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Abstract

//TRACE is a new approach for extracting and replaying traces of parallel applications to recreate their I/O behavior. Its tracing
engine automatically discovers inter-node data dependencies and inter-request compute times for each node (process) in an appli-
cation. This information is reflected in per-node annotated I/O traces. Such annotation allows a parallel replayer to closely mimic
the behavior of a traced application across a variety of storage systems. When compared to other replay mechanisms, //TRACE

offers significant gains in replay accuracy. The average replay error for the applications evaluated in this paper is less than 5%.
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Figure 1: An example trace replay. This graph plots bandwidth over time, comparing an application to
two different replayers. The application [22] simulates the defensive checkpointing of a large-scale parallel
scientific application. The write phase has numerous data dependencies (synchronization after each write
I/O), and the read phase is dominated by computation (processing of checkpoint data). AFAP replays the
I/O traces “as-fast-as-possible,” and //TRACE approximates both the synchronization and compute time.
Because AFAP ignores synchronization and computation, it completes faster than the application and places
different demands on the storage system. //TRACE, however, closely tracks the application.

1 Introduction

I/O traces play a critical role in storage performance evaluation. They are captured through a variety of
mechanisms [3, 4, 6, 13, 20, 39] and often replayed against real and simulated storage systems to recreate
representative workloads. Analysis of I/O traces is the primary approach to understanding the characteristics
and demands of different applications. In many cases, traces are much easier to work with the than the
actual applications, particularly when the applications are complex to configure or involve confidential data
or algorithms.

However, one well-known problem with I/O trace replay is the lack of appropriate feedback between
storage response times and the arrival times of requests. In most real systems, storage system performance
affects how quickly an application issues I/O. That is, the speed of a storage system in part determines
the speed of the application. Unfortunately, information regarding such feedback is rarely present in I/O
traces, leaving replayers with little guidance as to the proper replay rate. As a result, some studies replay
I/O using the traced inter-arrival times (i.e., a timing-accurate replay), some adjust the inter-arrival times to
approximate how an application/workload might scale, and some ignore the tracing times in favor of an “as-
fast-as-possible” (AFAP) replay. For many environments, none of these approaches is correct [14]. Worse,
one rarely knows how incorrect.

Tracing and replaying parallel applications adds complexity to an already difficult problem. In par-
ticular, data dependencies among the compute nodes in a parallel application can influence the I/O arrival
rate and the demands on a storage system. So, in addition to computation time and I/O time, nodes in a
parallel application also have synchronization time; such is the case when, for example, one node’s input
is another node’s output. If a replay of a parallel application is to behave like the real application, the de-
pendencies must be respected. Otherwise, replay can result in unrealistic performance or even replay errors
(e.g., reading a file before it is created).
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This paper presents //TRACE 1 , an approach to tracing and replaying the I/O from parallel applications.
Such applications represent an important class of applications in scientific and business environments (e.g.,
applications for oil and gas exploration, nuclear science, bioinformatics, computational chemistry, ocean
and atmospheric modeling, and seismology).

//TRACE actively manages the nodes in a traced application in order to extract both the computation
time and information regarding data dependencies, and it does so in a black-box manner, requiring no
modification to the application or storage system. An application is executed multiple times with artificial
delays inserted into the I/O stream of a different node (the “throttled” node). Such delays expose data
dependencies with other nodes and also assist in determining the computation time between each I/O. The
I/O traces can then be annotated with compute and synchronization information, allowing it to be replayed
on a real storage system with appropriate feedback between the storage system and the I/O workload (see
Figure 1).

//TRACE includes an execution management script, a trace collection module, multi-trace post-processing
tools, and a parallel trace replayer. Execution management consists of running an application multiple times,
each time throttling the I/O from a different node to expose I/O dependencies. The trace collection module
is interposed on C library calls from the unmodified traced application to capture I/O requests and responses.
In the throttled node, this module also delays I/O requests. The post-processing tools merge I/O traces from
multiple runs and create per-node traces that are annotated with synchronization and computation calls for
replay. The parallel trace replayer launches a set of processes, each of which replays a trace from a given
node by computing (via a tight loop that tracks the CPU counter), synchronizing (via explicit SIGNAL() and
WAIT() calls), and issuing I/O requests as appropriate.

Experiments confirm that //TRACE accurately recreates the I/O of a parallel application. The average
replay error across all applications and storage systems evaluated in this paper is less than 5% (the maximum
is 17%). The cost of //TRACE is the extra time required to extract the dependencies. In the extreme, //TRACE

could require n runs to trace a parallel application that is executed on n nodes. Further, each of those n runs
may be slower than normal because of the inserted I/O delays. Fortunately, one can sample which nodes
to throttle and also sample which I/Os to delay. This introduces a useful trade-off between tracing time
and replay accuracy. For example, when tracing an 8-node run of Quake [2], an application that models
earthquakes, sampling every 1000 I/Os incurs a tracing time increase of 20% and results in a replay error of
less than 8%. Moreover, only 1 of the 8 nodes needs to be throttled to achieve this accuracy.

We believe that //TRACE is the first instance of I/O trace extraction tool that accurately recreates the
I/O of a parallel application, by replaying its data dependencies and compute time. This paper makes three
primary contributions. First, it describes a black-box approach to extracting I/O, compute, and synchroniza-
tion behavior from parallel applications. Second, it describes and evaluates a guided sampling approach
for reducing trace extraction time. Third, it describes how to replay the traces in parallel and evaluates the
technique on three parallel applications.

This paper is organized as follows. Section 2 provides more background, motivates the design of
//TRACE, and discusses the types of parallel applications for which it is intended. Section 3 overviews the
design //TRACE. Section 4 details the design and implementation of //TRACE. Section 5 evaluates //TRACE.
Section 6 summarizes the related work, and Section 7 concludes.

2 Background & motivation

Storage system performance is critical for parallel applications that access large amounts of data. Of course,
the most accurate means of evaluating a storage system is to run an application and measure its performance.
However, taking such a “test drive” prior to making a design or purchasing decision is not always feasible.

1Pronounced parallel trace
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Because of this, the industry has relied on a wide variety of I/O benchmarks (e.g., TPC [36], Postmark [21],
IOZone [25], Bonnie [7], SPC [32], SPECsfs [31], Iometer [19]). Unfortunately, while I/O benchmarks
are excellent tools for debugging and stress testing, using them to predict real world performance can be
challenging, and they can be complex to configure and run [29].

Trace replay provides an alternative to benchmarks; given a trace of I/O from a given application, a
replayer can read the trace and issue the same I/O. The advantages of traces are their representativeness
of real applications and their ease of use. Unfortunately, existing tracing mechanisms do not identify data
dependencies across nodes (processes), making accurate parallel trace replay difficult. Although a timing-
accurate replay would respect all data dependencies if replayed on the same storage system on which it was
traced, it cannot be used to evaluate a different storage system. To evaluate a different storage system one
must scale the inter-arrival times, and doing so requires knowledge of the data dependencies.

The lack of suitable benchmarks and tracing tools has led to pseudo applications that attempt to recreate
the I/O activity of an application [22]. Unfortunately, designing a pseudo application requires considerable
expertise and knowledge of the application. In general, the rate at which each node in a parallel application
issues I/O is influenced by its synchronization with other nodes (its data dependences) and the speed of the
storage system. In addition, the computation a node performs between each I/O will determine the maximum
I/O rate. Unless storage time, synchronization time, and compute time are all considered, the I/O replay rate
of a pseudo application may differ substantially from that of the application.

Rather than attempt to make benchmarks more representative or pseudo applications easier to write,
this work explores a new approach to trace collection and replay. The ideal parallel trace replayer would
issue the same I/O, perform the same inter-request computation, and respect the same data dependencies as
the trace application. In short, it would behave like the application.

2.1 Trace replay models

There are two common models for trace replay: closed and open. In a closed model, I/O arrivals are
dependent on I/O completions. In an open model they are not [30]. In a closed model, the replay rate is
determined by the think time between each I/O and the service time of each I/O in the storage system. The
faster the storage system completes the I/O, the faster the next one will be issued, until think time is the
limiting factor. In an open model, the replay rate is unaffected by the storage system.

When viewed from the perspective of a storage system, most I/O falls somewhere in between an open
and closed model [14]. This is particularly the case when file systems and other middleware (e.g., caches)
modulate an application’s I/O rate. However, when viewed from the perspective of the application, the model
is often a closed one (i.e., a certain number of outstanding I/O system calls with a certain think time between
each I/O). Therefore, to capture the feedback from such a hybrid model, one can replay an application’s file
I/O using a closed model. This works as long as the traces are captured and replayed above the caches of
the file and storage systems of interest (as opposed to block-level trace and replay). The key challenge for
the closed model is determining what portion of the think time is constant and what portion will vary across
storage systems.

For parallel applications, there are two components to think time: compute time and synchronization
time. Compute time is time spent executing application code and, for the purposes of storage system eval-
uation, can be held constant during replay. Synchronization time, however, is variable — it represents time
spent waiting on other nodes because of a data dependency and can therefore vary based on the rates of
progress of the nodes.
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Figure 2: A hypothetical parallel application. All nodes are reading, modifying, and writing a shared data
structure on disk, and barriers are used between each stage to keep the nodes synchronized. Node 1 happens
to be the slowest node, forcing nodes 0 and 2 to wait. Note that under a different storage system, the I/O
time for node 1 could change, thus resulting in changes in the synchronization time for nodes 0 and 2.

2.2 Synchronization effects

Figure 2 illustrates a hypothetical parallel application modifying a shared data structure; barriers [16] are
used to keep the nodes synchronized between stages. As can be seen in the figure, I/O accounts for only a
fraction of the overall running time; there is also compute time and synchronization (“wait”) time. Moreover,
if the speed of the file or storage system changes, the time each node spends waiting on other nodes could
also change. These effects must be modeled during replay.

A variety of synchronization mechanisms are in use today, including standard operating system mech-
anisms (signals, pipes, lock files, memory-mapped I/O [27]), message passing interfaces such as MPI [16],
shared memory [10], and remote procedure calls [34]. Many of these mechanisms can be traced with a
library or system call tracing tool (e.g., Unix ltrace, strace), but it is unclear how one could replay asyn-
chronous communication, such as in applications that use select or poll to test for messages, without a
semantic understanding of the application. Such asynchronous operations are used extensively in some
parallel applications in order to overlap communication with computation. Further, some of these synchro-
nization mechanisms (e.g., shared memory) are not traceable using conventional tracing software, yet their
use is common among parallel applications.

2.3 I/O throttling

The solution presented in this paper is motivated by the desire for a portable tracing tool that does not require
knowledge of the application, nor the synchronization mechanisms being used. We accomplish this using a
well-known technique called I/O throttling [17, 8].

Throttling involves selectively slowing down the I/O requests of an application, processing requests at
a time in the order received. In doing so, one can expose the data dependencies among the nodes in a parallel
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application. Consider the case where one node (node 0) writes a file that a second node (node 1) reads. To
ensure the proper ordering (write followed by read), node 0 signals node 1 after the file has been written.
However, if I/O requests from node 0 are delayed, node 1 will block, waiting for the appropriate signal from
node 0 (e.g., a remote procedure call). Although a trace of the I/O may not indicate the synchronization call,
one can determine that node 1 is blocked (e.g., because there is no CPU nor I/O activity) and conclude that
it is blocked on node 0. The I/O traces can be annotated to include this information.

Throttling I/O to expose dependencies and extract compute time is suitable for applications with inter-
nal non-determinism – such applications produce the same output given the same input, but the internal steps
taken to produce the output may be non-deterministic due to factors such as process and I/O scheduling. As
such, throttling will not change the I/O issued by a given node, the order in which a given node issues its
I/O, or the data dependencies among the nodes. A variety of applications fit this model [28] and are the
initial target for this work.

3 Design overview

We have designed a parallel Trace Replayer with Approximated Causal Events (//TRACE). Based on I/O
throttling, //TRACE approximates an application’s true data dependencies and replays the computation time
for each I/O. As described in Section 2, the design requirements for //TRACE are as follows:

1. The traces must be replayed with a closed model to adjust with the speed of the storage system,

2. The traces must be annotated with the inter-node synchronization calls to enforce data dependences,

3. The inter-request compute time must be reflected in the traces to model computation, and

4. The traces must be file level traces, including all buffered and non-buffered synchronous POSIX [26]
file I/O (e.g., open, fopen, read, fread, write, fwrite, seek) to evaluate different file systems
(e.g., log-structured vs. journaled) and different storage systems (e.g., blocks vs. objects [23]).

//TRACE is both a tracing engine and a replayer, designed to not require semantic knowledge or instru-
mentation of the application or its synchronization mechanisms. The tracing engine, called the causality
engine, is designed as a library interposer [12] and is run on all nodes in a parallel application. The applica-
tion does not need to be modified, but must be linked to the causality engine.

The objectives of the causality engine are to intercept and trace the I/O calls (i.e., system calls to
libc), calculate the computation time between each I/O, and discover any causal relationships (i.e., the data
dependences) across the nodes. All of this information is stored in a per-node trace log. A replayer (also
distributed) can then mimic the behavior of the traced application, by replaying the I/O, the computation,
and the synchronization.

3.1 Discovering data dependencies

In general, one can automatically discover the data dependencies across all nodes by throttling each node in
turn. When a node is being throttled, its I/O is delayed until all nodes either finish execution, or block. If a
node completes execution, then it is not dependent on the node that is being throttled. Conversely, any node
that blocks must have some data dependency, perhaps only indirectly, with the throttled node. To reflect
these dependencies, the throttled node will add a SIGNAL() to its trace and the blocking nodes will add a
WAIT() to theirs.
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Figure 3: High-level architecture. While an application is running (left half of figure) the nodes are
traced by the causality engine (a dynamically linked library) and selectively throttled to expose their data
dependencies. Computation times are also estimated. This information is then used to annotate the I/O
traces with SIGNAL(), WAIT() and COMPUTE() calls that can be easily replayed in a distributed replayer
(right half of figure). During replay, dummy data files are use in place of the real data files.

3.2 Discovering compute time

In addition to discovering data dependencies, throttling assists in determining compute time. The challenge
in extracting compute time from an I/O trace is distinguishing it from synchronization time. Both appear as
think time between each I/O request. To determine the compute time, one must ensure that synchronization
time is negligible or subtract the synchronization time from the think time. This paper discusses both
approaches, but only the second approach is used in the evaluation.

Note, both of these approaches assume that multiple outstanding I/Os are achieved via multiple threads
(each issuing synchronous I/O). Threads are considered “nodes” and each will be traced and replayed inde-
pendently.

Approach 1: The first approach recognizes that throttling a node makes its synchronization time neg-
ligible. When a node is being throttled, it is made to be slower than all other nodes so as to expose data
dependencies. Consequently, the think time between its I/O is all computation (e.g., node 1 in Figure 2 does
not have to wait on nodes 0 and 2, because node 1 is the slowest node). The primary advantage of this
approach is that it can be used even if an application is using “untraceable” synchronization mechanisms
such as shared-memory. The disadvantage is that I/O sampling can affect the calculation. This is discussed
more in Section 5.

Approach 2: The second approach recognizes that many synchronization mechanisms are interrupt
driven and rely on system calls to perform inter-node synchronization. For example, a node may block
while reading a socket. Given a list of system calls that have the potential for blocking, one can interpose
on and calculate the time spent in each call, and then subtract this from the think time. Such an approach
does not require a semantic understanding of any of the synchronization calls. But, this approach of course
only works for synchronization mechanisms that issue calls. For applications that use the “untraceable”
mechanisms (e.g., shared memory), one cannot use such a mechanism. Unlike the first approach, this
approach does not require each node to be throttled in order to extract its compute times and the calculation
is not affected by I/O sampling.
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Node 0 (Throttled)

f h = open( “ f oo” )
COMPUTE( )
wr i t e( f h,  …)
COMPUTE( )
wr i t e( f h,  …)
COMPUTE( )
c l ose( f h)
SI GNAL( 1)
COMPUTE( )

Time Node 1 (Blocking)

WAI T( 0)
f h = open( “ f oo” )
COMPUTE( )
r ead( f h,  …)
COMPUTE( )
c l ose( f h)
COMPUTE( )

Figure 4: Example data dependency. In this example, node 0 is writing to a file that node 1 is reading. By
throttling I/O on node 0, the dependency can be exposed. Node 1 will eventually block, waiting on node 0
to signal (through any number of mechanisms) that the file has been closed. Once the dependency has been
discovered, the I/O traces are annotated with SIGNAL() and WAIT() calls that can be replayed. In addition,
computation time can be added as COMPUTE() calls.

3.3 Putting it all together

Figure 3 illustrates the high-level architecture and Figure 4 illustrates throttling for an example application.
Trace collection is an iterative process, requiring that an application be run multiple times, each time

choosing a different node to throttle. The number of runs and the rate in which I/O is throttled both determine
how many data dependencies can be discovered, as well as the time necessary to collect the traces. In the
extreme case, an application can be run once per node with every I/O of that node throttled. One can,
however, sample which nodes to throttle and the rate at which I/O is delayed, thereby introducing a useful
trade-off between running time and replay accuracy. These trade-offs are discussed further in Section 5.

4 Detailed design

Sections 4.1 and 4.2, respectively, discuss the causality engine and trace replayer in greater detail.

4.1 The causality engine

There are two modes of operation for the causality engine: throttled mode and unthrottled mode. For
each run of the application, exactly one node is in the throttled mode; all others are unthrottled. Both
modes intercept and record each I/O in a trace log for each node. This log includes the I/O operations
and their arguments. A node in throttled mode creates an I/O trace annotated with computation time and
the “signaling” information. A node in unthrottled mode creates an I/O trace annotated with the “waiting”
information.

After m runs of an application (m ≤ n), each node has m trace logs that must be merged. At most one
of the trace logs per node contains the trace of I/O when that node is being throttled (i.e, it contains I/O,
SIGNAL() and COMPUTE() calls), and all other logs reflect the I/O when that node is in unthrottled mode
(i.e., it contains I/O and WAIT() calls). Note that regardless of the mode, the I/O in all traces for a particular
node should be identical, as our assumption is a deterministic I/O workload. If the I/O being issued by the
application changes, we can easily detect this and report an appropriate error.

7



Algorithm 1: ThrottledMode. This function intercepts every I/O operation issued by the throttled node.
First, the computation time since the previously issued I/O is added to the trace. Computation time is added
using Approach 1 or Approach 2. Then, the current I/O operation is added to the trace and optionally
throttled as per the sampling period. If the I/O is throttled, the algorithm waits for all blocking nodes to
block or complete execution. If a node is blocked, NodeIsBlocked() will return true and a signal to that node
will be added to the trace. Finally, the I/O is issued and the completion time is recorded.

AddComputeToTrace() ; /* See Approaches 1 and 2 */1.1

AddOpToTrace();1.2

if opCount is divisible by SAMPLE PERIOD then1.3

foreach blocking node n do1.4

if NodeIsBlocked(n, thisNodeID) then1.5

AddSignalToTrace(n);1.6

endif1.7

endfch1.8

endif1.9

opCount← opCount +1;1.10

IssueIO();1.11

4.1.1 Throttling mode

When a node is being traced in throttled mode, up to three pieces of information are added to the trace for
each I/O. First, the time since the last I/O completed is determined. This time reflects the compute time
for the previous I/O, and a COMPUTE(<time>) call is added to the trace. Recall that when a node is being
throttled, it will be slower than all the other nodes. Because of this, the time between I/O calls will be due
to computation rather than synchronization (see Approach 1 in Section 3.2). Second, the I/O operation and
its arguments are added to the trace. Signaling information may also be added, depending on the sampling
period.

The sampling period determines how frequently the causality engine throttles I/O to check for de-
pendencies (e.g., a sampling period of 1 indicates that every I/O is throttled) and therefore determines the
accuracy in which data dependencies are discovered. In general, if the sampling period is p, the causality
engine will discover dependencies within p operations of the true dependency. Because the period deter-
mines the rate of throttling, too large a sampling period can affect the computation calculation. In these
cases, the second approach for compute time is preferred (see Approach 2 in Section 3.2).

When an I/O is “throttled”, the throttled node delays the I/O until all nodes either exit, or block. A
remote procedure call is sent from the throttled node to each unthrottled node to make this determination.
If a node has exited, then it is obviously not dependent on the delayed I/O. Otherwise, the node is blocked;
the throttled node adds a SIGNAL(<node id>) to its trace to reflect a dependency, and the unthrottled node
adds a corresponding WAIT() call. After the throttled node has received a reply to the RPC from all nodes,
the I/O is issued. Algorithm 1 shows the pseudocode for the causality engine when in throttled mode.

Throttling I/O in this manner can produce indirect dependences. For example, referring back to Fig-
ure 4, a sampling period of 1 will indicate that the open() call for node 1 is dependent on each I/O from
node 0; namely, the open(), the two write() calls, and the close(). Yet, the only signal needed is that
following the close() operation. The redundant signal and wait calls that result from indirect dependen-
cies can be removed easily, as a preprocessing step to trace replay. The indirect dependences that cannot
be removed are those due to transitive relationships. For example, if node 2 is dependent on node 1, and
node 1 on node 0, the causality engine will detect the indirect dependency between nodes 0 and 2. These
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dependences add additional signals/waits to the traces, but never force a node to block unnecessarily.
As to selecting the proper sampling period, this depends on the application and storage system. Some

workloads and storage systems may be more sensitive to changes in inter-node synchronization than others,
so no one sampling period should be expected to work well for all. An iterative approach for determining
the proper sampling period is presented in Section 5.

4.1.2 Unthrottled mode

When a node is being traced in unthrottled mode, up to two pieces of information are added to the trace
for each I/O: the operation and its arguments, and optionally a WAIT() call. The WAIT() is added by a
watchdog process if it determines that an application node is blocked.

Recall that when the throttled node is delaying an I/O, it issues the IsNodeBlocked() call to each of
the unthrottled nodes. The watchdog is responsible for handling this call. A node could block either in a
system call (e.g., while reading a socket) or through user-level polling, and the watchdog should be prepared
to handle both.

There are a variety of ways to determine if a node is blocked; the approach used by //TRACE is a
simple one. Because blocking system calls used for inter-process synchronization (e.g., socket I/O, polling,
select, pipes, etc.) can be intercepted by the causality engine, one can determine the time spent in each call.
Similarly, if polling is used, the watchdog can just as easily determine the time spent computing (i.e., the time
since the last I/O call completed). Therefore, to determine if an application is blocked, the watchdog checks
with the causality engine (through shared memory) to see if the node is in a compute phase or in a system
call. It then checks if the time spent in the compute phase or system call has exceeded a predetermined
maximum. Note, this approach does not require a semantic understanding of any of the synchronization
calls. Rather, the watchdog only needs to check that a system call is not taking too long.

The maximum value for a computation phase or system call can be obtained from an analysis of an
unthrottled run of the application (e.g., by using Unix strace to determine the maximum inter-arrival delay
and the maximum system call time). These maxima must be chosen large enough to account for system
variance. If too small a maximum is used, the watchdog may prematurely conclude that an application is
blocked. In the best case, this introduces extra synchronization. In the worst case, it can lead to deadlock
during replay. The heuristic used in this work is to increase the maximum system call time by an order of
magnitude. For example, if the maximum I/O system call time in an unthrottled run of the application is
50 ms, then the maximum would be set to 500 ms; any call taking longer than 500 ms is assumed to be
blocked. Selecting too large a value at worst slows the tracing time.

4.2 Trace replay

Preparing traces for replay: Following m runs of an application through the causality engine, each node
has m traces that must be merged. All m traces for a given node should contain the same file I/O calls,
otherwise an error will be flagged indicating that the application is not deterministic.

Recall that at most one of the m traces for a given node has COMPUTE() and optionally SIGNAL() calls
for each I/O; this is the trace produced when the node is being throttled. The other traces for that node only
have WAIT() calls; these are the traces produced when other nodes are being throttled. After the merge,
each I/O has at most m−1 preceding WAIT() calls, m−1 succeeding SIGNAL() calls, and one COMPUTE()
call. If there are fewer than n runs, then some of the nodes will not have been throttled and computation
time (using the first approach discussed in Section 3.2) will be missing from their traces. Rather than ignore
compute time for these nodes, we estimate compute time as the think time between each I/O in the trace less
the synchronization time (using the second approach discussed in Section 3.2).
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--------- --------- ---------

Trace 0.0 Trace 0.1 Trace 0.2

--------- --------- ---------

read(...) WAIT(1) WAIT(2)

SIGNAL(1) read(...) read(...)

SIGNAL(2)

COMPUTE(...)

Figure 5: Before merging the trace files. The application is such that node 0 waits for nodes 1 and 2
before issuing its read() and notifies nodes 1 and 2 after completing its read(). Trace 0.0 indicates the
trace for node 0, when node 0 is being throttled. Trace0.1 is the trace for node 0 when node 1 is being
throttled. And Trace0.2 is the trace for node 0 when node 2 is being throttled. Similar traces would exist
for nodes 1 and 2.

-------

Trace 0

-------

WAIT(1)

WAIT(2)

read(...)

SIGNAL(1)

SIGNAL(2)

COMPUTE(...)

Figure 6: After merging the trace files. Trace 0.0, Trace0.1, and Trace0.2 are combined into one
trace file for node 0. The merging process begins by creating a new trace file for the node 0. For each I/O,
all WAIT() calls are added first (the order does not matter), then the I/O call, then the SIGNAL() calls, and
finally the COMPUTE().

The example in Figure 5 shows the trace files (just for node 0) in a hypothetical 3-node application. In
this case, every node is throttled in turn. Only the traces for node 0 are shown. A merge of these three traces
will produce the final trace for node 0 (Figure 6).

Replaying the traces: After traces have been annotated with COMPUTE(), SIGNAL(), and WAIT()

calls, replay is straightforward, and the traces are easy to interpret.
Each file operation can be replayed almost as-is; the syntax is similar to that of the Unix strace. Of

course, filenames must be modified to point to dummy data files (which must be created prior to replay) and
the replayers must maintain a mapping between the file handles in the trace and those assigned during replay.
As for the synchronization calls, developers are free to implement these calls using any synchronization
library (e.g, MPI [16], Java [15, 33], CORBA [38]) that is convenient for them; and the COMPUTE() call
is implemented by spinning in a busy loop for the specified amount of time. Spinning is used to avoid
unnecessary context switches which may affect the accuracy of the replay.

Figure 7 shows a trace file obtained via the causality engine from an actual parallel scientific applica-
tion [2].
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/* barrier before opening output file */

WAIT ( 1 )

WAIT ( 2 )

SIGNAL ( 1 )

SIGNAL ( 2 )

...

/* open output file */

open64m ( /pvfs2/output/mesh.e 578 416 ) = 17

COMPUTE ( 0.000148622 )

...

/* write output file */

write ( 17 4096 ) = 4096

COMPUTE ( 0.131106558 )

_llseek ( 17 8192 SEEK_SET ) = 8192

COMPUTE ( 0.000000605 )

write ( 17 4096 ) = 4096

COMPUTE ( 0.000022173 ) ...

Figure 7: Example trace file. This is a snippet from an actual trace file for node 0 in a 3-node run of
Quake [2], a parallel scientific application that simulates seismic events. The causality engine discovers that
all nodes synchronize before opening and writing their output file (a mesh describing the forces during an
earthquake). When replaying this trace, the open calls must be modified to point to dummy files that can
be read and written. The replayer must maintain a mapping between the file handles in the trace (17 in this
case) and those assigned during replay. Note, the compute time shown is in seconds.

5 Evaluation

This work is motivated by four hypotheses:

Hypothesis 1 Data dependencies and computation must be modeled during trace replay, otherwise the re-
play may differ from the traced application.

Hypothesis 2 By throttling every I/O (i.e., using a sample period of 1) on every node, the I/O dependences
and compute time can be discovered and closely approximated during replay.

Hypothesis 3 I/O sampling can reduce tracing time, at the potential cost of replay accuracy.

Hypothesis 4 Node sampling can reduce tracing time, at the potential cost of replay accuracy.

To support these hypotheses, three applications are traced and replayed across three different storage
systems. The applications and storage systems chosen have different performance characteristics in order
to highlight how application I/O rates scale (differently) across storage systems and illustrate how //TRACE

can collect traces on one storage system and accurately replay them on another. Recall, the primary goal of
this work is to evaluate a new storage system, using traces to predict how an application might perform. As
such, the traces will normally be collected from a storage system other than the one being evaluated.
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Experiment one, which tests hypothesis one, compares a closed-loop (as-fast-as-possible, or AFAP)
replay of a traced application against the actual application. Such a replay ignores all data dependencies and
computation time, resulting in often significant performance differences when compared to the application.
AFAP is presented rather than a timing-accurate replay because a timing accurate replay (by definition) will
have a fixed running time, providing no insight into the throughput of a new storage system.

Experiment two uses the causality engine to create annotated I/O traces. The traces are then replayed
and compared to the application (and AFAP). The traces used during replay are obtained from a storage
system other than the one being evaluated. In other words, if storage system A is being evaluated, then the
traces used for replay will have been collected on either storage system B or C (one is randomly chosen).
Although tracing and replaying I/O in this manner follows the usage model (i.e., trace on one machine and
replay on another), the traces collected by //TRACE are the same, regardless of the storage system traced
(i.e., the traced I/O and discovered dependencies are identical; compute times may very slightly, but not
enough to affect replay).

Experiment 3 uses I/O sampling to explore the trade-off between trace time and replay accuracy. As
will be shown, the sampling period affects the tracing time and the replay accuracy. Similarly, experiment
4 uses node sampling to illustrate that not all nodes need to be throttled in order to achieve a good replay
accuracy.

In all tests, overall running time is used to determine the accuracy of the trace replay, and the percent
error is the evaluation metric. The reported errors are averages over at least 3 runs. In most cases, the
variance between runs is less then 5%. More specifically, the percent error is calculate as follows:

ApplicationTime−ReplayTime
ApplicationTime

×100%

Average bandwidth and throughput are not reported, as these are simply functions of the running time.

5.1 Experimental setup

Three parallel applications are used in the evaluation: Pseudo, Fitness, and Quake. All three applications
use MPI [16] for synchronization.

Pseudo is a “pseudo-application” from Los Alamos National Labs [22]. It simulates the defensive
checkpointing process of many of their large-scale computations: n processes write a checkpoint file (in-
terleaved access), synchronize, and then read back the file. Optional flags specify whether or not nodes
also synchronize after every write I/O, and if there is computation on the data between each I/O. Three
versions of the pseudo-application are evaluated: one without any flags specified (Pseudo), one with barrier
synchronization (PseudoSync), and one with both synchronization and computation (PseudoSyncDat).

Fitness is a parallel workload generator [24]. The benchmark is configured so that four nodes read
non-overlapping portions of a file; the first node reads its portion, followed by the second node, etc. As such,
there are only three data dependencies (i.e., node 0 signaling node 1, node 1 signaling node 2, and node 2
signaling node 3).

Finally, Quake [2] is a parallel scientific application for simulating earthquakes. It uses the finite
element method to solve a set of partial differential equations that describe how seismic waves travel through
the Earth. The execution is divided into three phases. Phase 1 builds a multi-resolution mesh which is a
model of the region of ground under evaluation. The model, represented as an etree [37], is an on-disk
database structure. The portion of the database accessed by each node depends on the region of the ground
assigned to that node. Phase 2 writes the mesh structure to disk; node 0 collects the mesh data from all
other nodes and performs the write. Phase 3 solves the equations to propagate the waves through time;
computation is interleaved with the I/O and the state of the simulated region is periodically written to disk

12
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Figure 8: Replay error for AFAP (Experiment 1). The AFAP replay is most accurate for Pseudo,
as this application contains little synchronization and no computation. Error increases significantly
when synchronization is added (PseudoSync and Fitness) and even more when computation is added
(PseudoSyncDat). The worst error is for Quake, which has multiple I/O phases, each with a different mix
of synchronization and computation.

by all nodes. The Quake runs, which require a parallel file system, are run on PVFS2 [9] which is mounted
on the storage systems under evaluation.

The applications are traced and replayed on three storage systems. The storage systems are iSCSI RAID
arrays with different RAID levels, and varying amounts of disk and cache space. Specifically, VendorA is
a 14-disk (400GB 7K RPM Hitachi Deskstar SATA) RAID-50 array with 1GB of RAM VendorB is a 6-
disk (250GB 7K RPM Seagate Barracuda SATA) RAID-0 with 512 MB of RAM, and VendorC is a 8-disk
(250GB 7K RPM Seagate Barracuda SATA) RAID-10 with 512 MB of RAM.

The applications and replayer run on a dedicated cluster of Dell PowerEdge 650s (2.67 GHz Pentium
4, 1 GB RAM, GbE, Linux 2.6.12). The local disk is only used to store the trace files. Pseudo and Fitness

access the arrays in raw mode. For these applications, each machine in the cluster connects to the same
array using an open source iSCSI driver [18]. For Quake, each node runs PVFS2 and connects to the same
PVFS2 server, which in turn connects to one of the storage arrays.

5.2 Experiment 1 (AFAP replay)

AFAP replays the trace files against the storage devices as-fast-as-possible, with no intervening computation
or synchronization. The I/O traces are collected through the causality engine, but the replayer is instructed
to ignore the COMPUTE(), SIGNAL(), and WAIT() calls. One should expect AFAP to do well in situations
where there is little compute time and few data dependencies.

Figure 8 shows the replay errors for AFAP. The best AFAP results are for Pseudo, which performs no
barrier synchronization and simply writes and reads the checkpoint data. The replay errors on the VendorA,
VendorB, and VendorC, storage systems are, respectively, 5%, 0.4%, and 6% (i.e., the trace replay perfor-
mance is within 6% of the application across all storage systems). Unfortunately, it is only for applications
such as these (i.e., little compute and few data dependencies), that AFAP does well.

Looking now at PseudoSync, one can see the effects of synchronization. In this test, all nodes write
their checkpoints in lockstep (i.e., performing a barrier synchronization after every I/O). The replay errors
for this run are 22%, 16%, and 33%, indicating that inter-node synchronization, when ignored, can lead
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Figure 9: These graphs show the replay error for AFAP and //TRACE side by side (Experiment 2).
Note that the error incurred by //TRACE is significantly less than AFAP when time spent in synchronization
and computation is significant.

to significant replay error. Note that synchronization does not strictly increase or decrease performance.
Depending on the application and its interaction storage system, either one could happen. In the case of
PseudoSync, ignoring synchronization increases the replay rate.

The third AFAP replay of the pseudo application is for PseudoSyncDat. In this test, the nodes syn-
chronize between each I/O and also perform computation. As one might expect, ignoring both of these can
lead to even more error. The replay errors for PseudoSyncDat are 67%, 39%, and 53%.

Fitness is a partitioned, read-only workload. Each node sequentially reads a 1 GB region of the disk,
with no overlap among the nodes. The nodes proceed sequentially: node 0 reads its entire region first and
then signals node 1, then node 1 reads its region and signals node 2, etc. Ignoring these data dependencies
during replay will result in concurrent access from each node, which in this case increases performance on
each storage system. The replay errors are 53%, 36%, and 70%.

Finally, the Quake workload represents a complex application with multiple I/O phases, each with a
different mix of compute and synchronization. Given the nature of this application, ignoring the compute
time and synchronization steps will result in a replay that grossly overestimates the performance of the
application on a given storage system. The replay errors for Quake are 64%, 70%, and 71%. In terms of
running time, the AFAP replay of Quake finishes in approximately 300 seconds and the actual run of Quake
takes over 1000 seconds. The errors in running time reported therefore translate to much larger errors in
terms of bandwidth and throughput. For example, in the case of Quake, AFAP transfers the same data in
one third of the time (a 3x difference in performance).

5.3 Experiment 2 (I/O throttling)

Experiment two compares //TRACE to AFAP. The results are shown in Figure 9. This graph is the same as
that in Figure 8, with //TRACE results added for comparison.

//TRACE offers no significant performance improvement for Pseudo, and this result is expected given
that Pseudo has few data dependencies and no compute time. However, for both PseudoSync and PseudoSyncDat,
//TRACE offers substantial gains. Namely, the maximum replay error is reduced from 33% to 17% for
PseudoSync and 67% to 10% for PseudoSyncDat. These improvements are due to both the replayed
synchronization, and the replayed compute time. There were roughly 800 write I/Os in PseudoSync and
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PseudoSyncDat, which results in the same number of barrier synchronization operations. //TRACE ap-
proximates each barrier with 8 SIGNAL() and 8 WAIT() calls per node (i.e., a barrier requires all 8 nodes
to signal and wait on every other nodes before proceeding). In addition, //TRACE discovers and replays an
average of 4 ms of compute time between each read I/O for PseudoSyncDat (the version that had compute).

Looking now at Fitness, one sees similar improvements. Namely, the maximum replay error is re-
duced from 70% to 5%. There are only 3 data dependencies approximated by //TRACE (i.e., node 0 signaling
node 1 after it completes is read, 1 signaling 2, and 2 signaling 3). Nonetheless, these dependencies enforce
a sequential execution of the compute nodes. In other words, it is not the number of data dependencies
discovered that determines replay accuracy, but rather how these dependencies impact the storage system.

Finally, the Quake workload highlights how accurately //TRACE replays applications with multiple
I/O phases, having different mixes of I/O, compute, and synchronization. Relative to AFAP, the maximum
replay error is reduced from 71% to 1%. On average, 13 ms of computation is replayed between each I/O,
which explains much of the error that is seen by AFAP. Synchronization also plays a role, as will be shown
in experiment 3.

5.4 Experiment 3 (I/O sampling)

The causality engine has the potential to throttle every I/O issued by every node. However, sufficient replay
accuracy can be obtained with significantly less effort. In particular, one can sample across both of these
dimensions, choosing which I/Os to delay and which nodes to run in throttled mode. Experiment 3 explores
the trade-off between replay accuracy and the I/O sampling period.

Five sampling periods are explored (5, 10, 100, and 1000). As discussed in Section 3, the period
determines the rate in which I/O is delayed. If the sampling period is 1, every I/O is delayed. If the sampling
period is 5, every 5th I/O is delayed, etc. Given this, one would expect the sampling period to have the
greatest impact on applications with a large number of I/O dependences.

Note that I/O sampling can affect the computation calculation when using the throttling-based approach
(see Approach 1 in Section 3.2). Recall that throttling a node makes it slower than all the others. If the throt-
tling frequency is too small (i.e., a large sampling period) then that node may not always be the slowest,
thereby potentially introducing synchronization time into the trace (which would be inadvertently counted
as computation). Therefore, timing the system calls to determine computation time (see Approach 2 in Sec-
tion 3.2) is a more effective approach when sampling. None of the applications evaluated use “untraceable”
mechanisms for synchronization, allowing Approach 2 to work.

Figure 10 plots replay accuracy against sampling period, for each of the applications and storage sys-
tems being evaluated. Beginning with Pseudo, there is only one set of data dependencies (i.e., all nodes
must complete their last write before any node begins reading the checkpoint). Given this, one should expect
little difference in replay error among the different sampling periods. As shown in the figure, the replay error
for Pseudo is less than 10% across all sampling periods and storage arrays.

PseudoSync and PseudoSyncDat behave quite differently (i.e., a barrier after every write I/O) and
highlight the trade-off between tracing time and sampling period. As shown in the figure, replay error
quickly decreases with smaller sampling periods. Notice the prominent staircase effect as the sampling is
decreased from 1000 to 1. These applications represent the worst case scenario for sampling, where data
dependencies are the primary factor influencing the replay rate.

Looking now at Fitness, one sees behavior very similar to Pseudo. Both have few data dependencies
and are not sensitive to changes in the sampling period. The replay error for Fitness is less than 5% across
all sampling periods and storage arrays.

Finally, the running time of Quake is dominated by compute, which explains why discovering more
data dependencies offers only small improvements in replay accuracy. The replay error of Quake is very low,
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Figure 10: Sampling vs. accuracy trade-off (Experiment 3). By sampling which I/O to throttle, the
tracing time can be reduced at the potential cost of replay accuracy. This graph plots the replay error over
each application and storage system, for different sampling periods: 1000, 100, 10, 5, and 1. AFAP is shown
for comparison. The fractional increase in running time for the application is shown above each bar. For
example (looking at the 3 bars in the bottom right) Quake took 20% longer to run (1.2) when traced with
a sampling period of 1000 (with a replay error of 2%), 3.0 times as long with a sampling period of 100
(replay error of 1.6%), and 12 times as long with a sampling period of 10 (replay error of .8%). These
graphs illustrate the trade-off between tracing time and replay accuracy, but also shows that larger sampling
periods can achieve good replay accuracy, with minimal impact on the running time.
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Figure 11: Node sampling replay error (Experiment 4). Low replay error can be achieved without having
to throttle every node. This graph plots the replay error for various values of m (number of nodes throttled).
For example, an error of 19% is achieved for PseudoSyncDat when throttling 2 of the 8 nodes. Note all
storage systems are presented in this graph. The PseudoSyncDat results are from the VendorC array and
Quake is from VendorA.

even with larger sampling periods (2% for a sampling period of 1000). Decreasing the period introduces
only minor reductions in replay error (0.8% for a period of 10).

5.4.1 I/O sampling discussion

To choose the “optimal” sampling period, one must consider both the application and the storage system.
The only sampling period guaranteed to find all of the data dependencies, regardless of application or storage
system, is a period of 1. Larger sampling periods may begin to introduce some amount of replay error, while
smaller periods will take more time to trace.

Intuitively, applications with a large number of data dependencies will realize larger tracing times as
the data dependencies are being discovered by the causality engine. Recall from Section 4.1 that for every
throttled I/O, the throttled node waits for all other nodes to block or complete execution, and the time for
watchdog to conclude that the application is blocked is derived from the expected maximum system call
time for that application. Therefore, the tracing time can vary dramatically across applications and storage
systems.

In practice, one can trace applications with a large sampling period (e.g., 1000) and work toward smaller
sampling periods until the desired accuracy (and tracing time) is achieved. Figure 10 shows the average
increases in application running time for various sampling periods. For example, a maximum replay error
of 2% for Quake is achieved with a sampling period of 1000 and a running time increase of 1.2 (20%).

In the best case, I/O throttling introduces almost no overhead. However, the application is still run
potentially once for each application node. Sampling which nodes to throttle is necessary to further reduce
the tracing time.

5.5 Experiment 4 (Node sampling)

This experiment shows that low replay error can be achieved without having to throttle every node. This
experiment compares the replay error for various values of m (the number of nodes throttled). For each
instance of m, the throttled nodes are randomly selected.
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In some cases, node throttling can introduce error. Such is the case with Fitness which only has 3
data dependencies. If any one of these are omitted, one of the nodes will issue I/O out of turn (resulting
in concurrent access to the storage system). This represents a worst-case for node sampling. For example,
when running on the VendorB platform, replay errors when throttling 1, 2, 3, and 4 nodes are 37%, 29%,
17%, and 5%.

Quake and PseudoSyncDat behave quite differently. Figure 11 plots their error. With Quake, one
achieves a replay error of 7% when throttling only one of the 8 nodes; the sample period chosen for this
run is 1000, and it takes 20% longer to run Quake to create traces. PseudoSyncDat achieves an 8% replay
error when throttling only 4 of the 8 nodes. As for picking the “right” number to throttle, this can be done
iteratively. One can continue to throttle nodes until the desired replay accuracy is achieved.

6 Related work

A variety of file-level tracing tools are available for characterizing workloads and evaluating storage systems
[6, 13, 4, 20, 39]. However, these solutions assume that that there are few inter-node data dependencies,
making accurate trace replay difficult for parallel applications. //TRACE differs from these approaches by
approximating the true data dependencies, thereby allowing trace replay from multiple nodes in parallel.

Delaying I/O requests (throttling) has been used successfully elsewhere to correlate events [17, 8]. By
imposing variable delays in system components, one can confirm causal relationships and learn much about
the internals of a complex distributed system. //TRACE follows this same philosophy, by delaying I/O at the
system call level in order to expose the causal file relationships among nodes in a parallel application; this
information is then used to approximate the causal relationships during trace replay.

There are also black-box techniques for intelligently “guessing” causality, and these do not require
throttling or perturbing the system. In particular, message-level traces can be correlated using signal process-
ing techniques [1] and statistics [11]. The challenge is distinguishing causal relationships from coincidental
ones.

System-level events (e.g., network and disk events) can be used to track the resource consumption
of an application [5, 35] and can be used to determine the dominant causal paths in a distributed system.
Such “whitebox” techniques would complement //TRACE, especially when debugging the performance of a
system, by providing detail as to the source of a data dependency.

7 Conclusion

This paper presents a technique for accurately extracting and replaying I/O traces from parallel applications.
By selectively delaying I/O while tracing an application, computation time and inter-node dependences can
be discovered and approximated in trace annotations. Unlike previous approaches to trace collection and
replay, such approximation allows a replayer to closely mimic the behavior of a parallel application. Across
the applications and storage systems evaluated in this study, the average replay error is less than 5% and the
worst-case is 17%.

//TRACE is designed for applications with internal non-determinism (i.e., given the same input, they
produce the same output). A variety of applications fall into this category, in particular the many paral-
lel applications used in scientific, government and business environments. Storage systems research and
evaluation in support of such applications is important, and //TRACE offers a valuable tool for extracting
workloads with which to pursue these endeavors.
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