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Abstract OS, meaning that it cannot be disabled by an intruder who

_ ) ) only successfully gets past a host’s OS-level protection.
Storage-based intrusion detection allows storage systems

to watch for data modifications characteristic of system inThis paper motivates and describes storage-ba_sed intrusion
trusions. This enables storage systems to spot several Coﬁjﬁ_tectmn. It presents several kinds of suspicious pehav-
mon intruder actions, such as adding backdoors, insertirﬁ [ th".“ ?an be spotted by a storage IDS. Usmg sixteen
Trojan horses, and tampering with audit logs. Further, a.OOtkIts and two worms as examplesf, we describe how
intrusion detection system (IDS) embedded in a stora gteen of them would be exposed _rapldly by our storage
device continues to operate even after client systems a S. (The other three do nqt modlfy storeq f||§s.) MO,St
compromised. This paper describes a number of specif] them are eqused b_y modlfylng system b”_’a“es' add_mg
warning signs visible at the storage interface. Examinatio es t_o_syste_m directories, scrulpblng the audit log, or using
of 18 real intrusion tools reveals that most (15) can be deuspicious file names. Qf the fifteen detected, three mod-
tected based on their changes to stored files. We descri‘@éth_e kerqel to h"?'e the.|r presence frpm ho_st—pased detec-
and evaluate a prototype storage IDS, embedded in an NEEN including FS |r_1tegr|ty check_ers “ke, Tripwire [18]. In
server, to demonstrate both feasibility and efficiency Ogeneral, COMPromises qannot h'd? their changes from the
storage-based intrusion detection. In particular, both th%to_rage device if they wish to persist across _reboots; to be
performance overhead and memory required (152 KB fc{le-lnstalled upon reboot, the tools must manipulate stored
4730 rules) are minimal. files.

A storage IDS could be embedded in many kinds of storage

systems. The extra processing power and memory space
1 Introduction required should be feasible for file servers, disk array con-

trollers, and perhaps augmented disk drives. Most detec-
Many intrusion detection systems (IDSs) have been deveton rules will also require FS-level understanding of the
oped over the years [1, 23, 29], with most falling into onestored data. Such understanding exists trivially for a file
of two categories: network-based or host-based. Netwoderver, and may be explicitly provided to block-based stor-
IDSs (NIDS) are usually embedded in sniffers or firewallsage devices. This understanding of a file system is anal-
scanning traffic to, from, and within a network environ-ogous to the understanding of application protocols used
ment for attack signatures and suspicious traffic [5, 25phy a NIDS [27], but with fewer varieties and structural
Host-based IDSs (HIDS) are fully or partially embeddedhanges over time.
within each host's OS. They examine local information . . .

; . . As a concrete example with which to experiment, we have

(such as system calls [10]) for signs of intrusion or suspi-

. . . . augmented an NFS server with a storage IDS that sup-
cious behavior. Many environments employ multiple IDSs . . . -
: - . : ports online, rule-based detection of suspicious modifica-
each watching activity from its own vantage point.

tions. This storage IDS supports the detection of four cat-
The storage system is another interesting vantage point fegories of suspicious activities. First, it can detect unex-
intrusion detection. Several common intruder actions [fected changes to important system files and binaries, us-
p. 218][34, pp. 363-365] are quite visible at the storagihg a rule-set very similar to Tripwire’s. Second, it can de-
interface. Examples include manipulating system utilitiesect patterns of changes like non-append modification (e.g.,
(e.g., to add backdoors or Trojan horses), tampering witbf system log files) and reversing of inode times. Third, it
audit log contents (e.g., to eliminate evidence), and resetan detect specifically proscribed content changes to crit-
ting attributes (e.g., to hide changes). By design, a stojeal files (e.g., illegal shells inserted inf@tc/passwd).

age server sees all changes to persistent data, allowing itReurth, it can detect the appearance of specific file names
transparently watch for suspicious changes and issue alefésg., hidden “dot” files) or content (e.g., known viruses

about the corresponding client systems. Also, like a NIDSgr attack tools). An administrative interface supplies the
a storage IDS must be compromise-independent of the host



detection rules, which are checked during the processing
of each NFS request. When a detection rule triggers, the
server sends the administrator an alert containing the full
pathname of the modified file, the violated rule, and th

offending NFS operation. Experiments show that the run-
time cost of such intrusion detection is minimal. Furthe

analysis indicates that little memory capacity is needed for
reasonable rulesets (e.g., only 152 KB for an example cop- (o0
taining 4730 rules). [y
The remainder of this paper is organized as follows. Sec-
tion 2 introduces storage-based intrusion detection. Sec-
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tion 3 evaluates the potential of storage-based intrusion Operating System
detection by examining real intrusion tools. Section 4 dis- . |
S . . File RPC or ! Storage | Storage
cusses storage IDS design issues. Section 5 describes a System | Device L >orad
Driver ; Requests

prototype storage IDS embedded in an NFS server. Sec-

tion 6 uses this prototype to evaluate the costs of storage- HIDS
based intrusion detection. Section 7 presents related work. : :
. . . , . . . : Configuration
Section 8 summarizes this paper’s contributions and dis- ) i and Alerts
K ) Storage interconnect or :
cusses continuing work. network link physically restricts

client access to storage

2 Storage-based Intrusion Detection

Storage-based intrusion detection enables storage devices
to examine the requests they service for suspicious clieRigure 1:Thecompromiseindependenceof astorage!DS. The stor-
behavior. Although the world view that a storage serveage interface provides a physical boundary behind which a storage server
o : ; an observe the requests it is asked to service. Note that this same picture
See,S,IS mcomplete, two features, Combme, to make It, a We(/fvorks for block protocols, such as SCSI or IDE/ATA, and distributed file
positioned platform for enhancing intrusion detection efsystem protocols, such as NFS or CIFS. Also note that storage IDSs do

forts. First, since storage devices are independent of hogt replace existing IDSs, but simply offer an additional vantage point
OSes, they can continue to look for intrusions after the initrom which to detect intrusions.

tial compromise, whereas a host-based IDS can be disabled

by the intruder. Second, since most computer systems rely

heavily on persistent storage for their operation, many in-

truder actions will cause storage activity that can be cap-

tured and z_inaly_z_ed. '!'h|_s s_ectlon expands on thes_e two .fe|ﬁfrusion detection with conventional schemes becomes
tures and identifies limitations of storage-based infrusiop) | v o it it Host-based IDSs can be rendered in-

detection. effective by intruder software that disables them or feeds

them misinformation, for which many tools exist. Network
2.1 Threat model and assumptions IDSs can continue to look for suspicious behavior, but are

much less likely to find an already successful intruder—
Storage IDSs focus on the threat on of an attacker who hasost NIDSs look for attacks and intrusion attempts rather
compromised a host system in a managed computing etiran for system usage by an existing intruder [11]. A stor-
vironment. By “compromised,” we mean that the attackeage IDS can help by offering a vantage point on a system
subverted the host’s software system, gaining the ability toomponent that is often manipulated in suspicious ways
run arbitrary software on the host with OS-level privilegesafter the intruder compromises the system.

The comprom|se| r_‘n_lghtbhave befen ach|ev?d via te:;hmcgl key characteristic of the described threat model is that
means (€.g., exploiting buggy software or a loose policy) 9f,e atacker has software control over the host, but does not
non-technical means (e.g., social engineering or br'beryl)lave physical access to its hardware. We are not specifi-
Once the compromise occurs, most administrators wish {Q,; yving to address insider attacks, in which the intruder
detect the intrusion as quickly as possible and terminate Would also have physical access to the hardware and its
Intruders, on the other hand, often wish to hide their pre%’torage components. Also, for the storage IDS to be ef-
ence and retain access to the machine. fective, we assume that neither the storage device nor the
Unfortunately, once an intruder compromises a machin@dmin console are compromised.
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2.2 Compromiseindependence 2.3.1 Data/attribute modification

A storage IDS will continue watching for suspicious activ-" Managed computing environments, the simplest (and

ity even when clients’ OSes are compromised. It capitaP€'haps most effective) category of warning signs con-
izes on the fact that storage devices (whether file server@Sts Of data or meta-data changes to files that administra-
disk array controllers, or even IDE disks) run different"s €xpect to remain unchanged except during explicit up-
software on separate hardware, as illustrated in Figure §/@des. Examples of such files include system executables

This fact enables server-embedded security functionafnd scripts, configuration files, and system header files and
ity that cannot be disabled by any software running oHbraries. Given the importance of such files and the infre-

client systems (including the OS kernel). Further, stordUency of updates to them, any modification is a potential

age devices often have fewer network interfaces (e_g':j.!gn of intrusion. A storage IDS can detect all such modifi-

RPGC+SNMP+HTTP or just SCSI) and no local users. cations on-thg-fly, before tht_a storage device processes each
Thus, compromising a storage server should be more df€duest, and issue an alertimmediately.

ficult than compromising a client system. Of course, suchn current systems, modification detection is sometimes
servers have a limited view of system activity, so they carprovided by a checksumming utility (e.g., Tripwire [18])

not distinguish legitimate users from clever impostors. Buthat periodically compares the current storage state against
from behind the physical storage interface, a storage ID& reference database stored elsewhere. Storage-based in-
can spot many common intruder actions and alert adminigsusion detection improves on this current approach in
trators. three ways: (1) it allows immediate detection of changes

Administrators must be able to communicate with thd® Watched files; (2) it can notice short-term changes, made
storage IDS, both to configure it and to receive alert2"d then undone, which would not be noticed by a check-

This administrative channel must also be compromiseUmming utility if the changes occurred between two pe-

independent of client systems, meaning that no user (ifl°dic checks; and (3) for local storage, it avoids trusting
cluding root) and no software (including the OS kerneljh® host OS to perform the checks, which many rootkits

on a client system can have administrative privileges fdfiSable or bypass.
the storage IDS. Section 4 discusses deployment options
for the administrative console, including physical consoleg.3.2 Update patterns

and cryptographic channels from a dedicated administra- ) ) _ _
tive system. A second category of warning signs consists of suspi-

cious access patterns, particularly updates. There are sev-

All of the warning signs discussed in this paper could als@ | concrete examples for which storage IDSs can be use-
be spotted from within a HIDS, but host-based IDSs do ngY,| i watching. The clearest is client system audit logs;

enjoy the compromise independence of storage IDSs. f\ese audit logs are critical to both intrusion detection [6]
host-based IDS is vulnerable to being disabled or bypassgg diagnosis [35], leading many intruders to scrub evi-
by intruders that compromise the OS kernel. Another ingance from them as a precaution. Any such manipulation
teresting place for a storage IDS is the virtual disk modulgjj| he obvious to a storage IDS that understands the well-
of a virtual machine monitor [39]; such deployment wouldyefined update pattern of the specific audit log. For in-
enjoy compromise independence from the OSes running Eiance, audit log files are usually append-only, and they

its virtual machines [4]. may be periodically “rotated.” This rotation consists of
renaming the current log file to an alternate name (e.g.,
logfiletologfile.0) and creating a new “current” log
file. Any deviation in the update pattern of the current log

2.3 Warning signsfor storage|DSs file or any modification of a previous log file is suspicious.

Successful intruders often modify stored data. For inAnother suspicious update pattern is timestamp reversal.
stance, they may overwrite system utilities to hide theiBpecifically, the data modification and attribute change
presence, install Trojan horse daemons to allow for réimes commonly kept for each file can be quite useful
entry, add users, modify startup scripts to reinstall kerndbr post-intrusion diagnosis of which files were manipu-
modifications upon reboot, remove evidence from the audiated [9]. By manipulating the times stored in inodes (e.g.,
log, or store illicit materials. These modifications are visisetting them back to their original values), an intruder can
ble to the storage system when they are made persistemhibit such diagnosis. Of course, care must be taken with
This section describes four categories of warning sign®s rules, since some programs (etgr) legitimately set
that a storage IDS can monitor: data and attribute modthese times to old values. One possibility would be to only
fications, update patterns, content integrity, and suspicioget off an alert when the modification time is set back long
content. after a file’s creation. This would excludar-style activ-



ity but would catch an intruder trying to obfuscate a modeperation, file formats may be arbitrarily complex and veri-
ified file. Of course, the intruder could now delete the filefication may require access to additional data blocks (other
create a new one, set the date back, and hide from the sttiran those currently being written). This creates a perfor-
age IDS—a more complex rule could catch this, but suclnance vs. security trade-off made by deciding which files
escalation is the nature of intrusion detection. to verify and how often to verify them. In practice, there

Detection of storage denial-of-service (DoS) attacks alsd'e likely to be few critical files for which content integrity

falls into the category of suspicious access patterns. Fyfrification s utilized.

example, an attacker can disable specific services or eAAs a concrete example, consider a UNIX system pass-
tire systems by allocating all or most of the free space. Avord file (/etc/passwd), which consists of a set of well-
similar effect can be achieved by allocating inodes or othatefined records. Records are delimited by a line-break, and
metadata structures. A storage IDS can watch for such egach record consists of seven colon-separated fields. Fur-
haustion, which may be deliberate, accidental, or coincther, each of the fields has a specific meaning, some of
dental (e.g., a user just downloaded 10 GB of multimewhich are expected to conform to rules of practice. For
dia files). When the system reaches predetermined thresdxample, the seventh field specifies the “shell” program to
olds of unallocated resources and allocation rate, warte launched when a user logs in, and (in Linux) the file
ing the administrator is appropriate even in non-intrusiofetc/shells lists the legal options. During the “Capture
situations—attention is likely to be necessary soon. A stothe Flag” information warfare game at the 2002 DEF CON
age IDS could similarly warn the administrator when storeonference [21], one tactic used was to change the root
age activity exceeds a threshold for too long, which maghell on compromised systemsAsbin/halt; once atar-

be a DoS attack or just an indication that the server needgted system’s administrator noted the intrusion and at-
to be upgraded. tempted to become root on the machine (the common ini-

Although specific rules can spot expected intruder actiond@! reaction), considerable down-time and administrative

more general rules may allow larger classes of suspiciof?gfort was needed to restore the system to operation. A

activity to be noticed. For example, some attribute mogStorage IDS can monitor changes fetc/passwd and
ifications, like enabling “set UID” bits or reducing the verify that they conform to a set of basic integrity rules: 7-

permissions needed for access, may indicate foul plzggld records, non-empty password field, legal default shell,

Additionally, many applications access storage in a red€9al home directory, non-overlapping user IDs, etc. The

ular manner. As two examples: word processors often ugitack described above, among others, could be caughtim-

temporary and backup files in specific ways, and UNl)gnediately.
password management involves a pair of inter-related files
(/etc/passwd and /etc/shadow). The corresponding

access patterns seen at the storage device will be a reflaCtoyrth category of warning signs is the appearance of
tion of the application’s requests. This presents an 0ppogyspicious content. The most obvious suspicious content
tunity for anomaly detection based on how a given file igs a known virus or rootkit, detectable via its signature.
normally accessed. This could be done in a manner similgjgyera] high-end storage servers (e.g., from EMC [24] and
to learning common patterns of system calls [10] or starfyetwork Appliance [28]) now include support for internal
ing with rules regarding the expected behavior of individyjr g scanning. By executing the scans within the storage

ual applications [19]. Deviation from the expected pattergeryer, viruses cannot disable the scanners even after in-
could indicate an intruder attempting to subvert the normapcting clients.

method of accessing a given file. Of course, the downside .
is an increase (likely substantial) in the number of falsd WO Other examples of suspicious content are large num-

alarms. Our focus to date has been on explicit detectighf'S ©f “hidden” files or empty files. Hidden files have

rules, but anomaly detection within storage access patterﬂémes that are not displayed .by normal Fhrgctory listing
is an interesting topic for future research. Iinterfaces [7, p. 217], and their use may indicate that an

intruder is using the system as a storage repository, per-
haps for illicit or pirated content. A large number of empty
files or directories may indicate an attempt to exploit a race
A third category of warning signs consists of changes thatondition [2, 30] by inducing a time-consuming directory
violate internal consistency rules of specific files. This catlisting, search, or removal.

egory builds on the previous examples by understanding

the application-specific semantics of particularly importany 4 L imitations, costs, and weaknesses

stored data. Of course, to verify content integrity, the de-

vice must understand the format of a file. Further, whil&lthough storage-based intrusion detection contributes to
simple formats may be verified in the context of the writesecurity efforts, of course it is not a silver bullet.

Suspicious content

2.3.3 Content integrity
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Like any IDS, a storage IDS will produce some false posid3 ~ Case Studies

tives. With very specific rules, such as “watch these 100

files for any modification,” false positives should be in-This section explores how well a storage IDS might fare
frequent; they will occur only when there are legitimateln the face of actual compromises. To do so, we examined
changes to a watched file, which should be easily verifiegighteen intrusion tools (Table 1) designed to be run on
if updates involve a careful procedure. The issue of falseompromised systems. All were downloaded from public
alarms grows progressively more problematic as the rul@¥ebsites, most of them from Packet Storm [26].

get less exact (e.g., the time reversal or resource exhaygost of the actions taken by these tools fall into two cat-
tion examples). The far end of the spectrum from specifiggories. Actions in the first category involve hiding evi-
rules is general anomaly detection. dence of the intrusion and the rootkit's activity. The second

Also like any IDS, a storage IDS will fail to spot some in- provides a mechanism for reentry into a system. Twelve of
trusions. Fundamentally, a storage IDS cannot notice intribe tools operate by running various binaries on the host
sions whose actions do not cause odd storage behavior. E¥stem and overwriting existing binaries to continue gain-

example, three of the eighteen intrusion tools examined ifg control. The other six insert code into the operating

the next section modify the OS but change no files. Alsgsystem kernel.

an intruder may manipulate storage in unwatched waygor the analysis in this section, we focus on a subset
Using network-based and host-based IDSs together withi the rules supported by our prototype storage-based
storage IDS can increase the odds of spotting various form§s described in Section 5. Specifically, we include

of intrusion. the file/directory modification (Tripwire-like) rules, the

Intrusion detection, as an aspect of information warfareppend-only logfile rule, and the hidden filename rules. We
is by nature a “game” of escalation. As soon as one sidé0 not consider any “suspicious content” rules, which may
takes away an avenue of attack, the other starts lookirj may not catch a rootkit depending on whether its partic-
for the next. Since storage-based intrusion detection eaglar signature is knowhn these eighteen toolkits, we did
ily sees several common intruder activities, crafty intrudergot find any instances of resource exhaustion attacks or of
will change tactics. For example, an intruder can make arfgverting inode times.

number of changes to the host's memory, so long as those

modifications do not propagate to storage. A reboot, how- .

ever, will reset the system and remove the intrusion, whic-1 ~ Detection results

argues for proactive restart [3, 16, 43]. To counter this, a Of the eighteen toolkits tested, storage IDS rules would

tackers must have their changes re-established automaii- . X . .
) . . immediately detect fifteen based on their storage modifi-
cally after a reboot, such as by manipulating the various

boot-time (e.g.rc. Local in UNIX-like systems) or peri- cat[ons. Most would trigger numerous alerts, highlighting
) . . . their presence. The other three make no changes to per-
odic (e.g.,cron in UNIX-like systems) programs. Doing

. .= sistent storage. However, they are removed if the system
so exposes them to the storage IDS, creating a traditiona ] )

. . . reboots; all three modify the kernel, but would have to be
intrusion detection game of cat and mouse.

combined with system file changes to be re-inserted upon
As a practical consideration, storage IDSs embeddadphoot.

within individual components of decentralized storage SysNon-append changes to the system audit log, Seven of

tems are unlikely to be effective. For example, a disk arra ! ) :
. . . . e eighteen toolkits scrub evidence of system compro-
controller is a fine place for storage-based intrusion detec-. ) .
. L . . - fmise from the audit log. All of them do so by selectively
tion, but individual disks behind software striping are not. o . - -
overwriting entries related to their intrusion into the sys-

?ém, rather than by truncating the logfile entirely. All cause

making it difficult to check non-trivial rules without adding .
alerts to be generated in our prototype.

new inter-device communication paths.
. . . L System file modification. Fifteen of the eighteen toolkits
Finally, storage-based intrusion detection is not free:’ " ° . :

odify a number of watched system files (ranging from

Checking rules comes with some cost in processing a e
g np g to 20). Each such modification generates an alert. Al-
memory resources, and more rules require more resourc?hs

g —though three of the rootkits replace the files with bina-
In configuring a storage IDS, one must balance detection . .
) . . _ries that match the size and CRC checksum of the previ-

efforts with performance costs for the particular operatin

environment Bus files, they do not foil cryptographically-strong hashes.
' Thus, Tripwire-like systems would be able to catch them

1An interesting note is that rootkit developers reuse code: four of the
rootkits use the same audit log scrubbing prograauber), and another
three use a different programsp2).



Name Description Syscall | Log | Hidden| Watched Total

redir. scrub dirs files alerts
Ramen Linux worm X 2 3
lion Linux worm 10 10
FK 0.4 Linux LKM rootkit and trojan ssh X 1 1
Taskigt Linux LKM rootkit 1 1
SK 1.3a Linux kernel rootkit via/dev/kmem X -
Darkside 0.2.3 FreeBSD LKM rootkit X -
Knark 0.59 Linux LKM rootkit X X 1 2
Adore Linux LKM rootkit X -
Irk5 User level rootkit from source X X 20 22
Sun rootkit SunOS rootkit with trojan rlogin 1 1
FreeBSD Rootkit 2 | User level FreeBSD rootkit X X 15 17
torn Linux user level rootkit X X 20 22
Advanced Rootkit Linux user level rootkit X 10 11
ASMD Rootkit w/SUID binary trojan X 1 2
Dica Linux user level rootkit X X 9 11
Flea Linux user level rootkit X X 20 22
Ohara Rootkit w/PAM trojan X X 4 6
TK 6.66 Linux user level rootkit X X 10 12

Table 1:visibleactionsof several intruder toolkits. For each of the tools, the table shows which of the following actions are performed: redirecting
system calls, scrubbing the system log files, and creating hidden directories. It also shows how many of the files watched by our rule set are modified
by a given tool. The final column shows the total number of alerts generated by a given tool.

as well, though the evasion mechanism described in Se8:2 Kernel-inserted evasion techniques

tion 3.2 defeats Tripwire.

. o - Six of the eighteen toolkits modified the running operating
Many of the files modified are common utilities for SyS'system kernel. Five of these six “kernel rootkits” include

tem administration, found ifibin, /sbin, and/usr/bin . h
on a UNIX machine. They are modified to hide the IoresI_oadable kernel modules (LKMs), and the other inserts it

. : i If directly into ki I f ki
ence and activity of the intruder. Common changesmclud.se directly into kernel memory by use of tiéev/kmen

e . \ |(r=‘1terface. Most of the kernel modifications allow intrud-
modifying ps to not show an intruder’s processes,to not
show an intruder’s files, angetstat to not show an in-

ers to hide as well as reenter the system, similarly to the
) . o ile modifications described above. Especially interesting

truder’s open network ports and connections. Similar mo4— hi lysis is the use ekec() redirection by four

ifications are often made &rep, find, du, andpstree. or this analy . ; ect) TEHITE y

of the kernel rootkits. With such redirection, theec ()

The other common reason for modifying system binariesystem call uses a replacement version of a targeted pro-

is to create backdoors for system reentry. Most commonlgram, while other system calls return information about

the target iselnetd or sshd, although one rootkit added or data from the original. As a result, any tool relying on

a backdoored PAM module [33] as well. Methods for usinghe accuracy of system calls to check file integrity, such as

the backdoor vary and do not impact our analysis. Tripwire, will be fooled.

Hidden file or directory names. Twelve of the rootkits All of these rootkits are detected using our storage IDS
make a hard-coded effort to hide their non-executable andles—they all put their replacement programs in the orig-
working files (i.e., the files that are not replacing existingnals’ directories (which are watched), and four of the six
files). Ten of the kits use directories starting in a ‘.’ to hideactually move the original file to a new name and store
from defaultls listings. Three of these generate alerts byheir replacement file with the original name (which also
trying to make a hidden directory look like the reserved “.triggers an alert). However, future rootkits could be mod-
or ..’ directories by appending one or more spaces (‘. ’ offied to be less obvious to a storage IDS. Specifically, the
.."). This also makes the path harder to type if a systeroriginal files could be left untouched and replacement files
administrator does not know the number of spaces. could be stored someplace not watched by the storage IDS,
such as a random user directory—neither would gener-
ate an alert. With this approach, file modification can be
completely hidden from a storage IDS unless the rootkit



wants to reinstall the kernel modification after a rebootcodified, and they include most file attributes. This rule
To accomplish this, some original files would need to béanguage works well, because it allows the administrator
changed, which forces intruders to make an interestin manipulate a well understood representation (pathnames
choice: hide from the storage IDS or persist beyond thand files), and the list of attributes that can be watched is
next reboot. small and well-defined.

The methods used by virus scanners work well for config-
3.3 Anecdotal experience uring an IDS to look for suspicious content. Rules can be

specified as signatures that are compared against files’ con-
During the writing of this paper, one of the authors haptents. Similarly, filename expression grammars (like those
pened to be asked to analyze a system that had begrvided in scripting languages) could be used to describe
recently compromised. Several modifications similar tguspicious filenames.

those made by the above rootkits were found on the SYPess guidance exists for the other two categories of warn-

fgm;ssrﬂ%tbse'fii)h{ﬁ;:?slsovgisarg?gg'telcg) to :éni:zg tzr?e?i ing signs: update patterns and content integrity. We do not
9 } ' ! ) 99 urrently know how to specify general rules for these cat-
tem to investigate the intrusion, the related logs woul

L - gories. Our approach has been to fall back on Tripwire-
betsgrlibbedt. Severallldblr;rée: ;verfd)m cf?r:]lpi’ir(g;fés style rules; we hard-code checking functions (e.g., for non-
netstat, pstree, Ss y elne . . . . . .

) . ._append update or a particular content integrity violation
were setup to hide the existence of an IRC bot, runnin bp P P gnty )

out of the directory* /dev/ . . /°. This experience helps nd then allow an administrator to specify on which files

validate our choice of “rootkits” for study, as they appear t(;[hey should be checked (or that they should be checked for

. . ) every file). More general approaches to specifying detec-
be representative of at least one real-world intrusion. Th y file) 9 bp pecifying

. ) . fon rules for these categories of warning signs are left for
intrusion would have triggered at least 8 storage IDS ruIe:f?Uture work 9 gsig

4 Design of a Storage IDS 4.2 Secureadministration

To be useful in practice, a storage IDS must simultanerpe security administrator must have a secure interface to
ously achieve several goals. It must support a useful set g§fe storage IDS. This interface is needed for the admin-
detection rules, while also being easy for human admingator to configure detection rules and to receive alerts.
istrators to understand and configure. It must be efficienfhe jnterface must prevent client systems from forging or
minimizing both added delay and added resource requirgjocking administrative requests, since this could allow a
ments; some user communities still accept security Megzafty intruder to sneak around the IDS by disarming it. At
sures only when they are “free.” Additionally, it should bea minimum, it must be tamper-evident. Otherwise, intrud-
invisible to users at least until an intrusion detection rule i, s could stop rule updates or prevent alerts from reaching
matched. the administrator. To maintain compromise independence,
This section describes four aspects of storage IDS desighmust be the case that obtaining “superuser” or even ker-
specifying detection rules, administering a storage IDS séel privileges on a client system is insufficient to gain ad-
curely, checking detection rules, and responding to susphinistrative access to the storage device.

cious activity. Two promising architectures exist for such administration:

one based on physical access and one based on cryptogra-
4.1 Specifying detection rules phy. For environments where the administrator has phys-

ical access to the device, a local administration terminal
Specifying rules for an IDS is a tedious, error prone activthat allows the administrator to set detection rules and re-
ity. The tools an administrator uses to write and manipueeive the corresponding alert messages satisfies the above
late those rules should be as simple and straightforward geals.

possible. Each. of th_e f_our categories Qf suspicious activi% environments where physical access to the device is
presented earlier will likely need a unigue format for rulenot practical, cryptography can be used to secure com-

specification. munications. In this scenario, the storage device acts as
The rule format used by Tripwire seems to work well foran endpoint for a cryptographic channel to the adminis-
specifying rules concerned with data and attribute modifitrative system. The device must maintain keys and per-
cation. This format allows an administrator to specify thdorm the necessary cryptographic functions to detect mod-
pathname of a file and a list of properties that should bified messages, lost messages, and blocked channels. Ar-
monitored for that file. The set of watchable properties arehitectures for such trust models in storage systems ex-
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ist [14]. This type of infrastructure is already common fo

- ; ) : ) .
administration qf other network attf_;lched_ security comp Operating System | storage
nents, such as firewalls or network intrusion detection sys- . Requests

; : . . Device [«-|----- | >
tems. For direct-attached storage devices, cryptographic File | Sriver
channels can be used to tunnel administrative requests and System| © T e >

alerts through the OS of the host system, as illustrated |n
Figure 2. Such tunneling simply treats the host OS as an Client
untrusted network component.

Configuration
and

Seen

For small numbers of dedicated servers in a machine room, . .
. . . ryptographic tunn 1
either approach is feasible. For large numbers of storage  through the client O . Admin Console
devices or components operating in physically insecure en-
vironments, cryptography is the only viable solution.

Figure 2:Tunneling administrative commands through client sys-

4.3 Checki ng the detection rules tems. For storage devices attached directly to client systems, a crypto-
graphic tunnel can allow the administrator to securely manage a storage

Checking detection rules can be non-trivial, because rulégs' This tunnel uses the untrusted client OS to transport administrative

. commands and alerts.
generally apply to full pathnames rather than inodes. Addi-
tional complications arise because rules can watch for files

that do not yet exist. ) _ ) )
include the new content) with the in-progress upgrade; if

For S|mp(;e operat|or|15 th‘f’:f_ act on 'Td'V'?uaé f|Iehs (;'g'this were done, it could prevent the false alarm from reach-
READ andWRITE), rule verification is localized. The de- ;¢ the human administrator while simultaneously verify-

vice need only check that the rules pertaining to that Spgsg ¢ the upgrade went through to persistent storage cor-
cific file are not violated (usually a simple flag comparison, ctly.

sometimes a content check). For operations that affect the )

file system’s namespace, verification is more complicated Nere are more active responses that a storage IDS could
For example, a rename of a directory tree may impact B99€r upon detecting suspicious activity. When choosing
large number of individual files, any of which could have? reésponse policy, of course, the administrator must weigh
IDS rules that must be checked. Renaming a directory ré1€ benefits of an active response against the inconvenience
quires examining all files and directories that are childreAnd potential damage caused by false alarms.

of the one being renamed. One reasonable active response is to slow down the sus-

In the case of rules pertaining to files that do not currentipected intruder’s storage accesses. For example, a storage
exist, this list of rules must be consulted when operationdevice could wait until the alert is acknowledged before
change the namespace. For example, the administrator nfzmpleting the suspicious request. It could also artificially
want to watch for the existence of a file nameés/b/c  increase request latencies for a client or user that is sus-
even if the directory name¢th does not yet exist. However, Pected of foul play. Doing so would provide increased time

a single file system operation (e.gv, /z /a) could cause foramore thorough response, and, while it will cause some

structure forz's directory tree. damage. The device could even deny a request entirely if it

violates one of the rules, although this response to a false
alarm could cause damage and/or application failure. For
some rules, like append-only audit logs, such access con-
trol may be desirable.

4.4 Respondingtoruleviolations

Since a detected “intruder action” may actually be legiti
mate user activity (i.e., a false alarm), our default respondsu, et al. proposed a more radical response to detected
is simply to send an alert to the administrative system dntrusions: isolating intruders, via versioning, at the file
the designated alert log file. The alert message should casystem level [22]. To do so, the file system forks the ver-
tain such information as the file(s) involved, the time of thesion trees to sandbox suspicious users until the administra-
event, the action being performed, the action’s attribute®r verifies the legitimacy of their actions. Unfortunately,
(e.g., the data written into the file), and the client’s identitysuch forking is likely to interfere with system operation,
Note that, if the rules are set properly, most false positivesnless the intrusion detection mechanism yields no false
should be caused by legitimate updates (e.g., upgradesarms. Specifically, since suspected users modify differ-
from an administrator. With the right information in alerts,ent versions of files from regular users, the system faces a
an administrative system that also coordinates legitimatdfficult reintegration [20, 41] problem, should the updates
upgrades could correlate the generated alert (which cée judged legitimate. Still, it is interesting to consider em-
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bedding this approach, together with a storage IDS, intd Metadata

storage systems for particularly sensitive environments. || ¢ inode modification time e data modification time
A less intrusive storage-embedded response is to start ver® access time o file permissions
sioning all data and auditing all storage requests when gn® link count e device number
intrusion is detected. Doing so provides the administraf ® file owner ¢ inode number

tor with significant information for post-intrusion diagno-|| ® file type « file owner group

sis and recovery. Of course, some intrusion-related infor- ® file size

mation will likely be lost unless the intrusion is detecte Data

immediately, which is why Strunk et al. [38] argue for al-|| e any modification e append only

ways doing these things (just in case). Still, IDS-triggered e password structure

employment of this functionality may be a useful trade-off

point. Table 2:Attribute list. Rules can be established to watch these at-
tributes in real-time on a file-by-file basis.

5 Storage-based intrusion detection afile's integrity against the password file integrity rule dis-
in an NFS server cuss_eql earlier. After every write, th_e file must conform to
the rigid structure of a password file (7 colons per line),
To explore the concepts and feasibility of storage-based i@nd all of the shells must be contained in the “acceptable”
trusion detection, we implemented a storage IDS in an NFtst.
server. Unmodified client systems access the server usifigaddition to per-file rules, an administrator can choose to
the standard NFS version 2 protocol [40hile storage- enable any of three system-wide rules: one that matches on
based intrusion detection occurs transparently. This sectigfy operation that rolls-back a file’s modification time, one
describes how the prototype storage IDS handles detectigit matches on any operation that creates a “hidden” di-
rule specification, the structures and algorithms for checlectory (e.g., a directory name beginning with ‘. and hav-
ing rules, and alert generation. ing spaces in it), and one that looks for known (currently

The base NFS server is called S4, and its implementfard-coded) intrusion tools by their sizes and SHA-1 di-

tion is described and evaluated elsewhere [38]. It integests. Although the system currently checks the digests on
nally performs file versioning and request auditing, usingvery file update, periodic scanning of the system would

a log-structured file system [32], but these features are ntely be more practical. These rules apply to all parts of

relevant here. For our purposes, it is a convenient NF&e directory hierarchy and are specified as singuiyor

file server with performance comparable to the Linux an@FF-

FreeBSD NFS servers. Secure administration is performwﬂes are communicated to the server through the use of
via the server’s console, using the physical access contrgh administrative RPC. This RPC interface has two com-
approach. mands (see Table 3). ThetRule () RPC gives the IDS
two values: the path of the file to be watched, and a set of
flags describing the specific rules for that file. Rules are re-
moved through the same mechanism, specifying the path
a:;md an empty rule set.

5.1 Specifying detection rules

Our prototype storage IDS is capable of watching for a vi
riety of data and metadata changes to files. The administra-

tor specifies a list of Tripwire-style rules to configure the5 2 Checking the detection rules

detection system. Each administrator-supplied rule is of

the form: {pathname, attribute-ligt—designating which This subsection describes the core of the storage IDS. It
attributes to monitor for a particular file. The list of at-discusses how rules are stored and subsequently checked
tributes that can be watched is shown in Table 2. In adduring operation.

dition to standard Tripwire rules, we have added two ad-

ditional functions that can be specified on a per-file bag > 1 pata structures

sis. The first watches for non-append changes, as described

earlier; any truncation or write anywhere but at the previThree new structures allow the storage IDS to efficiently
ous end of a file will generate an alert. The second checlgsipport the detection rules: the reverse lookup table, the

inode watch flags, and the non-existent names table.

2The use of the NFSv2 protocol is an artifact of the server implemen- !
tation the IDS is built into, but makes no difference in the areas we carR€Ver se lookup table: The reverse lookup table serves

about. two functions. First, it serves as a list of rules that the server




| Command | Purpose | Direction
setRule(path, rules) Changes the watched characteristics of a file. Thalmin=-server
command is used to both set and delete rules.
listRules() Retrieves the server's rule table as a list |ohdmin=-server
{pathname, rules} records.
alert(path, rules, operation) Delivers a warning of a rule violation to the admin-server-admin
istrator.

Table 3:Administrative commands for our storage |DS. This table lists the small set of administrative commands needed for an administrative
console to configure and manage the storage IDS. The first two are sent by the console, and the third is sent by the storage IDS. The pathname refers
to a file relative to the root of an exported file system. Tiesare a description of what to check for, which can be any of the changes described in

Table 2. Theoperationis the NFS operation that caused the rule violation.

is currently enforcing. Second, it maps an inode number tigting) directory within the pathname of the original rule.

a pathname. The alert generation mechanism uses the [e&ch entry contains three fielddirectory-inode-number

ter to provide the administrator with file names instead ofemaining-path and rules Indexed bydirectory-inode-
inode numbers, without resorting to a brute-force search efumber an entry specifies themaining-pathWhen a file

the namespace. or directory is created or removed, the non-existent names
table is consulted and updated, if necessary. For example,

The reverse lookup table is populated via #gRule () . . . : .
RPC. Each rule’s full pathname is broken into its com{POn creation of a file for which a detection rule exists, the

ponent names, which are stored in distinct rows of thgulesare checkeﬂ andhlnserted mlthala(tchflalgs f":"ldr?f
table. For each component, the table records four fieldd€ inode. Together, the reverse lookup table and the non-
inode-numberdirectory-inode-numbemame and rules existent names table contain the entire set of IDS rules in
Indexed byinode-number an entry contains th@ame effect.

within a parent directory (identified by itirectory-inode-

numbej. Therulesassociated with thisameare a bitmask . . .

of the attributes and patterns to watch. Since a particulasfz'2 Checking rulesduring NFS operations

inode number can have more than one name, multiple eye now describe the flow of rule checking, much of which

tries for each inode may exist. A given inode number cag diagrammed in Figure 3, in two parts: changes to indi-
be translated to a full pathname by looking up its lowestgiqual files and changes to the namespace.

level name and recursively looking up the name of the cor—h i | individual fil . h
responding directory inode number. The search ends wiffinecking rules on individual file operations: For eac

the known inode number of the root directory. All name§\|':S operation that affects only a single file, a mask of

for an inode can be found by following all paths given b);ules that m_igh_t be violated is computed. This mask is
the lookup of the inode number. compared, bitwise, to the correspondirg:chflags field

_ ) ~inthe file’s inode. For most of the rules, this comparison
Inode watchflags field: During thesetRule () RPC, in  quickly determines if any alerts should be triggered. If the
addition to populating the reverse lookup table, a rule masigassword file” or “append only” flags are set, the corre-

of 16 bits is computed and stored in thetchflags field  sponding verification function executes to determine if the
of the watched file’s inode. Since multiple pathnames may( e is violated.

refer to the same inode, there may be more than one ruleh

for a given file, and the mask contains the union. The inodg eckl_ng rules on namespz;l]c%operhatlons Namespace di
watchflags field is a performance enhancement designeaper"’u"‘-)nS can cause watched pathnames to appear or dis-

to co-locate the rules governing a file with that file’s meta2PPear; which will usually trigger an alert. For operations

data. This field is not necessary for correctness since yfjgat create waiched pathnames, the storage IDS moves

pertinent data could be read from the reverse lookup tabli@fleks frOT)I theC non-eX||stent names tahble dtol the revehrsg
However, it allows efficient verification of detection rules ookup table. Conversely, operations that delete watche

during the processing of an NFS request. Since the inodquthnames cause rules to move between tables in the op-

read as part of any file access, most rule checking becom@gsite direction.
a simple mask comparison. When a name is created (V@EREATE, MKDIR, LINK, Of

Non-existent names table: The non-existent names table SYMLINK) the non-existen_t names table is checked. If
lists rules for pathnames that do not currently exist. Eac}}i1ere are rules for the new file, they are checked and placed

entry in the table is associated with the deepest-level (eJ{}I the watchflags field of the new inode. In addition,
the corresponding rule is removed from the non-existent
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Figure 3:Flowchart of our storage|DS. Few structures and decision points are needed. In the common case (no rules for the file), only one inode’s
watchflags field is checked. The picture does not shRENAME operations here due to their complexity.

Add name and .
watches to non-exis
watches

Unlink Operation}

names table and is added to the reverse lookup table. Dariggered the rule. To get the original rule information, the
ing aMKDIR, any entries in the non-existent names tableeverse lookup table is consulted. If a single RPC operation
that include the new directory as the next step in their re¥iggers multiple rules, one alert is sent for each.
maining path are replaced; the new entries are indexed by
the new directory’s inode number and its name is remov .

4 eg.4 Storage IDSrulesin aNIDS

from the remaining path.

When a name is removed (viaNLINK or RMDIR), the Because NFS traffic goes over a traditional network, the
watchflags field of the corresponding inode is checkeddetection rules described for our prototype storage IDS
for rules. Most such rules will trigger an alert, and an encould be implemented in a NIDS. However, this would in-
try for them is also added to the non-existent names taolve several new costs. First, it would require the NIDS to
ble. FOrRMDIR, the reverses of the actions fakDIR are watch the LAN links that carry NFS activity. These links
necessary. Any non-existent table entries parented on thee usually higher bandwidth than the Internet uplinks on
removed directory must be modified. The removed diregvhich most NIDSs are usetiSecond, it would require
tory’s name is added to the beginning of each remaininthat the NIDS replicate a substantial amount of work al-
path, and the directory inode number in the table is modready performed by the NFS server, increasing the CPU
fied to be the directory’s parent. requirements relative to an in-server storage IDS. Third,

By far, the most complex namespace operation ea the NIDS would have to replicate and hold substantial

NAME. For aRENAME of an individual file, modifying the
rules is the same as@REATE of the new name and RE-
MoVE of the old. When a directory is renamed, its sub
trees must be recursively checked for watched files. If al
are found, and once appropriate alerts are generated, t
rules and pathname up to the parent of the renamed

Se

hei

amounts of state (e.g. mappings of file handles to their cor-
responding files). Our experiences checking rules against
NFS traces indicate that this state grows rapidly because
the NFS protocol does not expose to the network (or the
rver) when such state can be removed. Even simple at-
i ute updates cannot be checked without caching the old
alues of the attributes, otherwise the NIDS could not dis-

rectory are stored in the non-existent names taple, and tﬁﬁ uish modified attributes from reapplied values. Fourth
watchflags field of the inode is cleared. Then, the non- 9 bp . '

, ; . les cannot always be checked by looking only at the cur-
existent names table must be checked (again recursive "
. . ) nt command. The NIDS may need to read file data and
for any rules that map into the directory’s new name an

its children; such rules are checked, added to the inode"’lsttrIbUteS to deal with namespace operations, content in-

watchflags field, and updated as for name creation. tegrity checks, and upda_te pattern rul_e_s. In adition to the
performance penalty, this requires giving the NIDS read

_ permission for all NFS files and directories.
5.3 Generatingalerts Given all of these issues, we believe that embedding stor-

Alerts are generated and sent immediately when a dete?d® DS checks directly into the storage component is
tion rule is triggered. The alert consists of the original deMOre appropriate.

teCt_ion rule (pathname and attributes watched), the _speciflc 3Tapping a NIDS into direct-attached storage interconnects, such as
attributes that were affected, and the RPC operation thatsi and FibreChannel, would be more difficult.
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6 Evaluation

This section evaluates the costs of our storage IDS in ter|
of performance impact and memory required—both cos
are minimal.

6.1 Experimental setup

client system is a dual 1 GHz Pentium Il with 128 MB

RAM and a 3Com 3C905B 100 Mbps network adaptet

The server is a dual 700 MHz Pentium Il with 512 MB
RAM, a 9 GB 10,000 RPM Quantum Atlas 10K Il drive, an
Adaptec AIC-7896/7 Ultra2 SCSI controller, and an Inte

EtherExpress Pro 100 Mb network adapter. The client an
server are on the same 100 Mb network switch. The ope

ating system on all machines is Red Hat Linux 6.2 wit
Linux kernel version 2.2.14.

| Benchmark | Baseline | WithIDS | Change |
SSHuntar | 27.3(0.02)] 27.4(0.02)] 0.03%
[ SSH config.| 42.6 (0.68)| 43.2(0.37)] 1.3%
SSHbuild | 85.9(0.18)| 86.8(0.17)|  1.0%
PostMark | 4288 (11.9)| 4290 (13.0)] 0.04%

Table 4:Performance of macro benchmarks. All benchmarks were
run with and without the storage IDS functionality. Each number repre-

All experiments use the S4 NFS server, with and withougents the average of 10 trials in seconds (with the standard deviation in
the new support for storage-based intrusion detection. TRa€Ntesis).

| Benchmark | Baseline | WithIDS | Change |
Create 4.32 4.35 0.7%
Remove 4.50 4.65 3.3%
IMkdir 4.36 4.38 0.5%
Rmdir 4.52 4.59 1.5%
“Rename file 3.81 3.91 2.6%
| Rename dir 3.91 4.04 3.3%

SSH-build was constructed as a replacement for the AnTable 5:Performance of micro benchmarks. All benchmarks were

drew file system benchmark [15, 36]. It consists of 3un with and without the storage IDS _functionality. Each number repre-
phases: The unpack phase, which unpacks the compres&&Ys the average of 1000 trials in miliseconds.
tar archive of SSH v. 1.2.27 (approximately 1 MB in size

before decompression), stresses metadata operations

files of varying sizes. The configure phase consists of tgﬁ
u

automatic generation of header files and makefiles, whi
involves building various small programs that check th
existing system configuration. The build phase compile

links, and removes temporary files. This last phase is tr]
most CPU intensive, but it also generates a large numbg
of object files and a few executables. Both the server an

client caches are flushed between phases.
PostMark was designed to measure the performance

a file system used for electronic mail, netnews, and we

based services [17]. It creates a large number of sm

randomly-sized files (between 512 B and 16KB) and pe implementation. The storage IDS code is kept separate

$bm the NFS server internals, valuing modularity over

forms a specified number of transactions on them. Ea
transaction consists of two sub-transactions, with one b
ing a create or delete and the other being a read or appe

The default configuration used for the experiments consis

transaction types are equal.

6.2 Performanceimpact

12

f8fance loss in the case where no rule is violated, we ran

ese benchmarks with no relevant rules set. As long as no
les match, the results are similar with O rules, 1000 rules
%n existing files, or 1000 rules on non-existing files. Ta-
%ile 4 shows that the performance impact of the storage IDS
& minimal. The largest performance difference is for the
nfigure and build phases of SSH-build, which involve
rge numbers of namespace operations.

icrobenchmarks on specific filesystem actions help ex-
lain the overheads. Table 5 shows results for the most ex-

Fnsive operations, which all affect the namespace. The

erformance differences are caused by redundancy in the

rformance. For example, name removal operations in-
Ive a redundant directory lookup and inode fetch (from

of 100,000 transactions on 20,000 files, and the biases fﬁz(ahe) to locate the corresponding ino chilags

Rules take very little time to generate alerts. For example,
a write to a file with a rule set takes 4.901 milliseconds
if no alert is set off. If an alert is set off the time is

- 4.941 milliseconds. These represent the average over 1000
The storage IDS checks a file’s rules before any OP€fials. and show a .8% overhead

ation that could possibly trigger an alert. This includes
READ operations, since they may change a file’s last ac-
cess time. Additionally, namespace-modifying operationg 3  Space efficiency
require further checks and possible updates of the non-
existent names table. To understand the performance cofhe storage IDS structures are stored on disk. To avoid
sequences of the storage IDS design, we ran PostMark aextra disk accesses for most rule checking, though, it is
SSH-Build tests. Since our main concern is avoiding a peimportant that they fit in memory.



Three structures are used to check a set of rules. First, eadgh the admin channel and verify that they are as intended.
inode in the system has an additional two-byte field folf so, the update is known to have succeeded, and the alert
the bitmask of the rules on that file. There is no cost focan be suppressed.

this,d because the fspacg in the inode ;/vashprevim;fs_ly UNle have also performed two (much) smaller studies. First,
used. Id_lnuxs ext2fs an BiDdS FFS_ ‘;‘SO have su 'C'ehr\;ve have evaluated our “hidden filename” rules by examin-
unused space to store suc atq without increasing t ?ﬁrg the entire filesystems of several desktops and servers—
inode sizes. If space were not available, the reverse l00kUD ¢1,nd no uses of any of them, including the *. or ..’ fol-

table can be used instead, since it provides the same inf%i/ved by any number of spaces discussed above. Second

n;]atlon. Seclonclj(, for ebellch pathname cgmpqnent Otf) a ruk‘/?/e evaluated our “inode time reversal” rules by examin-
the reverse lookup table require8 + IV bytes: a 16-byte ing lengthy traces of NFS activity from our environment

inode number, 2bytes for the rule bitmask, avid-2bytes 54 from two Harvard environments [8]—we found a siz-

for_ a pathname cckJ)rlnponent_ of length Th]icrd, the n(f)_?— bable number of false positives, caused mainly by unpack-
existent names table contains one entry for every file bgq archives with tilities like:ar. Combined with the lack

ing watched that does not currently exist. Each entry Cons e reversal in any of the toolkits, use of this rule may
sumes 274 bytes: a 16-byte inode number, 2 bytes for trbee a bad idea.

rule bitmask, and 256 bytes for the maximum pathname
supported.

To examine a concrete example of how an administratof  Additional Related Wor k

might use this system, we downloaded the open source

version of Tripwire [42]. Included with it is an example Much related work has been discussed within the flow of
rule file for Linux, containing (after expanding directoriesthe paper. For emphasis, we note that there have been many
to lists of files) 4730 rules. We examined a Red Hat Linuintrusion detection systems focused on host OS activity
6.1 [31] desktop machine to obtain an idea of the numbend network communication; Axelsson [1] recently sur-
of watched files that actually exist on the hard drive. O¥eyed the state-of-the-art. Also, the most closely related
the 4730 watched files, 4689 existed on our example sytpol, Tripwire [18], was used as an initial template for our
tem. Using data structure sizes from above, reverse lookusototype’s file modification detection ruleset.

entries for the watched files consume 141KB. Entries igyyr work is part of a recent line of research exploiting

the non-existent name table for the remaining 41 watchgshysical [12, 44] and virtual [4] protection boundaries to
files consume 11KB. In total, only 152 KB are needed fogetect intrusions into system software. Notably, Garfinkel

the storage IDS. et al. [13] explore the utility of an IDS embedded in a vir-
tual machine monitor (VMM), which can inspect machine
6.4 False positives state while being compromise independent of most host

software. Storage-based intrusion detection rules could be
We have explored the false positive rate of storage-basethbedded in a VMM's storage module, rather than in a
intrusion detection in several ways. physical storage device, to identify suspicious storage ac-

To evaluate the file watch rules, two months of traces of aff¥':

file system operations were gathered on a desktop machiRerhaps the most closely related work is the original pro-
in our group. We compared the files modified on this sysposal for self-securing storage [38], which argued for
tem with the watched file list from the open source versiostorage-embedded support for intrusion survival. Self-
of Tripwire. This uncovered two distinct patterns wheresecuring storage retains every version of all data and a
files were modified. Nightly, the user listdtc/passwd) log of all requests for a period of time called tHetec-

on the machine was overwritten by a central server. Mogion window For intrusions detected within this window,
nights it does not change but the create and rename psecurity administrators have a wealth of information for
formed would have triggered an alert. Additionally, mul-post-intrusion diagnosis and recovery.

tiple binaries in the system were replaced over time b1, yersioning and auditing complements storage-based

the acfj.mmlsyrau;{:e upgrhade procesi. In OSI% 0”? caTe Wihtrusion detection in several additional ways. First, when
a configuration file on the system changed by a loca usef:reating rules about storage activity for use in detection,

For alert-triggering modifications arising from explicit ad-administrators can use the latest audit log and version his-
ministrative action, a storage IDS can provide an addeiry to test new rules for false alarms. Second, the audit
benefit. If an administrator pre-informs the admin consoléog could simplify implementation of rules looking for pat-
of updated files before they are distributed to machinesgrns of requests. Third, administrators can use the history
the IDS can verify that desired updates happen correctlio investigate alerts of suspicious behavior (i.e., to check
Specifically, the admin console can read the new contenfigr supporting evidence within the history). Fourth, since
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the history is retained, a storage IDS can delay checks untésearch sponsored by the Air Force Research Labora-
the device is idle, allowing the device to avoid performanc#ory, under agreement number F49620-01-1-0433, and by
penalties for expensive checks by accepting a potentialJARPA/ITO’s OASIS program, under Air Force contract
longer detection latency. number F30602-99-2-0539-AFRICraig Soules was sup-
ported by a USENIX Fellowship. Garth Goodson was sup-
) ported by an IBM Fellowship.
8 Conclusionsand Future Work

A storage IDS watches system activity from a new view-
point, which immediately exposes some common intruddrR efer ences
actions. Running on separate hardware, this functionality
remains in place even when client OSes or user accounte
are compromised. Our prototype storage IDS demonstrates
both feasibility and efficiency within a file server. Analysis

of real intrusion tools indicates that most would be imme- [2] M. Bishop and M. Dilger. Checking for race conditions
diately detected by a storage IDS. After adjusting for stor- in'file accessesCo'mputiné Systems(2):131-152, Spring
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