner can do. A scanner can look at and gdlevthof traffic with a few
simple commands, leaving the programmer’s focus whereldngs: on the scanning algorithms.

A scanner can ask for specific packets, but will only see whatallowed to see. A scanner can

LIn practice, a better place for enforcing subscription as@®ntrol may be in a separate, trusted application prpcess
such as the scanner manager. In this model, a scanner agicatirer manager for a subscription, which then forwards
only permissible requests to the NI kernel. This is the apginaused in the prototype and is further described in 4.

16

decide what to pass or drop, but only for the traffic to whichdscont ai n rights. A scanner
can inject data into the stream, but only pre-configured dafts entirety. Combiningcut and
inject allows replacement of data in the stream, but the pre-comfijnject data limits the power
that this conveys. Alerts can contain arbitrary data, bay tban only be sent to a pre-configured

adminsitrative system.

NI Kernel. The NI kernel performs the core function of the network ifsee: moving packets
between the host system and the network link. In additiamptements the functionality necessary
to support basic scanner (i.e., application) executionthagcanner API. As in most systems, the
NI kernel owns all hardware resources and gates accessno theparticular, it bounds scanners’

hardware usage and access to network traffic.

Packets arrive in NI buffers from both sides. As each pack@tes, the NI kernel examines
its headers and determines whether any subscriptions @ovirnot, the packet is immediately
forwarded to its destination. If there is a subscriptiom placket is buffered and held for the appro-
priate scanners. After eactont ai n-subscribing scanner conveys its decision on the packist, it

either dropped (if any say drop) or forwarded.

NI kernels should also reconstruct transport-level stsefonprotocols like TCP, to both sim-
plify and limit the power of scanners that focus on applmatievel exchanges. Such reconstruction
requires an interesting network stack implementationghatlows the state of both endpoints based
on the packets exchanged. Notice that such shadowing esakconstructing two data streams:
one in each direction. When a scanner needs more data thaiCthaindow allows, indicated by
blocking reads from a scanner with pending decisions, the NI kernel mugefacknowledgement
packets to trigger additional data sent from endpointsdtiiteon, when data is cut or injected into

streams, all subsequent packets must have their sequemieraiadjusted appropriately.

Scanner Manager. The scanner manager is a trusted application process abf@for the
coordination and monitoring of scanners and interfacinify Wie administrative console. Upon the
instruction of the administrative console, the scanneraganwill launch a set of scanners outlined

by a configuration file provided by the administrafor Each scanner is associated with its own

2Thus, it as powerful as the NI kernel separated mainly foe edgrogramming.

17

configuration file that outlines its resource restrictiott® scanner manager interacts with the NI
kernel to ensure that they resource restrictions are eedor®©uring the scanner operations, the
scanner manager receives alerts from scanner applicatf@hforwards them to the administrative

console over a secure interface. It also monitors scanmicapions and creates and sends its own

alerts in cases of scanner failure or misbehavior.

3.3 Discussion

Implemented properly, this design should meet the desigitsgor SS-NlIs. Experiences indi-
cate that writing scanners is made relatively straightfodiby the scanner API. Moreover, restrict-
ing scanners to this API bounds the damage they can do. Qlgraiscanner witltont ai n rights
can prevent the flow of traffic that it scans, but its abilitypraine other traffic is removed and its

ability to manipulate the traffic it scans is reduced.

A scanner withcont ai n rights can play a limited form of man-in-the-middle by séiesly
utilizing theinject andcut interfaces. The administrator can minimize the dangercéstsal within-
ject by only allowing distinctive messages. (Recall thgéct can only add pre-registered messages
and in their entirety. Also, a scanner cannut portions ofinjected data.) In theory, the ability to
transparentlycut bytes from a TCP stream could allow a rogue scanner to rethritestream arbi-
trarily. Specifically, the scanner could clip bytes from thésting stream and keep just those that
form the desired message. In practice, this should not beladgm; unless the stream is already
close to the desired output, it will be difficult to constrtieé desired output without either breaking
something or being obvious (e.g., the NI kernel can be exeo watch for such detailed clipping
patterns). Still, smaltuts (e.g., removing the right “not” from an e-mail message)ldquoduce

substantial changes that go undetected.

Although scanners still have some undesirable capasilitiee NI software architecture de-

scribed is a significant improvement over unbounded access.

18

CHAPTER IV

IMPLEMENTATION

4.1 A self-securing NI prototype

This section describes our prototype self-securing NI. @ia¢otype self-securing Nl is actually
a separate computer (referred to below as the “NI machin@!) three Ethernet interfaces, one
connected to the real network, one connected point-totgoithe host machine’s Ethernet link,
and one connected to the administrative subhetClearly, the prototype hardware characteristics
differ from real NIC or switch hardware, but it does allow nssixplore the SS-NI features that are

the focus in this work.

4.2 Prototype implementation

The SS-NI software runs on the NetBSD 1.6 operating systeoth Betwork interfaces are
put into “promiscuous mode,” such that they grab copies ldr@aines on their Ethernet link; this
configuration allows the host machine’s real Ethernet axidte be used for communication with
the rest of the network. The NI kernel, call&gphon, sits inside the NetBSD kernel and taps into
the relevant device drivers to acquire copies of all rele¥i@mes arriving on both network cards.
Frames destined for the NI machine are allowed to flow intdBI$&’'s normal in-kernel network

stack. Frames to or from the host machine go to Siphon. A#roittames are dropped.

Scanners run as application processes. Scanners commewwitta Siphon via named UNIX
sockets, receiving subscribed-to traffic ®BAD and passing control information WeRrITE. Data-
gram sockets are used for getting copies of frames, anchstseakets are used for reconstructed

data streams.

IAlternatively, administration of self-securing Nls couwdcur over the protected host’'s LAN. The choice to use a
separate subnet was made because it was expedient to do so.

19

Frame-level scanning interface.For each successf&®EAD call on the socket, a scanner gets
a small header and a received frame. The header indicatésathe’s length and whether it came
from the host or from the network. In addition, each frameummbered according to how many
previous frames the scanner IrBsAD: the first frame read is #1, the second frame is #2, and so
on. cut andpass decisions are given in terms of this frame numbaject requests specify which
pre-registered packet should be sent (via an index into-aqarner table) and in which direction.

Reconstructed-stream scanning interfacel-or reconstructed-stream scanning, several sockets
are required. One listens for new connections from SiphanA@CEPT on this connection creates
a new socket that corresponds to one newly established Ta#ection between the host machine
and some other systerREADS andwRITES to such new connections receive data to be scanned and
convey decisions and requestsit and pass decisions specify a byte offset and length within the
stream in a particular directiorinject requests specify the byte offset at which the pre-regidtere
data should be inserted into the stream (shifting evergthiter it forward by length bytes).

The NI kernel: Siphon. Siphon performs the basic function of a network interfaceyimg
packets between the host and the network. It also exportscmer API described above.

Each frame received (from the host or from the LAN) is buffeamd passed through a packet
filter engine. If the frame does not match any of the packefrfilles, it is immediately forwarded
to its target (either the host machine or the network link)ere are three types of packet filter rules:
prevent, scan, andreconstruct. If the frame matches prevent rule, it is dropped immediatelygre-
vent rules provide traditional firewall filtering without the avead of an application-level scanner.
If the frame matches scan rule, it is written to the corresponding scanner’s datagsaoket. If the
frame matches eeconstruct rule, it is forwarded to the TCP reconstruction code. Fomia that
matchscan andreconstruct rules for subscriptions withont ai n rights, Siphon keeps copies and
remembers the decisions that it needs. A frame is forwarfdaad only if all subscribed scanners
decidepass; otherwise, it is dropped.

Siphon’s TCP reconstruction code translates raw Etheragtds into the reconstructed-stream
interface described above. Upon seeing the host agree tov @G€ connection, Siphon creates
two protocol control blocks, one to shadow the state of eachpmint. Each new packet indicates

a change to one end-point or the other. When the connectiotlyiestablished, Siphon opens and

20

CONNECTS a stream socket to each subscribed scanner. When ondessde send data to the other,
that data is first given to subscribed scanners. If all suahrsers wittcont ai n rights decidgoass,
packets are created, buffered, transmitted, and retrébeshais necessary. When the TCP connection
closes, SiphorcLOSEs the corresponding stream socket. If a scanner asks for datado becut

or injected, the sequence numbers and acknowledgements of subspgukets must be adjusted
accordingly. In addition, Siphon must send acknowledgesem thecut data once all bytes up to it
have been acknowledged by the true receik@ll. requests are handled by generating packets with
the RST flag set and sending one to each end-point. Blodeedrequests focont ai ning stream
scanners are a bit tricky. For small amounts of additiongh,dde TCP window can be opened
further to get the sender to provide more data. Otherwigiddi must forge acknowledgements to

the source and then handle retransmissions to the destinati

Scanner Manager. The Scanner Manager is implemented as an application [Fooesas
the root user. This process is launched after boot throughh étic/ rc. | ocal script and per-
forms operations necessary to enable the Siphon and lagacmer applications. Upon start-up,
the Scanner Manager queries the NI's resident DBMS (cuyr&ustgreSQL 7.3.3) for the entry
in ther unni ng_si phon_conf table. This entry corresponds to a binary large object (BLOB
holder containing an XML configuration file, which we referas asi phon_conf . An example

si phon_conf is shown in Figure 3.

The Scanner Manager then extracts giigghon_conf from the database and parses it. This
file contains information such as the host’s IP and MAC addresand the initial set of scanner
applications to be launched. The Scanner Manager then dpesgphon psuedo-device and issues
i oct | commands on it to register the host's MAC address with thé@ifkernel and initialize its

operation.

With the Siphon now running, the Scanner Manager proceettgettask of launching scanner
applications. Each scanner listed in giegphon_conf corresponds with an identifier for how that
instance of the scanner should be configured. This configarabrresponds to two XML files
stored as BLOBs in the database. The first scanner _conf , which contains a list of rights
and restrictions for the execution of a particular scanfidre second is acanner subconf .

This configuration file is used to pass arguments to the scapmication itself. Examples of a

21

=?xml version="1.0" standalone="no"?=
=<| DOCTYPE siphon-conf SYSTEM "siphon.dtd"=
<siphon-conf conf-name = "highly paranoid"=
=wat ched-host
<host -1p-address=128.2.134, 97=/host -1p-address=
<host -mac-address=00065ED0C62D</ host -mac-address=
=/watched-host =
=scanner name="filter-scanner" versior="1.0" conf-name="port-firewall" priority="1"/=
=scanner name="limiter-scanner" version="1.0" conf-name="paranoid-ssh" priority="2"/=
<scanner name="limiter-scanner" version="1.0" conf-name="paranoid-ftp" priority="3"/=
=/siphon-conf=

This figure presents an example of a si phon_conf . For this particular configuration, the
siphon loads three scanners: a scanner to firewall certain ports, a throttling scanner for
FTP connections, and a throttling scanner for SSH connections.

Figure 3: Example of asi phon_conf

=?fxml version="1.0" standalone="no"7¥=
<| DOCTYPE scanner-conf SYSTEM "siphon, dtd"=
<scanner-conf name="limiter-scanner" version="1.0" conf-name="paranoid-ssh"=
=scanner-conf-desc=Paranoid rate limiter for S5H traffic</scanner-conf-desc=
<&ECAnNer-permissions:
<SCanner-permission=
<pcap-string=dst 22 and (tcpl[tcpflags] &: tcp-synl= O)l=/pcap-string=
<subscription-type=packet=/subscription-type=
<subscription-permissions=read-write</subscription-permissions:=
<f{scanner-permission:
<fsCanner-permissions=
<SCanner-resources:s
=SCanner-resources
<resource-name=FLIMIT_AS=/resource-name=
<resource-value=512000</ resource -val ug=
=/scanner-resources=
=/scanner-resources:=
=fscanner-conf=

This figure presents an example of a scanner conf. This particular scanner has
cont ai n permission on TCP SYNs for the SSH protocol. Its address space is constained
to 256 Kilobytes.

Figure 4: Example of sscanner _conf

scanner _conf is shown in Figure 4.

To launch a scanner, the Scanner Manager first extractsahaecs binary, itscanner _conf ,

and itsscanner _subconf. From thescanner _conf, the Scanner Manager caches a scan-

ner’'s traffic permissions and its resource limitations. Bwanner Manager then executes the

socket pai r command to reserve a communication channel between thiatgkbthe scanner.

It then executes Bor k, leaving the child process to finish the launching processtlaa parent to

launch additional scanners.

The child process then performs a series of commands to ex#uel scanner in a restricted

environment. Firstchr oot is executed to confine the scanner’s file system access. &heet

binary and thescanner subconf are then placed in thehr oot ed directory and appropriate

22

file permissions are set. A seriessdt rli m t commands are executed based on the resource
limits defined in thescanner _conf file, the process is assigned a unique group id and user id via
set gi d andset ui d, and the scanner is launched usingélecve command with an argument

containing the file id of the communication socket.

Upon launch, the scanner reads its XML configuration, opeokets for communicating with
the Siphon, and issues subscription requests to the Scifamerger. If these subscription requests
do not violate the traffic permissions outlined in fwanner _conf file, the Scanner Manager will
generate a Berkeley Packet Filter (BPF) representatidmeofguested traffic and send it (along with
the subscription type, permissions model, and path to tersa’s socket) to the Siphon through an
i oct | . The Siphon then connects to the scanner’s socket and begiverding it the subscribed
traffic.

After all scanners are launched, the Scanner Manager isnsiye for two important tasks.
First, the Scanner Manager periodically receives headldeam each scanner. If a scanner misses
a heartbeat, it is most likely hung, compromised, or tertaithaln the event of a missed heartbeat,
the Scanner Manager creates an Intrusion Detection Me&sadwnge Format (IDMEF) alert and
sends it to the administrative console (Castellan, desdrielow) over a secure channel. If the
scanner is not terminated, the Scanner Manager will do sparidrm basic cleanup.

The Scanner Manager’s other responsibility is creatingsand forwarding on the behalf of
scanners. To do so, scanners simply send an alert mess&geSodnner Manager, which will then
create an IDMEF message containing the host name, the scamme, and the scanner’s config-
uration identifier along with the alert and forward it to Galstn. Making the Scanner Manager
responsible for constructing and delivering a scanneegskeduces the trusted code base (TCB)
in the scanner library and ensures a scanner cannot fonge fiten other scanners. Additionally,
although not included in the current implementation, tharder Manager could be extended to
consolidate alerts or throttle the alerts of a misconfigumedompromised scanner.

Castellan: Administrative Console. Castellan is the administrative console for managing the
self-securing NI platform. It contains two distinct arettural components: a background daemon
for automatically collecting, interpreting, and reactiogalerts, and a GUI for browsing alerts and

performing manual policy changes. The background daemantaias a connection over a secure

23

channel with all participating SS-NIs. It stores the aldrt®ceives in a centralized location and
parses these alerts in an attempt to automatically deterthia current state of the network. If
desired, the background daemon may be configured to dyniyrigsaie policy changes to multiple
SS-Nis in reaction to the alerts it has accumulated. For gl@nif the network is perceived to
be under attack, the background daemon could choose togéhstit SS-NIs to switch to a more
paranoidsi phon_conf , perhaps one which firewalls all non-essential ports, inteemgt to make

the network more resilient. A sample set of SS-NI applicagithat rely on coordination from the

background daemon is described in Section 5.

The other part of Castellan is its GUI interface. This irded provides the administrator with
two main capabilities: browsing and filtering alerts, andvising and managing SS-NI policies.

Castellan was implemented in Java using the NetBeans IDE,

Castellan’s GUI greatly simplifies the policy managemenS&-NIs. An administrator can
browse, delete, and install each NE$ phon_conf s, scanner applications,canner _conf s,
andscanner subconf s. A number of checks are enforced to reduce the capacitydfoiras-
trative error; notably all XML files are checked against threspective document definition types
(DTDs) before being entered in an NI's database. Orderingnferced on management opera-
tions to reduce the potential for invalid configuration ealidy missing dependencies. For ex-
ample, asi phon_conf that references an uninstalled scannesoanner conf cannot be in-
stalled. Similarly a scanner referenced by an instadledhon_conf cannot be deleted before that

si phon_conf is deleted.

The administrator can also use Castellan to switch the ngnm¢anner _conf of a SS-NI.
In order to do so, the administrator simply selects a SS-NTastellan, browses its collection of
si phon_conf s, and clicks on a button to activate it. This causes Cast&fl@onnect to the SS-
NI's DBMS and alter the value of theunni ng_si phon_conf table. The Scanner Manager sets
a trigger on this table and is notified of all changes to it. eAffjuerying for the new value, the
Scanner Manager kills all currently running scanners,queré garbage collection, and proceeds as

described above to launch the new configuration.

24

Configuration | Roundtrip | Bandwidth
No NI machine| 0.16 ms | 11.11 MB/s
No scanners 0.23ms | 11.11 MB/s
Frame scanner| 0.23ms | 11.08 MB/s
Stream scanner 0.23ms | 10.69 MB/s

Roundtrip latency is measured with 20,000 pings. Throughput is measured by RCRing
100MB. “No NI machine” corresponds to the host machine with no self-securing NI in
front of it. “No scanners” corresponds to Siphon immediately passing on each packet.
“Frame scanner” corresponds to copying all IP packets to a read-only scanner. “Stream
scanner” corresponds to reconstructing the TCP stream for a read-only scanner.

Table 2. Base performance of the self-securing NI prototype.

4.3 Basic overheads

Although performance is not the focus of this Thesis, it isfukto quantify Siphon’s effect on
NI throughput and latency. As found by previous researcHg¥s17, 29], one observes that NIDS
and normalization functions can be made reasonably effifigrindividual network links. Also,
the internal protection boundary between scanners andubted base comes with a reasonable

cost.

For all experiments in this paper, the NI machine is equippét a 266MHz 586, 128MB
of main memory, and 100Mb/s Ethernet interfaces. After maing the CPU power used for
packet management functions that could be expected to bevaee-based, this modest system is
a reasonable approximation of a feasible NIC or switch. Td® machine runs SuSe Linux 2.4.7
and is equipped with a 1.4GHz Pentium lll, 512MB of main meynand a 100Mb/s Ethernet card.

Although Siphon is operational, little tuning has been done

Table 2 shows results for four configurations: the host mechlone (with no NI machine), the
NI machine with no scanners, the NI machine with a read-amsné-level scanner matching every
packet, and the NI machine reconstructing all TCP streama fead-only scanner. We observe
a 47% increase in round-trip latency with the insertion @ Ml machine into the host’s path, but
no additional increase with scanners. We observe minimad\walth difference among the four

configurations, although reconstructing the TCP streanitees a 4% reduction.

25

CHAPTER YV

EXAMPLE APPLICATIONS

This section describes and explores four examples of aetetttat work particularly well with
self-securing Nls. Each exploits the NI's proximity to theshand the corresponding ability to see
exactly what it sends and receives. For each, this work hescthe attack, the scanner, relevant

performance data, and associated issues.

5.1 Detecting IP-based propagation

A highly-visible network attack in 2001 was the Code-Redmdand its follow-ons) that prop-

agated rapidly once started, hitting most susceptable imesin the Internet in less than a day [27].

What the scanner looks for: The Code-Red worm and follow-ons spread exponentially by
having each compromized machine target random 32-bit Ilreadds. This propagation approach
is highly effective because the IP address space is deneplylgied and relatively small. But, it
exhibits an abnormal communication pattern. Although dooeasionally, it is uncommon for a
host to connect to a new IP address without first performingraentranslation via the Domain
Name System (DNS) [25]. Our scanner watches DNS transkaowl checks the IP addresses of
new connections against them. It flags any sudden rise inotinet ©f “unknown” IP addresses as a

potential problem.

How the scanner works: The “Code-Red scanner” consists of two parts: shadowindndise
machine’s DNS table and checking new connections againdtjiton initialization, the scanner
subscribes to three types of frames. The first two specify UDP packats B¢ the host to port 53
and sent by the network from port 53 (port 53 is used for DNSitja The third specifies TCP
packets sent by the host machine with only the SYN flag setchwisi the first packet of TCP’s

connection-setup handshake. Of these, only the third gplisa includescont ai n rights.

Although not observed in CMU’s network, DNS traffic can begsason TCP port 53 as well. The current scanner
will not see this, but could easily be extended to do so.

26

Each DNS reply can provide several IP addresses, inclutdmgddresses of authoritative name
servers. When iteads a DNS reply packet, the scanner parses it to identify allideal IP addresses
and their associated times to live (TTLs). The TTL specifmshiow long the given translation is
valid. Each IP address is added to the scanner’s table andkkgast until the TTL expires. Thus,
the scanner’s table should contain any valid translatibas the host may have in its DNS cache.
The scanner prunes expired entries only when it needs spmoe, host applications may utilize
previous results fromgethostbyname() even after the DNS translations expire.

The scanner checks the destination IP addresses of the hosima’s TCP SYN packets against
this table. If there is a match, the packetpassed. If not, the scanner considers it a “random”
connection. The current policy flags a problem when thererame than two unique random con-
nections in a second or ten in a minute.

When an attack is detected:The scanner’s current policy reacts to potential attackseogling
an alert to the administrative system and slowing down esteesandom connections. It stays in
this mode for the next minute and then re-evaluates and tefeaecessary. Thalert provides
the number of random connections over the last minute andhtist recent destination to which
a connection was opened. Random connections are slowedlmodelaying decisions; in attack
reaction mode, the scanner tells Siptgass for one of the SYN packets every six seconds. This
allows such connections to make progress, somewhat batatice potential for false positives
with the desire for containment. If all susceptible hostsemgatched and contained in this way,
the 14 hour propagation time of Code-Red (version 2) [27] ldidwave grown to over a month
(assuming the original scan rate was 10 per second peréadf@cachine [37]).

Performance data: As expected, given the earlier roundtrip latency evalumatibe DNS scan-
ner adds negligible latency to DNS translations and TCP ection establishment. We evaluate
the table sizes needed for the Code-Red scanner by exanairiiage of all DNS translations for
10 desktop machines in our research group over 2 days. Asgumainslations are kept only until
their TTL's expire, each machine’s DNS cache would contairagerage of 209 IP addresses. The
maximum count observed was 293 addresses. At 16 bytes pgr(Bntthe IP address, the TTL,

and two pointers), the DNS table would require less than 5KB.

It is interesting to consider the table size required for ggregate table kept at an edge router.

27

As a partial answer, we observe that a combined table for @héetktops would require a maxi-

mum of 750 entries (average of 568) or 12KB. This matchesébelts of a recent DNS caching

study [21], which finds that caches shared among 5 or moremgsexhibit a 80-85% hit rate.

They found that aggregating more client caches providde kidditional benefit. Thus, one ex-
pects an 80—85% overlap among the caches, leaving 15-209¢ eftries unique per cache. Thus,
10,000 systems with 250 entries each would yield approxina75,000-500,000 unique entries
(6MB-8MB) in a combined table.

Discussion: We have not observed false positives in small-scale tegtirfigw hours) in front
of a user desktop, though more experience is needed. Thestdedse positive danger of the Code-
Red scanner is that other mechanisms could be used (leggtinéor name translation. There are
numerous research proposals for such mechanisms [38, B&Hleven experimenting with them
would trigger our scanner. Administrators who wish to allsuch mechanisms in their environ-
ment would need to either disable this scanner or extenduibtterstand the new name translation

mechanisms.

With a scanner like this in place, different tactics will beedled for worms to propagate with-
out being detected quickly. One option is to slow the scam aatd “fly under the radar,” but this
dramatically reduces the propagation speed, as discubsed.aAnother approach is to use DNS'’s
reverse lookup support to translate random IP addressesrtes) which can then be forward trans-
lated to satisfy the scanner’s checks. But, extending thersr to identify such activity would be
straightforward. Yet another approach would be to exploesDNS name space randorhlyrather
than the IP address space; this approach would not enjoyetbeegant features of the IP address
space (i.e., densely populated and relatively small). &laee certain to be other approaches as
well. The scanner described takes away a highly conveniahetiective propagation mechanism;
worm writers are thus forced to expend more effort and/orrtmpce less successful worms. So

goes the escalation “game” of security.

An alternate containment strategy, blindly restricting thte of connections to new destinations,

has recently been proposed [42]. The proposed implementgktending host-based firewall code)

2The DNS “zone transfer” request could short-circuit thed@m search by acquiring lists of valid names in each
domain. Many domains disable this feature. Also, self-eagNIs could easily notice its use.

28

would not work in practice, since most worms would be ableisalule it. But, a self-securing NI
could use this approach, if further study revealed thataliyevould not impede legitimate work.
Note that such rate throttling at the intranet edge may neffeetive, because techniques like local

subnet scanning [37] would allow a worm to parallelize exi¢targetting.

Finally, it is worth noting that the Code-Red worms expldige particular buffer overflow that
was well-known ahead of time. A HTTP scanner could easilytifie requests that attempt to
exploit it and prevent or flag them. The DNS-based scanneveber, will also spot worms, such
as the Nimda worm, that use random IP-based propagatiorthert ecurity holes. Coincidentally,
early information about the “SQL Slammer” worm [7] indicathat it would be caught by this same

scanner.

5.2 Detecting claim-and-hold DoS attacks

Qie et al. [32] partition DoS attacks into two categoriess\battacks (e.g., overloading network
links) and claim-and-hold attacks. In the latter, the &gacauses the victim to allocate a limited
resource for an extended period of time. Examples incluliedilP fragment tables (by sending
many “first IP fragment” frames), filling TCP connection t@blvia “SYN bombing”), and exhaust-
ing server connection limits (via very slow TCP communigatj32]). A host doing such things can
be identified by its self-securing NI, which sees what erdersleaves the host when. As a concrete

example, this section describes a scanner for SYN bomlkattac

What the scanner looks for: A SYN bomb attack exploits a characteristic of the statediran
tions within the TCP protocol [30] to prevent new connecsida the victim. The attack consists
of repeatedly initiating, but not completing, the threekst handshake of initial TCP connection
establishment, leaving the target with many partially ctetgel sequences that take a long time
to “time out.” Specifically, an attacker sends only the firatket (with the SYN flag set), ignor-
ing the victim’s correct response (a second packet with th 8nd ACK flags set). The scanner
watches for instances of inbound SYN/ACK packets not reéegitimely responses from the host.
A well-behaved host should respond to a SYN/ACK with eitherACK packet (to complete the

connection) or a RST packet (to terminate an undesired ctiong

29

How the scanner works: The scanner watches all inbound SYN/ACK packets and allcaurtt
ACK and RST packets. It works by maintaining a table of all SX8Ks destined to the host that
have not yet been answered. Whenever a new SYN/ACK arrivés,added to the ‘waiting for
reply’ table with an associated timestamp and expiratioreti Retransmitted SYN/ACKs do not
change these values. If a corresponding RST packet is setitebkiost, the entry is removed.
If a corresponding ACK packet is sent, the entry is moved toeply sent’ cache, whose role
is to identify retransmissions of answered SYN/ACK packetBich may not require responses;
entries are kept in this cache until the connection clos@gl@rseconds (the official TCP maximum

roundtrip time) passes.

If no answer is received by the expiration time, then the seanonsiders this to be an ignored
SYN/ACK. Currently, the expiration time is hard-coded ateg@nds. The current policy flags a

problem if there are more than 2 ignored SYN/ACKSs in a one teiqeriod.

When an attack is detected:The SYN bomb scanner’s current policy reacts to potentiatks
only by sending an alert to the administrative system. Qplssible responses include delaying or
preventing future SYN packets to the observed victim (otafjets) or having Siphon forge RST
packets to the host and its victim for the incomplete coriargthereby clearing the held connection

state).

Performance data: The SYN bomb scanner maintains a histogram of the obsensbmse
latency of its host to SYN/ACK packets. Under a moderate ngtoad, over a one hour period
of time, a desktop host replied to SYN/ACKSs in an average ofriliseconds, with the minimum
being under 1 and the maximum being 946 milliseconds. Sutzhiddicates that our current grace

period of 3 seconds should result in few false positives.

Discussion: There are two variants of the SYN bomb attack, both of which loa handled
by self-securing Nis on the attacking machine. In one varidie attacker uses its true address in
the source fields, and the victim’s responses go to the attdmk are ignored. This is the variant
targetted by this scanner. In the second variant, the a&ttdokges false entries in the SYN packets’
source fields, so that the victim’s replies go to other maehimA self-securing NI on the attacker

machine can prevent such spoofing.

30

5.3 Detecting TTL misuse

Crafty attack tools can hide from NIDSs in a variety of waysndng them are insertion at-
tacks [31] based on misuse of the IP TTL field, which detersim@wv many routers a packet may
traverse before being droppéd.By sending packets with carefully chosen TTL values, arckéa
can make a NIDS believe a given packet will reach the desimathile knowing that it won't. As
a concrete example, the SYN bomb scanner described abowvmérable to such deception (ACKs
could be sent with small TTL values). This section descri@esanner that detects attempts to

misuse IP TTL values in this manner.

What the scanner looks for: The scanner looks for unexpected variation in the TTL vabfes
IP packets originating from the host. Specifically, it lod&s differing TTL values among packets
of a single TCP session. Although TTL values may vary amobgund packets, because different

packets may legitimately traverse different paths, suctatian should not occur within a session.

How the scanner works: The scanner examines the TTL value for TCP packets origigati
from a host. The TTL value of the initial SYN packet (for outimal connections) or SYN/ACK
packet (for inbound connections) is recorded in a tabld thdihost side of the connection moves
to the closed state. The TTL value of each subsequent pamkiiat connection is compared to the
original. Any difference is flagged as TTL misuse, unless & RST with TTL=255 (the maximum
value). Both Linux and NetBSD use the maximum TTL value forTR#&ckets, presumably to

maximize their chance of reaching the destination.

When an attack is detected:The current scanner’s policy involves two things. The TTldge

are normalized to the original value, and an alert is geadrat

Performance data: We applied the TTL scanner to the traffic of a Linux desktopagyegl
in typical network usage for over an hour. We observed onlyff2rént TTL values in packets
originating from the desktop: 98.5% of the packets had a TiThdoand the remainder had a TTL
of 255. All of the TCP packets were among those with TTL of 6&thvone exception: a RST

packet with TTL=255. The other packets with TTL of 255 werdME and other non-TCP traffic.

3This should not be confused with the DNS TTL field used in theé&SBed scanner.

31

Discussion: This scanner’s detection works well for detecting most NliDSertion attacks
in TCP streams, since there is no vagueness regarding thetaology between a host and its
NI. It can be extended in several ways. First, it should checkow initial TTL values, which
might indicate a non-deterministic insertion attack gigeme routes being short enough and some
not; detecting departure from observed system defauleggle.g., 64 and 255) should be sufficient.
Second, it should check TTL values for non-TCP packets. Whisgain rely on observed defaults,
with one caveat: tools like traceroute legitimately use kmwd varying TTL values on non-TCP
packets. An augmented scanner would have to understanchttezmpexhibited by such tools in

order to restrict the non-flagged TTL variation patterns.

5.4 Detecting IP fragmentation misuse

IP fragmentation can be abused for a variety of attacks. r3mewn bugs in target machines or
NIDSs, IP fragmentation can be used to crash systems or debédtion; tools like fragrouter [34]
exist for testing or exploiting IP fragmentation corneresmsSimilarly, different interpretations of
overlapping fragments can be exploited to avoid detecthmwell, incomplete fragment sets can

be used as a capture-and-hold DoS attack.

What the scanner looks for: The scanner looks for five suspicious uses of IP fragmemtatio
First, overlapping IP fragments are not legitimate—a buthehost software may cause overlap-
ping, but should not have different data in the overlappegjans—so, the scanner looks for differ-
ing data in overlapping regions. Second, incomplete fragetepackets can only cause problems
for the receiver, so the scanner looks for them. Third, fragi® of a given IP packet should all have
the same TTL value. Fourth, only a last fragment should egesrballer than the minimum legal
MTU of 68 bytes [19]; many NIDS evasion attacks violate thierto hide TCP, UDP, or application
frame headers from NIDSs that do not reconstitute fragnadepéekets. Fifth, IP fragmentation of
TCP streams is suspicious. This last item is the least cevat most TCP connections negotiate
a “maximum segment sizefrés) during setup and modern TCP implementations will also stdju

theirnss field when an ICMP “fragmentation required” message is rexki

How the scanner works: The scannesubscribes (with cont ai n rights) for all outbound IP

packets that have either the “More Fragments” bit set or azswa value for the IP fragment offset.

32

These two subscriptions capture all Ethernet frames tleapart of fragmented IP packets. The
first sequential fragmented packet has the “More Fragmduittset and a zero offset. Fragments in
between have the “More Fragments” bit set and a non-zeretoffishe last fragment doesn't have
the “More Fragments” bit set but it does have a non-zero bffse

The scanner tracks all pending fragments. Each receivegnfat is compared to held frag-
ments to determine if it completes a full IP packet. If notisitadded to the cache. When all
fragments for a packet are received at the NI, the scannerndigtes whether the IP fragmentation
is acceptible. If the full packet is part of a TCP stream, ftagged. If the fragments have different
TTL values, it is flagged. If any fragment other than the lagtrhaller than 64 bytes, it is flagged.
If the fragments overlap and the overlapping ranges comntiffierent data, it is flagged. If nothing
is flagged, the fragments apassed in ascending order.

Periodically, the fragment structure is checked to deteenifi an incomplete packet has been
held for more than a timeout value (currently one seconddo/fthe pieces areut . If more than
two such timeouts occur in a second or ten in a minute, théshasions are flagged.

When an attack is detected: There are five cases flagged, all of which result in an alert be-
ing generated. In addition, we have the following policiesplace: overlapping fragments with
mismatching data are dropped, under the assumption that ¢iite host OS is buggy or one of the
constructions is an attack; fragments with mismatching Ti€élds are sent with all TTLs matching
the highest value; incorrectly fragmented packets aremirdptimed out fragments are dropped (as
described); fragmented TCP packets are currently padsin @ther rules are not violated).

Performance data: We ran the scanner against a desktop machine, but observid fram-
mentation during normal operation. With test utilities dieiy 64KB UDP packets (over Ethernet),
we measured the time delay between the first frame’s arritheaN| and the last. The average time
before all fragments are received was 0.53ms, with valuegimg from 0.46ms to 2.5ms. These
values indicate that our timeout period may be too generous.

Discussion:Flagging IP fragmentation of TCP streams is only reasorfableperating systems
with modern networking stacks, which can be known by an agnator setting policies. Older
systems may actually employ IP fragmentation rather thgmesgivenss maintenance. Because

of this and the possibility of fragmentation by intermediabuters, a rule like this would not be

33

appropriate for a non-host-specific NIDS.

Our original IP fragmentation scanner also watched foraftgrder IP fragments, since this is
another possible source of reconstitution bugs. In teshtiog/ever, we discovered that at least one
OS (Linux) regularly sends its fragments in reverse ordbe NI software, therefore, always waits
until all fragments are sent and then propagates them im.orde

We originally planned to detect unreasonable usage of feagmtion and undersized fragments
by caching the MTU values observed (in ICMP “fragmentatiequired” messages) for various
destinations. We encountered several difficulties. Hirstas unclear how long to retain the values,
since any replacement might cause a false alarm. Secondtemnad attacker could fill the MTU
cache with generated messages, creating state manageffiemtids. Third, a conspiring external
machine with the ability to spoof packets could easily gateethe ICMP packets needed to fool the
scanner. Since IP fragmentation is legal, we decided tcsfoouclear misuses of it.

As with most of the scanners described, the IP fragmentatiamner is susceptible to space
exhaustion by the host. Specifically, a host could send latgebers of incomplete fragmented
packets, filling the Nls buffer capacity. As noted earli@wever, such an attack mainly damages the
host itself, denying it access to the network. This seemseaible trade-off given the machine’s

misbehavior. A similar analysis exists for the other scasne

5.5 Other scanners

Of course, many other scanners are possible. Any traditidiiaS scanning algorithm fits,
both inbound and outbound, and can be expected to work lfatietescribed in [17, 22]) after the
normalization of IP and TCP done by Siphon. For example, we Hmailt several scanners for e-
mail (virus scanning) and Web (buffer overflows, cookie pniag, virus scanning) connections. As
well, NIC-embedded prevention/detection of basic spoding., of IP addresses) and sniffing (e.g.,
by listening with the NI in “promiscuous mode”) are apprepei, as is done in 3Com’s Embedded
Firewall product [1].

Several other examples of evasion and protocol abuse caetbeteld as well. For example,
misbehaving hosts can increase the rate at which sendessritadata to them by sending early or

partial ACKs [35]; sitting on the NI, a scanner could easie such misbehavior. A TCP abuse of

34

more concern is the use of overlapping TCP segments withrdiit data, much like the overlapping
IP fragment example above; usable for NIDS insertion ag8k], such behavior is easily detected
by a scanner looking for it.

Finally, we believe that the less aggregated and local viewadfic exhibited at the NI will
help with more complex detection schemes, such as thoseefopiag stones [12, 43] or general

anomaly detection of network traffic. This is an area for fatstudy.

35

CHAPTER VI

RELATED WORK

Self-securing Nls build on much existing technology andrerideas from previous work, as
discussed throughout the flow of this thesis. Network intmusietection, virus detection, and fire-
walls are well-established, commonly-used mechanism8][5Also, many of the arguments for
distributing firewall functions [14, 20, 28] and embeddihgi into network interface cards [1, 14]
have been made in previous work. Notably, the 3Com Embeddew&l product [1] extends
NICs with firewall policies such as IP spoofing preventiomgrpiscuous mode prevention, and se-
lective filtering of packets based on fields like IP address@ort number. This and other previous
work [2, 6, 23] also address the issue of remote policy cordigon for such systems. These pre-
vious systems do not focus on host compromise detection amgioment like self-securing Nlis
do. This paper extends previous work with examples of motaildd analysis of a host’s traffic
enabled by the location of NI-embedded NIDS functionality.

Many network intrusion detection systems exist. One wefledibed example is Bro [29], an
extensible, real-time, passive network monitor. Bro pdesgi a scripting language for reacting to
pre-programmed network events. Our prototype’s supponvfiding scanners could be improved
by borrowing from Bro (and others). Embedding NIDS functility into NlIs instead of network
taps creates the scanner containment issue but eliminatesat of the challenges described by
Paxson, such as overload attacks, cold starts, droppe@tsaekd crash attacks. Such embedding
also addresses many of the NIDS attacks described by Ptaddkeavsham [31].

There is much ongoing research into addressing DistrilDte®l (DDoS) attacks. Most counter-
measures start from the victim, using traceback and thrgttb get as close to sources as possi-
ble. The D-WARD system [24] instead attempts to detect dotggattacks at source routers, us-
ing anomaly detection on traffic flows, and throttle them eta® home. The arguments for this
approach bear similarity to those for self-securing NIgutih they focus on a different threat:

outgoing DDoS attacks rather than two-stage attacks. Téesidre complementary, and pushing

36

D-WARD all the way to the true sources (individual NIs) is de& worth exploring.

A substantial body of research has examined the executiappifcation functionality by net-
work cards [13, 18] and infrastructure components [3, 1144(. Although scanners are not fully
trusted, they are also not submitted by untrusted clientsnettheless, this prior work lays solid

groundwork for resource management within network comptme

37

CHAPTER VII

CONCLUSION

Self-securing network interfaces are a promising additiothe network security arsenal. This
thesis describes their use for identifying and containmmgpromised hosts within the boundaries of
managed network environments. It illustrates the potkatiself-securing NlIs with a prototype NI
kernel and example scanners that address several higheprefivork security problems: insertion

and evasion efforts, state-holding DoS attacks, and Catbs®/le worms.

38

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
[10]
[11]

[12]

[13]
[14]
[15]
[16]

[17]

[18]

[19]
[20]

[21]

REFERENCES

3Com. 3Com Embedded Firewall Architecture for E-Business. Technical Brief 100969-001. 3Com Corporation,
April 2001.

3Com. Administration Guide, Embedded Firewall Software. Documentation. 3Com Corporation, August 2001.

D. S. Alexander, K. G. Anagnostakis, W. A. Arbaugh, A. Deddmytis, and J. M. SmithThe price of safety in an
active network. MS—CIS-99-04. Department of Computer and InformatioriSm®, University of Pennsylvania,
1999.

T. E. Anderson, D. E. Culler, and D. A. Patterson. A caseN@®OW (networks of workstations)IEEE Micro,
15(1):54-64, February 1995.

S. Axelsson.Research in intrusion-detection systems. a survey. Technical report 98—17. Department of Computer
Engineering, Chalmers University of Technology, Deceni898.

Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: a neiMirewall management toolkit EEE Symposium on
Security and Privacy, pages 17-31, 1999.

CERT. CERT Advisory CA-2003-04 MS-SQL Server Worm, Jary25, 2003. http://www.cert.org/advisories/CA-
2003-04.html.

B. Cheswick and S. BellovinFirewallsand Internet security: repelling the wily hacker. Addison-Wesley, Reading,
Mass. and London, 1994.

E. Cooper, P. Steenkiste, R. Sansom, and B. Zill. Prdtogglementation on the Nectar communication processor.
ACM S GCOMM Conference (Philadelphia, PA), September 1990.

C. Dalton, G. Watson, D. Banks, C. Calamvokis, A. Edveaahd J. Lumley. AfterburnefEEE Network, 7(4):36—
43, July 1993.

D. S. Decasper, B. Plattner, G. M. Parulkar, S. Choi,.D&Hart, and T. Wolf. A scalable high-performance active
network node|EEE Network, 13(1):8-19. IEEE, January—February 1999.

D. L. Donoho, A. G. Flesia, U. Shankar, V. Paxson, J. Caid S. Staniford. Multiscale stepping-stone detection:
detecting pairs of jittered interactive streams by expigimaximum tolerable delayRAID (Zurich, Switzerland,
16-18 October 2002), 2002.

M. E. Fiuczynski, B. N. Bershad, R. P. Martin, and D. Ell€u SPINE: an operating systemfor intelligent network
adaptors. UW TR-98-08-01. 1998.

D. Friedman and D. NagleBuilding Firewalls with Intelligent Network Interface Cards. Technical Report CMU—
CS-00-173. CMU, May 2001.

G. R. Ganger, G. Economou, and S. M. Biels&#f-securing network interfaces: what, why and how. CMU-CS
02-144. August 2002.

G. R. Ganger, G. Economou, and S. M. Bielslinding and Containing Enemies Within the Walls with Self-
securing Network Interfaces. Carnegie Mellon University Technical Report CMU-CS-031 January 2003.

M. Handley, V. Paxson, and C. Kreibich. Network intrusidetection: evasion, traffic normalization, and end-
to-end protocol semantic®JSENIX Security Symposium (Washington, DC, 13-17 August 2001), pages 115-131.
USENIX Association, 2001.

D. Hitz, G. Harris, J. K. Lau, and A. M. Schwartz. Usingidas one component of a lightweight distributed kernel
for multiprocessor file serversMnter USENIX Technical Conference (Washington, DC), 23-26 January 1990.

Information Sciences Institute, USC. RFC 791 - DARP£ehnet program protocol specification, September 1981.

S. loannidis, A. D. Keromytis, S. M. Bellovin, and J. Mm8h. Implementing a distributed firewalhCM Confer-
ence on Computer and Communications Security (Athens, Greece, 1-4 November 2000), pages 190-199, 2000.

J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS perfance and the effectiveness of cachid@M SG-
COMM Workshop on Internet Measurement (San Francisco, CA, 01-02 November 2001), pages 153-16™ AC
Press, 2001.

39

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

G. R. Malan, D. Watson, F. Jahanian, and P. Howell. Tpartsand application protocol scrubbirn@&EE INFOCOM
(Tel Aviv, Israel, 26—30 March 2000), pages 1381-1390. |IEHBO0.

M. Miller and J. Morris. Centralized administration distributed firewalls. Systems Administration Conference
(Chicago, IL, 29 September — 4 October 1996), pages 19-28ENDS 1996.

J. Mirkovic, G. Prier, and P. Reiher. Attacking DDoS ke tsource.|EEE International Conference on Network
Protocols (los Angeles, CA, 12-15 November 2002), pages 312-321. |2B@.

P. V. Mockapetris and K. J. Dunlap. Development of thendon nhame systemACM S GCOMM Conference
(Stanford, CA, April 1988). Published s&8CM SGCOMM Computer Communication Review, 18(4):123-133.
ACM Press, 1988.

J. C. Mogul, R. F. Rashid, and M. J. Accetta. The packgrfilan efficient mechanism for user-level network code.
ACM Symposium on Operating System Principles (Austin, TX, 9—11 November 1987). Published @gerating
Systems Review, 21(5):39-51, 1987.

D. Moore. The Spread of the Code-Red Worm (CRv2), 2001tp:Mvww.caida.org/analysis/security/code-
red/coderedvanalysis.xml.

D. Nessett and P. Humenn. The multilayer firew&mposium on Network and Distributed Systems Security (San
Diego, CA, 11-13 March 1998), 1998.

V. Paxson. Bro: a system for detecting network intrgdarreal-time. USENIX Security Symposium (San Antonio,
TX, 26-29 January 1998), pages 31-51. USENIX Associati®831

J. Postel.Transmission Control Protocol, RFC—761. USC Information Sciences Institute, Januar¥)198

T. H. Ptacek and T. N. Newshanhnsertion, evasion, and denial of service: eluding network intrusion detection.
Technical report. Secure Networks Inc., January 1998.

X. Qie, R. Pang, and L. Peterson. Defensive programmimjng an annotation toolkit to build dos—resistant
software. Symposium on Operating Systems Design and Implementation (Boston, MA, 09—-11 December 2002).
USENIX Association, 2002.

A. Rowstron and P. Druschel. Pastry: scalable, deaéméd object location and routing for large-scale peer-to
peer systemdFIP/ACM International Conference on Distributed Systems Platforms (Heidelberg, Germany, 12—-16
November 2001), pages 329-350, 2001.

SANS Institute. IP Fragmentation and Fragrouter, Dawoer 10, 2000. http://rr.sans.org/encryptionfi&g.php.

S. Savage, N. Cardwell, D. Wetherall, and T. Anderso@PTongestion control with a misbehaving receivetM
Computer Communications Review, 29(5):71-78. ACM, October 1999.

E. H. Spafford. The Internet worm: crisis and afterma@ommunications of the ACM., 32(6):678-687.

S. Staniford, V. Paxson, and N. Weaver. How to Own therimtt in your spare timéJSENIX Security Symposium
(San Francisco, CA, 5-9 August 2001), 2002.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and Hld&aishnan. Chord: a scalable peer-to-peer lookup
service for internet application&CM S GCOMM Conference (San Diego, CA, 27-31 August 2001). Published as
Computer Communication Review, 31(4):149-160, 2001.

J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtaadg I/O Devices on VMware Workstation’s Hosted Virtual
Machine Monitor. USENIX Annual Technical Conference (Boston, MA, 25-30 June 2001), pages 1-14. USENIX
Association, 2001.

D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Mgeall, and G. J. Minden. A survey of active network
researchl EEE Communications, 35(1):80-86, January 1997.

D. Wetherall. Active network vision and reality: lessofrom a capsule-based systeBymposium on Operating
Systems Principles (Kiawah Island Resort, SC., 12—-15 December 1999). Puldiak®per. Syst. Rev., 33(5):64—79.
ACM, 1999.

M. M. Williamson. Throttling viruses: restricting propagation to defeat malicious mobile code. HPL 2002-172R1.
HP Labs, December 2002.

Y. Zhang and V. Paxson. Detecting stepping stondSENIX Security Symposium (Denver, CO, 14-17 August
2000). USENIX Association, 2000.

B. Y. Zhao, J. Kubiatowicz, and A. D. Joseprapestry: an infrastructure for fault-tolerant wide-area location and
routing. UCB Technical Report UCB/CSD-01-1141. Computer Sciereision (EECS) University of California,
Berkeley, April 2001.

40

