
Cluster storage systems gotta have HeART:
improving storage efficiency by exploiting disk-reliability heterogeneity

Saurabh Kadekodi, K. V. Rashmi, Gregory R. Ganger
Carnegie Mellon University

Abstract
Large-scale cluster storage systems typically consist of

a heterogeneous mix of storage devices with significantly
varying failure rates. Despite such differences among de-
vices, redundancy settings are generally configured in a one-
scheme-for-all fashion. In this paper, we make a case for
exploiting reliability heterogeneity to tailor redundancy set-
tings to different device groups. We present HeART, an
online tuning tool that guides selection of, and transitions
between redundancy settings for long-term data reliability,
based on observed reliability properties of each disk group.
By processing disk failure data over time, HeART identifies
the boundaries and steady-state failure rate for each deployed
disk group (e.g., by make/model). Using this information,
HeART suggests the most space-efficient redundancy option
allowed that will achieve the specified target data reliability.
Analysis of longitudinal failure data for a large production
storage cluster shows the robustness of HeART’s failure-rate
determination algorithms. The same analysis shows that a
storage system guided by HeART could provide target data
reliability levels with fewer disks than one-scheme-for-all
approaches: 11–16% fewer compared to erasure codes like
10-of-14 or 6-of-9 and 33% fewer compared to 3-way repli-
cation.

1 Introduction
Large cluster storage systems almost always include a het-

erogeneous mix of storage devices, even when using devices
that are all of the same type (e.g., Flash SSDs or mechani-
cal HDDs). Commonly, this heterogeneity arises from incre-
mental deployment combined with per-acquisition optimiza-
tion of which make/model to acquire, such as targeting the
lowest cost-per-byte option available at the time. As a re-
sult, a given cluster storage system can easily include several
makes/models, each in substantial quantity.

Beyond performance and capacity differences, different
makes/models can also have substantially different reliabil-
ities. For example, Fig. 1 shows the average annualized
failure rates (AFRs) during the useful life (stable operation

Figure 1: Annualized failure rate (AFR) for the six disk groups
that make up >90% of the 100,000+ HDDs used for the Backblaze
backup service [5]. Details of each disk group are given in Sec-
tion 2.

period) for the 6 HDD make/model-based disk groups that
make up more than 90% of the cluster storage system (with
100,000+ disks) used for the Backblaze backup service [5].
The highest failure rate is over 3.5⇥ greater than the low-
est, and no two are the same. Schroeder et al. [32] recently
showed that different Flash SSD makes/models similarly ex-
hibit substantial failure rate differences.

Despite such differences, the degree of redundancy em-
ployed in cluster storage systems for the purpose of long
term data reliability (e.g., the degree of replication or erasure
code parameters) is generally configured as if all of the de-
vices have the same reliability. Unfortunately, this approach
leads to configurations that are overly resource-consuming,
overly risky, or a mix of the two. For example, if the redun-
dancy settings are configured to achieve a given data reliabil-
ity target (e.g., a specific mean time to data loss (MT T DL))
based on the highest AFR of any device make/model (e.g.,
S-4 from Fig. 1), then too much space will be used for re-
dundancy associated with data that is stored fully on lower
AFR makes/models (e.g., H-4A). Continuing this example,
our evaluations show that the overall wasted capacity can
be up to 16% compared to uniform use of erasure code set-
tings stated as being used in real large-scale storage clus-
ters [13, 25, 26, 28] and up to 33% compared to using 3-
replication for all data—the direct consequence is increased
cost, as more disks are needed. If redundancy settings for



all data are based on lower AFRs, on the other hand, then
data stored fully on higher-AFR devices is not sufficiently
protected to achieve the data reliability target.

This paper presents HeART (Heterogeneity-Aware Re-
dundancy Tuner), an online tool for guiding exploitation of
reliability heterogeneity among disks to reduce the space
overhead (and hence the cost) of data reliability. HeART
uses failure data observed over time to empirically quantify
each disk group’s reliability characteristics and determine
minimum-capacity redundancy settings that achieve speci-
fied target data reliability levels. For the Backblaze dataset
of 100,000+ HDDs over 5 years, our analysis shows that us-
ing HeART’s settings could achieve data reliability targets
with 11–33% fewer HDDs, depending on the baseline one-
scheme-for-all settings. Even when the baseline scheme is a
10-of-14 erasure code whose space-overhead is already low,
HeART further reduces disk space used by up to 14%.

Online (real-time) use of observed device reliability re-
quires careful design. HeART uses robust statistical ap-
proaches to identify not only a steady-state AFR estimate
for each disk group, but also the transitions between deploy-
ment stages: infancy!useful life!wearout, as in bathtub
curve visualizations. HeART assumes that administrators
have a baseline redundancy configuration that would be used
in HeART’s absence; that same configuration should be used
for a disk group, when it is initially deployed. HeART pro-
cesses failure data for that disk group, during this initial pe-
riod of 3–5 months, to determine both when infancy ends
and a conservative AFR estimate for the useful life period.
It also suggests the most space-efficient redundancy settings
supported by the storage system that will achieve the speci-
fied data reliability target.

Naturally, the useful life period does not last forever.
HeART continues to process failure data for each disk group,
automatically identifying the onset of the wearout period. At
this point, a transition to more conservative redundancy (e.g.,
the original baseline), and possibly decommisioning, is war-
ranted. Importantly, HeART distinguishes between anoma-
lous failure occurrences (e.g., one-time device-independent
events, like a power surge, in which many devices fail to-
gether) and true changes in the underlying AFR.

This paper makes four primary contributions. First, it
highlights an often overlooked aspect of device heterogene-
ity (reliability) that should be exploited in cluster storage sys-
tems, and quantifies potential cost–and/or–reliability bene-
fits. Second, it confirms the above observation and quan-
tification with analysis of multi-year reliability data from a
sizable cluster storage deployment (Backblaze), showing up
to 11–33% reduction in the overall number of disks needed
to achieve target data reliability. Third, it describes an online
tool (HeART) that automatically determines per-disk-group
useful life AFRs and durations, and identifies the right re-
dundancy scheme settings for each. Fourth, it shows that
HeART’s algorithms are effective using data from a large-

Make/Model Disk group
shorthand

# of
disks

Oldest
disk age

Seagate ST4000DM000 S-4 37015 5 yrs
HGST HMS5C4040ALE640 H-4A 8715 4.77 yrs
HGST HMS5C4040BLE640 H-4B 15048 4.2 yrs
Seagate ST8000DM002 S-8C 9885 1.99 yrs
Seagate ST8000NM0055 S-8E 14395 1.2 yrs
Seagate ST12000NM0007 S-12E 21581 8 mts

Table 1: The disk groups identified from the Backblaze dataset for
reliability heterogeneity analysis. The disk group shorthand above
is used to represent the respective makes/models throughout the pa-
per.

scale production cluster (Backblaze) and are able to expose
the expected capacity savings opportunities without compro-
mising data reliability.

2 Having HeART can make you rich
This section builds a case for HeART by showing the ben-

efits of using different redundancy schemes for disk groups
exhibiting different reliability characteristics in the same
commercially used cluster storage system. To support the
case, we quantify space overhead reductions that can be
achieved by adopting the different redundancy schemes.

2.1 The Backblaze dataset
Our analysis is based on an open source dataset from a

data backup organization, Backblaze [5]. This dataset con-
sists of over 5 years of disk reliability statistics from a pro-
duction cluster storage system with over 100,000 HDDs.

We use the standard metric, annualized failure rate (AFR),
to describe a disk’s fail-stop rate1 [9, 33]. As the name sug-
gests, it is the expected percentage of disks that will fail-stop
in a given year from a population of disks. AFR is calculated
on day d, based on the past d days of reliability data, using
the following formula:

AFR (%) =
fd

n1 +n2 + . . .+nd
⇥365⇥100 (1)

where fd is the number of disks failed in the past d days and
ni is the number of disks operational during day i.

Note that the AFR calculation is dependent on the number
of days a disk was in operation. This can be tricky to estimate
from the Backblaze dataset since the “death” of a disk in this
dataset may also indicate its decommissioning, which may
or may not imply its failure. We argue that, in the case of
Backblaze, the date of decommissioning a disk only affects
the absolute date at which it would have fail-stopped, but
does not affect its rate of failure. Backblaze adopts a proac-
tive disk replacement strategy that is driven by monitoring
a combination of five S.M.A.R.T. (Self-Monitoring, Anal-

1Storage devices can exhibit partial failures and fail-stops (complete
failures). Partial failures might involve a particular read or write failing
because of a sector error or checksum failure, while the disk as a whole is
still functional. In the case of fail-stop, the disk stops functioning altogether.



Figure 2: AFR comparison between all 4TB disks grouped together
and disk groups broken down by make/model. The AFR differences
in make/model-based grouping enables HeART to perform finer-
grained specialization leading to higher benefits.

ysis and Reporting Technology) statistics.2 The increased
probability of failure indicated by grown defects in a disk is
supported by several previous studies [7, 20, 24, 29]. In fact,
Pinheiro et al. [24] show that the critical threshold for several
S.M.A.R.T. attributes before their imminent failure is one—
that is, the probability of failure of a disk in the next two
months increases manifold when any of these S.M.A.R.T.
attributes show a value greater than zero. Ma et al. [20] also
show the high likelihood of disk failure by monitoring the
reallocated sectors count (S.M.A.R.T. attribute 5), which is
one of the signals used by Backblaze as a disk replacement
indicator. Therefore, we believe that Backblaze’s proactive
disk replacement rate is a reasonable approximation for the
actual disk failure rate.

2.2 Disk group formation and varying AFRs
To effectively exploit heterogeneity in AFRs of different

disk groups, we need to categorize the disks using some pa-
rameter that (1) groups disks with similar AFRs together
and (2) has substantially different AFRs across groups. In
whichever manner we choose to group the disks, in order to
gain statistical confidence in the AFR value, we need to en-
sure that each disk group has a sizeable population. Our def-
inition of a sizeable population is approximately 10,000 or
more disks. This is in line with disk populations considered
in previous reliability studies [21]. We identify the following
four ways to categorize disks:

• By make/model: Economies of scale result in large quan-
tities of disks being purchased from the same vendor. Prior
studies have shown that AFR may vary significantly by
vintage [10, 20, 24].

• By capacity: Grown defects can be a function of disk ca-

2Backblaze uses S.M.A.R.T. 5 (Reallocated Sectors Count), S.M.A.R.T.
187 (Reported Uncorrectable Errors), S.M.A.R.T. 188 (Command Time-
out), S.M.A.R.T. 197 (Current Pending Sector Count) and S.M.A.R.T. 198
(Uncorrectable Sector Count) as indicators that a disk is about to fail. [6]
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Figure 3: The canonical bathtub curve used to represent disk failure
characteristics.
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Figure 4: An abstract timeline of a disk group from deployment
to failure or decommissioning, with the three distinct periods. The
notations below the timeline (rde f and rDG) denote the redundancy
scheme employed during the respective stage.

pacity, thus causing disks of similar capacity to fail at a
similar rate.

• By operational conditions: Disks that share similar vi-
bration or temperature experiences may cause them to fail
similarly. Thus, chassis placement and other operational
conditions may influence failure rates.

• By usage: Increased space utilization or higher I/O rates
may result in different disks showing different failure
characteristics.

Unfortunately since we do not have access to the oper-
ational conditions or usage patterns, we can only analyze
grouping on the basis of make/model or capacity.

Fig. 2 shows the AFR by considering all 4TB disks as one
disk group (red curve with circular marks) and the AFRs
of the three make/models of 4TB disks as individual disk
groups (black curves). We see significant differences be-
tween AFRs when disks are grouped by make/model, sug-
gesting that grouping by capacity is insufficient. HeART
groups disks by make/model.

Table 1 shows the six make/model disk groups that make
up over 90% of the Backblaze deployment, with their pop-
ulation size, the age of their oldest disk, and the shorthand
names we will use throughout the paper.

AFR variation over time. As expected, AFR values of
each disk group vary over the lifetime of disks. It is well
known that the AFR values over a disk’s lifetime follow a
bathtub curve [11, 12, 45]. Fig. 3 shows the canonical repre-
sentation of a bathtub curve. The lifetime is typically divided
into three distinct periods:

• Infant mortality: A higher failure rate in the early days
after deployment. This is also called the burn-in period.

• Useful life period: The stable region of operation, where
rate of failure is lower.

• Wearout stage: A higher failure rate towards the disks’
end of life due to wear and aging.



(a) S-4 (b) H-4A (c) H-4B

(d) S-8C (e) S-8E (f) S-12E
Figure 5: Cumulative raw AFR versus age (in days) for all six disk groups being analyzed.

Fig. 5 shows the AFR behavior versus age of the six disk
makes/models. The three disks in the top row clearly exhibit
all three stages of the bathtub curve.3 This is because the
oldest disks from the S-4, H-4A and H-4B disk groups in the
dataset are old enough to have entered their wearout stages.
Since the deployment of S-8C, S-8E and S-12E disks has
been more recent, these disk groups have ended their infant
mortality, but are yet to enter their wearout stages.

2.3 Space savings from heterogeneous AFRs
Our goal is to reduce storage overhead by tailoring the

redundancy scheme employed to the failure rate of a disk
group during its useful life period. We parameterize a redun-
dancy scheme using two parameters n (called “length”) and
k (called “dimension”), and call it a (n,k) scheme.4 For any
replication based scheme, k = 1 and n represents the total
number of replicas. For any erasure coding based scheme, k
represents the number of data chunks and (n�k) is the num-
ber of parity chunks, thus resulting in n chunks in total.5 For
an (n,k) redundancy scheme, the storage overhead is given
by n

k .
HeART achieves reduction in storage overhead by ex-

plicitly factoring in the group-specific AFR values in decid-

3Fig. 5c corresponding to disk H-4B does not completely conform to the
bathtub shape. We will discuss this case later in detail.

4This notation follows the standard notation employed in the coding the-
ory literature.

5Although the description of the notation applies only to “systematic”
codes, and most of the codes employed in storage systems are indeed sys-
tematic, HeART is applicable to storage systems employing non-systematic
codes as well.

ing the appropriate redundancy scheme for each disk group.
Based on the canonical bathtub curve (Fig. 3), and the AFR
curves shown in Fig. 5, we conclude that the safest stage
to apply lower redundancy (without risking not meeting the
reliability target) during a disk group’s lifetime is in its use-
ful life period. Fig. 4 shows the abstract timeline of a disk
group, where r denotes the redundancy scheme applied in
each stage. Since all cluster storage systems today use some
redundancy scheme whose resilience is acceptable to them,
we assume that to be the default redundancy scheme. Since
infancy and wearout periods have higher and less stable
AFRs compared to useful life, for every disk group, HeART
employs the default redundancy scheme for all infancy and
wearout periods. This is shown as rde f in Fig. 4.

HeART suggests lower redundancy than the default
scheme only during the useful life period, during which AFR
values are relatively stable. Data redistribution and issues re-
lated to data placement and scheme transitions are discussed
in Section 5.

We use the standard metric for reliability of data em-
ployed in storage systems, mean time to data loss (MT T DL).
MT T DL is calculated based on two rates – mean time to
failure (MT T F) and mean time to repair (MT T R) [23, 38]
MT T F is directly related to the disk’s AFR. MT T R is the
time it takes to reconstruct the lost data on the failed disk.
Following prior work, we model the time to repair based
on the time it takes to detect that a disk has failed (which
is approximately 15 minutes) [13, 17]. We note that, by
choosing the failure detection time as a proxy for the re-
pair time, we are effectively choosing a lower bound on



the repair time. Reliability differences between redundancy
schemes are higher when repair times are higher, leading to
even greater potential for space saving through HeART.

When a disk group enters its useful life period, HeART
chooses a redundancy scheme (rDG) that meets the following
conditions:

1. is as reliable as rde f , i.e. MT T DLrDG � MT T DLrde f

2. tolerates at least as many failures as rde f

According to condition 1 above, we need to set a tar-
get MT T DL in order to compare the resilience of different
redundancy schemes. Although prior studies have shown
MT T DL targets to be as low as 10,000 years [27], in order
to ensure that we do not regress on reliability that disks in
our dataset can currently offer, we set the target MT T DL
to be the MT T DL of the default redundancy scheme ap-
plied on the disk group with the highest AFR. S-4 is the
disk group with highest useful life AFR in the Backblaze
dataset (refer Fig. 1). Therefore, for every default redun-
dancy scheme, we will use S-4’s MT T DL for that scheme as
the target MT T DL.

Multiple redundancy schemes can achieve the same or
similar MT T DL values. These schemes can differ in their
dimension (k) or the number of parity chunks per stripe
(n � k) or both. It is well known that, generally speak-
ing, codes with a longer dimension can provide the same
MT T DL with lower space overhead compared to shorter
codes. However, long codes consume significantly higher
cluster bandwidth for reconstruction, since many more disks
have to be accessed when performing reconstruction of failed
data [17, 25, 26, 28]. The cluster bandwidth consumed dur-
ing reconstruction is a major concern in erasure-coded stor-
age systems. This has been highlighted in several works in
the past [17, 25, 26, 28] and is consistent with our discus-
sions with cluster storage system administrators. We, there-
fore, limit our cost reduction analysis to codes with at most
2⇥ the dimension (i.e., parameter k) of the default redun-
dancy scheme.

Table 2 shows space savings for one disk group (H-4A)
as an example. We will first highlight the space reduction
when erasure coding schemes are used as the default, focus-
ing on the (14,10) and (9,6) schemes known to have been
used in large data centers [13, 25, 26, 28]. For (14,10) as
the default scheme, the MT T DL difference between H-4A
and S-4 disks is over 580⇥. Thus, we can choose a weaker
redundancy scheme (a scheme with lower storage overhead
n
k ), so long as conditions 1 and 2 above are fulfilled. In fact,
the high AFR differences allow us to use the longest allowed
optimized code (2⇥ the dimension of the default redundancy
scheme) for H-4A disks, i.e. (24,20) leading to a useful life
space reduction of 14%. Similarly, when using (9,6) as the
default scheme, the MT T DL difference between H-4A and
S-4 is over 160⇥. This again allows us to choose the longest
code for H-4A when rde f = (9,6), i.e. (15,12), providing a
space reduction of 16%.

Disk groups rrrde f === (14, 10) rrrde f === (9, 6) rrrde f === (3, 1)

DG AFR rDG Cost# rDG Cost# rDG Cost#

S-4 3.29% (14, 10) NA (9, 6) NA (3, 1) NA
H-4A 0.92% (24, 20) 14% (15, 12) 16% (4, 2) 33%

Table 2: A sample of the estimated savings achievable through
HeART. The space reductions obtained on H-4A disks by using
redundancy schemes with lower storage overhead while meeting
the reliability target set by applying the default redundancy scheme
(rde f ) on S-4 disks.

For rde f = 3-replication (recall that, under the (n, k) nota-
tion introduced above, 3-replication is denoted as the (3,1)
erasure code), we can tune the redundancy on H-4A disks
to (4,2) to respect our 2⇥ default stripe dimension limit and
still achieve an MT T DL that is approximately 11⇥ that of S-
4’s MT T DL. Using a (4,2) scheme leads to a 33% reduction
in disk space.

Large internet services companies try very hard to mini-
mize free space (as low as 5%, according to some admin-
istrators) in order to minimize capital and operating costs.
We are told that space savings translate directly into reduced
numbers of disks needed, and even modest space savings
(e.g., 10%) would build a solid case for tailoring redundancy
schemes to heterogeneous disk AFRs.

We note that much of the reduction in storage overhead
arises from allowing codes up to 2⇥ in dimension (i.e., pa-
rameter k). However, simply employing an erasure code with
twice the dimension for all data is not generally a suitable
solution. First, the AFR for certain disk groups might be
high enough to make codes with 2⇥ dimension not accept-
able causing them to miss the target reliability. Second, and
more broadly, the reconstruction overheads can be unaccept-
able. For popular codes employed in practice, the amount of
cluster bandwidth required for reconstruction is proportional
to k⇥AFR, where k is the dimension of the code. The sta-
ble and lower AFR during a disk group’s useful life period
allows the I/O generated for reconstruction to be contained
even if longer codes are employed, which is why HeART op-
timizes redundancy schemes only during a disk group’s use-
ful life. Using longer codes on data stored on disk groups in
their infancy and wearout stages would exacerbate the clus-
ter bandwidth consumption for reconstruction due to higher
failure rates in these stages.

3 The ways of the HeART
This section describes the challenges, design and imple-

mentation of HeART. We also quantify the cost reductions
achieved by HeART for the Backblaze dataset.

3.1 Challenges
There are several challenges in taking the idea presented

in Section 2 to practice.
Challenge 1: Function online and be quick. In mak-

ing our case for HeART, we made use of the complete fail-
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Figure 6: Schematic diagram of HeART. Components include an
anomaly detector, an online change point detector, and a redun-
dancy tuner.

ure information (e.g., the full bathtub curve) for the disk
groups. This helped in clearly identifying the 3 stages of
a disk group’s lifetime and AFR values in each of the stages.
In practice, however, AFR values for disk groups deployed in
cluster storage systems can only be known in an online fash-
ion (i.e., as a continuous stream of reliability data, as it is
observed). Furthermore, the crux of the cost reduction from
HeART comes from quickly tuning the redundancy scheme
as soon as we are confident of a disk group having entered
its useful life period. Thus, our first challenge in building
HeART is that it needs to function in an online fashion taking
a continuous stream of disk health data as input and quickly
react to the changes in the failure rate.

Challenge 2: Be accurate. It is important to correctly
identify the three different stages of the bathtub curve for
each disk group (recall Fig. 3). If we are hasty in declaring
the end of the infancy period or lax in identifying end of
useful life, we might not meet the reliability target because
of having tailored the redundancy to a relatively low failure
rate during the useful life period. In contrast, if we are too
lax about declaring end of infancy or too hasty in declaring
onset of the wearout stage, the opportunity of cost reduction
will diminish.

Challenge 3: Filter-out anomalies. Events such as power
outages, natural disasters or human error can cause large
numbers of disks to fail at once It is important to distinguish
between an accidental rise in AFR due to such anomalous
events versus the rise in AFR due to onset of the wearout
stage. Our third challenge is to perform AFR anomaly detec-
tion to avoid prematurely declaring end of useful life, conse-
quently reducing the window of opportunity for cost reduc-
tion. At the same time, HeART needs to exercise caution so
as to not treat a genuine rise in AFR as an anomaly, which
risks not meeting reliability targets.

3.2 HeART architecture
Fig. 6 shows the primary components of HeART. HeART

assumes the existence of a disk health monitoring/logging
mechanism already in place, which is common in large-
scale cluster storage deployments. From the time of deploy-
ment till the end of infancy, the default redundancy scheme

(rde f ) is used to protect the data stored on a disk group.
Periodically, disk health data for each disk group is passed
through an anomaly detector. Following an anomaly check,
the cumulative AFR of every disk group is passed through
a change point detector, which checks if a transition to dif-
ferent phase of life has occurred. Once the change point de-
tector announces start of the useful life period, HeART sug-
gests a new redundancy mechanism for the useful life of the
disk group (rDG). It computes a determined useful life AFR
(AFRDG), which is the AFR at the end of infancy padded
with a tunable buffer, and uses it to calculate MT T DLrDG

for different redundancy scheme (rDG) options. The buffer
is introduced to tolerate the fluctuation of AFR during the
useful life period (see Section 4.3). HeART keeps check-
ing for anomalies and change points throughout the useful
life period. When the change point detector marks the end
of useful life, HeART raises an alert to reset the redundancy
scheme to rde f to handle the increased AFR during wearout,
as was handled in the absence of HeART.6

The remainder of this section describes our approach to
addressing the above mentioned challenges. We leverage es-
tablished tools and algorithms from online services and time-
series analysis literature. While other options may perform
even better, our evaluations indicate that these established
tools are effective. We show the efficacy of HeART using
the Backblaze dataset in Section 4.

3.3 Online anomaly detection
Incidents like losing power to a rack of disks, a natural

disaster, or an accident, can cause a large number of fail-
ures resulting in a sudden rise in AFR. Such bulk failures
can easily exceed the limits of any reasonable redundancy
scheme, so administrators seek to mitigate them by defining
appropriate failure domains and spreading data+redundancy
across the failure domains [25, 26]. Such failures are not
reflective of the true rise in AFR because of wearout, and
therefore HeART considers these incidents as anomalies. It
is important to note that the benefits we extract from exploit-
ing the reliability heterogeneity are proportional to the length
of the useful life period, and therefore prematurely announc-
ing wearout stage due to an anomaly would significantly di-
minish achievable gains.

We use the H-4B disks as a motivating example for
anomaly detection (shown in Fig. 7). The raw AFR curve
(red curve) shows that just after a few days into its useful
life, there are large spikes in the AFR curve for drives that
are about 235 days old (point A) and 380 days old (point B).
Further along, we observe three more spikes that are in suc-
cession for disks that are about 1200 days old (points C, D
and E). The failures corresponding to points A and B are all
caused because of 322 drives failing on one particular date.

6We note that the current architecture of HeART determines one useful
life AFR for all disks belonging to a disk group and does not handle changes
in the intra-disk-group reliability distribution over time.



Figure 7: Raw and HeART-curated AFR curves for the H-4B disk
group. Five spikes in AFR (points A–E), which correspond to four
(anomalous) bulk failure events, are automatically filtered out by
HeART.

Here, failure of disks of two different ages correspond to a
failure event on the same day because these disks were de-
ployed on different dates. Fig. 8 shows the total number of
disks running and the per-day number of disk failures of H-
4B as a function of the date. The left y-axis shows the cu-
mulative disks of H-4B running on each day. The steps in
the black curve show the incremental deployments of H-4B
disks. The right y-axis shows the number of H-4B disks fail-
ing on each day (red curve). The tallest red spike in Fig. 8
corresponds to points A and B from Fig. 7. Points C, D and
E occurred because of disks failing on different days.

In the absence of anomaly detection, HeART would have
incorrectly concluded that the disk group’s wearout stage be-
gan as early as point A.

3.4 Online change point detection
We refer to a transition in the AFR curve of a disk group

as a change point. There are two major change points for
each disk group: end of infant mortality stage and the onset
of the wearout stage. This subsection describes our methods
of identifying the two change points.

Onset of useful life period. HeART uses prior studies
about infant mortality in HDDs along with change point de-
tection to decide a disk group’s end of infancy. Prior studies
performed on the Google and EMC disk fleets [20, 24] have
shown that infant mortality lasts for approximately one quar-
ter. Therefore, in order to be conservative, HeART exempts
the first quarter from being assessed for end of infant mortal-
ity. Since disk reliability data is collected periodically, each
time data is collected after the first 90 days, we run change
point detection on the AFR curve generated by a sliding win-
dow of the past 30 days. HeART declares end of infancy if
the last change point marked by the detector is over 30 days
old, and the failure rate during the last 30 days is relatively
constant. More precisely, HeART declares end of infancy
when the difference between the observed maximum and

Figure 8: Total number of disks and number of disk failures by date
for H-4B disks. The step-wise jumps in the black curve represent
incremental deployments. The largest red spike represents the disks
that failed on July 23, 2017, causing anomalies A and B in Fig. 7.

minimum AFR values in at least 30 days past the last change
point is less than a certain threshold Tf lat . Tf lat is the thresh-
old for flatness and is a tunable parameter in HeART. Sensi-
tivity to Tf lat is evaluated in Section 4.3. Note that HeART
takes a conservative approach in declaring the onset of the
useful life period of a disk group in order to increase confi-
dence about reducing redundancy for data stored on that disk
group.

End of useful life period. Being lax in declaring the
end of useful life period (i.e., onset of wearout) can risk in
HeART not meeting the intended reliability target. Hence,
HeART takes a conservative approach and marks the end
of useful life for the first AFR observed that is greater than
the determined useful life AFR. Since HeART checks for
anomalous AFR fluctuations before checking for change
points, if the anomaly detection phase does not filter out an
increase in AFR, HeART assumes it to be a true increase in
AFR. Thus, here too HeART takes a conservative approach
and errs on the side of exiting the useful life period early and
reverting to the default redundancy scheme.7

4 Measuring HeART
This section describes implementation details of various

components that make up HeART and presents an evaluation
of HeART on the Backblaze dataset.

4.1 Implementation of the components
Our current implementation of HeART leverages existing,

standard algorithms for anomaly detection and change point

7Although the H-4A graph in Fig. 5b appears to show a sudden, huge
rise in AFR, we believe that it is an artifact of Backblaze’s recording of
decommissioned disks as failed, based on the device removal pattern seen
in the failure data. Data from more sources are needed to confirm this hy-
pothesis. If some disks do exhibit such transitions, then strategies for pre-
dicting failures (and wearout onset), such as by using S.M.A.R.T. statis-
tics [4, 21, 44, 48], will be needed to use any but the most conservative
redundancy schemes.



(a) S-4 with HeART-determined AFR (b) H-4A with HeART-determined AFR (c) H-4B with HeART-determined AFR

(d) S-8C with HeART-determined AFR (e) S-8E with HeART-determined AFR (f) S-12E with HeART-determined AFR
Figure 9: HeART in action on all disk groups, showing successful identification of infant mortality, useful life and wearout periods as well
as automatic removal of anomalies.

detection. Employing more sophisticated algorithms might
lead to even better results.

Anomaly detector: For anomaly detection, our current
implementation of HeART uses the RRCF algorithm [3] ex-
posed by Amazon’s data analytics service offering called Ki-
nesis [2].8 The anomaly detector acts on a reliability data
stream made available by the disk health monitoring sys-
tem. The output from the anomaly detector is also a data
stream containing anomaly scores produced by the RRCF
algorithm. Potential anomalies identified by RRCF have a
higher anomaly score than data that the algorithm considers
non-anomalous. RRCF generates the anomaly score based
on how different the new data is compared to the recent past.
For consistency with change point detection, we set the win-
dow size of the recent past to be one month. If the anomaly
score is above a certain threshold, HeART considers that
snapshot of reliability data as anomalous. RRCF advises
to only consider the highest anomaly scores as true anoma-
lies [3]. The anomaly score threshold is a tunable parameter
in HeART. Lowering the score makes HeART more sensitive
to fluctuations in AFRs.

Change point detector: Our current implementation of
HeART uses a standard window-based change point detec-
tion algorithm, which compares the discrepancy between ad-
jacent sliding windows within the AFR curve to determine
if a change point has been encountered. In particular, we
employ the Ruptures library for online change point detec-

8We use Amazon’s service so as to avoid re-implementing a state-of-the-
art algorithm.

tion [39, 40]. We set the sliding window size to one month,
because AFRs at a lower granularity than a month are jittery.

4.2 Evaluation on the Backblaze dataset
Identifying useful life period. Fig. 9 shows the results

from HeART running on all 6 disk groups of the Backblaze
dataset. HeART accurately identifies the infancy, useful life
and wearout stages of the S-4, H-4A and H-4B disk groups
shown in Figs. 9a, 9b and 9c, respectively. For the S-8C,
S-8E and S-12E disk groups (Figs. 9d, 9e and 9f), HeART
identifies the end of infancy and correctly shows that they
are still in their useful life. The width of the shaded region
of each disk group highlights the “savings region”, i.e. the
useful life period determined by HeART for which HeART
potentially suggests a lower redundancy scheme. The height
of the shaded region in Fig. 9 denotes the AFR values pro-
tected by the useful life AFR value determined by HeART
for that disk group.

It is important to note that even though Fig. 9 shows cu-
mulative AFR behavior, HeART performs anomaly detection
and online change point detection on AFRs calculated using
monthly sliding windows. Thus, not only is the cumulative
AFR always inside the shaded region, but the instantaneous
failure rate for any 30-day period is also less than the de-
termined AFR value. In fact, the first rise in the instanta-
neous failure rate is what determines the end of the useful
life period. Fig. 10 shows the instantaneous failure rate of
S-4 disks being lower than the determined useful life AFR
value throughout the useful life period.



Disk groups rrrde f ===MT T DL(14,10)
4.01%AFR = 1.46E +21 rrrde f ===MT T DL(9,6)

4.01%AFR = 3.31E +16 rrrde f ===MT T DL(3,1)
4.01%AFR = 6.36E +12

DG AFR MT T DLrde f rDG MT T DLrDG Cost# MT T DLrde f rDG MT T DLrDG Cost# MT T DLrde f rDG MT T DLrDG Cost#
S-4 4.01% 1.46E +21 (14, 10) 1.46E +21 NA 3.31E +16 (9, 6) 3.31E +16 NA 6.36E +12 (3, 1) 6.36E +12 NA
H-4A 1.82% 7.57E +22 (24, 20) 3.56E +21 14% 7.80E +17 (15, 12) 7.20E +16 16% 6.80E +13 (4, 2) 1.70E +13 33%

H-4B 2.04% 4.28E +22 (24, 20) 2.01E +21 14% 4.94E +17 (15, 12) 4.56E +16 16% 4.83E +13 (4, 2) 1.21E +13 33%
S-8C 2.07% 3.98E +22 (24, 20) 1.87E +21 14% 4.66E +17 (15, 12) 4.30E +16 16% 4.62E +13 (4, 2) 1.16E +13 33%

S-8E 2.48% 1.61E +22 (21, 17) 1.58E +21 11% 2.26E +17 (13, 10) 3.99E +16 13% 2.69E +13 (4, 2) 6.72E +12 33%
S-12E 2.44% 1.75E +22 (21, 17) 1.72E +21 11% 2.41E +17 (13, 10) 4.26E +16 13% 2.82E +13 (4, 2) 7.06E +12 33%

Table 3: Disk space saved by HeART by tuning the redundancy in the useful life of a disk group according to the observed disk group-specific
AFRs. The units for MT T DLs is years. The cost savings are calculated for 3 default schemes: (14, 10) on AFR 4.01% disks, (9, 6) on AFR
4.01% disks and 3-replication (i.e. (3, 1)) on AFR 4.01% disks. Thus, the target reliability is the MT T DL of the respective default redundancy
schemes using a 4.01% AFR (the rde f table header). The max dimension of the scheme permitted during useful life for each disk group has
at most twice the dimension of default redundancy scheme, i.e. 20 data chunks for (14,10), 12 data chunks for (9,6) and 2 data chunks for
3-replication.

Figure 10: AFR of the S-4 disk group using a sliding window of 30
days. The determined useful life AFR value by HeART is conser-
vative enough to subsume even the 30-day AFR values which vary
more than the cumulative AFRs.

In contrast to S-4 (Fig. 9a), the H-4A (Fig. 9b) and H-4B
(Fig. 9c) disk groups have a sudden occurrence of their re-
spective wearout stages. The quick reactivity requirement
explained in Section 3.1 comes into effect for these disk
groups. How quickly HeART reacts to changes in the AFR
is determined by how quickly failure data is provided to
HeART. Since Backblaze maintains daily snapshots of disk
health, the quickest reaction to an increased failure rate is on
the day that the failures occur. In our evaluation, HeART
successfully identifies the increased AFR on the very day it
was provided with the increased AFR data.

Anomaly detection. As explained in Section 3.3, the
anomaly detector successfully detects five anomalies in the
lifetime of H-4B disks. Additionally, two anomalies are also
detected for the H-4A disks. Correctly identifying anoma-
lous events increased the identified useful life period of H-4B
disks by over 5⇥. In the absence of anomaly detection, the
end of useful life period would have been incorrectly identi-
fied at age 235 days (shown by point A in Fig. 7).

Cost savings per disk group. Table 3 summarizes the
cost savings of employing disk group specific redundancy in
their respective useful lifespans. Disk groups with similar
AFRs are grouped together. As discussed in Section 2, we
restrict the dimension (k) of the optimized code to at most 2⇥
that of the default redundancy scheme (rde f ). In each case of
rde f , we set the target reliability to the MT T DL achieved
by using the highest-AFR disk group, which in the case of
Backblaze are the S-4 disks.

It is important to note that the useful life AFRs determined
by HeART are higher than the useful life AFRs shown in
Fig. 1. Recall from Section 2, that HeART adds a (tunable)
buffer above the useful life AFR determined at the end of
infancy (which is an additional 25% by default). HeART
chooses to be conservative in determining a useful life AFR
value to ensure that reliability targets are comfortably met
and to elongate the length of the useful life period to maxi-
mize benefits.

As in Section 2, we exemplify the space reduction for
erasure coding schemes using (14,10) and (9,6) schemes,
which are known to have been employed in large-scale data
centers [13, 25, 26, 28].

First, we evaluate using (14,10) as the default redundancy
scheme. (14,10) has the lowest storage overhead (1.4⇥)
among the default redundancy schemes we evaluate, mak-
ing it the hardest to find codes that meet the target MT T DL
and reduce overhead even further. Despite these constraints,
HeART enables a 14% space reduction for H-4A, H-4B and
S-8C disks by suggesting a (24,20) code and a reduction of
11% for S-8E and S-12E disks by suggesting a (21,17) code.

Next, we measure HeART’s performance when using
(9,6) as the default redundancy scheme. We observe a space
reduction of 16% on H-4A, H-4B and S-8C disks by using
the maximum allowed (15,12) redundancy scheme. For S-
8E and S-12E disks, HeART suggests shorter (13,10) code
lengths compared to the above three disk groups in order to
address their relatively higher determined AFR values, lead-
ing to a space reduction of 13%.



Figure 11: Overall space reduction achieved by HeART on the
Backblaze dataset over the complete lifetime of every disk group,
for erasure codes as the default scheme. For a maximum code di-
mension of up to 2 ⇥ rde f , we observe between 6 � 7.5% space
reduction and for a maximum code dimension of up to 4⇥ rde f , we
observe between 10 � 12% space reduction, translating to actual
space savings of 40�80 PBs.

Finally, we also include the cost reduction for the canoni-
cal redundancy scheme, 3-replication, for completeness. We
see that HeART enables 33% space reduction for all disk
groups. We note that if replication is employed primarily
for availability, that data may not be a candidate for tuning
redundancy through HeART.

For H-4A, H-4B and S-8C disks, HeART chose the 2⇥
max stripe-length for all three evaluated default redundancy
schemes, extracting the maximum cost reduction (as ex-
plained in Table 2). Even with the maximum allowed stripe
length, the MT T DLs for the above disks are approximately
2.5⇥ higher than the target MT T DL value, suggesting fur-
ther storage cost reductions if one is allowed even longer
codes.

Overall cost reduction. To highlight the overall cost re-
duction achieved on the Backblaze disk fleet, we show the
capacity-weighted cost savings in Fig. 11. This cost re-
duction is over the whole lifetime of the disks (including
the unoptimized infancy and wearout periods) and for all
six disk groups (including the unoptimized S-4 disks). We
only show the benefits for the erasure coding schemes we
evaluated, leaving out 3-way replication, since erasure codes
are the more popular choice for data durability. The overall
cost reduction achieved with the maximum stripe dimension
being 2⇥ the default redundancy scheme is approximately
6% when using (14,10) and approximately 7.5% when us-
ing (9,6) as the default. If we relax the constraint of the
maximum stripe dimension to 4⇥ the dimension of the de-
fault redundancy scheme, we can expect to achieve between
10� 12% overall space reduction. These modest percent-
age savings translate to significant savings in terms of actual
storage space in large-scale clusters. For example, as shown
on the right-side y-axis in Fig. 11, savings in storage space
for the the Backblaze cluster range between 40�80 PBs.

Figure 12: The effect of varying Tf lat (AFR flatness threshold) on
the H-4B disk group’s AFR curve. Larger Tf lat implies a higher
useful life AFR along with a larger useful life period. The default
value for Tf lat in HeART is 0.5.

4.3 Sensitivity analysis
There are several configuration parameters that govern the

behavior of HeART, of which most are dependent on the
ready-made tools we have used for different components
of our system (e.g., the threshold for anomaly scores when
using RRCF for anomaly detection). There are, however,
two fundamental parameters that are independent of which
anomaly detector or change point detector is used.

Before going into the details about the two parameters, we
note that the modulation of both the parameters only has an
effect on the gains that our optimization can yield. Neither
of them affects correctness of our framework or protection
of data in any way. This allows operators of cluster storage
systems to start with conservative values, observe the AFR
behavior of their disks and accordingly choose apt values to
minimize their costs without risking not reaching their relia-
bility target. We next discuss the two parameters.

Flatness parameter (Tf lat ): Tf lat is used to deduce the
end of the infant mortality period. As mentioned in Sec-
tion 3.4, the end of infancy is defined as the first 30+ day
period beyond the change point detected after the first quar-
ter such that the difference between maximum and minimum
observed AFR is below the threshold Tf lat . Thus, Tf lat essen-
tially determines the flatness in the AFR curve for a given pe-
riod. Currently, we define Tf lat to be 0.5. A larger Tf lat value
will reduce the length of infancy until it reaches 90 days, be-
yond which it will have no effect. A lower Tf lat will enforce
a stricter flatness criteria, typically causing end of infancy to
be declared late. Ending infancy sooner potentially causes
HeART to choose a larger value as the determined useful life
AFR. This, in turn causes HeART to choose a stronger re-
dundancy scheme (with higher space overhead) compared to
one that would have been chosen with the determined AFR
value derived as a result of a lower Tf lat value. This reduces
the achievable savings within the useful life period of the



disk group. As a tradeoff, we get a larger useful life period
with a larger Tf lat , since not only does infancy end sooner,
but also the onset of wearout stage is postponed, since the
increased useful life AFR now has higher tolerance to AFR
variances throughout the useful life.

Fig. 12 shows the effect of varying Tf lat on H-4B disks.
We show the results for two different values Tf lat = 0.3 and
Tf lat = 0.5. When Tf lat was set to 0.3, we can see HeART
declaring end of infancy at close to 100 days. Despite the
buffer added to the determined useful life AFR at the end
of infancy, the fluctuation in monthly AFRs caused a spike
on day 394 to rise above the determined useful life AFR,
causing HeART to announce end of useful life. In contrast,
when Tf lat = 0.5, infancy was declared to end on day 91,
and the determined AFR value was high enough to tolerate
the spike on day 394, increasing the useful life period by a
significant amount.

Useful life AFR buffer: The AFR buffer is the conserva-
tive padding added to the useful life AFR determined at the
end of infancy. Currently, the useful life AFR is determined
as the AFR value at the end of infancy plus an additional
buffer, the tunable AFR buffer parameter. The choice of the
buffer value has similar tradeoffs to the flatness parameters
discussed above. A high buffer value implies a more con-
servative approach to setting the determined useful life AFR.
This will prolong the useful life period, but restrict the tuning
of the redundancy scheme due to the high useful life AFR
value determined (and thus reducing benefits). In contrast,
setting a low buffer value will shorten the useful life period
but allow more cost reductions during the useful life. Opera-
tors can set the buffer based on AFR fluctuations observed in
their storage systems, which can stem anywhere from work-
load patterns to operational conditions.

5 Changes of the HeART (discussion)
HeART suggests redundancy schemes for use with each

disk group during its useful life period, enabling safe redun-
dancy tuning based on observed failure data. HeART rec-
ommends using the default redundancy scheme employed in
the cluster during infancy and wearout periods. Exploiting
HeART’s recommendations in a cluster storage system re-
quires some minor data placement policy changes and some
online data redistribution. This section discusses both. Fur-
thermore, since HeART changes redundancy schemes in re-
sponse to the observed AFR curve, we also discuss estimat-
ing the required sample size (number of disks) for statistical
confidence.

Data placement. HeART suggests per-disk-group redun-
dancy schemes for hitting a particular data reliability target,
based on observed AFRs. To use HeART safely, all data
stored using a tailored redundancy scheme must be fully
stored within the corresponding disk group—that is, all n
chunks (data and parity chunks) of a stripe must be stored on
disks within the same group. This restriction may be incom-

patible with some data placement schemes, such as Ceph’s
CRUSH [42, 43], and will add some complexity (conform-
ing to disk group boundaries) to schemes that choose based
on considerations like available capacity and load balancing.

Data redistribution. Many cluster storage systems in-
clude data redistribution mechanisms to deal with planned
decommissioning and capacity/load balancing. Use of
HeART will also require their use for transitioning from the
default redundancy scheme (rde f ) to a disk-group-specific
scheme (rDG), after infancy, and back again upon onset of
wearout. Although this introduces extra redistribution load,
we expect it to have a small impact on overall cluster load—
at worst, it is two redistributions of the data over the 3–5 year
deployment time of the disks.

Bulk changes should not be needed. On its face,
HeART’s redundancy scheme transitions appear to require
massive redistributions, all at once. Not only would this be
a load spike concern, not assuaged by the “not much load
over the lifetime” argument, but it also potentially creates
a capacity concern: a bulk transition from rDG to the less
space-efficient rde f , at the end of the useful life period, could
require more space than is available. Fortunately, we do not
expect this issue to arise in practice, as disks of a disk group
are deployed over time rather than all at once (e.g., see Fig. 8)
Since end of useful life is determined based on deployment
age, rolling deployment will mean rolling wearout. Capac-
ity exhaustion due to any given transition (of one subset of
disks from one disk group to another) should not be as large
a driver of slack capacity requirements, in practice, as other
sources of variability (e.g., user demand). Furthermore, tran-
sitions from rde f to rDG at the onset of useful life period can
be gradually executed as this only reduces the achieved ca-
pacity savings and does not affect correctness or reliability
guarantees.

Accurately characterizing bathtub curves. HeART
is an online framework actively engaging with each disk
group’s bathtub curve. Naturally, it is important to under-
stand how many disks one needs to observe before one can
be confident of behavior of the bathtub curve of a particular
disk group. There are several statistical bounds on the num-
ber of samples needed to reach a specified statistical confi-
dence level. One technique is to use the Chernoff-Hoeffding
Theorem [16, 1] to obtain a bound on the sample size (num-
ber of disks) required. For example, to achieve 99% con-
fidence that the AFR of S-4 disks (which have an AFR of
3.29%, refer Table 2) is within the configured AFR-buffer of
its determined useful life AFR (recall from Section 4, that
the default AFR-buffer is an additional 25% over the useful
life AFR value determined by HeART), the number of disks
required is approximately 4,000. More advanced statistical
techniques may provide tighter bounds and thereby indicate
fewer required devices in a disk group.



6 HeART-less alternatives (related work)
The closest related work can be classified into disk re-

liability studies that identify reliability heterogeneity, tech-
niques to predict disk failures using reliability data, and sys-
tems that automate redundancy scheme selection.

Numerous studies have been conducted to characterize
disk failures [7, 10, 15, 18, 20, 23, 24, 29, 30, 31, 34].
Among the studies conducted on large production systems,
Shah and Elerath [10, 34], Pinheiro et al. [24] and Ma et
al. [20] independently verify that failure rates are highly cor-
related with disk manufacturers. These studies were con-
ducted on the NetApp, Google and EMC disk fleets, respec-
tively. Schroeder and Gibson also conducted a similar re-
liability study on disks from a high performance comput-
ing environment [30], not only highlighting reliability het-
erogeneity between disks deployed across systems, but also
pointing out that disk datasheet reliability is very different
from reliability observed in the field. Recently, Schroeder
et al. [32] highlighted the heterogeneity in the reliability of
different SSD technologies from four different manufactur-
ers. Also, Schroeder et al. [29] reported heterogeneity of
partial disk failures (sector errors) across makes/models for
NetApp’s disk fleet.

There have been numerous works that predict disk fail-
ures [14, 22, 36, 41, 47]. Among the more recent ones,
Mahdisoltani et al. [21] use machine learning techniques to
predict occurrence of partial disk errors using S.M.A.R.T.
data. Anantharaman et al. [4] use random forests and re-
current neural networks to predict remaining useful life for
HDDs. Both studies were performed on the Backblaze
dataset.

Thereska et al. [37] built a self-prediction capability in
cluster storage systems to assist in making informed redun-
dancy and data placement decisions by answering what-if
questions. It differs from HeART in that it does not per-
form and adapt to online analysis of reliability characteris-
tics, relying on pre-knowledge of reliability metrics. Keeton
et al. [19] built an optimization framework that automatically
provided data dependability solutions to protect against site-
level disasters by using information like workload patterns,
and cost of recovery. This work also assumes prior knowl-
edge of failure rates. Tempo [35] is a system that proac-
tively creates replicas to ensure high durability in wide-area
network distributed systems. It does this economically by
allowing the user to specify a maximum maintenance band-
width, and its design revolves around the efficient use of a
distributed hash table. Carbonite [8] is a replica maintenance
solution for distributed storage systems spread over the Inter-
net, which makes efficient use of bandwidth in maintaining
redundancy in the face of transient failures.

7 Conclusion
HeART enables more cost-effective data reliability for

cluster storage systems. By robustly estimating per-disk-

group AFRs and selecting the best redundancy settings for
each, it avoids the space-inefficiency of one-size-fits-all re-
dundancy schemes. Analysis of failure data for a large-scale
production storage cluster shows that using HeART could
achieve target data reliabilities with 11–33% fewer disks than
popular configurations, offering huge potential cost savings.
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