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CHAPTER I

INTRODUCTION

As the Internet grows, and as Internet applications become more ubiquitous and complex, net-

works intrusions will similarly increase in scale, frequency, and sophistication. The task of properly

securing a network against this evolving threat requires a jumble of disparate technological solutions

(e.g. firewalls, proxies, network intrusion detecton systems, anti-virus software) and administrative

efforts (e.g. software patching, policy enforcement, network monitoring). Unfortunately, even a

network with a state-of-the-art security infrastructure and a team of expert administrators is still vul-

nerable to attacks that exploit the lack of cohesion and adaptability inherent in this security model.

Since centralized security infrastructure is often sharedacross a set of many networked hosts, it

often lacks the resources and multiple vantage points needed to diagnose and contain threats that fly

under the radar of traditional security models. For example, traditional network security leaves the

protected intranet unprotected from an intruder who gets past the outer defenses. Moreover, often

there is no centralized infrastructure for information-sharing and coordination among security com-

ponents; the administrator must manually correlate separate log files and independently configure

separate components. These time-consuming and error-prone tasks increase the time required to

respond to a security incident, opening the window for additional attacks.

In response to these concerns, this thesis presents a novel security platform that narrows the

architectural gaps between traditional network security perimeters in a highly scalable and fault-

isolated manner while providing administrators with a simple and powerful interface for configu-

ration and coordination of security policies across multiple network components. The heart of this

platform is the concept ofself-securing network interfaces (SS-NIs) [15, 16].

Network interfaces (NIs) are components that sit between a host system and the rest of the in-

tranet, such as network interface cards (NIC) or local switch ports. The role of the NI in a computer

system is to move packets between the system’s components and the network. Aself-securing NI

additionally examines the packets being moved and enforcesnetwork security policies.
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Self-securing NIs have a number of advantages over firewallsplaced at LAN boundaries. First,

distributing firewall functionality among end-points [20]avoids a central bottleneck and protects

systems from local machines as well as those on the WAN. Second, a misbehaving host can be throt-

tled at its source. As with firewalls, a self-securing NI operates independently of host software; its

checks and rules remain in effect even when the corresponding host OS is compromised. Third, and

most exciting, each NI can focus on a single host’s traffic, digging deeper into the lower-bandwidth,

less noisy signal comprised of fewer aggregated communication channels. For example, recon-

struction of application-level streams and inter-connection relationships becomes feasible without

excessive cost. This allows the NI to more accurately shadowimportant host OS structures (e.g., IP

route information, DNS caches, and TCP connection states) and thereby more definitively identify

suspicious behavior.

Digging deeply into network traffic, as promoted here, will greatly increase the codebase ex-

ecuting in an NI. Further, it will inevitably lead to less-expert and less-hardened implementations

of scanning code (which we refer to asscanners), particularly code that examines the application-

level exchanges. As a result, well-designed system software is needed for self-securing NIs, both to

simplify scanner implementations and to contain rogue scanners (whether buggy or compromised).

This thesis describes a software architecture that addresses both issues.

One perceived drawback of using self-securing NI’s is the additional administrative effort re-

quired to manage and configure them. We address this concern by describing our management

infrastructure calledCastellan. Castellan provides administrators with a GUI-based tool to easily

perform most administrative tasks, such as installing and uninstalling SS-NI software, updating and

managing SS-NI policy configurations, and viewing feedbackfrom SS-NI’s in the form ofalerts.

Additionally, Castellan has the capability to autonomically coordinate feedback among different de-

vices and alter the network’s security policy based on this feedback. By minimizing response time

required for containment, Castellan can reduce windows of vulnerability in the network.

This thesis makes four main contributions: First, it makes acase for NI-embedded intrusion

detection and containment functionality. Second, it describes the design of NI system software for

supporting such functionality. Third, it discusses our implementation of NI system software and the

Castellan administrative console. Fourth, it describes several promising applications for detecting
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and containing network threats enabled by the placement of self-securing NIs at the host’s LAN

access point.

The remainder of this thesis is organized as follows. Section 2 discusses the concept of SS-NIs

in further detail and describes related work. Section 3 describes the design and architecture of SS-

NIs and Castellan. Section 4 discusses our prototype implementation of SS-NI system software and

management software. Section 5 describes applications we have developed on the SS-NI platform.

Section 6 discusses related work. Section 7 concludes this thesis by reflecting on our experiences

and identifying areas of future work.
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CHAPTER II

TOWARDS PER-MACHINE PERIMETERS

The common network security approach maintains an outer perimeter (perhaps with a firewall,

some proxies, and a NIDS) around a protected intranet. This is a good first line of defense against

network attacks. But, it leaves the entire intranet wide open to an attacker who gains control of any

machine within the perimeter. This section expands on this threat model, self-securing NIs, how

they help, and their weaknesses.

2.1 Threat model

The threat that this thesis is most concerned with is a multi-stage attack. In the first stage,

the attacker compromises any host on the inside of the intranet perimeter – the attacker subverts

its software system, gaining the ability to run arbitrary software on it with OS-level privileges. In

the second stage, the attacker uses the internal machine to attack other machines on the intranet or

Internet.

This form of two-stage attack is of concern because only the first stage need infiltrate intranet-

perimeter defenses; actions taken in the second stage do notcross that perimeter. Worse, the first

stage need not be technical at all; an attacker can use socialengineering, bribery, a discovered

modem on a desktop, or theft (e.g., of a password or insecure laptop) for the first stage. Finding

a single hole is unlikely to be difficult in any sizable organization. Once internal access is gained,

the second stage is free to use known, NIDS-detectable system vulnerabilities, since it does not

enter the view of the perimeter defenses. In some environments, known attacks launched out of

the organization may also proceed unencumbered; this depends on whether the NIDS and firewall

policies are equally restrictive in both directions.

The main focus of this work is on stopping the second stage of such two-stage attacks. A

key characteristic of the threat model described is that theattacker has software control over a

machine inside the intranet, but does not have physical access to its hardware. This thesis is not
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(a) shows the common network security configuration, wherein a firewall and a NIDS
protect LAN systems from some WAN attacks. (b) shows the addition of self-securing
NIs, one for each LAN system.

Figure 1: Self-securing network interfaces.

specifically trying to address insider attacks, in which theattacker would also have physical access

to the hardware and its network connections.

2.2 Self-Securing NIs

A countermeasure to the two-stage attack scenario must havetwo properties: (1) it must be

isolated from the system software of the first stage’s target, since it would otherwise be highly

vulnerable in exactly the situations we want it to function,and (2) it must be close to its host in the

network path, or it will be unable to assist with intranet containment.1

A host’s network interfaces (NIs) have the two properties described above, so this work focuses

on these components as good places to add a security perimeter. For the purposes of this thesis,

components labeled as “NIs” will have three properties: (1)they will perform the base packet

moving function, (2) they will do so from behind a simple interface with few additional services,

and (3) they will be isolated (i.e., compromise independent) from the remainder of the host software.

Examples of such NIs include NICs, DSL or cable modems, and NIemulators within a virtual

machine monitor [39]. Leaf switches also have these properties for the hosts directly connected to

them.

1Many of the schemes explored here could be also used at the edge to detect second-stage attacks from inside to out.
The goal of internal containment requires finer-grained perimeters. As discussed below, distributed firewalls can also
protect intranet nodes from internal attacks, though they must be extended to what we call self-securing NIs in order to
benefit from the containment and source-specific detection features described.
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An NI is defined to be aself-securing NI (SS-NI) if it internally monitors and enforces policies

on packets forwarded in each direction. With proper policies in place, a SS-NI can be an effective

countermeasure to the two-stage attack scenario. Since a SS-NI operates independently of host soft-

ware, its policies continue to be enforced even while the host OS is compromised. Through its ability

to control host traffic at its source, a SS-NI can contain misbehaving hosts and mitigate the threat

they pose to other hosts on the network. Moreover, no change to the host interface is necessary;

these security functions can occur transparently within the NI (except, of course, when suspicious

activity is actively filtered). For traditional NIs, which exchange link-level messages (e.g., Ethernet

frames), examination of higher-level network protocol exchanges requires reconstruction within the

SS-NI software. Although this work is redundant with respect to the host’s network stack, it allows

SS-NIs to be deployed with no client software modification. For NIs that offload higher-level proto-

cols (e.g., IP security or TCP) from the host [9, 10], redundant work becomes unnecessary because

the only instance of the work is already within the NI.

Self-securing NIs enforce policies set by the network administrator, much like distributed fire-

walls [14, 20, 1]. Configuration and management of SS-NIs is performed over a secure channel in

the network. Alerts about suspicious activity are sent to administrative systems via the same secure

channels. These administrative systems can log alerts, construct an aggregate view of individual NI

observations, notify administrators, and even distributenew policies in response to observations if

so configured. In order to properly guard against the two-stage attack model, even the host OS and

its most-privileged users must not be able to reconfigure or disable the NI’s policies. Of course, for

a SS-NI to be effective, one must assume that neither the administrative console nor the NI itself are

compromised.

As with any intrusion detection system, policy-setting administrators must balance the desire

for containment with the damage caused by acting on false alarms. Self-securing NIs can watch

for suspicious traffic and generate alerts transparently. But, if they are configured to block or delay

suspicious traffic, they may disrupt legitimate user activity.
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2.3 Self-securing NI features

The SS-NI architecture described above has several features that combine to make it a com-

pelling design point. This subsection highlights six. Two of them, scalability and full coverage,

result from distributing the functionality among the endpoints [20]. Two, host independence and

host containment, result from the NI being close to and yet separate from the vulnerable host soft-

ware [14]. Two, less aggregation and more per-link resources, build on the scalability benefit but

are worthy of independent mention.

Scalability. The work of checking network traffic is distributed among theendpoints. Each end-

point’s NI is responsible for checking only the traffic to andfrom that one endpoint. The marginal

cost of the required NI resources is relatively low for common desktop network links, [14], partic-

ularly when their utilization is considered. More importantly, the total available resources for ex-

amining traffic necessarily scales with the number of nodes in the network, since each node should

be connected to the network by its own SS-NI. Distributing such functionality among end-points

avoids the bottleneck inherent in a centralized firewall configuration. Moreover, the cost of equiva-

lent aggregate resources in a such a configuration makes themexpensive (in throughput or dollars)

or limits the checking that they can do. This argument is muchlike cost-effectiveness arguments for

clusters over supercomputers [4].

Full coverage. Each host system is protected from all other machines by its SS-NI, including

those inside the same LAN. In contrast, a firewall placed at the LAN’s edge protects local systems

only from attackers outside the LAN. Thus, SS-NIs can address some insider attacks in addition to

Internet attacks, since only the one host system is inside the NI’s boundary.

Host independence.Like network firewalls, SS-NIs operate independently of vulnerable host

software. As such, their policies are exclusively configured by an adminstrative console over the

network. So, even compromising the host OS will not allow an intruder to disable the SS-NI func-

tionality. This property is important because successful intruders and viruses commonly disable any

host-based mechanisms in an attempt to hide their presence.

Host containment. Self-securing NIs offer a powerful control to network administrators: the

ability to throttle network traffic at its sources. Thus, hosts on the LAN or WAN can be protected
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from a misbehaving host operating behind a SS-NI. For example, a host whose security status is

questionable could have its network access slowed, filtered, or blocked entirely. This feature dis-

tinguishes SS-NIs from distributed firewalls, which protect against internal machines by protecting

targets rather than containing sources. While for some attack scenarios this strategy may be suf-

ficient, the extra visibility and control offered at the NI vantage point of a compromised host can

be exploited to reduce detection assumptions. For example,a SS-NI can see misuse of low-level

networking features, as is the case in many deception attacks on NIDSs, and be used to normalize

this problematic traffic. Doing this at the source leveragesthe effort involved in detecting NIDS

deception attacks, since both SS-NIs and NIDSs require similar state tracking.

Less aggregation.Connected to only one host system, a SS-NI investigates a relatively simple

signal of network traffic. In comparison, a firewall at a network edge must deal with a noisier signal

consisting of many aggregated communication channels. Theclearer signal may allow a SS-NI to

more effectively notice strange network behavior. Additionally, the NI’s position in a single host’s

communication path means that it can fail closed without adversely affecting the communications

of its intranet neighbors. Among other things, this addresses concerns of overloading attacks on

its NIDS—such overloading slows down the NI, and thus the host, but does not cause it to miss

packets. Thus, a misbehaving host using this tactic on its self-securing NI is denying service only

to itself.

More per-link resources. Because each SS-NI focuses on only one host’s traffic, more ag-

gressive investigation of network traffic is feasible. Although this is really a consequence of the

scalability feature, it is sufficiently important to draw out explicitly. Also, note that not all traffic

must be examined in depth; for example, a SS-NI could decide to examine e-mail and web traffic in

depth while allowing NFS and Quake traffic to pass immediately.

2.4 Self-securing NI Administrative Features

Using the NI as a security perimeter can also be a boon for administrators, allowing the imple-

mentation of powerful and desirable network management features. Since NIs require no changes

to host software, SS-NIs provide administrators with a uniform platform for managing per-host
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network security policies (such as firewalling and network intrusion detection rules) across a het-

erogeneous set of host operating systems. This is feature isparticularly valuable for protecting

or containing legacy hosts running deprecated operating systems that do not support the software

needed to enforce desired security policies.

An additional benefit is the ability to rapidly deploy bandaids for known vulnerabilities. The

holes exploited by many network attacks are known and publicized well in advance of the actual

attacks. For example, the infamous “Internet worm” of 1988 [36] exploited a known buffer overflow

weakness (in thefingerd application), and the more recent Code Red worms did the same(in

Microsoft’s IIS server). In each case, the particular overflow attack was well-known ahead of time,

but the software fixes were slow to be deployed and administrators remained vulnerable until patches

were constructed and installed. By creating SS-NI policiesto look for network service requests that

would trigger such overflows, one can prevent them from reaching the system until patches are

provided. We think a SS-NI is an ideal place for such bandaids, since it requires no change to the

host software, but a host-based mechanism would also work.

SS-NIs also give administrators additional vantage pointson the network. This allows for a

more complete view of traffic circulating in the intranet than does traditional infrastructure such as

firewalls or NIDSs. The ability to correlate observations from multiple SS-NIs could prove to be

an invaluable resource for a number of administrative tasks. For instance, if observations suggest

a network host is acting suspicious, flexible policy management across SS-NIs would allow an

administrator to dynamically deploy more fine-grained logging to capture that host’s traffic patterns.

This data could be useful in diagnosing the cause of the anomolous behavior. Moreover, if the host

is actually compromised, logs from SS-NIs can be used in combination with logs from HIDSs or

NIDSs as the basis for a forensic analysis of the security breach.

2.5 Costs, limitations, and weaknesses

SS-NIs are promising, but there is no silver bullet for network security. SS-NIs can only detect

attacks that use the network and, like most intrusion detection systems [5], are susceptible to both

false positives and false negatives. Containment responses to false positives yields denial of service,

and failure to notice false negatives leaves intruders undetected.
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Like any NIDS component, a SS-NI is subject to a number of attacks [31]. Most insertion

attacks are either detectable signals (when from the host) and/or subject to normalization [17, 22].

DoS attacks on the NI’s detection capabilities are converted to DoS on the host; for attacks launched

from the host, this is an ideal scenario.

As the codebase inside the NI increases, it will inevitably become more vulnerable to many of

the same attacks as host systems, such as buffer overflows. Compromised scanning code sees the

traffic it scans (by design) and will most likely be able to leak information about it via some covert

channel. Assuming that the scanning code decides whether the traffic it scans can be forwarded,

malicious scanning code can certainly perform a denial-of-service attack on that traffic. The largest

concerns, however, revolve around the potential for man-in-the-middle attacks and for effects on

other traffic. In traditional passive NIDS components, suchDoS and man-in-the-middle attacks are

not a problem. Although we know of no way to completely prevent this, the software design of our

prototype attempts to reduce the power of individual scanning programs.

Beyond these fundamental limitations, there are also several practical costs and limitations.

First, the NI, which is usually a commodity component, will require additional CPU and memory

resources for most of the attack detection and containment examples above. Although the marginal

cost for extra resources in a low-end component is small, it is non-zero. Providers and adminis-

trators will have to consider the trade-off between cost andsecurity in choosing which scanners

to employ. Second, additional administrative overheads are involved in configuring and managing

SS-NIs. The extra work should be small, given appropriate administrative tools, but again will be

non-zero. Third, like any in-network mechanism, a SS-NI cannot see inside encrypted traffic. While

IP security functionality may be offloaded onto NI hardware in many systems, most application-

level uses of encryption will make some portion of network traffic opaque. If and when encryption

becomes more widely utilized, it may reduce the set of attacks that can be identified from within the

NI. Fourth, each SS-NI inherently has only a local view of network activity, which prevents it from

seeing patterns of access across systems. For example, probes and port scans that go from system to

system are easier to see at aggregation points. Some such activities will show up at the administra-

tive system when it receives similar alerts from multiple SS-NIs. But, more global patterns are an

example of why SS-NIs should be viewed as complementary to edge-located protections; it should
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be stressed that SS-NIs are meant to augment existing network security infrastructure, not replace it.

Fifth, for host-embedded NIs, a physical intruder can bypass self-securing NIs by simply replacing

them (or plugging a new system into the network). The networking infrastructure itself does not

share this problem, giving switches an advantage as homes for SS-NI functionality.

11



CHAPTER III

SELF-SECURING NI SOFTWARE DESIGN

Self-securing NIs offer exciting possibilities for detecting and containing network security prob-

lems. But, the promise will only be realized if the required software can be embedded into network

interfaces effectively. In particular, flexibile support for wide-variety of network traffic analyses will

involve a substantial body of new software in the NI. Further, some of this software will need to be

constructed and deployed rapidly in response to new networksecurity threats. These characteristics

will require an NI software system that simplifies the programming task and mitigates the dangers

created by potentially buggy software running within the NI.

This section discusses design issues for SS-NI system software. It expresses major goals, de-

scribes a software structure, and discusses its merits. Thenext section describes a system that

implements this structure.

3.1 Goals

The overall goal of SS-NIs is to improve system and network security. Clearly, therefore, they

should not create more difficult security problems than theyaddress. In addition, writing software

to address new network security problems should not requireexcessive expertise. Other goals for

NI-embedded software include minimizing the impact on end-to-end exchanges and minimizing the

hardware resources required.

Containing compromised scanning code.As the codebase inside the NI increases, it will

inevitably become more vulnerable to many of the same attacks as host systems, including resource

exhaustion, buffer overflows, and so on. This fact is particularly true for code that scans application-

level exchanges or responds to a new attack, since that code is less likely to be expertly implemented

or extensively tested. Thus, a critical goal for SS-NI software is to contain compromised scanning

code. That is, the system software within the NI should be able to limit the damage that malicious

12



scanning code can cause, working on the assumption that it may be possible for a network attacker

to subvert it (e.g., by performing a buffer overflow attack).

Assuming that the scanning code decides whether the traffic it scans can be forwarded, malicious

scanning code can certainly perform a denial-of-service attack on that traffic. Malicious scanning

code also sees the traffic (by design) and will most likely be able to leak information about it

via some covert channel. The largest concerns revolve around the potential for man-in-the-middle

attacks and for effects on other traffic. The main goal is to prevent malicious scanning code from

executing these attacks: such code should not be able to replace the real stream with its own arbitrary

messages and should not be able to read or filter traffic beyondthat which it was originally permitted

to control.

Reduced programming burden.One anticipates scanning code being written by non-experts

(i.e., people who do not normally write NI software or other security-critical software). To assist

programmers, the NI system software should provide services and interfaces that hide unnecessary

details and reduce the burden. In the worst case, programming new scanning code should be as easy

as programming network applications with sockets.

Containing broken scanning code.Imperfect scanning code can fail in various ways. Beyond

preventing security violations, it is also important to fault-isolate one such piece of code from the

others. This goal devolves to the basic protection boundaries and bounded resource utilization

commonly required in multi-programmed systems.

Transparency in common case.Although not a fundamental requirement, one design goal

is for SS-NI functionality to not affect legitimate communicating parties. Detection can occur by

passively observing network traffic as it flows from end to end. Active changes of traffic occur only

when needed to enforce a containment policy.

Efficiency. Efficiency is always a concern when embedding new functionality into a system. In

this case, the security benefits will be weighed against the cost of the additional CPU and memory

resources needed in the NI. Thus, one goal is to avoid undue inefficiencies. In particular, non-

scanned traffic should incur little to no overhead, and the system-induced overhead for scanned

streams should be minimal. Comprehensive scanning code, onthe other hand, can require as many
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resources as necessary to make their decisions — administrators can choose to employ such scan-

ning code (or not) based on the associated trade-off betweencost and security.

Reduced managemenent burden.If SS-NIs are to be embraced by network administrators,

their management interface should have a minimal learning curve while being sophisticated enough

to provide powerful features. For this purpose, a streamlined graphical user interace (GUI) that

hides low-level management interactions is highly desirable. Network administrators should be

able to painlessly install, remove, or update scanning code. Moreover, administrators should be

able to easily define policies to contain compromised or malfunctioning scanning code, such as

setting allowances for resource consumption or traffic permissions. Alerts produced by scanning

code should be written in a well-understood and uniform format, and these alerts should be stored in

a centralized repository to facilitate their perusal and correlation. One anticipates the need for rapid

response capabilities (corresponding to the current levelof paranoia, for instance), so administrators

should be able to introduce bulk policy changes or updates with a single command. Well-designed

management applications not only reduce the burden of administration, they also increase security

by enabling an administrator to quickly anticipate, detect, and contain breaches.

3.2 Basic design achieving these goals

This section describes a system software architecture for SS-NIs that addresses the above goals.

As illustrated in Figure 2, the architecture is much like anyOS, with a trusted kernel and a collection

of untrusted applications. The trusted NI kernel manages the real network interface resources,

including the host and network links. The application processes, called scanners, use the network

API offered by the NI kernel to get access to selected networktraffic and to convey detection and

containment decisions. An additional application process, not visible in Figure 2, is the scanner

manager. The scanner manager is responsible for launching scanners, monitoring them for failure

or misbehavior, and enforcing their resource restrictionsthrough interaction with the kernel. The

administrative console communicates with the scanner manager over a secure channel to push policy

changes and receive alerts from scanner applications.

Scanners. Non-trivial traffic scanning code is encapsulated into application processes called

scanners. This allows the NI kernel to fault-isolate them, control their resource usage, and bound
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Figure 2: Self-securing NI software architecture

their access to network traffic. With a well-designed API, the NI kernel can also simplify the task of

writing scanning code by hiding some unnecessary details and protocol reconstruction work. In this

design, programming a scanner should be similar to programming an application using sockets, both

in terms of effort required and basic expertise required. (Of course, scanners that look at network

protocols in detail, rather than application-level exchanges, will involve detailed knowledge of those

protocols.)

Scanner interface.Table 1 lists the basic components of the network API exported by the NI

kernel. With this interface, scanners can examine specific network traffic, alert administrators to

potential problems, and prevent unacceptable traffic from reaching its target.

The interface has four main components. First, scanners cansubscribe to particular network

traffic, which asks the NI kernel forread and/orcontain rights; the desired traffic is specified

15



Command Description

Subscribe Ask to scan particular network data
Read Retrieve more from subscribe buffers
Pass Allow scanned data to be forwarded
Cut Drop scanned data
Kill Terminate the scanned session (if TCP)
Inject Insert pre-registered data and forward
Alert Send an alert message to administrator

This interface allows an authorized scanner to examine and block specific traffic, but
bounds the power gained by a rogue scanner. Pass, cut, kill, and inject can only be used
by scanners with both read and contain rights.

Table 1: Network API exported to scanner applications.

with a packet filter language [26]. The NI kernel grants access only if the administrator’s configu-

ration for the particular scanner allows it.1 In addition to the basic packet capture mechanism,

the interface should allow a scanner to subscribe to the datastream of TCP connections, hiding the

stream reconstruction work in the NI kernel.

Second, scanners ask the NI kernel for more data via aread command. With each data item

returned, the NI kernel also indicates whether it was sent byor to the host.

Third, for subscriptions withcontain rights, a decision for each data unit must be conveyed

back to the kernel. The data unit can either bepassed along (i.e., forwarded to its destination) or

cut (i.e., dropped without forwarding). For a data stream subscription, cut andpass refer to data

within the stream; in the base case, they refer to specific individual packets. For TCP connections,

a scanner can also decide tokill the connection.

Fourth, a scanner caninject pre-registered data into scanned communications, which may in-

volve insertion into a TCP stream or generation of an individual packet. A scanner can also send an

alert, coupled with arbitrary information or even copies of packets, to an administrative system.

The scanner interface simplifies programming, allows necessary powers, and yet restricts the

damage a rogue scanner can do. A scanner can look at and gate the flow of traffic with a few

simple commands, leaving the programmer’s focus where it belongs: on the scanning algorithms.

A scanner can ask for specific packets, but will only see what it is allowed to see. A scanner can

1In practice, a better place for enforcing subscription access control may be in a separate, trusted application process,
such as the scanner manager. In this model, a scanner asks thescanner manager for a subscription, which then forwards
only permissible requests to the NI kernel. This is the approach used in the prototype and is further described in 4.
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decide what to pass or drop, but only for the traffic to which ithascontain rights. A scanner

can inject data into the stream, but only pre-configured datain its entirety. Combiningcut and

inject allows replacement of data in the stream, but the pre-configured inject data limits the power

that this conveys. Alerts can contain arbitrary data, but they can only be sent to a pre-configured

adminsitrative system.

NI Kernel. The NI kernel performs the core function of the network interface: moving packets

between the host system and the network link. In addition, itimplements the functionality necessary

to support basic scanner (i.e., application) execution andthe scanner API. As in most systems, the

NI kernel owns all hardware resources and gates access to them. In particular, it bounds scanners’

hardware usage and access to network traffic.

Packets arrive in NI buffers from both sides. As each packet arrives, the NI kernel examines

its headers and determines whether any subscriptions coverit. If not, the packet is immediately

forwarded to its destination. If there is a subscription, the packet is buffered and held for the appro-

priate scanners. After eachcontain-subscribing scanner conveys its decision on the packet, itis

either dropped (if any say drop) or forwarded.

NI kernels should also reconstruct transport-level streams for protocols like TCP, to both sim-

plify and limit the power of scanners that focus on application-level exchanges. Such reconstruction

requires an interesting network stack implementation thatshadows the state of both endpoints based

on the packets exchanged. Notice that such shadowing involves reconstructing two data streams:

one in each direction. When a scanner needs more data than theTCP window allows, indicated by

blocking reads from a scanner with pending decisions, the NI kernel must forge acknowledgement

packets to trigger additional data sent from endpoints. In addition, when data is cut or injected into

streams, all subsequent packets must have their sequence numbers adjusted appropriately.

Scanner Manager. The scanner manager is a trusted application process responsible for the

coordination and monitoring of scanners and interfacing with the administrative console. Upon the

instruction of the administrative console, the scanner manager will launch a set of scanners outlined

by a configuration file provided by the administrator2 Each scanner is associated with its own

2Thus, it as powerful as the NI kernel separated mainly for ease of programming.
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configuration file that outlines its resource restrictions;the scanner manager interacts with the NI

kernel to ensure that they resource restrictions are enforced. During the scanner operations, the

scanner manager receives alerts from scanner applicationsand forwards them to the administrative

console over a secure interface. It also monitors scanner applications and creates and sends its own

alerts in cases of scanner failure or misbehavior.

3.3 Discussion

Implemented properly, this design should meet the design goals for SS-NIs. Experiences indi-

cate that writing scanners is made relatively straightforward by the scanner API. Moreover, restrict-

ing scanners to this API bounds the damage they can do. Certainly, a scanner withcontain rights

can prevent the flow of traffic that it scans, but its ability toprune other traffic is removed and its

ability to manipulate the traffic it scans is reduced.

A scanner withcontain rights can play a limited form of man-in-the-middle by selectively

utilizing theinject andcut interfaces. The administrator can minimize the danger associated within-

ject by only allowing distinctive messages. (Recall thatinject can only add pre-registered messages

and in their entirety. Also, a scanner cannotcut portions ofinjected data.) In theory, the ability to

transparentlycut bytes from a TCP stream could allow a rogue scanner to rewritethe stream arbi-

trarily. Specifically, the scanner could clip bytes from theexisting stream and keep just those that

form the desired message. In practice, this should not be a problem; unless the stream is already

close to the desired output, it will be difficult to constructthe desired output without either breaking

something or being obvious (e.g., the NI kernel can be extended to watch for such detailed clipping

patterns). Still, smallcuts (e.g., removing the right “not” from an e-mail message) could produce

substantial changes that go undetected.

Although scanners still have some undesirable capabilities, the NI software architecture de-

scribed is a significant improvement over unbounded access.
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CHAPTER IV

IMPLEMENTATION

4.1 A self-securing NI prototype

This section describes our prototype self-securing NI. Theprototype self-securing NI is actually

a separate computer (referred to below as the “NI machine”) with three Ethernet interfaces, one

connected to the real network, one connected point-to-point to the host machine’s Ethernet link,

and one connected to the administrative subnet.1 Clearly, the prototype hardware characteristics

differ from real NIC or switch hardware, but it does allow us to explore the SS-NI features that are

the focus in this work.

4.2 Prototype implementation

The SS-NI software runs on the NetBSD 1.6 operating system. Both network interfaces are

put into “promiscuous mode,” such that they grab copies of all frames on their Ethernet link; this

configuration allows the host machine’s real Ethernet address to be used for communication with

the rest of the network. The NI kernel, calledSiphon, sits inside the NetBSD kernel and taps into

the relevant device drivers to acquire copies of all relevant frames arriving on both network cards.

Frames destined for the NI machine are allowed to flow into NetBSD’s normal in-kernel network

stack. Frames to or from the host machine go to Siphon. All other frames are dropped.

Scanners run as application processes. Scanners communicate with Siphon via named UNIX

sockets, receiving subscribed-to traffic viaREAD and passing control information viaWRITE. Data-

gram sockets are used for getting copies of frames, and stream sockets are used for reconstructed

data streams.

1Alternatively, administration of self-securing NIs couldoccur over the protected host’s LAN. The choice to use a
separate subnet was made because it was expedient to do so.
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Frame-level scanning interface.For each successfulREAD call on the socket, a scanner gets

a small header and a received frame. The header indicates theframe’s length and whether it came

from the host or from the network. In addition, each frame is numbered according to how many

previous frames the scanner hasREAD: the first frame read is #1, the second frame is #2, and so

on. cut andpass decisions are given in terms of this frame number.inject requests specify which

pre-registered packet should be sent (via an index into a per-scanner table) and in which direction.

Reconstructed-stream scanning interface.For reconstructed-stream scanning, several sockets

are required. One listens for new connections from Siphon. An ACCEPT on this connection creates

a new socket that corresponds to one newly established TCP connection between the host machine

and some other system.READs andWRITEs to such new connections receive data to be scanned and

convey decisions and requests.cut andpass decisions specify a byte offset and length within the

stream in a particular direction.inject requests specify the byte offset at which the pre-registered

data should be inserted into the stream (shifting everything after it forward by length bytes).

The NI kernel: Siphon. Siphon performs the basic function of a network interface, moving

packets between the host and the network. It also exports thescanner API described above.

Each frame received (from the host or from the LAN) is buffered and passed through a packet

filter engine. If the frame does not match any of the packet filter rules, it is immediately forwarded

to its target (either the host machine or the network link). There are three types of packet filter rules:

prevent, scan, andreconstruct. If the frame matches aprevent rule, it is dropped immediately;pre-

vent rules provide traditional firewall filtering without the overhead of an application-level scanner.

If the frame matches ascan rule, it is written to the corresponding scanner’s datagramsocket. If the

frame matches areconstruct rule, it is forwarded to the TCP reconstruction code. For frames that

matchscan andreconstruct rules for subscriptions withcontain rights, Siphon keeps copies and

remembers the decisions that it needs. A frame is forwarded if and only if all subscribed scanners

decidepass; otherwise, it is dropped.

Siphon’s TCP reconstruction code translates raw Ethernet frames into the reconstructed-stream

interface described above. Upon seeing the host agree to a new TCP connection, Siphon creates

two protocol control blocks, one to shadow the state of each end-point. Each new packet indicates

a change to one end-point or the other. When the connection isfully established, Siphon opens and
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CONNECTs a stream socket to each subscribed scanner. When one side tries to send data to the other,

that data is first given to subscribed scanners. If all such scanners withcontain rights decidepass,

packets are created, buffered, transmitted, and retransmitted as necessary. When the TCP connection

closes, SiphonCLOSEs the corresponding stream socket. If a scanner asks for somedata to becut

or injected, the sequence numbers and acknowledgements of subsequent packets must be adjusted

accordingly. In addition, Siphon must send acknowledgements for thecut data once all bytes up to it

have been acknowledged by the true receiver.Kill requests are handled by generating packets with

the RST flag set and sending one to each end-point. Blockedread requests forcontaining stream

scanners are a bit tricky. For small amounts of additional data, the TCP window can be opened

further to get the sender to provide more data. Otherwise, Siphon must forge acknowledgements to

the source and then handle retransmissions to the destination.

Scanner Manager. The Scanner Manager is implemented as an application process run as

the root user. This process is launched after boot through the /etc/rc.local script and per-

forms operations necessary to enable the Siphon and launch scanner applications. Upon start-up,

the Scanner Manager queries the NI’s resident DBMS (currently PostgreSQL 7.3.3) for the entry

in therunning siphon conf table. This entry corresponds to a binary large object (BLOB)

holder containing an XML configuration file, which we refer toas asiphon conf. An example

siphon conf is shown in Figure 3.

The Scanner Manager then extracts thissiphon conf from the database and parses it. This

file contains information such as the host’s IP and MAC addresses and the initial set of scanner

applications to be launched. The Scanner Manager then opensthe siphon psuedo-device and issues

ioctl commands on it to register the host’s MAC address with the Siphon kernel and initialize its

operation.

With the Siphon now running, the Scanner Manager proceeds tothe task of launching scanner

applications. Each scanner listed in thesiphon conf corresponds with an identifier for how that

instance of the scanner should be configured. This configuration corresponds to two XML files

stored as BLOBs in the database. The first is ascanner conf, which contains a list of rights

and restrictions for the execution of a particular scanner.The second is ascanner subconf.

This configuration file is used to pass arguments to the scanner application itself. Examples of a
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This figure presents an example of a siphon conf. For this particular configuration, the
siphon loads three scanners: a scanner to firewall certain ports, a throttling scanner for
FTP connections, and a throttling scanner for SSH connections.

Figure 3: Example of asiphon conf

This figure presents an example of a scanner conf. This particular scanner has
contain permission on TCP SYNs for the SSH protocol. Its address space is constained
to 256 Kilobytes.

Figure 4: Example of ascanner conf

scanner conf is shown in Figure 4.

To launch a scanner, the Scanner Manager first extracts the scanner’s binary, itsscanner conf,

and itsscanner subconf. From thescanner conf, the Scanner Manager caches a scan-

ner’s traffic permissions and its resource limitations. TheScanner Manager then executes the

socketpair command to reserve a communication channel between the itself and the scanner.

It then executes afork, leaving the child process to finish the launching process and the parent to

launch additional scanners.

The child process then performs a series of commands to execute the scanner in a restricted

environment. First,chroot is executed to confine the scanner’s file system access. The scanner

binary and thescanner subconf are then placed in thechrooted directory and appropriate
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file permissions are set. A series ofsetrlimit commands are executed based on the resource

limits defined in thescanner conf file, the process is assigned a unique group id and user id via

setgid andsetuid, and the scanner is launched using theexecve command with an argument

containing the file id of the communication socket.

Upon launch, the scanner reads its XML configuration, opens sockets for communicating with

the Siphon, and issues subscription requests to the ScannerManager. If these subscription requests

do not violate the traffic permissions outlined in thescanner conf file, the Scanner Manager will

generate a Berkeley Packet Filter (BPF) representation of the requested traffic and send it (along with

the subscription type, permissions model, and path to the scanner’s socket) to the Siphon through an

ioctl. The Siphon then connects to the scanner’s socket and beginsforwarding it the subscribed

traffic.

After all scanners are launched, the Scanner Manager is responsible for two important tasks.

First, the Scanner Manager periodically receives heartbeats from each scanner. If a scanner misses

a heartbeat, it is most likely hung, compromised, or terminated. In the event of a missed heartbeat,

the Scanner Manager creates an Intrusion Detection MessageExchange Format (IDMEF) alert and

sends it to the administrative console (Castellan, described below) over a secure channel. If the

scanner is not terminated, the Scanner Manager will do so andperform basic cleanup.

The Scanner Manager’s other responsibility is creating alerts and forwarding on the behalf of

scanners. To do so, scanners simply send an alert message to the Scanner Manager, which will then

create an IDMEF message containing the host name, the scanner name, and the scanner’s config-

uration identifier along with the alert and forward it to Castellan. Making the Scanner Manager

responsible for constructing and delivering a scanner’s alerts reduces the trusted code base (TCB)

in the scanner library and ensures a scanner cannot forge alerts from other scanners. Additionally,

although not included in the current implementation, the Scanner Manager could be extended to

consolidate alerts or throttle the alerts of a misconfiguredor compromised scanner.

Castellan: Administrative Console. Castellan is the administrative console for managing the

self-securing NI platform. It contains two distinct architectural components: a background daemon

for automatically collecting, interpreting, and reactingto alerts, and a GUI for browsing alerts and

performing manual policy changes. The background daemon maintains a connection over a secure
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channel with all participating SS-NIs. It stores the alertsit receives in a centralized location and

parses these alerts in an attempt to automatically determine the current state of the network. If

desired, the background daemon may be configured to dynamically issue policy changes to multiple

SS-NIs in reaction to the alerts it has accumulated. For example, if the network is perceived to

be under attack, the background daemon could choose to instruct all SS-NIs to switch to a more

paranoidsiphon conf, perhaps one which firewalls all non-essential ports, in an attempt to make

the network more resilient. A sample set of SS-NI applications that rely on coordination from the

background daemon is described in Section 5.

The other part of Castellan is its GUI interface. This interface provides the administrator with

two main capabilities: browsing and filtering alerts, and browsing and managing SS-NI policies.

Castellan was implemented in Java using the NetBeans IDE,

Castellan’s GUI greatly simplifies the policy management ofSS-NIs. An administrator can

browse, delete, and install each NI’ssiphon confs, scanner applications,scanner confs,

andscanner subconfs. A number of checks are enforced to reduce the capacity for adminis-

trative error; notably all XML files are checked against their respective document definition types

(DTDs) before being entered in an NI’s database. Ordering isenforced on management opera-

tions to reduce the potential for invalid configuration caused by missing dependencies. For ex-

ample, asiphon conf that references an uninstalled scanner orscanner conf cannot be in-

stalled. Similarly a scanner referenced by an installedsiphon conf cannot be deleted before that

siphon conf is deleted.

The administrator can also use Castellan to switch the running scanner conf of a SS-NI.

In order to do so, the administrator simply selects a SS-NI inCastellan, browses its collection of

siphon confs, and clicks on a button to activate it. This causes Castellan to connect to the SS-

NI’s DBMS and alter the value of therunning siphon conf table. The Scanner Manager sets

a trigger on this table and is notified of all changes to it. After querying for the new value, the

Scanner Manager kills all currently running scanners, performs garbage collection, and proceeds as

described above to launch the new configuration.

24



Configuration Roundtrip Bandwidth
No NI machine 0.16 ms 11.11 MB/s
No scanners 0.23 ms 11.11 MB/s
Frame scanner 0.23 ms 11.08 MB/s
Stream scanner 0.23 ms 10.69 MB/s

Roundtrip latency is measured with 20,000 pings. Throughput is measured by RCPing
100MB. “No NI machine” corresponds to the host machine with no self-securing NI in
front of it. “No scanners” corresponds to Siphon immediately passing on each packet.
“Frame scanner” corresponds to copying all IP packets to a read-only scanner. “Stream
scanner” corresponds to reconstructing the TCP stream for a read-only scanner.

Table 2: Base performance of the self-securing NI prototype.

4.3 Basic overheads

Although performance is not the focus of this Thesis, it is useful to quantify Siphon’s effect on

NI throughput and latency. As found by previous researchers[14, 17, 29], one observes that NIDS

and normalization functions can be made reasonably efficient for individual network links. Also,

the internal protection boundary between scanners and the trusted base comes with a reasonable

cost.

For all experiments in this paper, the NI machine is equippedwith a 266MHz 586, 128MB

of main memory, and 100Mb/s Ethernet interfaces. After subtracting the CPU power used for

packet management functions that could be expected to be hardware-based, this modest system is

a reasonable approximation of a feasible NIC or switch. The host machine runs SuSe Linux 2.4.7

and is equipped with a 1.4GHz Pentium III, 512MB of main memory, and a 100Mb/s Ethernet card.

Although Siphon is operational, little tuning has been done.

Table 2 shows results for four configurations: the host machine alone (with no NI machine), the

NI machine with no scanners, the NI machine with a read-only frame-level scanner matching every

packet, and the NI machine reconstructing all TCP streams for a read-only scanner. We observe

a 47% increase in round-trip latency with the insertion of the NI machine into the host’s path, but

no additional increase with scanners. We observe minimal bandwidth difference among the four

configurations, although reconstructing the TCP stream results in a 4% reduction.
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CHAPTER V

EXAMPLE APPLICATIONS

This section describes and explores four examples of detectors that work particularly well with

self-securing NIs. Each exploits the NI’s proximity to the host and the corresponding ability to see

exactly what it sends and receives. For each, this work describes the attack, the scanner, relevant

performance data, and associated issues.

5.1 Detecting IP-based propagation

A highly-visible network attack in 2001 was the Code-Red worm (and its follow-ons) that prop-

agated rapidly once started, hitting most susceptable machines in the Internet in less than a day [27].

What the scanner looks for: The Code-Red worm and follow-ons spread exponentially by

having each compromized machine target random 32-bit IP addresses. This propagation approach

is highly effective because the IP address space is densely populated and relatively small. But, it

exhibits an abnormal communication pattern. Although doneoccasionally, it is uncommon for a

host to connect to a new IP address without first performing a name translation via the Domain

Name System (DNS) [25]. Our scanner watches DNS translations and checks the IP addresses of

new connections against them. It flags any sudden rise in the count of “unknown” IP addresses as a

potential problem.

How the scanner works: The “Code-Red scanner” consists of two parts: shadowing thehost

machine’s DNS table and checking new connections against it. Upon initialization, the scanner

subscribes to three types of frames. The first two specify UDP packets sent by the host to port 53

and sent by the network from port 53 (port 53 is used for DNS traffic).1 The third specifies TCP

packets sent by the host machine with only the SYN flag set, which is the first packet of TCP’s

connection-setup handshake. Of these, only the third subscription includescontain rights.

1Although not observed in CMU’s network, DNS traffic can be passed on TCP port 53 as well. The current scanner
will not see this, but could easily be extended to do so.
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Each DNS reply can provide several IP addresses, including the addresses of authoritative name

servers. When itreads a DNS reply packet, the scanner parses it to identify all provided IP addresses

and their associated times to live (TTLs). The TTL specifies for how long the given translation is

valid. Each IP address is added to the scanner’s table and kept at least until the TTL expires. Thus,

the scanner’s table should contain any valid translations that the host may have in its DNS cache.

The scanner prunes expired entries only when it needs space,since host applications may utilize

previous results fromgethostbyname() even after the DNS translations expire.

The scanner checks the destination IP addresses of the host machine’s TCP SYN packets against

this table. If there is a match, the packet ispassed. If not, the scanner considers it a “random”

connection. The current policy flags a problem when there aremore than two unique random con-

nections in a second or ten in a minute.

When an attack is detected:The scanner’s current policy reacts to potential attacks bysending

an alert to the administrative system and slowing down excessive random connections. It stays in

this mode for the next minute and then re-evaluates and repeats if necessary. Thealert provides

the number of random connections over the last minute and themost recent destination to which

a connection was opened. Random connections are slowed downby delaying decisions; in attack

reaction mode, the scanner tells Siphonpass for one of the SYN packets every six seconds. This

allows such connections to make progress, somewhat balancing the potential for false positives

with the desire for containment. If all susceptible hosts were watched and contained in this way,

the 14 hour propagation time of Code-Red (version 2) [27] would have grown to over a month

(assuming the original scan rate was 10 per second per infected machine [37]).

Performance data: As expected, given the earlier roundtrip latency evaluation, the DNS scan-

ner adds negligible latency to DNS translations and TCP connection establishment. We evaluate

the table sizes needed for the Code-Red scanner by examininga trace of all DNS translations for

10 desktop machines in our research group over 2 days. Assuming translations are kept only until

their TTL’s expire, each machine’s DNS cache would contain an average of 209 IP addresses. The

maximum count observed was 293 addresses. At 16 bytes per entry (for the IP address, the TTL,

and two pointers), the DNS table would require less than 5KB.

It is interesting to consider the table size required for an aggregate table kept at an edge router.
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As a partial answer, we observe that a combined table for the 10 desktops would require a maxi-

mum of 750 entries (average of 568) or 12KB. This matches the results of a recent DNS caching

study [21], which finds that caches shared among 5 or more systems exhibit a 80–85% hit rate.

They found that aggregating more client caches provides little additional benefit. Thus, one ex-

pects an 80–85% overlap among the caches, leaving 15–20% of the entries unique per cache. Thus,

10,000 systems with 250 entries each would yield approximately 375,000–500,000 unique entries

(6MB–8MB) in a combined table.

Discussion: We have not observed false positives in small-scale testing(a few hours) in front

of a user desktop, though more experience is needed. The largest false positive danger of the Code-

Red scanner is that other mechanisms could be used (legitimately) for name translation. There are

numerous research proposals for such mechanisms [38, 33, 44], and even experimenting with them

would trigger our scanner. Administrators who wish to allowsuch mechanisms in their environ-

ment would need to either disable this scanner or extend it tounderstand the new name translation

mechanisms.

With a scanner like this in place, different tactics will be needed for worms to propagate with-

out being detected quickly. One option is to slow the scan rate and “fly under the radar,” but this

dramatically reduces the propagation speed, as discussed above. Another approach is to use DNS’s

reverse lookup support to translate random IP addresses to names, which can then be forward trans-

lated to satisfy the scanner’s checks. But, extending the scanner to identify such activity would be

straightforward. Yet another approach would be to explore the DNS name space randomly2 rather

than the IP address space; this approach would not enjoy the relevant features of the IP address

space (i.e., densely populated and relatively small). There are certain to be other approaches as

well. The scanner described takes away a highly convenient and effective propagation mechanism;

worm writers are thus forced to expend more effort and/or to produce less successful worms. So

goes the escalation “game” of security.

An alternate containment strategy, blindly restricting the rate of connections to new destinations,

has recently been proposed [42]. The proposed implementation (extending host-based firewall code)

2The DNS “zone transfer” request could short-circuit the random search by acquiring lists of valid names in each
domain. Many domains disable this feature. Also, self-securing NIs could easily notice its use.
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would not work in practice, since most worms would be able to disable it. But, a self-securing NI

could use this approach, if further study revealed that it really would not impede legitimate work.

Note that such rate throttling at the intranet edge may not beeffective, because techniques like local

subnet scanning [37] would allow a worm to parallelize external targetting.

Finally, it is worth noting that the Code-Red worms exploited a particular buffer overflow that

was well-known ahead of time. A HTTP scanner could easily identify requests that attempt to

exploit it and prevent or flag them. The DNS-based scanner, however, will also spot worms, such

as the Nimda worm, that use random IP-based propagation but other security holes. Coincidentally,

early information about the “SQL Slammer” worm [7] indicates that it would be caught by this same

scanner.

5.2 Detecting claim-and-hold DoS attacks

Qie et al. [32] partition DoS attacks into two categories: busy attacks (e.g., overloading network

links) and claim-and-hold attacks. In the latter, the attacker causes the victim to allocate a limited

resource for an extended period of time. Examples include filling IP fragment tables (by sending

many “first IP fragment” frames), filling TCP connection tables (via “SYN bombing”), and exhaust-

ing server connection limits (via very slow TCP communication [32]). A host doing such things can

be identified by its self-securing NI, which sees what entersand leaves the host when. As a concrete

example, this section describes a scanner for SYN bomb attacks.

What the scanner looks for: A SYN bomb attack exploits a characteristic of the state transi-

tions within the TCP protocol [30] to prevent new connections to the victim. The attack consists

of repeatedly initiating, but not completing, the three-packet handshake of initial TCP connection

establishment, leaving the target with many partially completed sequences that take a long time

to “time out.” Specifically, an attacker sends only the first packet (with the SYN flag set), ignor-

ing the victim’s correct response (a second packet with the SYN and ACK flags set). The scanner

watches for instances of inbound SYN/ACK packets not receiving timely responses from the host.

A well-behaved host should respond to a SYN/ACK with either an ACK packet (to complete the

connection) or a RST packet (to terminate an undesired connection).
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How the scanner works:The scanner watches all inbound SYN/ACK packets and all outbound

ACK and RST packets. It works by maintaining a table of all SYN/ACKs destined to the host that

have not yet been answered. Whenever a new SYN/ACK arrives, it is added to the ‘waiting for

reply’ table with an associated timestamp and expiration time. Retransmitted SYN/ACKs do not

change these values. If a corresponding RST packet is sent bythe host, the entry is removed.

If a corresponding ACK packet is sent, the entry is moved to a ‘reply sent’ cache, whose role

is to identify retransmissions of answered SYN/ACK packets, which may not require responses;

entries are kept in this cache until the connection closes or240 seconds (the official TCP maximum

roundtrip time) passes.

If no answer is received by the expiration time, then the scanner considers this to be an ignored

SYN/ACK. Currently, the expiration time is hard-coded at 3 seconds. The current policy flags a

problem if there are more than 2 ignored SYN/ACKs in a one minute period.

When an attack is detected:The SYN bomb scanner’s current policy reacts to potential attacks

only by sending an alert to the administrative system. Otherpossible responses include delaying or

preventing future SYN packets to the observed victim (or alltargets) or having Siphon forge RST

packets to the host and its victim for the incomplete connection (thereby clearing the held connection

state).

Performance data: The SYN bomb scanner maintains a histogram of the observed response

latency of its host to SYN/ACK packets. Under a moderate network load, over a one hour period

of time, a desktop host replied to SYN/ACKs in an average of 26milliseconds, with the minimum

being under 1 and the maximum being 946 milliseconds. Such data indicates that our current grace

period of 3 seconds should result in few false positives.

Discussion: There are two variants of the SYN bomb attack, both of which can be handled

by self-securing NIs on the attacking machine. In one variant, the attacker uses its true address in

the source fields, and the victim’s responses go to the attacker but are ignored. This is the variant

targetted by this scanner. In the second variant, the attacker forges false entries in the SYN packets’

source fields, so that the victim’s replies go to other machines. A self-securing NI on the attacker

machine can prevent such spoofing.
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5.3 Detecting TTL misuse

Crafty attack tools can hide from NIDSs in a variety of ways. Among them are insertion at-

tacks [31] based on misuse of the IP TTL field, which determines how many routers a packet may

traverse before being dropped.3 By sending packets with carefully chosen TTL values, an attacker

can make a NIDS believe a given packet will reach the destination while knowing that it won’t. As

a concrete example, the SYN bomb scanner described above is vulnerable to such deception (ACKs

could be sent with small TTL values). This section describesa scanner that detects attempts to

misuse IP TTL values in this manner.

What the scanner looks for: The scanner looks for unexpected variation in the TTL valuesof

IP packets originating from the host. Specifically, it looksfor differing TTL values among packets

of a single TCP session. Although TTL values may vary among inbound packets, because different

packets may legitimately traverse different paths, such variation should not occur within a session.

How the scanner works: The scanner examines the TTL value for TCP packets originating

from a host. The TTL value of the initial SYN packet (for outbound connections) or SYN/ACK

packet (for inbound connections) is recorded in a table until the host side of the connection moves

to the closed state. The TTL value of each subsequent packet for that connection is compared to the

original. Any difference is flagged as TTL misuse, unless it is a RST with TTL=255 (the maximum

value). Both Linux and NetBSD use the maximum TTL value for RST packets, presumably to

maximize their chance of reaching the destination.

When an attack is detected:The current scanner’s policy involves two things. The TTL fields

are normalized to the original value, and an alert is generated.

Performance data: We applied the TTL scanner to the traffic of a Linux desktop engaged

in typical network usage for over an hour. We observed only 2 different TTL values in packets

originating from the desktop: 98.5% of the packets had a TTL of 64 and the remainder had a TTL

of 255. All of the TCP packets were among those with TTL of 64, with one exception: a RST

packet with TTL=255. The other packets with TTL of 255 were ICMP and other non-TCP traffic.

3This should not be confused with the DNS TTL field used in the Code-Red scanner.
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Discussion: This scanner’s detection works well for detecting most NIDSinsertion attacks

in TCP streams, since there is no vagueness regarding network topology between a host and its

NI. It can be extended in several ways. First, it should checkfor low initial TTL values, which

might indicate a non-deterministic insertion attack givensome routes being short enough and some

not; detecting departure from observed system default values (e.g., 64 and 255) should be sufficient.

Second, it should check TTL values for non-TCP packets. Thiswill again rely on observed defaults,

with one caveat: tools like traceroute legitimately use lowand varying TTL values on non-TCP

packets. An augmented scanner would have to understand the pattern exhibited by such tools in

order to restrict the non-flagged TTL variation patterns.

5.4 Detecting IP fragmentation misuse

IP fragmentation can be abused for a variety of attacks. Given known bugs in target machines or

NIDSs, IP fragmentation can be used to crash systems or avoiddetection; tools like fragrouter [34]

exist for testing or exploiting IP fragmentation corner cases. Similarly, different interpretations of

overlapping fragments can be exploited to avoid detection.As well, incomplete fragment sets can

be used as a capture-and-hold DoS attack.

What the scanner looks for: The scanner looks for five suspicious uses of IP fragmentation.

First, overlapping IP fragments are not legitimate—a bug inthe host software may cause overlap-

ping, but should not have different data in the overlapping regions—so, the scanner looks for differ-

ing data in overlapping regions. Second, incomplete fragmented packets can only cause problems

for the receiver, so the scanner looks for them. Third, fragments of a given IP packet should all have

the same TTL value. Fourth, only a last fragment should ever be smaller than the minimum legal

MTU of 68 bytes [19]; many NIDS evasion attacks violate this rule to hide TCP, UDP, or application

frame headers from NIDSs that do not reconstitute fragmented packets. Fifth, IP fragmentation of

TCP streams is suspicious. This last item is the least certain, but most TCP connections negotiate

a “maximum segment size” (mss) during setup and modern TCP implementations will also adjust

theirmss field when an ICMP “fragmentation required” message is received.

How the scanner works: The scannersubscribes (with contain rights) for all outbound IP

packets that have either the “More Fragments” bit set or a non-zero value for the IP fragment offset.
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These two subscriptions capture all Ethernet frames that are part of fragmented IP packets. The

first sequential fragmented packet has the “More Fragments”bit set and a zero offset. Fragments in

between have the “More Fragments” bit set and a non-zero offset. The last fragment doesn’t have

the “More Fragments” bit set but it does have a non-zero offset.

The scanner tracks all pending fragments. Each received fragment is compared to held frag-

ments to determine if it completes a full IP packet. If not, itis added to the cache. When all

fragments for a packet are received at the NI, the scanner determines whether the IP fragmentation

is acceptible. If the full packet is part of a TCP stream, it isflagged. If the fragments have different

TTL values, it is flagged. If any fragment other than the last is smaller than 64 bytes, it is flagged.

If the fragments overlap and the overlapping ranges containdifferent data, it is flagged. If nothing

is flagged, the fragments arepassed in ascending order.

Periodically, the fragment structure is checked to determine if an incomplete packet has been

held for more than a timeout value (currently one second). Ifso, the pieces arecut. If more than

two such timeouts occur in a second or ten in a minute, the host’s actions are flagged.

When an attack is detected:There are five cases flagged, all of which result in an alert be-

ing generated. In addition, we have the following policies in place: overlapping fragments with

mismatching data are dropped, under the assumption that either the host OS is buggy or one of the

constructions is an attack; fragments with mismatching TTLfields are sent with all TTLs matching

the highest value; incorrectly fragmented packets are dropped; timed out fragments are dropped (as

described); fragmented TCP packets are currently passed (if the other rules are not violated).

Performance data: We ran the scanner against a desktop machine, but observed noIP frag-

mentation during normal operation. With test utilities sending 64KB UDP packets (over Ethernet),

we measured the time delay between the first frame’s arrival at the NI and the last. The average time

before all fragments are received was 0.53ms, with values ranging from 0.46ms to 2.5ms. These

values indicate that our timeout period may be too generous.

Discussion:Flagging IP fragmentation of TCP streams is only reasonablefor operating systems

with modern networking stacks, which can be known by an administrator setting policies. Older

systems may actually employ IP fragmentation rather than aggressivemss maintenance. Because

of this and the possibility of fragmentation by intermediate routers, a rule like this would not be
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appropriate for a non-host-specific NIDS.

Our original IP fragmentation scanner also watched for out-of-order IP fragments, since this is

another possible source of reconstitution bugs. In testing, however, we discovered that at least one

OS (Linux) regularly sends its fragments in reverse order. The NI software, therefore, always waits

until all fragments are sent and then propagates them in order.

We originally planned to detect unreasonable usage of fragmentation and undersized fragments

by caching the MTU values observed (in ICMP “fragmentation required” messages) for various

destinations. We encountered several difficulties. First,it was unclear how long to retain the values,

since any replacement might cause a false alarm. Second, an external attacker could fill the MTU

cache with generated messages, creating state management difficulties. Third, a conspiring external

machine with the ability to spoof packets could easily generate the ICMP packets needed to fool the

scanner. Since IP fragmentation is legal, we decided to focus on clear misuses of it.

As with most of the scanners described, the IP fragmentationscanner is susceptible to space

exhaustion by the host. Specifically, a host could send largenumbers of incomplete fragmented

packets, filling the NIs buffer capacity. As noted earlier, however, such an attack mainly damages the

host itself, denying it access to the network. This seems an acceptible trade-off given the machine’s

misbehavior. A similar analysis exists for the other scanners.

5.5 Other scanners

Of course, many other scanners are possible. Any traditional NIDS scanning algorithm fits,

both inbound and outbound, and can be expected to work better(as described in [17, 22]) after the

normalization of IP and TCP done by Siphon. For example, we have built several scanners for e-

mail (virus scanning) and Web (buffer overflows, cookie poisoning, virus scanning) connections. As

well, NIC-embedded prevention/detection of basic spoofing(e.g., of IP addresses) and sniffing (e.g.,

by listening with the NI in “promiscuous mode”) are appropriate, as is done in 3Com’s Embedded

Firewall product [1].

Several other examples of evasion and protocol abuse can be detected as well. For example,

misbehaving hosts can increase the rate at which senders transmit data to them by sending early or

partial ACKs [35]; sitting on the NI, a scanner could easily see such misbehavior. A TCP abuse of
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more concern is the use of overlapping TCP segments with different data, much like the overlapping

IP fragment example above; usable for NIDS insertion attacks [31], such behavior is easily detected

by a scanner looking for it.

Finally, we believe that the less aggregated and local view of traffic exhibited at the NI will

help with more complex detection schemes, such as those for stepping stones [12, 43] or general

anomaly detection of network traffic. This is an area for future study.
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CHAPTER VI

RELATED WORK

Self-securing NIs build on much existing technology and borrow ideas from previous work, as

discussed throughout the flow of this thesis. Network intrusion detection, virus detection, and fire-

walls are well-established, commonly-used mechanisms [5,8]. Also, many of the arguments for

distributing firewall functions [14, 20, 28] and embedding them into network interface cards [1, 14]

have been made in previous work. Notably, the 3Com Embedded Firewall product [1] extends

NICs with firewall policies such as IP spoofing prevention, promiscuous mode prevention, and se-

lective filtering of packets based on fields like IP address and port number. This and other previous

work [2, 6, 23] also address the issue of remote policy configuration for such systems. These pre-

vious systems do not focus on host compromise detection and containment like self-securing NIs

do. This paper extends previous work with examples of more detailed analysis of a host’s traffic

enabled by the location of NI-embedded NIDS functionality.

Many network intrusion detection systems exist. One well-described example is Bro [29], an

extensible, real-time, passive network monitor. Bro provides a scripting language for reacting to

pre-programmed network events. Our prototype’s support for writing scanners could be improved

by borrowing from Bro (and others). Embedding NIDS functionality into NIs instead of network

taps creates the scanner containment issue but eliminates several of the challenges described by

Paxson, such as overload attacks, cold starts, dropped packets, and crash attacks. Such embedding

also addresses many of the NIDS attacks described by Ptacek and Newsham [31].

There is much ongoing research into addressing DistributedDoS (DDoS) attacks. Most counter-

measures start from the victim, using traceback and throttling to get as close to sources as possi-

ble. The D-WARD system [24] instead attempts to detect outgoing attacks at source routers, us-

ing anomaly detection on traffic flows, and throttle them closer to home. The arguments for this

approach bear similarity to those for self-securing NIs, though they focus on a different threat:

outgoing DDoS attacks rather than two-stage attacks. The ideas are complementary, and pushing
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D-WARD all the way to the true sources (individual NIs) is an idea worth exploring.

A substantial body of research has examined the execution ofapplication functionality by net-

work cards [13, 18] and infrastructure components [3, 11, 40, 41]. Although scanners are not fully

trusted, they are also not submitted by untrusted clients. Nonetheless, this prior work lays solid

groundwork for resource management within network components.
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CHAPTER VII

CONCLUSION

Self-securing network interfaces are a promising additionto the network security arsenal. This

thesis describes their use for identifying and containing compromised hosts within the boundaries of

managed network environments. It illustrates the potential of self-securing NIs with a prototype NI

kernel and example scanners that address several high-profile network security problems: insertion

and evasion efforts, state-holding DoS attacks, and Code-Red style worms.
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