
Applying Idealized Lower-Bound Runtime Models to
Understand Inefficiencies in Data-Intensive Computing

Elie Krevat∗, Tomer Shiran∗, Eric Anderson†, Joseph Tucek†, Jay J. Wylie†, Gregory R. Ganger∗
∗Carnegie Mellon University †HP Labs

Categories and Subject Descriptors

D.4.8 [Operating Systems]: Performance—Measurements, Mod-

eling and prediction, Operational analysis; C.4 [Performance of

Systems]: Modeling techniques

General Terms

Measurement, Performance

1. INTRODUCTION
“Data-intensive scalable computing” (DISC) refers to a rapidly

growing style of computing characterized by its reliance on large

and expanding datasets [3]. Driven by the desire and capability to

extract insight from such datasets, DISC is quickly emerging as a

major activity of many organizations. Map-reduce style program-

ming frameworks such as MapReduce [4] and Hadoop [1] support

DISC activities by providing abstractions and frameworks to more

easily scale data-parallel computations over commodity machines.

In the pursuit of scale, popular map-reduce frameworks neglect

efficiency as an important metric. Anecdotal experiences indicate

that they neither achieve balance nor full goodput of hardware re-

sources, effectively wasting a large fraction of the computers over

which jobs are scaled. If these inefficiencies are real, the same work

could be completed at much lower costs. An ideal run would pro-

vide maximum scalability for a given computation without wasting

resources. Given the widespread use and scale of DISC systems, it

is important that we move closer to frameworks that are “hardware-

efficient,” where the framework provides sufficient parallelism to

keep the bottleneck resource fully utilized and makes good use of

all I/O components.

An important first step is to understand the degree, character-

istics, and causes of inefficiency. We have a simple model that

predicts the idealized lower-bound runtime of a map-reduce work-

load by assuming an even data distribution, that data is perfectly

pipelined through sequential operations, and that the underlying

I/O resources are utilized at their full bandwidths whenever applica-

ble. The model’s input parameters describe basic characteristics of

the job (e.g., amount of input data), of the hardware (e.g., per-node

disk and network throughputs), and of the framework configuration

(e.g., replication factor). The output is the idealized runtime.

The goal of the model is not to accurately predict the runtime of

a job on any given system, but to indicate what the runtime theo-

retically should be. To focus the evaluation on the efficiency of the

programming framework, and not the entire software stack, mea-

Copyright is held by the author/owner(s).
SIGMETRICS’11, June 7–11, 2011, San Jose, California, USA.
ACM 978-1-4503-0262-3/11/06.

sured values of I/O bandwidths are used as inputs to the model, or

predicted values are used if the actual hardware is not available.

Indeed, our analysis of a number of published benchmark results,

on presumably well-tuned systems, reveal runtimes that are 3–13×

longer than the ideal model suggests should be possible (due to

space constraints, see the full length paper [5]).

We haven’t yet determined why well-used map-reduce frame-

works exhibit large slowdowns, although there are many possibil-

ities. Instead, we focus on a limited but efficient parallel dataflow

system called Parallel DataSeries (PDS), which lacks many fea-

tures of other frameworks, but its careful engineering and stripped-

down feature-set demonstrate that near-ideal hardware efficiency

(within∼20%) is possible. PDS is used to explore the fundamental

sources of inefficiency common to commodity disk and network-

dependent DISC frameworks; any remaining inefficiencies of pop-

ular map-reduce systems must then be specific to the framework

or additional features that are not part of PDS (e.g., distributed file

system integration, dynamic task distribution, or fault tolerance).

Our experiments point to straggler effects from disk-to-disk vari-

ability and network slowdown effects from the all-to-all data shuf-

fle as responsible for the bulk of PDS’s inefficiencies, and therefore

a performance issue for DISC frameworks in general.

2. PERFORMANCE MODEL
The idealized runtime model is intended for data-intensive work-

loads where computation time is negligible in comparison to I/O

speeds, which applies to many grep- and sort-like jobs that are rep-

resentative of MapReduce jobs at Google [4]. Other simplifying

assumptions are that the network is capable of full bisection band-

width, input data is distributed evenly across a homogeneous set of

nodes, and one job runs at a time.

The model calculates the total time by breaking a map-reduce

dataflow into two pipelined phases, where the pipeline is as fast

as the slowest I/O component in each phase. The first phase of a

parallel dataflow reads data, processes it in the map operator, and

shuffles it over the network. A barrier occurs just before the local

sort at the destination node, separating the two phases, since the last

element to arrive may in fact be the first to go out in sorted order.

The second phase begins with a local sort, passes data through the

reduce operator, and writes data back to disk (possibly replicated).

Inputs to the model include the amount of input data (i), the

speed of a disk read (Dr), disk write (Dw), and network transfer (N),

and the amount of data flowing through the system at any time. The

full model accounts for different configurations of a parallel map-

reduce, including data replication levels, in-memory vs. 2-phase

local sorts, and optional backup writes after the map phase. Due

to space constraints, we only include a simplified version of our

model that applies to a parallel sort with no additional replication,

125

an in-memory sort, and no backup write:

tsort =
i

n

(

max

{

1

Dr
,

n−1

nN

}

+
1

Dw

)

In this equation, the time to complete the first phase is just the

maximum of the two pipelined operations of reading data from lo-

cal disk (1
Dr
) and shuffling the data over the network. The n−1

n term

appears in the equation, where n is the number of nodes, because

in a perfectly-balanced system each node partitions and transfers

that fraction of its mapped data over the network, keeping 1
n of the

data for itself. The time for the second phase is then just the time

taken to write the output data back to local disk (1
Dw

). Parameter

values are determined via measurements through the OS, so any

inefficiencies are those of the programming framework.

3. EXPLORING EFFICIENCY OF DISC
We performed disk and network microbenchmarks to measure

the maximum achievable I/O speeds on our cluster, where each

node consists of two quad-core Intel Xeon processors, 16 GB of

RAM, and a Seagate Barracuda ES.2 SATA drive. Microbench-

mark results show a large variation of disk and network shuffle

speeds across homogeneous nodes, contributing to slower PDS par-

allel sorts than computed with our idealized model. The straggler

problem is well-known [2] and was not unexpected. However, our

approach to investigating stragglers is to understand why they fun-

damentally exist and how much of their impact is necessary. With

PDS, we can achieve within 21% of the model’s idealized runtime.

Disk microbenchmarks: Bandwidth is measured with the dd

utility and large file and block sizes. On a single node, XFS filesys-

tems have consistent read performance (averaging 107 MB/s) and

varying writes between 88–100 MB/s (averaging 99 MB/s). How-

ever, the speeds can vary over the entire cluster from 102–113MB/s

for reads and 87–107 MB/s for writes, both with a standard devia-

tion of 2. Some of this variability in bandwidth of otherwise identi-

cal make and model disks is due to XFS placement policies, but the

majority is due to a technique in modern disks that we refer to as

adaptive zoning [6], where traditional zoning schemes have been

extended to maximize platter densities post-production according

to the capabilities of each disk head.

Network microbenchmarks: With our all-to-all network mi-

crobenchmark that analyzes just the network component of a map-

reduce shuffle, we measured bi-directional bandwidth between two

nodes of 112 MB/s over 1 Gbps Ethernet. The resulting throughput

for completing a larger 4-way shuffle drops under 104 MB/s, and

then slowly decreases to 98 MB/s at 32 nodes and under 94 MB/s at

64 nodes. Some of TCP’s unfairness and stability issues are known

and prompting further research, however, we have found no previ-

ous research specifically targetting TCP’s all-to-all network perfor-

mance in high-bandwidth low-latency environments. The closest

other issue that we know of is the incast problem [7], a 2–3× order

of magnitude collapse in network bandwidth during an all-to-one

pattern of synchronized reads.

PDS sort evaluation: Parallel DataSeries is an efficient and flex-

ible data format and library that supports passing records in a paral-

lel and pipeline fashion through a series of modules. As presented

in Figure 1 for up to 41 nodes, PDS parallel sort times increase

from 8% to 21% longer than an ideal model input with measured

disk and network bandwidth. On a single node, about 4% of lost

efficiency is from a known data expansion when converting inputs.

The in-memory sort takes about 2 seconds, which accounts for an-

other 2–3% of the overhead. These two factors explain the majority

of the 8% overhead of the single node case.

1 4 8 16 32 41
0

10

20

30

40

50

60

70

80

90

100

T
im

e
 (

s
)

Nodes

Phase 1

Phase 1 Receive Skew

Phase 2

Phase 2 Stragglers

Sort (CPU)

Actual
Optimal

Figure 1: Using Parallel DataSeries to sort up to 164 GB over

1 Gbps Ethernet, completion times slowly increase from 8%

to 21% higher than an idealized lower-bound prediction that

inaccurately assumes full disk and network performance.

The growing divergence of larger parallel sorts from the model

is explainable by a number of factors, including disk stragglers and

network skew and slowdown effects. The Stragglers category in

the time breakdown accounts for 5% additional overhead and rep-

resents the average time that a node wastes by waiting for the last

node in the job to finish. Most of the straggler effects broken out in

the figure are caused by the different disk write speeds from Phase 2

of the map-reduce, as the sort barrier forces synchronization before

a node completes Phase 1. A similar disk skew occurs in Phase 1

from reading data from disk, but it is further complicated by delays

in the network shuffle. Broken out in the figure is a 4% overhead

from the Phase 1 Receive Skew, which is the average difference

of each node’s last incoming flow completion time and its average

incoming flow completion time. This skew suggests an unfairness

across network flows, and is compounded by a general slowdown

in network speeds that causes a delay in the completion of Phase 1.

Building a balanced system becomes more complicated with the

observed disk and network effects. It was surprising that even with

a perfectly balanced workload, without any data skew, there was

still a significant effect from disk stragglers. Additional experi-

ments with a faster network showed that disk stragglers are not a

continuously growing effect, but they are present, and even one par-

ticularly slow node can have a large impact. Our system configura-

tion initially pointed to disk bandwidth as the slowest component.

However, the results of our network microbenchmark are confirmed

by the actual performance of PDS—the slower network shuffle

speeds for Phase 1 become the bottleneck at around 16 nodes and

are responsible for the growing divergence from the model.

4. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org/.

[2] G. Ananthanarayanan, et al. Reining in the Outliers in Map-Reduce
Clusters using Mantri. OSDI, 2010.

[3] R. E. Bryant. Data-Intensive Supercomputing: The Case for DISC.
Technical report. 2007. CMU-CS-07-128.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. Communications of the ACM, 2008.

[5] E. Krevat, et al. Applying Simple Performance Models to Understand

Inefficiencies in Data-Intensive Computing. Technical report. 2011.
CMU-PDL-11-103.

[6] E. Krevat, et al. Disks Are Like Snowflakes: No Two Are Alike.
HotOS, 2011.

[7] A. Phanishayee, et al. Measurement and Analysis of TCP
Throughput Collapse in Cluster-based Storage Systems. FAST, 2008.

126

	Introduction
	Performance model
	Exploring efficiency of DISC
	References

