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Abstract

This paper presents a new cluster architecture for low-power
data-intensive computing. FAWN couples low-power embed-
ded CPUs to small amounts of local flash storage, and balances
computation and I/O capabilities to enable efficient, massively
parallel access to data.

The key contributions of this paper are the principles of
the FAWN architecture and the design and implementation
of FAWN-KV—a consistent, replicated, highly available, and
high-performance key-value storage system built on a FAWN
prototype. Our design centers around purely log-structured
datastores that provide the basis for high performance on flash
storage, as well as for replication and consistency obtained
using chain replication on a consistent hashing ring. Our eval-
uation demonstrates that FAWN clusters can handle roughly
350 key-value queries per Joule of energy—two orders of
magnitude more than a disk-based system.
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1 Introduction

Large-scale data-intensive applications, such as high-
performance key-value storage systems, are growing in both
size and importance; they now are critical parts of major In-
ternet services such as Amazon (Dynamo [10]), LinkedIn
(Voldemort [41]), and Facebook (memcached [33]).

The workloads these systems support share several charac-
teristics: they are I/O, not computation, intensive, requiring
random access over large datasets; they are massively parallel,
with thousands of concurrent, mostly-independent operations;
their high load requires large clusters to support them; and
the size of objects stored is typically small, e.g., 1 KB values
for thumbnail images, 100s of bytes for wall posts, twitter
messages, etc.

The clusters that serve these workloads must provide both
high performance and low cost operation. Unfortunately,
small-object random-access workloads are particularly ill-
served by conventional disk-based or memory-based clusters.
The poor seek performance of disks makes disk-based systems
inefficient in terms of both system performance and perfor-
mance per watt. High performance DRAM-based clusters,
storing terabytes or petabytes of data, are both expensive and
consume a surprising amount of power—two 2 GB DIMMs
consume as much energy as a 1 TB disk.

The power draw of these clusters is becoming an increasing
fraction of their cost—up to 50% of the three-year total cost
of owning a computer. The density of the datacenters that
house them is in turn limited by their ability to supply and
cool 10–20 kW of power per rack and up to 10–20 MW per
datacenter [25]. Future datacenters may require as much as
200 MW [25], and datacenters are being constructed today
with dedicated electrical substations to feed them.

These challenges necessitate the question: Can we build a
cost-effective cluster for data-intensive workloads that uses
less than a tenth of the power required by a conventional
architecture, but that still meets the same capacity, availability,
throughput, and latency requirements?

In this paper, we present the FAWN architecture—a Fast
Array of Wimpy Nodes—that is designed to address this ques-
tion. FAWN couples low-power, efficient embedded CPUs
with flash storage to provide efficient, fast, and cost-effective
access to large, random-access data. Flash is significantly
faster than disk, much cheaper than the equivalent amount of
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DRAM, and consumes less power than either. Thus, it is a par-
ticularly suitable choice for FAWN and its workloads. FAWN
creates a well-matched system architecture around flash: each
node can use the full capacity of the flash without memory or
bus bottlenecks, but does not waste excess power.

To show that it is practical to use these constrained nodes
as the core of a large system, we have designed and built
the FAWN-KV cluster-based key-value store, which provides
storage functionality similar to that used in several large enter-
prises [10, 41, 33]. FAWN-KV is designed specifically with
the FAWN hardware in mind, and is able to exploit the ad-
vantages and avoid the limitations of wimpy nodes with flash
memory for storage.

The key design choice in FAWN-KV is the use of a log-
structured per-node datastore called FAWN-DS that provides
high performance reads and writes using flash memory. This
append-only data log provides the basis for replication and
strong consistency using chain replication [54] between nodes.
Data is distributed across nodes using consistent hashing, with
data split into contiguous ranges on disk such that all replica-
tion and node insertion operations involve only a fully in-order
traversal of the subset of data that must be copied to a new
node. Together with the log structure, these properties com-
bine to provide fast failover and fast node insertion, and they
minimize the time the affected datastore’s key range is locked
during such operations—for a single node failure and recovery,
the affected key range is blocked for at most 100 milliseconds.

We have built a prototype 21-node FAWN cluster using
500 MHz embedded CPUs. Each node can serve up to 1300
256-byte queries per second, exploiting nearly all of the raw
I/O capability of their attached flash devices, and consumes
under 5 W when network and support hardware is taken into
account. The FAWN cluster achieves 364 queries per Joule—
two orders of magnitude better than traditional disk-based
clusters.

In Section 5, we compare a FAWN-based approach to other
architectures, finding that the FAWN approach provides signif-
icantly lower total cost and power for a significant set of large,
high-query-rate applications.

2 Why FAWN?

The FAWN approach to building well-matched cluster systems
has the potential to achieve high performance and be funda-
mentally more energy-efficient than conventional architectures
for serving massive-scale I/O and data-intensive workloads.
We measure system performance in queries per second and
measure energy-efficiency in queries per Joule (equivalently,
queries per second per Watt). FAWN is inspired by several
fundamental trends:

Increasing CPU-I/O Gap: Over the last several decades, the
gap between CPU performance and I/O bandwidth has contin-
ually grown. For data-intensive computing workloads, storage,

network, and memory bandwidth bottlenecks often cause low
CPU utilization.

FAWN Approach: To efficiently run I/O-bound data-
intensive, computationally simple applications, FAWN uses
wimpy processors selected to reduce I/O-induced idle cycles
while maintaining high performance. The reduced processor
speed then benefits from a second trend:

CPU power consumption grows super-linearly with speed.
Operating processors at higher frequency requires more energy,
and techniques to mask the CPU-memory bottleneck come at
the cost of energy efficiency. Branch prediction, speculative
execution, out-of-order/superscalar execution and increasing
the amount of on-chip caching all require additional processor
die area; modern processors dedicate as much as half their
die to L2/3 caches [21]. These techniques do not increase the
speed of basic computations, but do increase power consump-
tion, making faster CPUs less energy efficient.

FAWN Approach: A FAWN cluster’s slower CPUs dedi-
cate more transistors to basic operations. These CPUs exe-
cute significantly more instructions per Joule than their faster
counterparts: multi-GHz superscalar quad-core processors can
execute approximately 100 million instructions per Joule, as-
suming all cores are active and avoid stalls or mispredictions.
Lower-frequency in-order CPUs, in contrast, can provide over
1 billion instructions per Joule—an order of magnitude more
efficient while still running at 1/3rd the frequency.

Worse yet, running fast processors below their full capacity
draws a disproportionate amount of power:

Dynamic power scaling on traditional systems is surpris-
ingly inefficient. A primary energy-saving benefit of dynamic
voltage and frequency scaling (DVFS) was its ability to reduce
voltage as it reduced frequency [56], but modern CPUs already
operate near minimum voltage at the highest frequencies.

Even if processor energy was completely proportional to
load, non-CPU components such as memory, motherboards,
and power supplies have begun to dominate energy consump-
tion [3], requiring that all components be scaled back with
demand. As a result, running a modern, DVFS-enabled sys-
tem at 20% of its capacity may still consume over 50% of its
peak power [52]. Despite improved power scaling technology,
systems remain most energy-efficient when operating at peak
utilization.

A promising path to energy proportionality is turning ma-
chines off entirely [7]. Unfortunately, these techniques do
not apply well to FAWN-KV’s target workloads: key-value
systems must often meet service-level agreements for query
response throughput and latency of hundreds of milliseconds;
the inter-arrival time and latency bounds of the requests pre-
vents shutting machines down (and taking many seconds to
wake them up again) during low load [3].

Finally, energy proportionality alone is not a panacea: sys-
tems ideally should be both proportional and efficient at 100%
load. In this paper, we show that there is significant room to
improve energy efficiency, and the FAWN approach provides
a simple way to do so.
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3 Design and Implementation

We describe the design and implementation of the system
components from the bottom up: a brief overview of flash
storage (Section 3.2), the per-node FAWN-DS datastore (Sec-
tion 3.3), and the FAWN-KV cluster key-value lookup system
(Section 3.4), including caching, replication, and consistency.

3.1 Design Overview
Figure 1 gives an overview of the entire FAWN system. Client
requests enter the system at one of several front-ends. The
front-end nodes forward the request to the back-end FAWN-
KV node responsible for serving that particular key. The
back-end node serves the request from its FAWN-DS datastore
and returns the result to the front-end (which in turn replies to
the client). Writes proceed similarly.

The large number of back-end FAWN-KV storage nodes are
organized into a ring using consistent hashing. As in systems
such as Chord [48], keys are mapped to the node that follows
the key in the ring (its successor). To balance load and reduce
failover times, each physical node joins the ring as a small
number (V ) of virtual nodes, each virtual node representing a
virtual ID (“VID ”) in the ring space. Each physical node is
thus responsible for V different (non-contiguous) key ranges.
The data associated with each virtual ID is stored on flash
using FAWN-DS.

3.2 Understanding Flash Storage
Flash provides a non-volatile memory store with several sig-
nificant benefits over typical magnetic hard disks for random-
access, read-intensive workloads—but it also introduces sev-
eral challenges. Three characteristics of flash underlie the
design of the FAWN-KV system described throughout this
section:

1. Fast random reads: (� 1 ms), up to 175 times faster
than random reads on magnetic disk [35, 40].

2. Efficient I/O: Flash devices consume less than one Watt
even under heavy load, whereas mechanical disks can
consume over 10 W at load. Flash is over two orders of
magnitude more efficient than mechanical disks in terms
of queries/Joule.

3. Slow random writes: Small writes on flash are very
expensive. Updating a single page requires first erasing
an entire erase block (128 KB–256 KB) of pages, and
then writing the modified block in its entirety. As a result,
updating a single byte of data is as expensive as writing
an entire block of pages [37].

Modern devices improve random write performance using
write buffering and preemptive block erasure. These tech-
niques improve performance for short bursts of writes, but
recent studies show that sustained random writes still perform
poorly on these devices [40].

FAWN Back-end

FAWN-DS

Front-end

Front-end

Switch

Requests

Responses

E2
A1

B1

D1

E1

F1
D2

A2

F2
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Figure 1: FAWN-KV Architecture.

These performance problems motivate log-structured tech-
niques for flash filesystems and data structures [36, 37, 23].
These same considerations inform the design of FAWN’s node
storage management system, described next.

3.3 The FAWN Data Store

FAWN-DS is a log-structured key-value store. Each store
contains values for the key range associated with one virtual
ID. It acts to clients like a disk-based hash table that supports
Store, Lookup, and Delete.1

FAWN-DS is designed specifically to perform well on flash
storage and to operate within the constrained DRAM available
on wimpy nodes: all writes to the datastore are sequential,
and reads require a single random access. To provide this
property, FAWN-DS maintains an in-DRAM hash table (Hash
Index) that maps keys to an offset in the append-only Data Log
on flash (Figure 2a). This log-structured design is similar to
several append-only filesystems [42, 15], which avoid random
seeks on magnetic disks for writes.

Mapping a Key to a Value. FAWN-DS uses an in-memory
(DRAM) Hash Index to map 160-bit keys to a value stored
in the Data Log. It stores only a fragment of the actual key
in memory to find a location in the log; it then reads the full
key (and the value) from the log and verifies that the key it
read was, in fact, the correct key. This design trades a small
and configurable chance of requiring two reads from flash (we
set it to roughly 1 in 32,768 accesses) for drastically reduced
memory requirements (only six bytes of DRAM per key-value
pair).

Figure 3 shows the pseudocode that implements this design
for Lookup. FAWN-DS extracts two fields from the 160-bit
key: the i low order bits of the key (the index bits) and the next
15 low order bits (the key fragment). FAWN-DS uses the index
bits to select a bucket from the Hash Index, which contains
2i hash buckets. Each bucket is only six bytes: a 15-bit key
fragment, a valid bit, and a 4-byte pointer to the location in
the Data Log where the full entry is stored.

1We differentiate datastore from database to emphasize that we do not
provide a transactional or relational interface.
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Figure 2: (a) FAWN-DS appends writes to the end of the Data Log. (b) Split requires a sequential scan of the data region, transfer-
ring out-of-range entries to the new store. (c) After scan is complete, the datastore list is atomically updated to add the new store.
Compaction of the original store will clean up out-of-range entries.

Lookup proceeds, then, by locating a bucket using the index
bits and comparing the key against the key fragment. If the
fragments do not match, FAWN-DS uses hash chaining to
continue searching the hash table. Once it finds a matching
key fragment, FAWN-DS reads the record off of the flash. If
the stored full key in the on-flash record matches the desired
lookup key, the operation is complete. Otherwise, FAWN-DS
resumes its hash chaining search of the in-memory hash table
and searches additional records. With the 15-bit key fragment,
only 1 in 32,768 retrievals from the flash will be incorrect and
require fetching an additional record.

The constants involved (15 bits of key fragment, 4 bytes
of log pointer) target the prototype FAWN nodes described in
Section 4. A typical object size is between 256 B to 1 KB,
and the nodes have 256 MB of DRAM and approximately
4 GB of flash storage. Because each node is responsible for V
key ranges (each of which has its own datastore file), a single
physical node can address 4 GB * V bytes of data. Expand-
ing the in-memory storage to 7 bytes per entry would permit
FAWN-DS to address 512 GB of data per key range. While
some additional optimizations are possible, such as rounding
the size of objects stored in flash or reducing the number of
bits used for the key fragment (and thus incurring, e.g., a 1-in-
1000 chance of having to do two reads from flash), the current
design works well for the target key-value workloads we study.

Reconstruction. Using this design, the Data Log contains
all the information necessary to reconstruct the Hash Index
from scratch. As an optimization, FAWN-DS periodically
checkpoints the index by writing the Hash Index and a pointer
to the last log entry to flash. After a failure, FAWN-DS uses
the checkpoint as a starting point to reconstruct the in-memory
Hash Index quickly.

Virtual IDs and Semi-random Writes. A physical node has
a separate FAWN-DS datastore file for each of its virtual IDs,
and FAWN-DS appends new or updated data items to the ap-
propriate datastore. Sequentially appending to a small number
of files is termed semi-random writes. Prior work by Nath
and Gibbons observed that with many flash devices, these

/* KEY = 0x93df7317294b99e3e049, 16 index bits */
INDEX = KEY & 0xffff; /* = 0xe049; */
KEYFRAG = (KEY >> 16) & 0x7fff; /* = 0x19e3; */
for i = 0 to NUM HASHES do

bucket = hash[i](INDEX);
if bucket.valid && bucket.keyfrag==KEYFRAG &&

readKey(bucket.offset)==KEY then
return bucket;

end if
{Check next chain element...}

end for
return NOT FOUND;

Figure 3: Pseudocode for hash bucket lookup in FAWN-DS.

semi-random writes are nearly as fast as a single sequential
append [36]. We take advantage of this property to retain fast
write performance while allowing key ranges to be stored in in-
dependent files to speed the maintenance operations described
below. We show in Section 4 that these semi-random writes
perform sufficiently well.

3.3.1 Basic functions: Store, Lookup, Delete

Store appends an entry to the log, updates the corresponding
hash table entry to point to this offset within the Data Log, and
sets the valid bit to true. If the key written already existed, the
old value is now orphaned (no hash entry points to it) for later
garbage collection.
Lookup retrieves the hash entry containing the offset, in-

dexes into the Data Log, and returns the data blob.
Delete invalidates the hash entry corresponding to the

key by clearing the valid flag and writing a Delete entry to the
end of the data file. The delete entry is necessary for fault-
tolerance—the invalidated hash table entry is not immediately
committed to non-volatile storage to avoid random writes, so a
failure following a delete requires a log to ensure that recovery
will delete the entry upon reconstruction. Because of its log
structure, FAWN-DS deletes are similar to store operations
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with 0-byte values. Deletes do not immediately reclaim space
and require compaction to perform garbage collection. This
design defers the cost of a random write to a later sequential
write operation.

3.3.2 Maintenance: Split, Merge, Compact

Inserting a new virtual node into the ring causes one key
range to split into two, with the new virtual node gaining
responsibility for the first part of it. Nodes handling these
VIDs must therefore Split their datastore into two datastores,
one for each key range. When a virtual node departs the
system, two adjacent key ranges must similarly Merge into a
single datastore. In addition, a virtual node must periodically
Compact its datastores to clean up stale or orphaned entries
created by Split, Store, and Delete.

The design of FAWN-DS ensures that these maintenance
functions work well on flash, requiring only scans of one
datastore and sequential writes into another. We briefly discuss
each operation in turn.
Split parses the Data Log sequentially, writing each entry

in a new datastore if its key falls in the new datastore’s range.
Mergewrites every log entry from one datastore into the other
datastore; because the key ranges are independent, it does so
as an append. Split and Merge propagate delete entries into
the new datastore.
Compact cleans up entries in a datastore, similar to

garbage collection in a log-structured filesystem. It skips
entries that fall outside of the datastore’s key range, which
may be left-over after a split. It also skips orphaned entries
that no in-memory hash table entry points to, and then skips
any delete entries corresponding to those entries. It writes all
other valid entries into the output datastore.

3.3.3 Concurrent Maintenance and Operation

All FAWN-DS maintenance functions allow concurrent read
and write access to the datastore. Stores and Deletes
only modify hash table entries and write to the end of the log.

The maintenance operations (Split, Merge, and
Compact) sequentially parse the Data Log, which may be
growing due to deletes and stores. Because the log is append-
only, a log entry once parsed will never be changed. These
operations each create one new output datastore logfile. The
maintenance operations therefore run until they reach the end
of the log, and then briefly lock the datastore, ensure that all
values flushed to the old log have been processed, update the
FAWN-DS datastore list to point to the newly created log, and
release the lock (Figure 2c). The lock must be held while
writing in-flight appends to the log and updating datastore
list pointers, which typically takes 20–30 ms at the end of a
Split or Merge (Section 4.3).

put(key, value, id)

get(key, id)

response, id

Client interface                    Front-end                 Back-end interface                  Backend

DHT

Node manager

Response Cache

Log structured Data Store

store(key, value, id)

lookup(key, id)

response, id

delete(key, id)

(network messages)

Figure 4: FAWN-KV Interfaces—Front-ends manage back-
ends, route requests, and cache responses. Back-ends use FAWN-
DS to store key-value pairs.

3.4 The FAWN Key-Value System

Figure 4 depicts FAWN-KV request processing. Client appli-
cations send requests to front-ends using a standard put/get
interface. Front-ends send the request to the back-end node
that owns the key space for the request. The back-end node
satisfies the request using its FAWN-DS and replies to the
front-ends.

In a basic FAWN implementation, clients link against a
front-end library and send requests using a local API. Extend-
ing the front-end protocol over the network is straightforward—
for example, we have developed a drop-in replacement for the
memcached distributed memory cache, enabling a collection
of FAWN nodes to appear as a single, robust memcached
server.

3.4.1 Consistent Hashing: Key Ranges to Nodes

A typical FAWN cluster will have several front-ends and many
back-ends. FAWN-KV organizes the back-end VIDs into a
storage ring-structure using consistent hashing, similar to the
Chord DHT [48]. FAWN-KV does not use DHT routing—
instead, front-ends maintain the entire node membership list
and directly forward queries to the back-end node that contains
a particular data item.

Each front-end node manages the VID membership list
and queries for a large contiguous chunk of the key space
(in other words, the circular key space is divided into pie-
wedges, each owned by a front-end). A front-end receiving
queries for keys outside of its range forwards the queries to the
appropriate front-end node. This design either requires clients
to be roughly aware of the front-end mapping, or doubles the
traffic that front-ends must handle, but it permits front ends to
cache values without a cache consistency protocol.

The key space is allocated to front-ends by a single man-
agement node; we envision this node being replicated using a
small Paxos cluster [27], but we have not (yet) implemented
this. There would be 80 or more back-end nodes per front-end
node with our current hardware prototypes, so the amount
of information this management node maintains is small and
changes infrequently—a list of 125 front-ends would suffice
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Figure 5: Consistent Hashing with 5 physical nodes and 2 virtual
IDs each.

for a 10,000 node FAWN cluster.2

When a back-end node joins, it obtains the list of front-end
IDs. Each of its virtual nodes uses this list to determine which
front-end to contact to join the ring, one VID at a time. We
chose this design so that the system would be robust to front-
end node failures: The back-end node identifier (and thus,
what keys it is responsible for) is a deterministic function of
the back-end node ID. If a front-end node fails, data does not
move between back-end nodes, though virtual nodes may have
to attach to a new front-end.

The FAWN-KV ring uses a 160-bit circular ID space for
VIDs and keys. Virtual IDs are hashed identifiers derived from
the node’s address. Each VID owns the items for which it is
the item’s successor in the ring space (the node immediately
clockwise in the ring). As an example, consider the cluster
depicted in Figure 5 with five physical nodes, each of which
has two VIDs. The physical node A appears as VIDs A1 and
A2, each with its own 160-bit identifiers. VID A1 owns key
range R1, VID B1 owns range R2, and so on.

Consistent hashing provides incremental scalability without
global data movement: adding a new VID moves keys only at
the successor of the VID being added. We discuss below (Sec-
tion 3.4.4) how FAWN-KV uses the single-pass, sequential
Split and Merge operations in FAWN-DS to handle such
changes efficiently.

3.4.2 Caching Prevents Wimpy Hot-Spots

FAWN-KV caches data using a two-level cache hierarchy.
Back-end nodes implicitly cache recently accessed data in their
filesystem buffer cache. While our current nodes (Section 4)
can read at about 1300 queries per second from flash, they can
locally retrieve 85,000 queries per second if the working set fits
completely in buffer cache. The FAWN front-end maintains a
small, high-speed query cache that helps reduce latency and
ensures that if the load becomes skewed to only one or a few

2We do not use consistent hashing to determine this mapping because the
number of front-end nodes may be too small to achieve good load balance.
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Figure 6: Overlapping Chains in the Ring – Each node in the
consistent hashing ring is part of R = 3 chains.

keys, those keys are served by a fast cache instead of all hitting
a single back-end node.

3.4.3 Replication and Consistency

FAWN-KV offers a configurable replication factor for fault
tolerance. Items are stored at their successor in the ring space
and at the R−1 following virtual IDs. FAWN-KV uses chain
replication [54] to provide strong consistency on a per-key
basis. Updates are sent to the head of the chain, passed along
to each member of the chain via a TCP connection between
the nodes, and queries are sent to the tail of the chain. By
mapping the chain replication to the consistent hashing ring,
each virtual ID in FAWN-KV is part of R different chains: it is
the “tail” for one chain, a “mid” node in R−2 chains, and the
“head” for one. Figure 6 depicts a ring with six physical nodes,
where each has two virtual IDs (V = 2), using a replication
factor of three. In this figure, node C1 is thus the tail for range
R1, mid for range R2, and tail for range R3.

Figure 7 shows a put request for an item in range R1. The
front-end routes the put to the key’s successor, VID A1, which
is the head of the replica chain for this range. After storing the
value in its datastore, A1 forwards this request to B1, which
similarly stores the value and forwards the request to the tail,
C1. After storing the value, C1 sends the put response back
to the front-end, and sends an acknowledgment back up the
chain indicating that the response was handled properly.

For reliability, nodes buffer put requests until they receive
the acknowledgment. Because puts are written to an append-
only log in FAWN-DS and are sent in-order along the chain,
this operation is simple: nodes maintain a pointer to the last
unacknowledged put in their datastore, and increment it when
they receive an acknowledgment. By using a purely log struc-
tured datastore, chain replication with FAWN-KV becomes
simply a process of streaming the growing datastore from node
to node.

Gets proceed as in chain replication—the front-end directly
routes the get to the tail of the chain for range R1, node C1,
which responds to the request. Chain replication ensures that
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Figure 7: Lifecycle of a put with chain replication—puts go to
the head and are propagated through the chain. Gets go directly
to the tail.

any update seen by the tail has also been applied by other
replicas in the chain.

3.4.4 Joins and Leaves

When a node joins a FAWN-KV ring:

1. The new virtual node causes one key range to split into
two.

2. The new virtual node must receive a copy of the R ranges
of data it should now hold, one as a primary and R−1 as
a replica.

3. The front-end must begin treating the new virtual node as
a head or tail for requests in the appropriate key ranges.

4. Virtual nodes down the chain may free space used by key
ranges they are no longer responsible for.

The first step, key range splitting, occurs as described for
FAWN-DS. While this operation can occur concurrently with
the rest (the split and data transmission can overlap), for clarity,
we describe the rest of this process as if the split had already
taken place.

After the key ranges have been split appropriately, the node
must become a working member of R chains. For each of
these chains, the node must receive a consistent copy of the
datastore file corresponding to the key range. The process
below does so with minimal locking and ensures that if the
node fails during the data copy operation, the existing replicas
are unaffected. We illustrate this process in detail in Figure 8
where node C1 joins as a new middle replica for range R2.

Phase 1: Datastore pre-copy. Before any ring member-
ship changes occur, the current tail for the range (VID E1)
begins sending the new node C1 a copy of the datastore log
file. This operation is the most time-consuming part of the
join, potentially requiring hundreds of seconds. At the end of
this phase, C1 has a copy of the log that contains all records
committed to the tail.

Phase 2: Chain insertion, log flush and play-forward.
After C1’s pre-copy phase has completed, the front-end

sends a chain membership message that flushes through the
chain. This message plays two roles: first, it updates each
node’s neighbor state to add C1 to the chain; second, it en-
sures that any in-flight updates sent after the pre-copy phase
completed are flushed to C1.

D1B1

C1

E1
tail for R2

pre-copy

puts gets responses

Pre-copy

Chain insertion, Log flush

D1B1 E1

Old tail for R2

log flush

puts gets responses

C1

Figure 8: Phases of join protocol on node arrival.

More specifically, this message propagates in-order through
B1, D1, and E1, and is also sent to C1. Nodes B1, C1, and
D1 update their neighbor list, and nodes in the current chain
forward the message to their successor in the chain. Updates
arriving at B1 after the reception of the chain membership mes-
sage now begin streaming to C1, and C1 relays them properly
to D1. D1 becomes the new tail of the chain. At this point, B1
and D1 have correct, consistent views of the datastore, but C1
may not: A small amount of time passed between the time that
the pre-copy finished and when C1 was inserted into the chain.
To cope with this, C1 logs updates from B1 in a temporary
datastore, not the actual datastore file for range R2, and does
not update its in-memory hash table. During this phase, C1 is
not yet a valid replica.

All put requests sent to B1 after it received the chain mem-
bership message are replicated at B1, C1, and D1, and D1
forwards the chain membership message directly to E1. Thus,
the receipt of the chain membership message at E1 signals
that no further updates to this range will arrive at E1. The old
tail E1 then pushes all entries that might have arrived in the
time after C1 received the log copy and before C1 was inserted
in the chain, and C1 adds these entries to the R2 datastore.
At the end of this process, E1 sends the chain membership
message back to C1, confirming that all in-flight entries have
been flushed. C1 then merges (appends) the temporary log to
the end of the R2 datastore, updating its in-memory hash table
as it does so. The node briefly locks the temporary log at the
end of the merge to flush these in-flight writes.

After phase 2, C1 is a functioning member of the chain with
a fully consistent copy of the datastore. This process occurs R
times for the new virtual ID—e.g., if R = 3, it must join as a
new head, a new mid, and a new tail for one chain.

Joining as a head or tail: In contrast to joining as a middle
node, joining as a head or tail must be coordinated with the
front-end to properly direct requests to the correct node. The
process for a new head is identical to that of a new mid. To
join as a tail, a node joins before the current tail and replies to
put requests. It does not serve get requests until it is consistent
(end of phase 2)—instead, its predecessor serves as an interim
tail for gets.
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Leave: The effects of a voluntary or involuntary (failure-
triggered) leave are similar to those of a join, except that
the replicas must merge the key range that the node owned.
As above, the nodes must add a new replica into each of the R
chains that the departing node was a member of. This replica
addition is simply a join by a new node, and is handled as
above.

Failure Detection: Nodes are assumed to be fail-stop [47].
Each front-end exchanges heartbeat messages with its back-
end nodes every thb seconds. If a node misses f dthreshold
heartbeats, the front-end considers it to have failed and initi-
ates the leave protocol. Because the Join protocol does not
insert a node into the chain until the majority of log data has
been transferred to it, a failure during join results only in an
additional period of slow-down, not a loss of redundancy.

We leave certain aspects of failure detection for future work.
In addition to assuming fail-stop, we assume that the dominant
failure mode is a node failure or the failure of a link or switch,
but our current design does not cope with a communication
failure that prevents one node in a chain from communicating
with the next while leaving each able to communicate with
the front-ends. We plan to augment the heartbeat exchange to
allow nodes to report their neighbor connectivity.

4 Evaluation
We begin by characterizing the I/O performance of a wimpy
node. From this baseline, we then evaluate how well FAWN-
DS performs on this same node, finding that its performance
is similar to the node’s baseline I/O capability. To further il-
lustrate the advantages of FAWN-DS’s design, we compare its
performance to an implementation using the general-purpose
Berkeley DB, which is not optimized for flash writes.

After characterizing individual node performance, we then
study a prototype FAWN-KV system running on a 21-node
cluster. We evaluate its energy efficiency, in queries per second
per Watt, and then measure the performance effects of node
failures and arrivals. In the following section, we then compare
FAWN to a more traditional cluster architecture designed to
store the same amount of data and meet the same query rates.

Evaluation Hardware: Our FAWN cluster has 21 back-end
nodes built from commodity PCEngine Alix 3c2 devices, com-
monly used for thin-clients, kiosks, network firewalls, wireless
routers, and other embedded applications. These devices have
a single-core 500 MHz AMD Geode LX processor, 256 MB
DDR SDRAM operating at 400 MHz, and 100 Mbit/s Eth-
ernet. Each node contains one 4 GB Sandisk Extreme IV
CompactFlash device. A node consumes 3 W when idle and
a maximum of 6 W when deliberately using 100% CPU, net-
work and flash. The nodes are connected to each other and to
a 27 W Intel Atom-based front-end node using two 16-port
Netgear GS116 GigE Ethernet switches.

Evaluation Workload: FAWN-KV targets read-intensive,
small object workloads for which key-value systems are of-

Seq. Read Rand Read Seq. Write Rand. Write
28.5 MB/s 1424 QPS 24 MB/s 110 QPS

Table 1: Baseline CompactFlash statistics for 1 KB entries. QPS
= Queries/second.

DS Size 1 KB Rand Read 256 B Rand Read
(in queries/sec) (in queries/sec)

10 KB 72352 85012
125 MB 51968 65412
250 MB 6824 5902
500 MB 2016 2449

1 GB 1595 1964
2 GB 1446 1613

3.5 GB 1150 1298

Table 2: Local random read performance of FAWN-DS.

ten used. The exact object sizes are, of course, application
dependent. In our evaluation, we show query performance for
256 byte and 1 KB values. We select these sizes as proxies
for small text posts, user reviews or status messages, image
thumbnails, and so on. They represent a quite challenging
regime for conventional disk-bound systems, and stress the
limited memory and CPU of our wimpy nodes.

4.1 Individual Node Performance
We benchmark the I/O capability of the FAWN nodes using
iozone [22] and Flexible I/O tester [1]. The flash is formatted
with the ext2 filesystem and mounted with the noatime op-
tion to prevent random writes for file access [35]. These tests
read and write 1 KB entries, the lowest record size available
in iozone. The filesystem I/O performance using a 3.5 GB file
is shown in Table 1.

4.1.1 FAWN-DS Single Node Local Benchmarks

Lookup Speed: This test shows the query throughput
achieved by a local client issuing queries for randomly dis-
tributed, existing keys on a single node. We report the average
of three runs (the standard deviations were below 5%). Table 2
shows FAWN-DS 1 KB and 256 byte random read queries/sec
as a function of the DS size. If the datastore fits in the buffer
cache, the node locally retrieves 50–85 thousand queries per
second. As the datastore exceeds the 256 MB of RAM avail-
able on the nodes, a larger fraction of requests go to flash.

FAWN-DS imposes modest overhead from hash lookups,
data copies, and key comparisons, and it must read slightly
more data than the iozone tests (each stored entry has a header).
The resulting query throughput, however, remains high: tests
reading a 3.5 GB datastore using 1 KB values achieved 1,150
queries/sec compared to 1,424 queries/sec from the filesystem.
Using the 256 byte entries that we focus on below achieved
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Figure 9: Sequentially writing to multiple FAWN-DS files results
in semi-random writes.

1,298 queries/sec from a 3.5 GB datastore. By comparison,
the raw filesystem achieved 1,454 random 256 byte reads per
second using Flexible I/O.

Bulk store Speed: The log structure of FAWN-DS ensures
that data insertion is entirely sequential. As a consequence,
inserting two million entries of 1 KB each (2 GB total) into
a single FAWN-DS log sustains an insert rate of 23.2 MB/s
(or nearly 24,000 entries per second), which is 96% of the raw
speed that the flash can be written through the filesystem.

Put Speed: In FAWN-KV, each FAWN node has R ∗V
FAWN-DS files: each virtual ID adds one primary data range,
plus an additional R−1 replicated ranges. A node receiving
puts for different ranges will concurrently append to a small
number of files (“semi-random writes”). Good semi-random
write performance is central to FAWN-DS’s per-range data
layout that enables single-pass maintenance operations. We
therefore evaluate its performance using five flash-based stor-
age devices.

Semi-random performance varies widely by device. Fig-
ure 9 shows the aggregate write performance obtained when
inserting 2GB of data into FAWN-DS using five different flash
drives as the data is inserted into an increasing number of
datastore files. All SATA-based flash drives measured below
use an Intel Atom-based chipset because the Alix3c2 lacks
a SATA port. The relatively low-performance CompactFlash
write speed slows with an increasing number of files. The
2008 Intel X25-M and X25-E, which use log-structured writ-
ing and preemptive block erasure, retain high performance
with up to 256 concurrent semi-random writes for the 2 GB
of data we inserted; both the Mtron Mobi and Memoright GT
drop in performance as the number of files increases. The
key take-away from this evaluation is that Flash devices are
capable of handling the FAWN-DS write workload extremely
well—but a system designer must exercise care in selecting
devices that actually do so.

4.1.2 Comparison with BerkeleyDB

To understand the benefit of FAWN-DS’s log structure, we
compare with a general purpose disk-based database that is not
optimized for Flash. BerkeleyDB provides a simple put/get
interface, can be used without heavy-weight transactions or
rollback, and performs well versus other memory or disk-
based databases. We configured BerkeleyDB using both its
default settings and using the reference guide suggestions for
Flash-based operation [4]. The best performance we achieved
required 6 hours (B-Tree) and 27 hours (Hash) to insert seven
million, 200 byte entries to create a 1.5 GB database. This
corresponds to an insert rate of 0.07 MB/s.

The problem was, of course, small writes: When the BDB
store was larger than the available RAM on the nodes (<
256 MB), both the B-Tree and Hash implementations had
to flush pages to disk, causing many writes that were much
smaller than the size of an erase block.

That comparing FAWN-DS and BDB seems unfair is exactly
the point: even a well-understood, high-performance database
will perform poorly when its write pattern has not been specif-
ically optimized to Flash’s characteristics. We evaluated BDB
on top of NILFS2 [39], a log-structured Linux filesystem
for block devices, to understand whether log-structured writ-
ing could turn the random writes into sequential writes. Un-
fortunately, this combination was not suitable because of
the amount of metadata created for small writes for use in
filesystem checkpointing and rollback, features not needed
for FAWN-KV—writing 200 MB worth of 256 B key-value
pairs generated 3.5 GB of metadata. Other existing Linux log-
structured flash filesystems, such as JFFS2 [23], are designed
to work on raw flash, but modern SSDs, compact flash and
SD cards all include a Flash Translation Layer that hides the
raw flash chips. While future improvements to filesystems can
speed up naive DB performance on flash, the pure log structure
of FAWN-DS remains necessary even if we could use a more
conventional backend: it provides the basis for replication and
consistency across an array of nodes.

4.1.3 Read-intensive vs. Write-intensive Workloads

Most read-intensive workloads have at least some writes. For
example, Facebook’s memcached workloads have a 1:6 ratio
of application-level puts to gets [24]. We therefore measured
the aggregate query rate as the fraction of puts ranged from 0
(all gets) to 1 (all puts) on a single node (Figure 10).

FAWN-DS can handle more puts per second than gets be-
cause of its log structure. Even though semi-random write
performance across eight files on our CompactFlash devices
is worse than purely sequential writes, it still achieves higher
throughput than pure random reads.

When the put-ratio is low, the query rate is limited by the
get requests. As the ratio of puts to gets increases, the faster
puts significantly increase the aggregate query rate. On the
other hand, a pure write workload that updates a small subset
of keys would require frequent cleaning. In our current envi-
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Figure 11: Query throughput on 21-node FAWN-KV system for
1 KB and 256 B entry sizes.

ronment and implementation, both read and write rates slow to
about 700–1000 queries/sec during compaction, bottlenecked
by increased thread switching and system call overheads of
the cleaning thread. Last, because deletes are effectively 0-
byte value puts, delete-heavy workloads are similar to insert
workloads that update a small set of keys frequently. In the
next section, we mostly evaluate read-intensive workloads be-
cause it represents the target workloads for which FAWN-KV
is designed.

4.2 FAWN-KV System Benchmarks
In this section, we evaluate the query rate and power draw of
our 21-node FAWN-KV system.

System Throughput: To measure query throughput, we pop-
ulated the KV cluster with 20 GB of values, and then measured
the maximum rate at which the front-end received query re-
sponses for random keys. We disabled front-end caching for
this experiment. Figure 11 shows that the cluster sustained
roughly 36,000 256 byte gets per second (1,700 per second
per node) and 24,000 1 KB gets per second (1,100 per second
per node). A single node serving a 512 MB datastore over
the network could sustain roughly 1,850 256 byte gets per
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Figure 12: Power consumption of 21-node FAWN-KV system for
256 B values during Puts/Gets.

second per node, while Table 2 shows that it could serve the
queries locally at 2,450 256 byte queries per second per node.
Thus, a single node serves roughly 70% of the sustained rate
that a single FAWN-DS could handle with local queries. The
primary reason for the difference is the addition of network
overhead and request marshaling and unmarshaling. Another
reason for difference is load balance: with random key distri-
bution, some back-end nodes receive more queries than others,
slightly reducing system performance.3

System Power Consumption: Using a WattsUp [55] power
meter that logs power draw each second, we measured the
power consumption of our 21-node FAWN-KV cluster and
two network switches. Figure 12 shows that, when idle, the
cluster uses about 83 W, or 3 Watts per node and 10 W per
switch. During gets, power consumption increases to 99 W,
and during insertions, power consumption is 91 W.4 Peak get
performance reaches about 36,000 256 B queries/sec for the
cluster serving the 20 GB dataset, so this system, excluding
the front-end, provides 364 queries/Joule.

The front-end has a 1 Gbit/s connection to the backend
nodes, so the cluster requires about one low-power front-end
for every 80 nodes—enough front-ends to handle the aggre-
gate query traffic from all the backends (80 nodes * 1500
queries/sec/node * 1 KB / query = 937 Mbit/s). Our prototype
front-end uses 27 W, which adds nearly 0.5 W per node amor-
tized over 80 nodes, providing 330 queries/Joule for the entire
system.

Network switches currently account for 20% of the power
used by the entire system. Our current cluster size affords
the use of a flat network hierarchy, but providing full bisec-
tion bandwidth for a large cluster would require many more
network switches, increasing the ratio of network power to
FAWN node power. Scaling networks to support large deploy-
ments is a problem that affects today’s clusters and remains
an active area of research [2, 18, 16, 19]. While improving the
network energy consumption of large FAWN clusters is a topic

3This problem is fundamental to random load-balanced systems. Terrace
and Freedman [51] recently devised a mechanism for allowing queries to go
to any node using chain replication; in future work, we plan to incorporate
this to allow us to direct queries to the least-loaded replica, which has been
shown to drastically improve load balance.

4Flash writes and erase require higher currents and voltages than reads do,
but the overall put power was lower because FAWN’s log-structured writes
enable efficient bulk writes to flash, so the system spends more time idle.
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Figure 13: Get query rates during node join for max load (top)
and low load (bottom).

of ongoing work, we note that recent fat-tree network topology
designs using many small commodity, low-power switches [2]
would impose only a fixed per-node network power overhead.
Should the application design permit, sacrificing full bisection
bandwidth can trade reduced communication flexibility for
improved network energy efficiency.

4.3 Impact of Ring Membership Changes
Node joins, leaves, or failures require existing nodes to split
merge, and transfer data while still handling puts and gets. In
this section we evaluate the impact of node joins on system
query throughput and the impact of maintenance operations
such as local splits and compaction on single node query
throughput and latency.

Query Throughput During Node Join: In this test, we start
a 20-node FAWN-KV cluster populated with 10 GB of key-
value pairs and begin issuing get requests uniformly at random
to the entire key space. At t=25, we add a node to the ring
and continue to issue get requests to the entire cluster. For
this experiment, we set R = 3 and V = 1. Figure 13 shows the
resulting cluster query throughput during a node join.

The joining node requests pre-copies for R = 3 ranges, one
range for which it is the tail and two ranges as the head and
mid. The three nodes that pre-copy their datastores to the join-
ing node experience a one-third reduction in external query
throughput, serving about 1,000 queries/sec. Pre-copying
data does not cause significant I/O interference with external
requests for data—the pre-copy operation requires only a se-
quential read of the datastore and bulk sends over the network.
The lack of seek penalties for concurrent access on flash to-
gether with the availability of spare network capacity results
in only a small drop in performance during pre-copying. The
other 17 nodes in our cluster are not affected by this join oper-
ation and serve queries at their normal rate. The join operation
completes long after pre-copies finished in this experiment due
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Figure 14: Get query rates during background operations for
high (top) and low (bottom) external query loads.

to the high external query load, and query throughput returns
back to the maximum rate.

The experiment above stresses the cluster by issuing re-
quests at the maximum rate the cluster can handle. But most
systems offer performance guarantees only for loads below
maximum capacity. We run the same experiment above but
with an external query load at about 30% of the maximum
supported query rate. The three nodes sending pre-copies have
enough spare resources available to perform their pre-copy
without affecting their ability to serve external queries, so
the system’s throughput does not drop when the new node is
introduced. The join completes shortly after the pre-copies
finishes.

Query Throughput During Maintenance Operations:
Maintenance operations perform sequential reads of one file
and sequential writes into another. In the node join exper-
iment above, we deferred performing the local split/merge
operations until after the node join completed to minimize the
performance impact during the node join.

Figure 14(top) shows the impact of split, merge, and com-
paction on external get queries sent at high load to the 512 MB
datastore. In this experiment, the key range is initially split
unevenly: 25% of the original key space is split into a sec-
ond FAWN-DS datastore. As a result, the split operation only
writes 25% of its records into the second datastore. Merging
the two datastores back into one is more “intense” than a split
because the merge requires a read and write of nearly every
record in the datastore being merged rather than just a frac-
tion of the records. Consequently, the FAWN-DS file with
fewer records should always be merged into the larger store to
minimize the completion time of the merge operation.

Compaction has a query impact between both split and
merge—compaction must write most of the entries in the log,
except for out-of-range, deleted, or orphaned entries. How-
ever, because it must read and write every valid record in the
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datastore, the length of the operation is typically longer than
either split and merge.

Figure 14(bottom) shows the same experiment with a query
rate set at 30% of the maximum supported, showing that the
impact of maintenance operations on query rate is minimal
when the incoming rate is below half of the node’s maximum
query capacity.

Impact of Split on Query Latency: Figure 15 shows the
distribution of query latency for three workloads: a pure get
workload issuing gets at the maximum rate (Max Load), a 500
requests per second workload with a concurrent Split (Split-
Low Load), and a 1500 requests per second workload with a
Split (Split-High Load).

In general, accesses that hit buffer cache are returned in
300 µs including processing and network latency. When the
accesses go to flash, the median response time is 800 µs. Even
during a split, the median response time remains under 1 ms.
The median latency increases with load, so the max load, get-
only workload has a slightly higher median latency than the
lower load splits.

Many key-value systems care about 99.9th percentile la-
tency guarantees as well as fast average-case performance.
During normal operation, request latency is very low: 99.9%
of requests take under 26.3 ms, and 90% take under 2 ms.
During a split with low external query load, the additional
processing and locking extend 10% of requests above 10 ms.
Query latency increases briefly at the end of a split when the
datastore is locked to atomically add the new datastore. The
lock duration is 20–30 ms on average, but can rise to 100 ms if
the query load is high, increasing queuing delay for incoming
requests during this period. The resulting 99.9%-ile response
time during the low-activity split is 491 ms. For a high-rate
request workload, the incoming request rate is occasionally
higher than can be serviced during the split. Incoming re-
quests are buffered and experience additional queuing delay:
the 99.9%-ile response time is 611 ms. Fortunately, these

worst-case response times are still on the same order as those
worst-case times seen in production key-value systems [10].

With larger values (1KB), query latency during Split in-
creases further due to a lack of flash device parallelism—a
large write to the device blocks concurrent independent reads,
resulting in poor worst-case performance. Modern SSDs, in
contrast, support and require request parallelism to achieve
high flash drive performance [40]; a future switch to these de-
vices could greatly reduce the effect of background operations
on query latency.

We also measured the latency of put requests during normal
operation. With R=1, median put latency was about 500µs,
with 99.9%ile latency extending to 24.5 ms. With R=3, put
requests in chain replication are expected to incur additional
latency as the requests get routed down the chain. Median
latency increased by roughly three times to 1.58 ms, with
99.9%ile latency increasing only to 30 ms.5

5 Alternative Architectures

When is the FAWN approach likely to beat traditional archi-
tectures? We examine this question in two ways. First, we
examine how much power can be saved on a conventional
system using standard scaling techniques. Next, we compare
the three-year total cost of ownership (TCO) for six systems:
three “traditional” servers using magnetic disks, flash SSDs,
and DRAM; and three hypothetical FAWN-like systems using
the same storage technologies.

5.1 Characterizing Conventional Nodes
We first examine a low-power, conventional desktop node
configured to conserve power. The system uses an Intel quad-
core Q6700 CPU with 2 GB DRAM, an Mtron Mobi SSD,
and onboard gigabit Ethernet and graphics.

Power Saving Techniques: We configured the system to use
DVFS with three p-states (2.67 GHz, 2.14 GHz, 1.60 GHz).
To maximize idle time, we ran a tickless Linux kernel (version
2.6.27) and disabled non-system critical background processes.
We enabled power-relevant BIOS settings including ultra-low
fan speed and processor C1E support. Power consumption
was 64 W when idle with only system critical background
processes and 83-90 W with significant load.

Query Throughput: Raw (iozone) random reads achieved
4,771 (256 B) queries/sec and FAWN-DS achieved 4,289
queries/second. The resulting full-load query efficiency was
52 queries/Joule, compared to the 346 queries/Joule of a fully
populated FAWN cluster. Even a three-node FAWN cluster

5When the workload consisted of a mixture of puts and gets, 99.9%ile
latency increased significantly—our naive implementation used a single queue
for all requests, so puts propagating between neighbors would often get queued
behind a large set of external get requests, further increasing latency. Using
separate queues for external messages and neighbor messages would reduce
this worst-case latency.
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System / Storage QPS Watts Queries
Joule

Embedded Systems
Alix3c2 / Sandisk(CF) 1298 3.75 346
Soekris / Sandisk(CF) 334 3.75 89

Traditional Systems
Desktop / Mobi(SSD) 4289 83 51.7
MacbookPro / HD 66 29 2.3
Desktop / HD 171 87 1.96

Table 3: Query performance and efficiency for different ma-
chine configurations.

that achieves roughly the same query throughput as the desk-
top, including the full power draw of an unpopulated 16-port
gigabit Ethernet switch (10 W), achieved 240 queries/Joule.
As expected from the small idle-active power gap of the desk-
top (64 W idle, 83 W active), the system had little room for
“scaling down”—the queries/Joule became drastically worse as
the load decreased. The idle power of the desktop is dominated
by fixed power costs, while half of the idle power consump-
tion of the 3-node FAWN cluster comes from the idle (and
under-populated) Ethernet switch.

Table 3 extends this comparison to clusters of several other
systems.6 As expected, systems with disks are limited by seek
times: the desktop above serves only 171 queries per second,
and so provides only 1.96 queries/Joule—two orders of magni-
tude lower than a fully-populated FAWN. This performance is
not far off from what the disks themselves can do: they draw
10 W at load, providing only 17 queries/Joule. Low-power
laptops with magnetic disks fare little better. The desktop
(above) with an SSD performs best of the alternative systems,
but is still far from the efficiency of a FAWN cluster.

5.2 General Architectural Comparison

A general comparison requires looking not just at the queries
per Joule, but the total system cost. In this section, we examine
the 3-year total cost of ownership (TCO), which we define as
the sum of the capital cost and the 3-year power cost at 10
cents per kWh.

Because the FAWN systems we have built use several-year-
old technology, we study a theoretical 2009 FAWN node using
a low-power CPU that consumes 10–20 W and costs∼$150 in
volume. We in turn give the benefit of the doubt to the server
systems we compare against—we assume a 1 TB disk exists
that serves 300 queries/sec at 10 W.

Our results indicate that both FAWN and traditional systems
have their place—but for the small random access workloads
we study, traditional systems are surprisingly absent from
much of the solution space, in favor of FAWN nodes using
either disks, SSDs, or DRAM.

6The Soekris is a five-year-old embedded communications board.

System Cost W QPS Queries
Joule

GB
Watt

TCO
GB

TCO
QPS

Traditionals:
5-2TB HD $2K 250 1500 6 40 0.26 1.77
160GB PCIe SSD $8K 220 200K 909 0.72 53 0.04
64GB DRAM $3K 280 1M 3.5K 0.23 59 0.004

FAWNs:
2TB Disk $350 20 250 12.5 100 0.20 1.61
32GB SSD $500 15 35K 2.3K 2.1 16.9 0.015
2GB DRAM $250 15 100K 6.6K 0.13 134 0.003

Table 4: Traditional and FAWN node statistics

Key to the analysis is a question: why does a cluster need
nodes? The answer is, of course, for both storage space and
query rate. Storing a DS gigabyte dataset with query rate QR
requires N nodes:

N = max

(
DS
gb

node

,
QR
qr

node

)
With large datasets with low query rates, the number of

nodes required is dominated by the storage capacity per node:
thus, the important metric is the total cost per GB for an
individual node. Conversely, for small datasets with high
query rates, the per-node query capacity dictates the number
of nodes: the dominant metric is queries per second per dollar.
Between these extremes, systems must provide the best trade-
off between per-node storage capacity, query rate, and power
cost.

Table 4 shows these cost and performance statistics for sev-
eral candidate systems. The “traditional” nodes use 200W
servers that cost $1,000 each. Traditional+Disk pairs a sin-
gle server with five 5 TB high-speed disks capable of 300
queries/sec, each disk consuming 10 W. Traditional+SSD
uses two PCI-E Fusion-IO 80 GB Flash SSDs, each also con-
suming about 10 W (Cost: $3k). Traditional+DRAM uses
eight 8 GB server-quality DRAM modules, each consuming
10 W. FAWN+Disk nodes use one 2 TB 7200 RPM disk:
FAWN nodes have fewer connectors available on the board.
FAWN+SSD uses one 32 GB Intel SATA Flash SSD capable
of 35,000 random reads/sec [40] and consuming 2 W ($400).
FAWN+DRAM uses a single 2 GB, slower DRAM module,
also consuming 2 W.

Figure 16 shows which base system has the lowest cost
for a particular dataset size and query rate, with dataset sizes
between 100 GB and 10 PB and query rates between 100 K
and 1 billion per second. The dividing lines represent a bound-
ary across which one system becomes more favorable than
another.

Large Datasets, Low Query Rates: FAWN+Disk has the
lowest total cost per GB. While not shown on our graph,
a traditional system wins for exabyte-sized workloads if it can
be configured with sufficient disks per node (over 50), though
packing 50 disks per machine poses reliability challenges.

Small Datasets, High Query Rates: FAWN+DRAM costs
the fewest dollars per queries/second, keeping in mind that
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Figure 16: Solution space for lowest 3-year TCO as a function
of dataset size and query rate.

we do not examine workloads that fit entirely in L2 cache on
a traditional node. This somewhat counterintuitive result is
similar to that made by the intelligent RAM project, which
coupled processors and DRAM to achieve similar benefits [5]
by avoiding the memory wall. We assume the FAWN nodes
can only accept 2 GB of DRAM per node, so for larger datasets,
a traditional DRAM system provides a high query rate and
requires fewer nodes to store the same amount of data (64 GB
vs 2 GB per node).

Middle Range: FAWN+SSDs provide the best balance of stor-
age capacity, query rate, and total cost. As SSD capacity
improves, this combination is likely to continue expanding
into the range served by FAWN+Disk; as SSD performance
improves, so will it reach into DRAM territory. It is there-
fore conceivable that FAWN+SSD could become the dominant
architecture for a wide range of random-access workloads.

Are traditional systems obsolete? We emphasize that this
analysis applies only to small, random access workloads.
Sequential-read workloads are similar, but the constants de-
pend strongly on the per-byte processing required. Traditional
cluster architectures retain a place for CPU-bound workloads,
but we do note that architectures such as IBM’s BlueGene
successfully apply large numbers of low-power, efficient pro-
cessors to many supercomputing applications [14]—but they
augment their wimpy processors with custom floating point
units to do so.

Our definition of “total cost of ownership” also ignores sev-
eral notable costs: In comparison to traditional architectures,
FAWN should reduce power and cooling infrastructure, but
may increase network-related hardware and power costs due
to the need for more switches. Our current hardware prototype
improves work done per volume, thus reducing costs associ-
ated with datacenter rack or floor space. Finally, of course,
our analysis assumes that cluster software developers can en-
gineer away the human costs of management—an optimistic
assumption for all architectures. We similarly discard issues
such as ease of programming, though we ourselves selected an
x86-based wimpy platform precisely for ease of development.

6 Related Work

FAWN follows in a long tradition of ensuring that systems are
balanced in the presence of scaling challenges and of designing
systems to cope with the performance challenges imposed by
hardware architectures.

System Architectures: JouleSort [44] is a recent energy-
efficiency benchmark; its authors developed a SATA disk-
based “balanced” system coupled with a low-power (34 W)
CPU that significantly out-performed prior systems in terms
of records sorted per joule. A major difference with our work
is that the sort workload can be handled with large, bulk I/O
reads using radix or merge sort. FAWN targets even more seek-
intensive workloads for which even the efficient CPUs used
for JouleSort are excessive, and for which disk is inadvisable.

More recently, several projects have begun using low-power
processors for datacenter workloads to reduce energy con-
sumption [6, 34, 11, 50, 20, 30]. The Gordon [6] hardware ar-
chitecture argues for pairing an array of flash chips and DRAM
with low-power CPUs for low-power data intensive computing.
A primary focus of their work is on developing a Flash Trans-
lation Layer suitable for pairing a single CPU with several
raw flash chips. Simulations on general system traces indi-
cate that this pairing can provide improved energy-efficiency.
Our work leverages commodity embedded low-power CPUs
and flash storage for cluster key-value applications, enabling
good performance on flash regardless of FTL implementation.
CEMS [20], AmdahlBlades [50], and Microblades [30] also
leverage low-cost, low-power commodity components as a
building block for datacenter systems, similarly arguing that
this architecture can provide the highest work done per dollar
and work done per joule. Microsoft has recently begun ex-
ploring the use of a large cluster of low-power systems called
Marlowe [34]. This work focuses on taking advantage of the
very low-power sleep states provided by this chipset (between
2–4 W) to turn off machines and migrate workloads during
idle periods and low utilization, initially targeting the Hotmail
service. We believe these advantages would also translate well
to FAWN, where a lull in the use of a FAWN cluster would
provide the opportunity to significantly reduce average energy
consumption in addition to the already-reduced peak energy
consumption that FAWN provides. Dell recently designed
and has begun shipping VIA Nano-based servers consuming
20–30 W each for large webhosting services [11].

Considerable prior work has examined ways to tackle the
“memory wall.” The Intelligent RAM (IRAM) project com-
bined CPUs and memory into a single unit, with a particular
focus on energy efficiency [5]. An IRAM-based CPU could
use a quarter of the power of a conventional system to serve
the same workload, reducing total system energy consumption
to 40%. FAWN takes a thematically similar view—placing
smaller processors very near flash—but with a significantly
different realization. Similar efforts, such as the Active Disk
project [43], focused on harnessing computation close to disks.
Schlosser et al. proposed obtaining similar benefits from cou-
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pling MEMS with CPUs [46].
Databases and Flash: Much ongoing work is examining

the use of flash in databases, examining how database data
structures and algorithms can be modified to account for flash
storage strengths and weaknesses [53, 28, 35, 37, 29]. Re-
cent work concluded that NAND flash might be appropriate in
“read-mostly, transaction-like workloads”, but that flash was a
poor fit for high-update databases [35]. This work, along with
FlashDB [37] and FD-Trees [29], also noted the benefits of a
log structure on flash; however, in their environments, using
a log-structured approach slowed query performance by an
unacceptable degree. Prior work in sensor networks [8, 32]
has employed flash in resource-constrained sensor applications
to provide energy-efficient filesystems and single node object
stores. In contrast to the above work, FAWN-KV sacrifices
range queries by providing only primary-key queries, which
eliminates complex indexes: FAWN’s separate data and index
can therefore support log-structured access without reduced
query performance. Indeed, with the log structure, FAWN’s
performance actually increases with a moderate percentage
of writes. FAWN-KV also applies log-structured data orga-
nization to speed maintenance and failover operations in a
clustered, datacenter environment.

Filesystems for Flash: Several filesystems are specialized
for use on flash. Most are partially log-structured [45], such as
the popular JFFS2 (Journaling Flash File System) for Linux.
Our observations about flash’s performance characteristics
follow a long line of research [12, 35, 58, 37, 40]. Past solu-
tions to these problems include the eNVy filesystem’s use of
battery-backed SRAM to buffer copy-on-write log updates for
high performance [57], followed closely by purely flash-based
log-structured filesystems [26].

High-throughput Storage and Analysis: Recent work
such as Hadoop or MapReduce [9] running on GFS [15] has
examined techniques for scalable, high-throughput computing
on massive datasets. More specialized examples include SQL-
centric options such as the massively parallel data-mining
appliances from Netezza [38]. As opposed to the random-
access workloads we examine for FAWN-KV, these systems
provide bulk throughput for massive datasets with low selec-
tivity or where indexing in advance is difficult. We view these
workloads as a promising next target for the FAWN approach.

Distributed Hash Tables: Related cluster and wide-area
hash table-like services include Distributed data structure
(DDS) [17], a persistent data management layer designed to
simplify cluster-based Internet services. FAWN’s major points
of differences with DDS are a result of FAWN’s hardware
architecture, use of flash, and focus on energy efficiency—
in fact, the authors of DDS noted that a problem for future
work was that “disk seeks become the overall bottleneck of
the system” with large workloads, precisely the problem that
FAWN-DS solves. These same differences apply to systems
such as Dynamo [10] and Voldemort [41]. Systems such as
Boxwood [31] focus on the higher level primitives necessary
for managing storage clusters. Our focus was on the lower-

layer architectural and data-storage functionality.

Sleeping Disks: A final set of research examines how and
when to put disks to sleep; we believe that the FAWN approach
compliments them well. Hibernator [59], for instance, focuses
on large but low-rate OLTP database workloads (a few hundred
queries/sec). Ganesh et al. proposed using a log-structured
filesystem so that a striping system could perfectly predict
which disks must be awake for writing [13]. Finally, Perga-
mum [49] used nodes much like our wimpy nodes to attach
to spun-down disks for archival storage purposes, noting that
the wimpy nodes consume much less power when asleep. The
system achieved low power, though its throughput was limited
by the wimpy nodes’ Ethernet.

7 Conclusion

FAWN pairs low-power embedded nodes with flash storage
to provide fast and energy efficient processing of random
read-intensive workloads. Effectively harnessing these more
efficient but memory and compute-limited nodes into a usable
cluster requires a re-design of many of the lower-layer storage
and replication mechanisms. In this paper, we have shown that
doing so is both possible and desirable. FAWN-KV begins
with a log-structured per-node datastore to serialize writes
and make them fast on flash. It then uses this log structure
as the basis for chain replication between cluster nodes, pro-
viding reliability and strong consistency, while ensuring that
all maintenance operations—including failure handling and
node insertion—require only efficient bulk sequential reads
and writes. Our 4-year-old FAWN nodes delivered over an
order of magnitude more queries per Joule than conventional
disk-based systems, and our preliminary experience using In-
tel Atom-based systems paired with SATA-based Flash drives
shows that they can provide over 1000 queries/Joule, demon-
strating that the FAWN architecture has significant potential
for many I/O-intensive workloads.
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