
DeltaFS: A Scalable No-Ground-Truth Filesystem For
Massively-Parallel Computing

Qing Zheng
Carnegie Mellon University

Pittsburgh, PA, USA
zhengq@cs.cmu.edu

Charles D. Cranor
Carnegie Mellon University

Pittsburgh, PA, USA
chuck@ece.cmu.edu

Gregory R. Ganger
Carnegie Mellon University

Pittsburgh, PA, USA
ganger@ece.cmu.edu

Garth A. Gibson
Carnegie Mellon University

Pittsburgh, PA, USA
garth@cs.cmu.edu

George Amvrosiadis
Carnegie Mellon University

Pittsburgh, PA, USA
gamvrosi@cmu.edu

Bradley W. Settlemyer
Los Alamos National Lab
Los Alamos, NM, USA

bws@lanl.gov

Gary A. Grider
Los Alamos National Lab
Los Alamos, NM, USA
ggrider@lanl.gov

ABSTRACT

High-Performance Computing (HPC) is known for its use of mas-

sive concurrency. But it can be challenging for a parallel filesystem’s

control plane to utilize cores when every client process must glob-

ally synchronize and serialize its metadata mutations with those of

other clients. We present DeltaFS, a new paradigm for distributed

filesystem metadata.

DeltaFS allows jobs to self-commit their namespace changes to

logs, avoiding the cost of global synchronization. Followup jobs

selectively merge logs produced by previous jobs as needed, a prin-

ciple we term No Ground Truth which allows for efficient data

sharing. By avoiding unnecessary synchronization of metadata op-

erations, DeltaFS improves metadata operation throughput up to

98× leveraging parallelism on the nodes where job processes run.

This speedup grows as job size increases. DeltaFS enables efficient

inter-job communication, reducing overall workflow runtime by

significantly improving client metadata operation latency up to

49× and resource usage up to 52×.

CCS CONCEPTS

· Information systems→Distributed storage;Directory struc-

tures; · Computing methodologies → Massively parallel algo-

rithms.

ACM Reference Format:

Qing Zheng, Charles D. Cranor, Gregory R. Ganger, Garth A. Gibson, George

Amvrosiadis, Bradley W. Settlemyer, and Gary A. Grider. 2021. DeltaFS: A

Scalable No-Ground-Truth Filesystem For Massively-Parallel Computing. In

The International Conference for High Performance Computing, Networking,

Storage and Analysis (SC ’21), November 14–19, 2021, St. Louis, MO, USA.ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3458817.3476148

1 INTRODUCTION

It is easy to slow down a C program Ð just add the ł_Atomicž qual-

ifier to all the program’s variables and rerun it. Atomic variable

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SC ’21, November 14–19, 2021, St. Louis, MO, USA

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8442-1/21/11.
https://doi.org/10.1145/3458817.3476148

accesses are globally synchronized to ensure that the latest data

written to memory is always used. Making variables atomic is un-

likely to change a program’s behavior in terms of correctness, but

on modern processors this will significantly reduce the effective-

ness of caching and slow down the program [6, 43]. Consequently,

C variables are not atomic by default [3]. Applications explicitly

request it when needed.

Unfortunately, even though modern HPC applications can re-

quest memory atomicity on an as-needed basis, their persistent

state Ð stored as files and accessed through a shared underlying

parallel filesystem [65, 66, 79] Ð remains globally synchronized

at all times. This is true even on the world’s largest HPC com-

puters: every process is guaranteed to see every other process’s

latest filesystem namespace mutations all the time regardless of

whether these processes communicate and despite potentially huge

performance penalties. Alas, today’s parallel filesystems continue

to feature almost the same semantics as their ancestors developed

for single-core machines 50 years ago. Yet, they are now faced with

having to scale as rapidly as today’s parallel computing systems

[75]. This is too difficult, and results in performance bottlenecks

that increasingly negate the benefits of massive parallelism.

We propose DeltaFS, a new way of providing distributed filesys-

tem metadata on modern parallel computing platforms. DeltaFS

reimagines the roles filesystems play in delivering performance

and consistency to applications. First, today’s filesystem clients

tend to synchronize too frequently with their servers for metadata

reads and writes. DeltaFS provides deep relaxation of filesystem

namespace synchronization and serialization through client log-

ging and subsequent merging of filesystem namespace changes on

an as-needed basis. Second, today’s filesystems map all application

jobs to a single filesystem namespace. DeltaFS enables jobs to self-

manage their synchronization scopes to avoid false sharing and to

minimize per-job filesystem namespace footprint to improve per-

formance. Finally, modern filesystems achieve scaling primarily by

dynamic namespace partitioning over multiple dedicated metadata

servers [60, 77, 79, 82]. Filesystem metadata performance is a func-

tion of, and is fundamentally limited by, the amount of compute

resources that are dedicated to these metadata servers. DeltaFS dy-

namically instantiates filesystem metadata processing functions on

client nodes, enabling highly agile scaling of filesystem metadata

performance beyond a fixed set of dedicated servers.

1

https://doi.org/10.1145/3458817.3476148
https://doi.org/10.1145/3458817.3476148


SC ’21, November 14–19, 2021, St. Louis, MO, USA Qing Zheng, Charles D. Cranor et al.

At the core of DeltaFS is a transformation of today’s globally

synchronized filesystem metadata, to per-job metadata log records

that can be dynamically merged to form new filesystem namespace

views when requested by a followup job. To achieve this, DeltaFS

defines an efficient log-structured filesystem metadata format that

an application job process can use to log its namespace changes as

a result of its execution. DeltaFS does not require all client changes

to be merged back to a server-managed global tree for a consis-

tent view of the filesystem. Instead, a job selectively merges logs

produced by previous jobs for sequential data sharing. Unrelated

application jobs never have to communicate.

With DeltaFS we envision a drastic reduction of today’s parallel

filesystems to services that applications independently instantiate

on compute nodes. A scalable object store provides shared underly-

ing storage for per-job namespace management. There is no longer

a global namespace. Instead, applications communicate only when

they need to and communication is done primarily through shar-

ing and publishing immutable log records stored in the shared

underlying object store for minimum synchronization. Meanwhile,

there no longer needs to be any dedicated metadata servers. With

DeltaFS, jobs dynamically utilize their compute nodes for meta-

data processing, overcoming limitations and bottlenecks seen in

today’s parallel filesystem metadata designs. We call this new way

of managing distributed filesystem metadata No Ground Truth, as it

requires no global synchronization. Unrelated jobs are no longer

required to see each other’s files or be delayed by each other’s

namespace updates. Despite not having a global filesystem names-

pace, jobs using DeltaFS can still perform inter-job communication

through the filesystem. In fact we show that by decoupling and

parallelizing metadata accesses, DeltaFS vastly reduces a metadata-

intensive workflow’s inter-job communication latency compared

with today’s parallel filesystems.

Our experiments show that DeltaFS improves metadata perfor-

mance by using the parallelism that can be found when utilizing

resources at the nodes where job processes run. This parallelism is

unlocked due to DeltaFS’s no-ground-truth property that allows

jobs to selectively merge logs produced by previous jobs as needed.

We show up to 98× faster metadata operation throughput compared

with the current state-of-the-art, a number that rises as job size

increases. DeltaFS further enables efficient inter-job communica-

tion, vastly decreasing overall workflow runtime by significantly

reducing the average latency of client metadata operations by up

to 49× and the CPU time clients are blocked on such operations by

up to 52×.

The rest of this paper is structured as follows. Section 2 describes

the motivation and rationale behind our work. Sections 3 to 7 detail

our design. We report experiment results in Section 8, related work

in Section 9, and then conclude.

2 MOTIVATION

Three factors motivate our work: (1) the high cost of global syn-

chronization for strong consistency in today’s massively-parallel

computing environments, (2) the inadequacy of the current state-

of-the-art for scalable parallel metadata performance, and (3) the

promise of a relaxed łno ground truthž parallel filesystem for non-

interactive parallel computing workloads.

Compute Storage

App2

App1

PFS 

Metadata 

Server

(a) Today’s Parallel Filesystems

Compute Storage

App2

App1

Namespace 

Registry

c
re
a
te
/o
p
e
n

(b) Our Vision: DeltaFS

Figure 1: Motivation for no ground truth. Rather than syn-

chronously communicating with a slow global filesystem

namespace, jobs communicate instead by publishing and

sharing filesystemnamespace snapshots on an as-needed ba-

sis through a public registry for high performance.

Global Synchronization. Filesystems are the main way ap-

plications interact with persistent data. While a local filesystem

manages the files of a single node, distributed parallel filesystems

such as Lustre [66], GPFS [65], PVFS [18], and the Panasas PanFS

filesystem [79] manage the files of today’s largest supercomputers

[75]. By striping data across a large pool of object storage devices,

parallel filesystems enable fast concurrent access to file data [20, 26].

However, in terms of metadata management, a strategy not too

different from early network filesystems is used: all client meta-

data mutations are synchronously processed. They are first sent

to a server, checked and serialized by it, and then appended to the

server’s write-ahead log for eventual merging into the filesystem’s

on-disk metadata representation managed by the server [31, 52, 64].

While not necessarily the best way to handle file metadata on a

large supercomputer, an important reason modern parallel filesys-

tems continue to use this strategy is that it enables distributed

application processes to communicate as if they were on a local

machine thanks to constant global synchronization [61]. Unfortu-

nately, early network filesystems were not developed with today’s

massively-parallel computing environments in mind. While the

early CM-5 computer at LANL Ð the fastest machine of its time Ð

had only 1024 CPU cores, the fastest computer today has as many

as 7 million cores [30, 51]. As the best way to utilize a modern

supercomputer is to keep all of its compute cores busy, global syn-

chronization in modern parallel filesystems is rendering itself a

growing source of performance bottlenecks in today’s leading com-

puting systems, increasingly nullifying the very parallelism that

these systems enable in the first place. This needs to change.

Inadequacy of the Current State-of-the-Art. To attain high

metadata performance, modern scalable parallel metadata services

use dynamic namespace partitioning overmultiplemetadata servers

[60, 77, 79, 82]. In these filesystems, each metadata server manages

a partition of the filesystem’s namespace. The overall metadata

performance is a function of the number and compute power of

these servers. However, dynamic namespace partitioning does not

remove global synchronization; it partitions it. Meanwhile, even

these scalable filesystems can require a significant number of ded-

icated metadata servers to achieve high performance. Worse, as

2



DeltaFS: A Scalable No-Ground-Truth Filesystem For Massively-Parallel Computing SC ’21, November 14–19, 2021, St. Louis, MO, USA

applications do not use the filesystem the same way, the amount of

compute resources to be devoted to the filesystem can be difficult

to determine beforehand. This leads to performance bottlenecks

when the demand of the application is too high compared with the

estimated amount and is a waste of resources otherwise.

In addition to dynamic namespace partitioning, another way

to improve performance is to employ an efficient log-structured

metadata format that hides the processing delay associated with

today’s parallel filesystem metadata servers [47, 60]. Such a system

is able to quickly absorb a large amount of client changes without

immediately optimizing them for fast reads Ð a separate set of

server threads do so asynchronously in the background so that the

client need not be blocked. However, in cases where the background

process cannot keep up with the foreground insertion, the time

required for these background operations will have to be amortized

immediately. When the server compute resources are insufficient

for the given workload, a client still experiences delays.

Previous work has also showed ultra fast file creation speed

through deep client logging [12, 60, 85]. Yet client logging alone

does not address read performance and does not support inter-job

communication.

From One-Size-Fits-All to No Ground Truth. As we keep

increasing the capacity and parallelism of our computers, an emerg-

ing reality we need to confront is that we are fast approaching a

point in time when there will be no one-size-fits-all parallel meta-

data systems [7, 71]. While the high cost of global synchronization

will continue to be necessary in cases where applications use the

filesystem to communicate, it is also important to realize that to-

day’s parallel applications are for the most part non-interactive

batch jobs that do not necessarily benefit from many of the se-

mantic obligations that early network filesystems carried in their

computing environments [31, 52, 64].

A modern HPC application is first submitted to a job scheduler

queue [75]. When scheduled, it reads from the parallel filesystem,

writes to the parallel filesystem, and then ends. Looking at the

job, the input it reads is likely ready and static at the time the job

is submitted. The output it generates is probably not examined,

except possibly by the job owner trying to figure out how the job is

progressing, until after the job is done [2, 12, 45]. This is effectively

sequential data sharing. We argue that a parallel filesystem could

serve this through simple publication and sharing of filesystem

namespace snapshots without requiring any global synchronization,

as we show in Figure 1. To achieve this, we envision running a public

namespace registry to which all jobs can publish their namespaces

as snapshots.When a job starts, it selects a subset of these snapshots

as input and ends by publishing a new snapshot comprising all of the

job’s output. This new snapshot can then be used by an interested

followup job to serve as its input, achieving efficient inter-job data

propagation.

Namespace snapshots can be compact and easy to generate given

a log-structured filesystem metadata format: each snapshot is sim-

ply pointers to a set of previously executed filesystem metadata

changes [58, 60, 86]. In addition, with each job referencing a snap-

shot to start, there need not even be a global filesystem namespace.

When a job needs to read data from multiple input snapshots, it

simply merges all of these snapshots to form a single, materialized

User Job

DeltaFS

Client/Server 

Code

OSD Client

Compaction 

Runner

Parallel

Merge Sort

OSD Client

OSD Storage

Namespace 

Registry

SSTSSTSSTSSTSSTSST SSTSSTSST SSTSSTSST SSTSSTSST

Read Read Read

PublishPublish

Read

MANI

FEST

MANI

FEST

MANI

FEST

MANI

FEST

MANI

FEST

C
o
m

p
u

te
 N

o
d

e

Figure 2: Architecture of DeltaFS. A DeltaFS cluster consists

of per-job DeltaFS client/server instances and dynamically

instantiated compaction runners on compute nodes reading,

merging, and publishing filesystem namespace snapshots to

a public registry thatmaps snapshot names to snapshot data

stored in a shared underlying object store.

view of the filesystem for fast metadata read performance. Better

yet, the job can start its own filesystem metadata server processes

on its compute nodes to perform the merge and then to serve the

reads. This allows the job to better utilize the massive parallelism

in today’s computing platforms to achieve scalable read perfor-

mance which is not restricted by the resources set aside by cluster

administrators for centralized metadata management. Additionally,

unrelated jobs never have to communicate: they simply work on

different snapshots. We have designed DeltaFS around this relaxed,

scalable, log-structured, no global namespace, no ground truth,

parallel filesystem metadata principle.

3 SYSTEM OVERVIEW

DeltaFS is a collection of library routines and daemon processes

that provide scalable parallel filesystem metadata access on top

of a shared underlying object store. As Figure 2 illustrates, the

main components of DeltaFS include User Jobs, Compaction Run-

ners, and Namespace Registries. The DeltaFS library code running

inside each user job serves as DeltaFS metadata servers and clients.

Compaction runners are user-scheduled DeltaFS log compaction

code that reorganizes a given subset of on-storage DeltaFS meta-

data for fast future access. Namespace registries are long-running

daemons that enable users to efficiently track and discover available

DeltaFS namespace snapshots. All DeltaFS data and metadata are

persisted in a shared underlying object store for long-term storage

[13, 49, 78].

User Jobs. Jobs are parallel programs or scripts that are submit-

ted to run on compute nodes [45]. Unlike today’s parallel filesystems

in which a single global filesystem namespace is provided to all

jobs and dedicated metadata servers are deployed to manage it,

in DeltaFS jobs act as managers of their own filesystem metadata.

Each job starts by self-defining its filesystem namespace. This is

done by looking up and potentially merging namespace snapshots

published by previous jobs. The job then instantiates DeltaFS client

and server instances to serve the namespace. At the end of the job,

3



SC ’21, November 14–19, 2021, St. Louis, MO, USA Qing Zheng, Charles D. Cranor et al.

it may release its namespace as a public snapshot searchable and

mergeable by other jobs.

A job instantiates DeltaFS client and server instances by running

them inside the job’s processes on compute nodes. A job may have

many processes (e.g., a parallel simulation). Each of these processes

can act as a client, and additionally as a server Ð the DeltaFS library

code linked into them is capable of being both. Not all processes

are required to be a server.

Client-server communication is done through RPCs [14, 69]. The

addresses of the servers are sent to clients using a bootstrapping

mechanism [28, 63] at the beginning of each job. When these ad-

dresses need to be known by code outside the job (e.g., the owning

user’s job monitoring tools), they may be published at an external

coordination service [16, 34, 41] for public queries.

When a set of related jobs form a workflow and are scheduled

to run consecutively (e.g., a simulation directly followed by post

processing and data analytics), it is possible to use a single DeltaFS

instance (the ensemble of all DeltaFS clients and servers instantiated

by a job) to serve the entire workflow to improve performance Ð

there is no need to repeatedly publish and search filesystem names-

pace snapshots within a workflow and repeatedly restart from an

empty filesystem metadata cache. To achieve this, the workflow

manager (or job script) spawns DeltaFS servers as standalone pro-

cesses (not embedded in a job process) on compute nodes. These

standalone servers can then outlive each individual step in the

workflow and be reused by these steps for efficient metadata access.

The workflow manager shuts down the servers when the last step

of the workflow completes.

Within a job, application code interacts with DeltaFS by making

DeltaFS library calls. DeltaFS handles all metadata operations such

as creating new files, setting permissions, and removing existing

directories. Data operations are redirected to the underlying object

store for scalable processing [26, 60, 77]. A newly created but grow-

ing file may be transparently striped across multiple data objects

for parallel data operations within a single file [18, 20]. When a file

is opened for writing, some of its attributes such as file size and

last access time may change relative to DeltaFS’s per-open copy of

the attributes. DeltaFS captures these changes on file close using

its metadata path.

To attain high metadata performance, DeltaFS aggressively par-

titions a namespace to achieve fast reads, uses client logging to

quickly absorb bursts of writes, and packs metadata into large log

objects (SSTables) stored in the shared underlying object store for

efficient storage accesses (further explained in later sections).

Namespace Registries. Registries are keepers of all published

DeltaFS namespace snapshots. Each registry can be thought of

as a simple Key-Value (KV) table mapping snapshot names (K) to

pointers (V) to the snapshots’ manifest objects stored in the shared

underlying object store.

As Figure 3 shows, each DeltaFS namespace snapshot is made up

of packed metadata mutation logs that are stored as SSTables [27]

on storage. The manifest is a special metadata object that is inserted

into a snapshot to serve as its root index. It contains the names of

all member logs (SSTables) of the snapshot and the key range of

each of these logs. The DeltaFS metadata read path code uses this

Namespace Registry (KV)

Snapshot 

Name

Manifest Name

user1.vpic.input1 user1-vpic-

input1.mani

user1.vpic.input2 user1-vpic-

input2.mani

user1.vpic.out user1-vpic-out.mani

O
rd

e
re

d

User Shell / 

Job / 

Compaction 

Runner

Secondary Indexing

B-Tree B-Tree

B-Tree

FilenamesOwner ID

Create Time

Async

Update

Info / 

List

Search (e.g., in SQL)

OSD Storage SSTSSTSST
MANIF

ESTSSTSSTSST
MANIF

EST SSTSSTSST
MANIF

ESTSSTSSTSST
MANIF

EST

Figure 3: Locating snapshots in DeltaFS. A job, a compaction

runner, or an interactive user uses namespace registries to

locate snapshots according to their names. One or more sec-

ondary indexes may be built to allow for rich SQL queries.

information to locate snapshot data and to speed up queries against

it. Section 5 explains this in more detail.

In DeltaFS, unrelated jobs never have to communicate. Related

jobs, on the other hand, may communicate using DeltaFS to achieve

efficient sequential data sharing. This is done first by a preceding

job publishing its namespace as a snapshot and then by a followup

job looking up the snapshot at a later point in time. To publish

a namespace as a snapshot, a job flushes its in-memory state to

storage, writes the manifest, and then sends the object name of the

manifest and the name of the snapshot to the registry for publica-

tion. To read back a snapshot, a followup job sends the name of the

snapshot to the registry in exchange for the name of the snapshot’s

manifest object. The job then reads the manifest object and uses it

for queries into the snapshot.

In DeltaFS, namespace snapshots are named by jobs in the same

manner as files are named by applications in today’s filesystems

Ð jobs present names and DeltaFS performs uniqueness checks.

Similarly, just as today’s applications must know the name of a file

in order to operate on it, a DeltaFS job must know the name of a

snapshot in order to look it up in a registry. To obtain filenames,

today’s applications can list files in a given parent filesystem di-

rectory. DeltaFS retains the same capability by allowing jobs to

list snapshots according to a job-specified prefix string (snapshot

names are indexed as ordered strings). To enable queries beyond

simple snapshot listing, DeltaFS registries can be paired with a

secondary indexing tier where snapshots are indexed by attributes

other than their names (e.g., owner ID, create time, filenames within

a snapshot) as Figure 3 shows. Modern database techniques could

implement this and allow for rich SQL-like queries [10, 17, 40, 50].

We also imagine running an Internet-style search engine where

users can search snapshots as if they were searching the web (e.g.,

łthe latest App X’s input deckž). We leave this as future work.

Registry daemons run on dedicated server nodes in a computing

cluster. A cluster may be paired with one or more registries. In

the latter case, each registry manages a partition of the snapshots’

key space [19, 42]. Note that the dedicated servers hosting the reg-

istries do not sit on the critical path for regular filesystem metadata

operations. As a result, their performance is less critical to the

overall metadata performance of DeltaFS even for metadata inten-

sive workloads. In practice, for write operations such as snapshot

publication we expect registries to be no busier than today’s job

4



DeltaFS: A Scalable No-Ground-Truth Filesystem For Massively-Parallel Computing SC ’21, November 14–19, 2021, St. Louis, MO, USA

scheduler queues [8, 54]. To provide low-latency interactive read

access for operations such as snapshot queries and users invoking

DeltaFS commands on login nodes (e.g., DeltaFS-snap-list and

DeltaFS-snap-info), DeltaFS registries can be scaled up using

well-known techniques such as bigger memory, replication, and an

increase in registry count.

Compaction Runners. Compaction runners are parallel log

compaction jobs dynamically launched by users (i.e., not by DeltaFS)

on compute nodes to merge and re-partition the metadata muta-

tion logs (SSTables) generated by one or more previous jobs to

form a compact, read-optimized view of a filesystem namespace

for efficient queries by a followup job. The ability to explicitly

schedule compaction over a large number of client compute cores

on an as-needed basis is an important way DeltaFS differs from

today’s parallel filesystems. In those systems, global filesystem

metadata is maintained by a system process on a dedicated server

node for all jobs, leaving the server often unable to keep up with

the clients under metadata-intensive workloads [7, 12]. To run

parallel compaction, a user submits a special DeltaFS program

(DeltaFS-compaction-runner) to the job scheduler queue and

waits for it to be launched on compute nodes, as we discuss later in

Section 7.

4 NO GROUND TRUTH

DeltaFS does not provide a global filesystem namespace to its users.

Instead, it records the metadata mutations each job generates as

immutable logs in a shared underlying object store. Subsequent

jobs independently use these logs as łfactsž for composing their

own filesystem namespaces. DeltaFS does not impose a global or-

dering on logs. Nor does it require all logs to be merged. Enabling

jobs to self-define their namespace consistency avoids unnecessary

synchronization in a large computing cluster. A smaller filesystem

metadata footprint per job further helps improve overall metadata

performance.

ALog-Structured Filesystem. In DeltaFS, filesystemmetadata

information is persisted as logs. Metadata write operations such

as mkdir and chmod apply changes by writing new log entries to

storage. Metadata read operations (e.g., lstat) get file information

by searching and reading related log entries from storage. The

DeltaFS library code linked into each job process knows the log

format. Logs written by one job can be understood by all jobs,

making cross-job communication possible.

Rather than assuming a global filesystem namespace, a DeltaFS

job starts by defining a base namespace that is private to the job. In

the simplest case, a job starts with an empty base and ends with

a log recording all the filesystem metadata mutations that the job

has performed on the base. In cases in which a job needs to access

the data output of a previous job, it uses the log produced by the

previous job when instantiating its base. This allows the job to

include all files and directories created by the previous job in its

own private filesystem namespace view. As the job later executes, it

records all of its metadata mutations in the form of new log entries

and can decide to publish them at the end of the job. Published log

entries can later be used by subsequent jobs for their namespace

instantiation, allowing for efficient inter-job data propagation.

S
n
a

p
s
h
o

t C

S
n

a
p

s
h

o
t B

S
n
a

p
s
h

o
t A

SSTSSTSST
MANI

FESTSSTSSTSST
MANI

FESTSSTSSTSST
MANI

FEST

Change Set b

Job B

Change Set a

Job A

Change Set c

Job C

m
kd
ir
/b
1

m
kd
ir
/b
2

m
kd
ir
/b
3

m
kd
ir
/a
1

m
kd
ir
/a
2

m
kd
ir
/a
3

m
kd
ir
/c1

m
kd
ir
/c2

m
kd
ir
/c3

Log

Figure 4: Job execution in DeltaFS. Each job generates a

change set, extending a previous namespace snapshot and

producing a new snapshot. For example, job B takes snap-

shot A as input, produces change set b, and generates snap-

shot B as output.

When the log entries generated by a job are published, these

published log entries are called a change set. It represents the sum

of all the filesystem metadata mutations that the job has performed

(across all its processes) on its base. The state of the job’s namespace

at log publication Ð the state that a followup job will inherit Ð is

called a snapshot. Thus each DeltaFS job can be viewed as a big log

append operation: it appends a change set (a collection of filesystem

metadata mutations) onto a snapshot and produces a new snapshot,

as Figure 4 shows. At the same time, each DeltaFS snapshot can

effectively be viewed as a rooted Directed Acyclic Graph (DAG) of

change sets. The root of the DAG is the very change set that the

job appends in producing the new snapshot. We call this special

change set the root change set of the snapshot, with its manifest

representing not only the root change set itself but also the entire

snapshot (the entire change set DAG) that it encompasses.

Multi-Inheritance & Name Resolution. When a DeltaFS job

instantiates its base, it may use multiple input snapshots. To achieve

consistency within a job, a job specifies a priority ordering for all its

input snapshots such that records from a higher priority snapshot

take precedence. Figure 5 shows an example where jobs A, B, C, and

D each take 0, 1, or more preceding jobs’ snapshots as input, append

a new change set onto that input, and generate a new snapshot

as output. Job A takes null as input, generates change set a, and

produces snapshot A. Job B takes job A’s output snapshot as input,

appends change set b onto it, and produces snapshot B. Job C takes

job A’s output snapshot as input, appends change set c onto it, and

produces snapshot C. Job D takes both job B’s and job C’s output

snapshots as input, appends change set d onto them, and produces

snapshot D. While jobs B and C have both created a ł/p/yž in their

respective snapshots, D sees the /p/y created in B rather than that

in C due to B having a higher priority than C in D.

Custom client filesystemnamespace views are also available from

systems such as UnionFS [81] and OverlayFS [1]. DeltaFS differs

from them in that it allows complex client namespace views to be

efficiently materialized for fast reads through a parallel compaction

mechanism (ğ7) that can be dynamically invoked on compute nodes

on an as-needed basis. At the same time, DeltaFS’s log-structured

metadata format (ğ5) enables efficient recording of client metadata

mutations without being limited by copy-on-write and other over-

lay filesystem techniques. Finally, as a parallel filesystem, DeltaFS

is able to spread workloads to distributed job processes to achieve

5



SC ’21, November 14–19, 2021, St. Louis, MO, USA Qing Zheng, Charles D. Cranor et al.

Higher 

Priority

Job A Job B Job C Job D

mkdir /p

mkdir /p/x 

rmdir /p/x

mkdir /p/y

rmdir /p/x

mkdir /p/y 

p

x

/

mkdir /p/z

a b

a

c

a

d
Lower Priority

Change Set

p

x

/

y
p

x

/

y
p

/

y

z

Snapshot A Snapshot B Snapshot C Snapshot D

c b

a a

Dependency

Figure 5: Priority-based name resolution in DeltaFS. Job D

sees the /p/y created in job B rather than that in job C due to

snapshot B having a higher priority than snapshot C.

scaling (ğ6) while a local overlay filesystem’s performance is fun-

damentally limited by the capacity of the local machine.

Complexity. While a collection of DeltaFS jobs may produce

output snapshots that are complex DAGs, a user only needs to spec-

ify and order direct dependencies (i.e., direct input snapshots) when

initializing a new job. Specification can be done through DeltaFS

command-line arguments. Indirect dependencies are automatically

resolved and ordered by DeltaFS at job start time, similar to Linux’s

dynamic loading of shared libraries. DeltaFS resolves dependencies

by reading and tracing the manifest object associated with each

published change set. We discuss change set and manifest format

in more detail in Section 5.

The need to specify input and name output snapshots does not

fundamentally change the way people run jobs Ð even with a global

namespace, a user needs to know and specify the input and output

paths of a job when launching it [45]. Also, global namespaces are

rarely truly global: sites often divide storage into multiple filesys-

tems (e.g., scratches, NFS homes) leading to many independent

namespaces. While recent work has leveraged database techniques

for a grand unified file index that spans multiple filesystems [44],

DeltaFS, as we discussed in Section 3, can be paired with a sim-

ilar file index in which all published job snapshots are indexed

allowing users to more easily locate their files. We also envision

building a high-level software stack on top of DeltaFS (such as

DeltaFS-Orchestra) that automates per-job namespace instantia-

tion as well as cross-job data propagation and compaction, making

DeltaFS more accessible to its users.

5 PER-JOB LOG MANAGEMENT

DeltaFS jobs execute metadata operations by recording them as logs

on storage. To attain high performance, DeltaFS uses a log format

in which each filesystem metadata mutation is recorded as a KV

pair in a table constructed with a Log-Structured Merge (LSM) Tree

[53]. Tree data is persisted as named SSTables [27] indexed by a

manifest object in a per-job change set. Background log compaction

improves log storage for fast reads and handles garbage collection.

Log Format. DeltaFS logs a KV pair for each filesystem meta-

data mutation executed. The key stores the name of the file involved

ID(/) a 2 No ID(a) Directory …

ID(/) b 1 No ID(b) Directory …

ID(b) x 5 No ID(x) File …

ID(b) y 7 No ID(y) File …

ID(b) z 6 No ID(z) File …

ID(a) c 4 No ID(c) File …

ID(a) y 7 Yes /

ID(a) y 3 No ID(y) File …

mkdir /b

mkdir /a

creat /a/y

creat /a/c

creat /b/x

creat /b/z

renam /a/y -

> /b/y

Client Metadata Operations

1

2

3

4

5

6

7

/

a

c

b

x y z

Filename

Parent

Dir ID

KEY VALUE

Base

Name

Seq

Num Tombstone? File ID File Type Etc.

File InfoPer-Key Metadata

O
rd

e
re

d

Figure 6: DeltaFS’s table-basedmetadata log format. Each ex-

ecuted filesystem metadata mutation has an associated row

in the table. Keys are ordered, enabling fast reads and scans.

Write-Ahead Log

<k,v>

MANIFEST

SST-3 SST-2 SST-1

In-Memory

Buffer

3. Flush
Depends on

MANIFEST1. Log

2. Insert

Change Set 2 Change Set 1

File a File bData Objs:

Figure 7: On-storage representation of an DeltaFS LSM-Tree

in a per-job change set consisting of a manifest object, a

write-ahead log, and a set of SSTables with references to sep-

arately stored data objects for large files.

in a mutation. The value stores the metadata information (i.e., the in-

ode) of the file after the change. A special tombstone bit is recorded

in each key to indicate whether a logged mutation is a delete. Ad-

ditionally, each key is associated with a sequence number. Keys

with higher sequence numbers supersede lower-numbered keys

allowing newly logged changes to override older ones. All keys are

inserted into a per-job table constructed with a high performance

DeltaFS-modified LevelDB realization of an LSM-Tree [53].

As Figure 6 illustrates, we use parent directory IDs and the base

names of files to represent filenames. Using parent directory IDs

as key prefixes (instead of their full pathnames) allows DeltaFS to

avoid having to update file keys when a user renames a directory

along the files’ parent paths [15, 82]. The metadata information

we store for each file includes file ID, file type, file permissions for

hierarchical access control, and file data for small files [60]. DeltaFS

keys are ordered, allowing for efficient filesystem metadata lookups

and directory scans [47, 58].

On-Storage Log Management. DeltaFS uses LSM-Trees [53]

to manage the logged filesystem metadata mutations within each

job change set. As Figure 7 shows, when initializing an LSM-Tree for

a change set, a job first creates a manifest object in the underlying

object store to record high-level information on the change set.

This includes the name of the change set and the names of all its

dependencies defined as the root change sets of all the job’s input

snapshots. Next, an in-memory buffer space is allocated in the job’s

process to buffer incoming metadata changes as the job runs. These

changes are formatted as KV pairs. Whenever the in-memory write

buffer is full, all KV pairs in the buffer will be sorted and written

to storage as an SSTable [27]. The name of the SSTable, as well as

6



DeltaFS: A Scalable No-Ground-Truth Filesystem For Massively-Parallel Computing SC ’21, November 14–19, 2021, St. Louis, MO, USA

ID(/) a 27 Yes

ID(/) c 19 No

ID(/) d 23 Yes

ID(/) e 21 No

Filename Seq

ID(/) a 27 Yes

ID(/) d 23 Yes

ID(/) e 21 No

ID(/) a 15 No

ID(/) c 19 No

ID(/) d 17 No

ID(/) a 12 No

ID(/) b 7 No

SST-2 SST-3SST-1 SST-4

T
o

m
b

s
to

n
e

?

MANIFEST

R
M

S
S

T
-2

R
M

S
S

T
-3

A
D
D

S
S

T
-4

K
e
y
: 

/a
-/

e

A
D

D
 S

S
T

-3
K

e
y
: 

/a
-/

e

A
D

D
 S

S
T

-2
K

e
y
: 

/a
-/

d

A
D

D
 S

S
T

-1
K

e
y
: 

/a
-/

b

a b c d eData Objects:

SST Compaction

Figure 8: Example of an LSM-Tree compaction within a

DeltaFS job change set. SSTable (SST) 2 and 3 are merged

to form SSTable 4 reducing the number of SSTable lookups

needed for key /c and garbage collecting data object d.

the key range of the table, is then recorded in the manifest for use

by subsequent queries. To prevent data loss, a write-ahead log is

created in the underlying object store for failure recovery of the job

process’s in-memory write buffer. A KV pair is first recorded at the

write-ahead log before it is inserted into the in-memory buffer. The

manifest, write-ahead log, and the SSTables listed in the manifest

constitute the entire state of a change set.

Change sets can be deleted when they are no longer needed. A

user deletes a change set by invoking a special DeltaFS program

(DeltaFS-changeset-delete) using the name of the change set

as argument. To prevent deleting a change set while others may

still depend on it, DeltaFS has each change set hold a reference

to itself and to each of its dependencies. When a user deletes a

change set, its reference to itself is removed. All member objects of

the set Ð the manifest, the write-ahead log, and all of its SSTables

Ð will be deleted when no other change set has a reference to it.

When a change set is deleted, all its references to others will be

removed enabling these change sets to be deleted too. A utility

program (DeltaFS-changeset-clean) is provided that a user can

periodically run to delete change sets that are no longer referenced.

When a change set is deleted, DeltaFS deregisters its corresponding

snapshot from the registry. For large files, their data objects are

referenced counted as well. A data object is deleted when all the

SSTables and write-ahead logs referencing it are deleted.

Log Compaction. As a job runs, DeltaFS writes SSTables to

persist changes whenever its in-memory write buffer is full. Entries

in these SSTables may then be candidates for LRU replacement in

the job’s memory and get reloaded later by querying SSTables on

storage until the first match occurs. SSTables are queried backwards

from the most recent to the oldest. Over time, the cost of finding a

record that is not in the cache increases as the number of SSTables

increases. To improve read performance, DeltaFS runs compaction

to merge sort overlapping SSTables and decrease the number of

SSTables that might share a key. As SSTables are merged, new

SSTables are generated and old ones are deleted. Data objects no

longer referenced by any SSTable can then be deleted.

Figure 8 shows an example where SSTable 2 and 3 are compacted

to form SSTable 4. Before the compaction, looking up key /c would

require searching two SSTables. SSTable 3 is searched first as its

key range [/a-/e] overlaps key /c. Since SSTable 3 does not have

the key, SSTable 2 is searched next (the key will be found here).

With compaction merging SSTable 3 and 2 into new SSTable 4,

key /c can now be found with a single SSTable lookup, improving

read performance. When tables are merged, records sharing a same

filename prefix are merged such that only the one with the highest

sequence number is copied into the new table. The rest are discarded.

After tables are merged, information on the newly constructed table

is logged in themanifest and references to the old tables are dropped.

These tables are then deleted from the underlying storage along

with their references to the data objects for large files, enabling

them to be garbage collected too.

6 DYNAMIC SERVICE INSTANTIATION

A DeltaFS filesystem has no dedicated metadata servers. Instead, a

job dynamically instantiates DeltaFS client and server instances in

the job’s processes to provide parallel filesystem metadata access

private to that job. DeltaFS aggressively partitions a namespace

across a job’s servers to achieve scalable read performance, and it

uses client logging to quickly absorb bursts of writes.

Per-Job Metadata Processing. Within a job, metadata opera-

tions are performed by clients sending RPCs to servers. A server is

capable of executing both read and write operations. Write opera-

tions are executed by logging the resulting metadata mutation on

storage using an LSM-Tree making up the job’s change set. Read

operations are executed first with queries into the job’s own change

set. If the requiredmetadata is not found in the job’s change set, then

dependent change sets are queried using the user-defined priority

ordering (ğ4). A server performs log compaction asynchronously

in the background as the job executes (ğ5).

When a job instantiates multiple DeltaFS servers, each server

manages a partition of the job’s private filesystem namespace view.

DeltaFS uses a namespace partitioning scheme derived from GIGA+

[55, 60] in which each newly created directory is randomly as-

signed to a server and gets gradually partitioned to more servers

as it grows. Per-server metadata mutations are logged into their

own separate LSM-Tree in the job’s change set. Each LSM-Tree

represents a partition and is indexed by a dedicated manifest object.

The manifest object of the 0-th partition additionally serves as the

manifest of the entire change set and is referenced by registries in

their mapping tables (ğ3).

Client Logging. Synchronization between DeltaFS clients and

servers within a parallel job ensures that files created by one process

are immediately visible to all processes in that job. For workloads

(e.g., N-N checkpointing) where files are opened for per-process

writing [12, 13], DeltaFS allows a client to defer job-wide synchro-

nization and to directly log metadata mutations in a per-client

LSM-Tree for ultra high metadata write performance. A client can

perform background log compaction against its private LSM-Tree

to improve its read performance. However, when files created by a

client are known to be write-only and are not opened for read until

after the job completes, a DeltaFS client can elect to further defer its

log compaction and later use a subsequent parallel log compaction

program to merge and re-partition all of the job clients’ LSM-Trees

in a single large batch as described below in Section 7.

7



SC ’21, November 14–19, 2021, St. Louis, MO, USA Qing Zheng, Charles D. Cranor et al.

Namespace Curation. When a job logs its mutations in per-

process logs for ultra high write performance, read requests un-

related to these mutations can still be served through the job’s

per-process DeltaFS servers according to the partitioning of the

job’s namespace. When the job’s compute cores are insufficient for

the workload at hand, it can allocate a separate larger set of com-

pute nodes to run DeltaFS servers, utilizing the compute cores and

memory on those nodes to scale reads and to achieve low-latency

access to the job’s metadata on storage. These separately allocated

DeltaFS servers may be reused bymultiple jobs within a workflow, a

project, or even a campaign [45]. Campaign managers can request a

persistent allocation of a set of compute nodes for running DeltaFS

servers for an extended period of time. We call these read-only,

job-specific, potentially long-running DeltaFS servers namespace

curators. Critically, the amount of compute resources available to

these curator processes is not decided by cluster administrators.

Instead it is decided by the owners of the jobs, projects, or running

campaigns for scalable filesystem metadata read performance.

Fault Tolerance, Aging, and Sequential Data Sharing. To

resist compute node failures, DeltaFS performs write-ahead logging

when performing filesystem metadata mutations. All DeltaFS write-

ahead logs, file data, and filesystem metadata are stored in a shared

underlying object store to enable failure recovery from a different

set of compute nodes when a job fails. Write-ahead logs are flushed

every 5 seconds (this period is configurable) and whenever fsync

is called.

All filesystems age; DeltaFS is able to age more smoothly by

facilitating explicit cross-job compaction (ğ7) and by not coupling

all files into a single namespace for improved parallelism and cache

performance. Havingmillions of snapshots in a registry is fine. Mod-

ern KV stores on recent hardware can routinely perform millions

of operations per second (op/s). More importantly, with DeltaFS

the total number of snapshots will be orders of magnitude smaller

than the total number of files (even though a file may accumulate

many metadata mutation log entries, snapshots are always per job).

This drastically reduces the total number of keys that a central

metadata server (or snapshot registries in DeltaFS) will have to

handle compared with today’s parallel filesystems.

In DeltaFS, if job X checks out a snapshot and rewrites a file while

job Y later checks out the same snapshot, job Y will see the old data

of the file. This is because that DeltaFS allows multiple versions of a

file to exist in different snapshots and an object store that supports

copy-on-write will enable this efficiently. If job Y actually wants to

see job X’s changes, job Y waits until job X publishes its changes

and then checks out job X’s snapshot Ð this is known as sequential

data sharing which DeltaFS also supports.

7 CROSS-JOB PARALLEL LOG COMPACTION

All log-structured filesystems require compaction to achieve good

read performance [58, 59, 62]. While today’s parallel filesystem de-

signs limit compaction activities to only dedicated metadata servers,

DeltaFS allows a user to dynamically launch compaction on com-

pute nodes. This enables utilizing a potentially large amount of

compute cores to accelerate compaction operations. At the same

time, with users only scheduling compaction on job change sets

Snapshot C Snapshot D

8
-w

a
y
 C

ro
s
s
-J

o
b

 P
a

ra
lle

l 

L
o

g
 C

o
m

p
a

c
ti
o

n

SSTSSTSST

d0

SSTSSTSST

d1

SSTSSTSST

d4

SSTSSTSST

d5

SSTSSTSST

c0

SSTSSTSST

c1

SSTSSTSST

b0

SSTSSTSST

a0

Change Set c

C
h

a
n

g
e

 

S
e

t 
b

C
h

a
n

g
e

 

S
e

t 
a

Change Set d

SSTSSTSST

d2

SSTSSTSST

d3

SSTSSTSST

d6

SSTSSTSST

d7

Figure 9: Example of a DeltaFS cross-job parallel log com-

paction. Snapshot C with a DAG of change sets a, b, and

c is parallel compacted into snapshot D with only a single

change set d consisting of 8 partitions.

that are known to be read by a followup job, per-compaction data

footprint can be minimized, further reducing compaction delays.

Unlike per-job log compaction which, as we discussed in Sec-

tion 6, is implicitly (i.e., without user intervention) done by servers

embedded in the job’s processes as a job runs, cross-job log com-

paction is explicitly scheduled by users. This is done by users launch-

ing a special parallel log compaction program that merges and re-

partitions a set of related job change sets in a single batch. Typically,

a user launches cross-job compaction either when a complex job

change set hierarchy needs to be flattened for efficient queries (ğ4), a

large set of per-client logged SSTables within a job change set needs

to be parallel sorted for fast lookups (ğ6), or a given change set or a

change set hierarchy contains too few partitions for sufficient load

balance across the job processes of a followup job.

DeltaFS uses a scalable parallel merge sort pipeline for cross-job

log compaction. Each pipeline process acts as a mapper for a subset

of input SSTables and simultaneously as a reducer responsible for

a partition of the target change set. Figure 9 shows an example

where snapshot C Ð made up of a DAG of change set a, b, and c

with c being the root Ð is parallel compacted to form snapshot D.

Before parallel compaction, reading a key from snapshot C required

searching potentially a partition of change set c, a partition of

change set b, and a partition of change set a. After compaction, each

key lookup requires searching only a single partition of change set d,

significantly reducing query overhead. Note also that change sets a,

b, and c were originally partitioned by the jobs that generated them.

Jobs A, B, and C had only 1, 1, and 2 server partitions, resulting

in their change sets to be partitioned accordingly. Compaction

expands change set d to have 8 partitions. Followup jobs with 8 job

processes can assign a partition to each of their per-process servers,

fully load balancing their read operations.

8 EXPERIMENTS

We implemented a prototype of DeltaFS in C++. A modular design

was used such that DeltaFS can be layered on top of different object

storage backends such as Ceph RADOS [78], PVFS [18], HDFS [67],

and other generic POSIX parallel filesystems [65, 66, 79].

Our experiments evaluate the performance of DeltaFS both in

terms of a single application job (ğ8.1) and multiple jobs sharing

a single computing cluster (ğ8.2). We test cases in which jobs are

related and use the filesystem for sequential data sharing and cases

in which jobs are unrelated and do not read each other’s files. We

compare DeltaFS with current state-of-the-art approaches: IndexFS

8



DeltaFS: A Scalable No-Ground-Truth Filesystem For Massively-Parallel Computing SC ’21, November 14–19, 2021, St. Louis, MO, USA

[60] for scalable parallel metadata performance and PLFS [12] for

ultra fast client-based metadata logging. We also compare against

a special IndexFS mode that allows clients to log metadata muta-

tions for later bulk insertion. We use mdtest [4] to generate our

test workloads. All our experiments store file metadata in a shared

underlying object store implemented with Ceph RADOS on top of

8 dedicated Ceph OSD nodes along with 1 Ceph Manager and 1

Ceph Monitoring node. Each Ceph OSD features one 1GbE connec-

tion for foreground communication between Ceph clients and OSD

servers and another 1GbE connection for background communica-

tion among Ceph OSDs, Managers, and Monitors.

8.1 Single-Job Performance

Current parallel filesystems use dedicated metadata servers. Their

performance is limited by the compute resources that a cluster ad-

min assigns to the filesystem. With DeltaFS we show that parallel

filesystems scale better when not constrained to dedicated meta-

data servers. DeltaFS enables jobs to self-instantiate their metadata

services on compute nodes, decoupling them from decisions made

by cluster administrators and enabling scaling beyond a fixed set

of server machines. To demonstrate this, our first experiment com-

pares DeltaFS with IndexFS [60], a state-of-the-art approach for

scalable parallel filesystem metadata performance using dynamic

namespace partitioning.

Dynamic Namespace Partitioning. IndexFS is a scalable parallel

filesystem whose metadata is partitioned for load balancing across

multiple dedicated metadata servers [60]. Both IndexFS and DeltaFS

implement the same namespace partitioning strategy [55], except

that IndexFS partitions the namespace across dedicated metadata

server nodes while DeltaFS normally partitions the namespace

across the compute nodes of a running job. To compare DeltaFS

with IndexFS, we created an IndexFS-like configuration of DeltaFS

that uses dedicated servers for metadata operations instead of job

compute nodes. We ran our IndexFS configuration using one or

two server nodes. In the latter case, the filesystem’s namespace

is divided into two partitions and there is one dedicated DeltaFS

server on each node to manage a partition.

We used Parallel Data Lab (PDL)’s Susitna cluster at Carnegie

Mellon University (CMU) for these tests. Each Susitna compute

node has four 16-core AMD Opteron 6272 2.1GHz CPUs, 128 GB

memory, one 40GbE NIC, and one 1GbE NIC. A total of ten nodes

are allocated: eight as client nodes (512 CPU cores) and two as ded-

icated metadata servers (for IndexFS). We use the 40GbE network

for filesystem operations and the 1GbE network for accessing the

shared underlying RADOS storage. Each test consists of running

a parallel mdtest job that inserts empty files into a pool of parent

directories and then queries the files it just created using the stat

command. All runs start with an empty filesystem namespace, and

files are created and stat’ed in random order in the namespace.

Each job process creates and stats 200K files. Our smallest run

used eight job processes and created 1.6M files. Our largest run

consisted of 512 job processes and created 102.4M files. For IndexFS

runs, all filesystem metadata operations are processed by one or

two dedicated metadata servers. For DeltaFS runs, filesystem meta-

data operations are handled by the DeltaFS servers embedded in

20
16

12 11 10

44
34

29 28 25

41

94

187

323

496

697

981

8

16

32

64

128

256

512

1024

2048

8 16 32 64 128 256 512

C
re

a
te

 (
K

o
p

/s
)

Job Processes

IndexFS (1 MDS) IndexFS (2 MDS)

DeltaFS

(a) Metadata Writes

39

88

145 145 145 139 145

298 269

62

133

278

466

691

976 1290

8

16

32

64

128

256

512

1024

2048

8 16 32 64 128 256 512

L
s
ta

t 
(K

o
p

/s
)

Job Processes

IndexFS (1 MDS) IndexFS (2 MDS)

DeltaFS

(b) Metadata Reads

Figure 10: Results of parallel mdtest runs against IndexFS

and DeltaFS. DeltaFS is up to 98.1x faster in filesystemmeta-

data writes and 8.9x faster in reads due to decoupling and

parallelizing filesystem metadata workload across all avail-

able job compute cores.

the job’s processes on the client nodes. Each job process launches

one server instance and manages a partition of the job’s namespace.

Figure 10a shows the file insertion performance. IndexFS per-

formance is limited by the number of dedicated metadata servers

used. The performance reduces as job size grows due to increased

log compaction overhead at the server(s) as more files are inserted

into the filesystem. Adding additional dedicated metadata servers

to IndexFS would alleviate this bottleneck, but a large number

of servers might have to be dedicated permanently for this task.

DeltaFS decouples per-job metadata performance from dedicated

resources. By distributing work across all available compute

nodeswithin a job, DeltaFS shows scalable performance that

increases as job size grows. At 512 job processes, DeltaFS is up

to 98.1× faster than IndexFS, thanks both to having more CPU

cores for handling client RPC requests and to less log compaction

overhead due to aggressive namespace partitioning.

Figure 10b shows file stat command performance. Similar to file

creates, DeltaFS performance increases as job size grows without

being limited by dedicated resources. At 512 job processes, DeltaFS

is up to 8.9× faster compared with IndexFS runs.

Client Logging. Recent work has shown ultra fast filesystem

metadata insertion rates through client side logging for metadata-

intensive workloads such as N-N checkpointing in which newly

created files are not immediately opened for read [12, 60]. While

client logging allows for fast writes, it does not address the perfor-

mance of the read operations that may occur after data is written.

Our second experiment shows that by combining client logging

with post-write client log compaction (ğ7), DeltaFS is able to achieve

fast reads in addition to fast writes. Compared with the current

state-of-the-art, DeltaFS more completely addresses the metadata

bottlenecks produced by extreme workloads.

We compare DeltaFS against IndexFS and PLFS. PLFS was devel-

oped for concurrently writing a single file (e.g., N-1 checkpoints)

[12]. It defers global synchronization of writes by logging the writes

of each process instead of processing them immediately. In addition

to file data mutations, PLFS-like techniques have also been used to

record filesystem namespace mutations [11]. The IndexFS scalable

parallel filesystem includes an extension that allows a set of client

9



SC ’21, November 14–19, 2021, St. Louis, MO, USA Qing Zheng, Charles D. Cranor et al.

10723

0

704

52

0

5642

16

0

2844

16

7

118

1

10

100

1000

10000

100000

Create Time (s) Parallel Compaction
Time (s)

Lstat Time (s)

R
u

n
ti
m

e
 (

s
)

IndexFS (1 MDS) IndexFS (1 MDS + Bulk) PLFS DeltaFS

Figure 11: Comparison of client logging and subsequent read

performance among IndexFS, PLFS, and DeltaFS. DeltaFS

techniques achieve both fast writes and fast reads.

processes to write-lock a newly created directory and instead of

synchronously integrating every filesystem metadata mutation be-

neath this directory, they each simply log operations to be applied

later in a bulk insertion [60]. We implemented both PLFS and the

IndexFS’s bulk insertion extension in our DeltaFS code, taking ad-

vantage of DeltaFS’s log-structured metadata representation and

the presence of a shared underlying object store.

We run the same test as we did in our first experiment but this

timewith client-side logging enabled.We focus on the configuration

in which 512 job processes are launched creating 102.4M files. For

IndexFS bulk insertion runs, all clients log their file creates in per-

client SSTables and inform the server of their SSTables at the end

of the write phase. Subsequent read operations are processed by

the server, as in the original IndexFS runs. For PLFS runs, per-client

SSTables logged at the write phase are directly opened by clients

at the read phase. All clients open all other clients’ SSTables for

random reads. Finally, for DeltaFS runs, client logged SSTables at

the write phase are merged and re-partitioned through a 512-way

parallel log compaction process invoked by DeltaFS in the job’s

processes before moving to the read phase, which enables fast

subsequent reads.

Figure 11 shows the time it takes for each run to finish the write,

the parallel log compaction time (DeltaFS only), and the read phase

time. For reference, we included in the figure the original IndexFS (1

MDS) results from our previous experiment. By not synchronously

integrating every file create operation to a dedicated server, client

logging significantly improves a job’s write performance for all of

IndexFS, PLFS, and DeltaFS. Bulk-inserting IndexFS takes a little

longer to finish due to the additional overhead of having to wait

at the end of the write phase for the metadata server to update its

LSM metadata with the newly inserted SSTables.

On the read side, even with bulk insertion, IndexFS performance

is limited due to having only a single dedicated metadata server for

reads. Worse, server-based background log (SSTable) compaction Ð

which asynchronously optimizes SSTables to a read-optimized rep-

resentation Ð has been deferred to the read phase after clients bulk

insert their tables, resulting in a much slower read phase overall.

PLFS spreads reads across all of the job’s processes. However, each

read is likely to have to query an excessive number of SSTables due

to their overlapping key ranges in the absence of log compaction op-

erations. DeltaFS leverages parallelism available in the job’s

0.8M 
Files

12.8
M 

Files

51.2
M 

Files

25.6
M 

Files

6.4M 
Files

3.2M 
Files

1.6M
Files

102.4
M 

Files

+51.2M Files

4

+6.4M Files

32 Job 
Processes

6

+25.6M Files

128 Job 
Processes

5

+12.8M Files

64 Job 
Processes

3

+3.2M Files

16 Job 
Processes

2

+1.6M Files

8 Job 
Processes

1

+0.8M Files

4 Job 
Processes

7

256 Job 
Processes

N
a

m
e

s
p

a
c
e

R
e
g
is

tr
y

W
o
rk

fl
o
w

Figure 12: Illustration of our test workflow. Increasing file

counts require increasing parallelism to minimize delays.

processes to complete log compaction faster and speed up

subsequent reads. Specifically, DeltaFS queries files 5.9×, 47.8×,

24.1× faster than IndexFS, IndexFS bulk insertion, and PLFS (Fig-

ure 11). It took DeltaFS longer to finish the reads (118s) than it did

in Figure 10b (80s) due to having to start from a cold metadata cache

following client logging and parallel log compaction. Nevertheless,

through decoupling and parallelizing all of the write, read, and

log compaction operations, DeltaFS managed a much shorter over-

all run time (write + read + compaction) compared with IndexFS,

IndexFS bulk insertion, and PLFS.

8.2 Multi-Job Performance

Enabling jobs to self-fund their metadata read, write, and com-

paction operations allows DeltaFS to greatly improve per-job meta-

data performance. In this section, we show that the same DeltaFS

techniques can be applied to multi-job scenarios as effectively as

they are for single jobs. This is true even in cases where related

jobs use the filesystem for sequential data sharing, and it works in

the absence of a global filesystem namespace.

No Ground Truth. Freedom from global serialization comes at the

cost of the additional need for jobs to explicitly merge and compact

related namespace snapshots before they can access them efficiently.

It is difficult to identify typical multi-job workflow patterns [5], so

to measure cost we devised a synthetic 7-stage workflow shown

in Figure 12. Each stage (or job) in the workflow takes a previous

filesystem namespace snapshot as input, doubles the number of

files in the namespace by inserting new files, and then ends by

publishing it as a new snapshot. New files are created with unique

names that do not conflict with previously created files. The work-

flow starts with an initial snapshot containing 0.8M files. It ends

with seven new snapshots, with the last one consisting of 102.4M

files. We compare running this workflow using IndexFS (1 MDS)

with running it using DeltaFS. For the IndexFS runs, all new files

are directly inserted into the global namespace managed by the

dedicated IndexFS metadata server. For DeltaFS, newly created files

are first logged through the DeltaFS instance running at each client

process. These logged file creates are later merged and compacted

into a unified job-wide namespace when the output snapshot of

the job is generated (more details below).

We used PDL’s Narwhal cluster at CMU for these tests. Each Nar-

whal compute node has 4 Dual-Core AMD Opteron 2210 1.8GHz

CPUs, 16 GB memory, and two 1GbE NICs. We use one NIC for

filesystem operations and the other for accessing the shared un-

derlying RADOS. Up to 128 nodes were allocated to run workflow

jobs. We used mdtest to create files. Each workflow stage runs

an increasing amount of mdtest job processes. The first workflow

10



DeltaFS: A Scalable No-Ground-Truth Filesystem For Massively-Parallel Computing SC ’21, November 14–19, 2021, St. Louis, MO, USA

46

114

251

580

1344

3159

7390

45
63

93
148

8

18

29
41

59
86

133

2

8

32

128

512

2048

8192

1.6M 3.2M 6.4M 12.8M 25.6M 51.2M 102.4M

C
u

m
u

la
te

d
 T

im
e

(s
e

c
s
)

Cumulated Files

IndexFS (1 MDS) DeltaFS

(a) Runtime

45

105

246

3

12

49

224

1039

4912

22964

130

438

1

4

16

64

256

1024

4096

16384

65536

1.6M 3.2M 6.4M 12.8M 25.6M 51.2M 102.4M

R
e

s
o

u
rc

e
 U

s
a

g
e

(c
o

re
 x

 m
in

s
)

Cumulated Files

IndexFS (1 MDS) IndexFS Clients DeltaFS

(b) Resource Usage

Figure 13: Results of running a seven-stage workflow

against IndexFS and DeltaFS. DeltaFS uses 52.9x fewer to-

tal CPU core-minutes than IndexFSwhile improving overall

workflow runtime by 49.9x.

stage consists of 4 mdtest job processes inserting 0.8M files. The

last stage consists of 256 processes inserting 51.2M files. For In-

dexFS runs, all job processes synchronize with a dedicated IndexFS

metadata server to create files. For DeltaFS runs, file creates are first

logged as per-client SSTables. A parallel log compaction program

follows each mdtest job. It merges both the per-client SSTables

generated by the job and the SSTables belonging to the original in-

put snapshot to form a combined, read-optimized namespace view

which is then published as a new snapshot. This new snapshot is

logically equivalent to the IndexFS’s global filesystem namespace

at that moment, as both IndexFS and the DeltaFS snapshot contain

all files that have been created so far and both are read-optimized

(IndexFS server runs log compaction in the background). The extra

processing time and compute resources that DeltaFS uses at the end

of each workflow stage to run parallel log compaction to generate

this namespace snapshot captures the cost of no ground truth in

DeltaFS.

Figure 13a shows the cumulative time it takes for each filesystem

to finish the workflow stages. There are two main factors that

account for the difference in performance between IndexFS and

DeltaFS. First, IndexFS is not workflow aware and must maintain

a globally synchronized namespace on its metadata server at all

times. The IndexFS background log compaction thread running

on the dedicated metadata server may start running at any point

in the workflow and interfere with performance. DeltaFS, on the

other hand, is instantiated by the user and is aware of the phases

of the workflow. DeltaFS can safely log client metadata operations

when the application is in the file create phase and defer expensive

compaction operations until the end of the phase when the output

snapshot is made. Second, all IndexFS metadata processing takes

place on a single dedicated metadata server that may bottleneck

performance. With DeltaFS the metadata processing is distributed

across all available client compute nodes enabling DeltaFS to take

advantage of parallelism on these nodes to minimize compaction

time when making a snapshot. These two factors result in DeltaFS

being 49.9× faster than IndexFS on our workflow.

Figure 13a also shows how DeltaFS behaves when jobs in the

workflow are configured to be unrelated. In this case each stage in

the workflow starts with an empty namespace rather than seeing

files created by the previous stage. The dashed line in Figure 13a

shows DeltaFS performance in this case. Since DeltaFS does not

have to merge logs from previous snapshots, it finishes faster. The

difference between the two DeltaFS runs demonstrates the cost of

sequential data sharing in DeltaFS. Note that the difference is small

due to the efficiency of parallel compaction (which increases as job

size increases).

Figure 13b shows the cumulative resource usage (in the form

of CPU cores × mins) each workflow takes to process all of the

filesystem metadata operations. For IndexFS, this is the usage of

its dedicated metadata server. For DeltaFS, we aggregate its re-

source usage across all of its job processes. DeltaFS used about

2× more compute resources than IndexFS. This is due to DeltaFS

employing aggressive deep logging at the clients. DeltaFS first

logs the entire set of metadata changes of a stage of the work-

flow and then subsequently uses a compute and I/O intensive par-

allel log compaction to merge all the changes together into an

output snapshot. While IndexFS spent fewer total CPU core-

minutes at the server, it effectively wastes amassive amount

of client-side compute node resources by having application

processes blocked onfilesystemmetadata operations (plotted

in Figure 13b as a dashed line). The job as a whole cannot make

progress if processes are bottlenecked waiting on IndexFS metadata

server operations to complete. DeltaFS uses 52.9× fewer CPU core-

minutes than IndexFS in total, of which 98.9% were core-minutes

spent on the clients alone. This result is due to IndexFS limiting

metadata processing to dedicated server nodes.

Additional experiments showed that this 52.9× reduction in re-

source usage (core-minutes) of DeltaFS over IndexFS would be

decreased to around 28× if IndexFS had two dedicated metadata

servers instead of one. That is, if two metadata servers were used,

IndexFS could finish all operations more quickly, blocking clients

for a less amount of time and leading to reduced total client and

server CPU time. If even more metadata servers were added, re-

source usage for IndexFS would further reduce, until IndexFS is

over-provisioned at the server-side and becomes inefficient again.

By contrast, DeltaFS allows filesystem resources to be adjusted on

a per-job basis and does not require metadata servers to be perma-

nently dedicated. We imagine future work that utilizes machine

learning algorithms to guide per-job resource allocation for both

filesystem metadata processing and parallel log compaction.

9 RELATED WORK

Large-scale parallel filesystems have long served as an important

storage infrastructure in modern computing environments [75].

While the conventional wisdom is to put both namespace servers

and file storage into a single layered system [18, 65, 66], DeltaFS

envisions them to be loosely related but separate systems [63]. This

allows metadata to be accessed from a provisional service spawned

by each application on-demand. Data may be placed on a set of

unrelated traditional łforever-runningž service silos that can be

upgraded or extended independently.

Namespace stage-in and stage-out services are available through

workload aware filesystems such as the Confuga cluster filesystem

[22] and modern burst-buffer software such as Cray’s DataWarp

[29]. DeltaFS differs from them by not requiring all changes to be

11



SC ’21, November 14–19, 2021, St. Louis, MO, USA Qing Zheng, Charles D. Cranor et al.

merged back to a single, global namespace at job completion (eager

synchronization) and instead enables jobs to communicate only on

an as-needed basis.

Novel burst-buffer filesystems such as BurstFS [76], GekkoFS

[74], and Gfarm/BB [72] provide applications with an ephemeral

namespace that has the same life cycle as the job. DeltaFS is able

to provide the same semantics as these filesystems. In addition,

DeltaFS allows namespaces to outlive their jobs as immutable snap-

shots in a public registry for inter-job communication. Related

snapshots can be merged as needed through scalable parallel log

compaction on compute nodes.

Prior work such as Coda [39], BatchFS [86], and Pacon [48] has

discussed multiple forms of filesystem metadata writeback caching.

DeltaFS differs from them by not requiring even an asynchronously

updated global filesystem namespace for maximum parallelism.

Prior work such as FusionFS [84] has demonstrated scalable per-

formance through using distributed compute node resources for an

ultra fast parallel filesystem. DeltaFS differs from it by not requiring

a portion of compute node resources to be forever dedicated and

by enabling a smaller namespace footprint per job.

Searchable filesystems have been extensively studied by work

including TagIt [68], BRINDEXER [56], SmartStore [32], Glance

[33], Spyglass [46], and HP’s StoreAll Storage [38]. DeltaFS may be

enhanced with these techniques to enable rich metadata queries.

To quickly absorb a large amount of small files, PLFS [11, 12] used

an append-to-end format for high metadata insertion performance

at the expense of subsequent reads. To achieve more balanced read

and write performance, recent filesystems leveraged more advanced

data formats for on-storage metadata management. Examples of

such efforts include TABLEFS [58], IndexFS [60], and XtreemFS

[35, 70] which used LSM-Trees [53], BetrFS which used Fractal

Trees [24, 37], and LocoFS [47] which used a combination of hash

tables and B-Trees for file and directory management separately.

Many filesystems partitioned their namespaces for scalable per-

formance. Ceph [77] used a subtree-based partitioning scheme for

improved access locality. Farsite [23] leveraged its unique tree-

structured file identifiers for namespace partitioning preventing

data movement when directories are renamed. IndexFS [60] and

skyFS [83] used a directory-based partitioning scheme that aggres-

sively splits a directory as it grows. ShardFS [82], LocoFS [47], and

MarFS [36] used a hash-based scheme and separated files from

directory partitioning in favor of improved access performance on

files.

It is not new to have a cluster of computers collectively share

a filesystem on a distributed data store without requiring a dedi-

cated metadata manager [9, 41, 73]. In these shared environments,

each filesystem client runs an embedded metadata manager. This

manager serves both the client and other clients sharing the same

filesystem in a local area network. All metadata managers under-

stand the filesystem’s on-storage data format and can dynamically

assume responsibility for any files or directories in the filesystem

when accessed. To achieve synchronization, distributed locking is

used to control access to the shared filesystem and to client data

and metadata caches.

Today, such a filesystem metadata design approach is mostly

seen in symmetric Storage Area Network (SAN) filesystems [25,

57, 80] as well as the GPFS filesystem [65] widely used in HPC

environments. Scalability is often an issue due to the large amount

of synchronization needed to access the filesystem [21]. To mitigate

this problem, real world deployments typically dedicate a small

set of nodes to run filesystem clients with embedded metadata

managers. These clients then act as filesystem servers, exporting

the filesystem to a larger cluster of filesystem users on job-running

compute nodes withoutmetadatamanagers. Notwithstandingmany

benefits, such deployment approaches largely defeat the goal of

having no dedicated metadata managers and fail to utilize compute

node resources to accelerate filesystem metadata operations.

CONCLUSION

As HPC platforms evolve, it is important to periodically stop and

reassess their filesystem design to determine if it has become a

bottleneck and needs to be rearchitected. A key redesign effort

was made by the NASD project [26], which decoupled filesystem

data communication from metadata management and leveraged

object storage devices for scalable data access. Similar bold ideas

that reassess component communication are needed to advance

parallel filesystem performance if we are to keep with up the rapidly

increasing scale of today’s massively-parallel computing environ-

ments.

DeltaFS is based on the premise that at exascale and beyond,

synchronization of anything global should be avoided. Conven-

tional parallel filesystems, with fully synchronous and consistent

namespaces, mandate synchronization with every file create and

other metadata operations. This has to stop. Moreover, the idea of

dedicating a single filesystem metadata service to meet the needs of

all applications in a shared computing environment is archaic and

inflexible. This too must stop. DeltaFS shifts away from dedicated

metadata servers towards the notion of viewing the filesystem as

a service that is dynamically instantiated in the processes of each

running application. Cross-job synchronization happens as-needed

depending on the description of the workload at hand. DeltaFS

leverages client resources to achieve scalable performance. An effi-

cient log-structured format is used that lends itself to deep metadata

writeback buffering and merging.

Our evaluation of DeltaFS suggests that its aggressive approach

to handling filesystemmetadata may be the way forward in order to

unlock scalable parallel metadata performance that is unattainable

with today’s monolithic, one-size-fits-all storage solutions.

ACKNOWLEDGMENT

We thank the anonymous reviewers of our paper for their valu-

able comments on improving descriptions of DeltaFS cross-job data

sharing, aging, resource usage, fault tolerance, complexity, and

data conflicts. This manuscript has been approved for unlimited

release and has been assigned LA-UR-21-27615. This work has been

authored by an employee of Triad National Security, LLC which

operates Los Alamos National Lab with the U.S. Department of

Energy/National Nuclear Security Administration. We also thank

the member companies of the PDL Consortium (Amazon, Face-

book, Google, HPE, Hitachi, IBM, Intel, Microsoft, NetApp, Oracle,

Pure Storage, Salesforce, Samsung Semiconductor, Seagate, Two

Sigma, and Western Digital) for their interest, insights, feedback,

and support.

12



DeltaFS: A Scalable No-Ground-Truth Filesystem For Massively-Parallel Computing SC ’21, November 14–19, 2021, St. Louis, MO, USA

REFERENCES
[1] 2014. OverlayFS. https://www.kernel.org/doc/Documentation/filesystems/

overlayfs.txt.
[2] 2016. APEX Workflows. https://www.nersc.gov/assets/apex-workflows-v2.pdf.
[3] 2018. ISO/IEC 9899:2018 Information technology Ð Programming languages Ð

C. https://www.iso.org/standard/74528.html.
[4] 2020. IOR/mdtest. https://github.com/hpc/ior.
[5] 2021. Workflows Community Summit: Bringing the Scientific Workflows Com-

munity Together. https://doi.org/10.5281/zenodo.4606958 https://arxiv.org/abs/
2103.09181.

[6] S. V. Adve and K. Gharachorloo. 1996. Shared memory consistency models: a
tutorial. Computer 29, 12 (Dec 1996), 66ś76. https://doi.org/10.1109/2.546611

[7] Sadaf R. Alam, Hussein N. El-Harake, Kristopher Howard, Neil Stringfellow, and
Fabio Verzelloni. 2011. Parallel I/O and the Metadata Wall. In Proceedings of the
Sixth Workshop on Parallel Data Storage (PDSW 11). 13ś18. https://doi.org/10.
1145/2159352.2159356

[8] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger, Garth A. Gibson, Elis-
abeth Baseman, and Nathan DeBardeleben. 2018. On the Diversity of Cluster
Workloads and Its Impact on Research Results. In Proceedings of the 2018 USENIX
Conference on Usenix Annual Technical Conference (USENIX ATC 18). 533ś546.

[9] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson,
Drew S. Roselli, and Randolph Y. Wang. 1996. Serverless Network File Systems.
ACM Trans. Comput. Syst. 14, 1 (Feb. 1996), 41ś79. https://doi.org/10.1145/225535.
225537

[10] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei
Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD
15). 1383ś1394. https://doi.org/10.1145/2723372.2742797

[11] John Bent. 2015. PLFS: Software-Defined Storage for HPC. In High Performance
Parallel I/O, Prabhat and Koziol (Eds.). CRC Press, Chapter 14, 169ś176.

[12] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczynski, James
Nunez, Milo Polte, and Meghan Wingate. 2009. PLFS: A Checkpoint Filesystem
for Parallel Applications. In Proceedings of the 2009 International Conference for
High Performance Computing, Networking, Storage, and Analysis (SC 09). Article
21, 12 pages. https://doi.org/10.1145/1654059.1654081

[13] John Bent, Brad Settlemyer, and Gary Grider. 2016. Serving Data to the Lunatic
Fringe: The Evolution of HPC Storage. USENIX ;login: 41, 2 (June 2016).

[14] Andrew D. Birrell and Bruce Jay Nelson. 1983. Implementing Remote Procedure
Calls. SIGOPS Oper. Syst. Rev. 17, 5 (Oct. 1983). https://doi.org/10.1145/773379.
806609

[15] S. A. Brandt, E. L. Miller, D. D. E. Long, and Lan Xue. 2003. Efficient Metadata
Management in Large Distributed Storage Systems. In Proceedings of the 2003
International Conference on Massive Storage Systems and Technologies (MSST 03).
290ś298. https://doi.org/10.1109/MASS.2003.1194865

[16] Mike Burrows. 2006. The Chubby Lock Service for Loosely-coupled Distributed
Systems. In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI 06). 335ś350.

[17] Jesús Camacho-Rodríguez, Ashutosh Chauhan, Alan Gates, Eugene Koifman,
Owen O’Malley, Vineet Garg, Zoltan Haindrich, Sergey Shelukhin, Prasanth Jay-
achandran, Siddharth Seth, Deepak Jaiswal, Slim Bouguerra, Nishant Bangarwa,
Sankar Hariappan, Anishek Agarwal, Jason Dere, Daniel Dai, Thejas Nair, Nita
Dembla, Gopal Vijayaraghavan, and Günther Hagleitner. 2019. Apache Hive:
From MapReduce to Enterprise-Grade Big Data Warehousing. In Proceedings of
the 2019 International Conference on Management of Data (SIGMOD 19). 1773ś1786.
https://doi.org/10.1145/3299869.3314045

[18] Philip H. Carns, Walter B. Ligon, Robert B. Ross, and Rajeev Thakur. 2000. PVFS:
A Parallel File System for Linux Clusters. In Proceedings of the 4th Annual Linux
Showcase & Conference (ALS 00).

[19] Fay Chang, JeffreyDean, SanjayGhemawat,Wilson C. Hsieh, DeborahA.Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2008.
Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput.
Syst. 26, 2 (June 2008), 4:1ś4:26. https://doi.org/10.1145/1365815.1365816

[20] Peter F. Corbett and Dror G. Feitelson. 1996. The Vesta Parallel File System. ACM
Trans. Comput. Syst. 14, 3 (Aug. 1996), 225ś264. https://doi.org/10.1145/233557.
233558

[21] Murthy Devarakonda, Ajay Mohindra, Jill Simoneaux, and William H. Tetzlaff.
1995. Evaluation of Design Alternative for a Cluster File System. In Proceedings
of the 1995 USENIX Annual Technical Conference (USENIX ATC 95).

[22] Patrick Donnelly, Nicholas Hazekamp, and Douglas Thain. 2015. Confuga: Scal-
able Data Intensive Computing for POSIX Workflows. In Proceedings of the 15th
IEEE/ACM International Symposium on Cluster Cloud and Grid Computing (CC-
GRID 15). 392ś401. https://doi.org/10.1109/CCGrid.2015.95

[23] John R. Douceur and Jon Howell. 2006. Distributed Directory Service in the
Farsite File System. In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI 06). 321ś334.

[24] John Esmet, Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul.
2012. The TokuFS Streaming File System. In Proceedings of the 4th USENIX
Conference on Hot Topics in Storage and File Systems (HotStorage 12).

[25] Mark Fasheh. 2006. OCFS2: The Oracle Clustered File System, Version 2. In
Proceedings of the 2006 Linux Symposium. 289ś302.

[26] Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff Butler, Fay W. Chang, Howard
Gobioff, Charles Hardin, Erik Riedel, David Rochberg, and Jim Zelenka. 1998. A
Cost-effective, High-bandwidth Storage Architecture. In Proceedings of the Eighth
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 98). 92ś103. https://doi.org/10.1145/291069.291029

[27] Google. 2013. LevelDB. https://github.com/google/leveldb/.
[28] William Gropp, Ewing Lusk, and Anthony Skjellum. 2014. Using MPI: Portable

Parallel Programming with the Message-Passing Interface. The MIT Press.
[29] Dave Henseler, Benjamin Landsteiner, Doug Petesch, Cornell Wright, and

Nicholas J Wright. 2016. Architecture and Design of Cray Datawarp. In Pro-
ceedings of the 2016 Cray User Group (CUG 2016). https://cug.org/proceedings/
cug2016_proceedings/includes/files/pap105s2-file1.pdf.

[30] W. Daniel Hillis and Lewis W. Tucker. 1993. The CM-5 Connection Machine:
A Scalable Supercomputer. Commun. ACM 36, 11 (Nov. 1993), 31ś40. https:
//doi.org/10.1145/163359.163361

[31] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satya-
narayanan, Robert N. Sidebotham, and Michael J. West. 1988. Scale and Perfor-
mance in a Distributed File System. ACM Trans. Comput. Syst. 6, 1 (Feb. 1988),
51ś81. https://doi.org/10.1145/35037.35059

[32] YuHua, Hong Jiang, Yifeng Zhu, Dan Feng, and Lei Tian. 2009. SmartStore: A New
Metadata Organization Paradigm with Semantic-Awareness for next-Generation
File Systems. In Proceedings of the 2009 Conference on High Performance Computing,
Networking, Storage, and Analysis (SC 09). Article 10, 12 pages. https://doi.org/
10.1145/1654059.1654070

[33] H. Howie Huang, Nan Zhang, Wei Wang, Gautam Das, and Alexander S. Szalay.
2011. Just-in-Time Analytics on Large File Systems. In Proceedings of the 9th
USENIX Conference on File and Stroage Technologies (FAST 11). 16.

[34] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proceedings of
the 2010 USENIX Annual Technical Conference (USENIX ATC 10).

[35] F. Hupfeld, T. Cortes, B. Kolbeck, E. Focht, M. Hess, J. Malo, J. Marti, J. Stender,
and E. Cesario. 2007. XtreemFS - A Case for Object-Based Storage in Grid Data
Management. In Proceedings of the 2007 VLDB Workshop on Data Management in
Grids (DMG 2007).

[36] Jeff Inman, Will Vining, Garrett Ransom, and Gary Grider. 2017. MarFS, a Near-
POSIX Interface to Cloud Objects. USENIX ;login: 42, 1 (Jan. 2017).

[37] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet, Yizheng
Jiao, Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif Walsh, Michael
Bender, Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E.
Porter. 2015. BetrFS: A Right-Optimized Write-Optimized File System. In Pro-
ceedings of the 13th USENIX Conference on File and Storage Technologies (FAST 15).
301ś315.

[38] Charles Johnson, Kimberly Keeton, Charles B. Morrey, Craig A. N. Soules,
Alistair Veitch, Stephen Bacon, Oskar Batuner, Marcelo Condotta, Hamilton
Coutinho, Patrick J. Doyle, Rafael Eichelberger, Hugo Kiehl, Guilherme Magal-
haes, James McEvoy, Padmanabhan Nagarajan, Patrick Osborne, Joaquim Souza,
Andy Sparkes, Mike Spitzer, Sebastien Tandel, Lincoln Thomas, and Sebastian
Zangaro. 2014. From Research to Practice: Experiences Engineering a Production
Metadata Database for a Scale out File System. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST 14). 191ś198.

[39] James J. Kistler and M. Satyanarayanan. 1992. Disconnected Operation in the
Coda File System. ACM Trans. Comput. Syst. 10, 1 (Feb. 1992), 3ś25. https:
//doi.org/10.1145/146941.146942

[40] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey
Ching, Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht, Matthew Jacobs,
et al. 2015. Impala: A Modern, Open-Source SQL Engine for Hadoop. In CIDR.

[41] Nancy P. Kronenberg, Henry M. Levy, and William D. Strecker. 1986. VAXcluster:
A Closely-Coupled Distributed System. ACM Trans. Comput. Syst. 4, 2 (May 1986),
130ś146. https://doi.org/10.1145/214419.214421

[42] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized
Structured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 35ś40.
https://doi.org/10.1145/1773912.1773922

[43] L. Lamport. 1979. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Trans. Comput. C-28, 9 (Sep. 1979), 690ś
691. https://doi.org/10.1109/TC.1979.1675439

[44] LANL. 2018. Grand Unified File-Index. https://github.com/mar-file-system/GUFI.
[45] LANL, NERSC, SNL. 2018. CrossroadsWorkflows. https://www.lanl.gov/projects/

crossroads/__internal/__blocks/xroads-workflows.pdf.
[46] Andrew W. Leung, Minglong Shao, Timothy Bisson, Shankar Pasupathy, and

Ethan L. Miller. 2009. Spyglass: Fast, Scalable Metadata Search for Large-Scale
Storage Systems. In Proccedings of the 7th Conference on File and Storage Tech-
nologies (FAST 09). 153ś166.

13

https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.kernel.org/doc/Documentation/filesystems/overlayfs.txt
https://www.nersc.gov/assets/apex-workflows-v2.pdf
https://www.iso.org/standard/74528.html
https://github.com/hpc/ior
https://doi.org/10.5281/zenodo.4606958
https://arxiv.org/abs/2103.09181
https://arxiv.org/abs/2103.09181
https://doi.org/10.1109/2.546611
https://doi.org/10.1145/2159352.2159356
https://doi.org/10.1145/2159352.2159356
https://doi.org/10.1145/225535.225537
https://doi.org/10.1145/225535.225537
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/1654059.1654081
https://doi.org/10.1145/773379.806609
https://doi.org/10.1145/773379.806609
https://doi.org/10.1109/MASS.2003.1194865
https://doi.org/10.1145/3299869.3314045
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/233557.233558
https://doi.org/10.1145/233557.233558
https://doi.org/10.1109/CCGrid.2015.95
https://doi.org/10.1145/291069.291029
https://github.com/google/leveldb/
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap105s2-file1.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap105s2-file1.pdf
https://doi.org/10.1145/163359.163361
https://doi.org/10.1145/163359.163361
https://doi.org/10.1145/35037.35059
https://doi.org/10.1145/1654059.1654070
https://doi.org/10.1145/1654059.1654070
https://doi.org/10.1145/146941.146942
https://doi.org/10.1145/146941.146942
https://doi.org/10.1145/214419.214421
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1109/TC.1979.1675439
https://github.com/mar-file-system/GUFI
https://www.lanl.gov/projects/crossroads/__internal/__blocks/xroads-workflows.pdf
https://www.lanl.gov/projects/crossroads/__internal/__blocks/xroads-workflows.pdf


SC ’21, November 14–19, 2021, St. Louis, MO, USA Qing Zheng, Charles D. Cranor et al.

[47] Siyang Li, Youyou Lu, Jiwu Shu, Yang Hu, and Tao Li. 2017. LocoFS: A Loosely-
coupled Metadata Service for Distributed File Systems. In Proceedings of the 2017
International Conference for High Performance Computing, Networking, Storage,
and Analysis (SC 17). Article 4, 12 pages. https://doi.org/10.1145/3126908.3126928

[48] Yubo Liu, Yutong Lu, Zhiguang Chen, and Ming Zhao. 2020. Pacon: Improving
Scalability and Efficiency of Metadata Service through Partial Consistency. In
Proceedings of the 2020 IEEE International Symposium on Parallel and Distributed
Processing (IPDPS 20). 986ś996. https://doi.org/10.1109/IPDPS47924.2020.00105

[49] Jay Lofstead, Ivo Jimenez, Carlos Maltzahn, Quincey Koziol, John Bent, and Eric
Barton. 2016. DAOS and Friends: A Proposal for an Exascale Storage System. In
Proceedings of the 2016 International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC 16). Article 50, 12 pages. https://doi.org/
10.1109/SC.2016.49

[50] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interactive Analy-
sis of Web-Scale Datasets. Proc. VLDB Endow. 3, 1ś2 (Sept. 2010), 330ś339.
https://doi.org/10.14778/1920841.1920886

[51] Don Monroe. 2020. Fugaku Takes the Lead. Commun. ACM 64, 1 (Dec. 2020),
16ś18. https://doi.org/10.1145/3433954

[52] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. 1988. Caching in the
Sprite Network File System. ACM Trans. Comput. Syst. 6, 1 (Feb. 1988), 134ś154.
https://doi.org/10.1145/35037.42183

[53] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
Log-structured Merge-tree (LSM-tree). Acta Inf. 33, 4 (June 1996), 351ś385.
https://doi.org/10.1007/s002360050048

[54] Tirthak Patel, Zhengchun Liu, Raj Kettimuthu, Paul Rich, William Allcock, and
Devesh Tiwari. 2020. Job Characteristics on Large-Scale Systems: Long-Term
Analysis, Quantification, and Implications. In Proceedings of the 2020 International
Conference for High Performance Computing, Networking, Storage, and Analysis
(SC 20). Article 84, 17 pages. https://doi.org/10.1109/SC41405.2020.00088

[55] Swapnil Patil and Garth Gibson. 2011. Scale and Concurrency of GIGA+: File Sys-
tem Directories with Millions of Files. In Proceedings of the 9th USENIX Conference
on File and Stroage Technologies (FAST 11).

[56] Arnab K. Paul, Brian Wang, Nathan Rutman, Cory Spitz, and Ali R. Butt. 2020.
Efficient Metadata Indexing for HPC Storage Systems. In Proceedings of the 2020
20th IEEE/ACM International Symposium on Cluster Cloud and Internet Computing
(CCGrid 20). 162ś171. https://doi.org/10.1109/CCGrid49817.2020.00-77

[57] K.W. Preslan, A. P. Barry, J. E. Brassow, G.M. Erickson, E. Nygaard, C. J. Sabol, S. R.
Soltis, D. C. Teigland, and M. T. O’Keefe. 1999. A 64-bit, shared disk file system
for Linux. In Proceedings of the 16th IEEE Symposium on Mass Storage Systems in
cooperation with the 7th NASA Goddard Conference on Mass Storage Systems and
Technologies (MASS 99). 22ś41. https://doi.org/10.1109/MASS.1999.829973

[58] Kai Ren and Garth Gibson. 2013. TABLEFS: Enhancing Metadata Efficiency in the
Local File System. In Proceedings of the 2013 USENIX Annual Technical Conference
(USENIX ATC 13). 145ś156.

[59] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson. 2017. SlimDB: A Space-
efficient Key-value Storage Engine for Semi-sorted Data. Proc. VLDB Endow. 10,
13 (Sept. 2017), 2037ś2048. https://doi.org/10.14778/3151106.3151108

[60] Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson. 2014. IndexFS: Scaling
File System Metadata Performance with Stateless Caching and Bulk Insertion. In
Proceedings of the 2014 International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC 14). 237ś248. https://doi.org/10.1109/SC.
2014.25

[61] Dennis M. Ritchie and Ken Thompson. 1974. The UNIX Time-Sharing System.
Commun. ACM 17, 7 (July 1974), 365ś375. https://doi.org/10.1145/361011.361061

[62] Mendel Rosenblum and John K. Ousterhout. 1992. The Design and Implementa-
tion of a Log-structured File System. ACM Trans. Comput. Syst. 10, 1 (Feb. 1992),
26ś52. https://doi.org/10.1145/146941.146943

[63] Robert B. Ross, George Amvrosiadis, Philip Carns, Charles D. Cranor, Matthieu
Dorier, Kevin Harms, Greg Ganger, Garth Gibson, Samuel K. Gutierrez, Robert
Latham, Bob Robey, Dana Robinson, Bradley Settlemyer, Galen Shipman, Shane
Snyder, Jerome Soumagne, and Qing Zheng. 2020. Mochi: Composing Data
Services for High-Performance Computing Environments. Journal of Computer
Science and Technology 35, 1, Article 121 (2020), 23 pages. https://doi.org/10.
1007/s11390-020-9802-0

[64] R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and B. Lyon. 1985. Design and
Implementation of the Sun Network Filesystem. In Proceedings of the USENIX
1985 Summer Conference.

[65] Frank B. Schmuck and Roger L. Haskin. 2002. GPFS: A Shared-Disk File System
for Large Computing Clusters. In Proceedings of the 1st USENIX Conference on
File and Storage Technologies (FAST 02). 231ś244.

[66] Philip Schwan. 2003. Lustre: Building a File System for 1000-Node Clusters. In
Proceedings of the 2003 Linux Symposium. 380ś386.

[67] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. 2010. The Hadoop Distributed
File System. In Proceedings of the 2010 International Conference on Massive Storage
Systems and Technologies (MSST 10). 1ś10. https://doi.org/10.1109/MSST.2010.
5496972

[68] Hyogi Sim, Youngjae Kim, Sudharshan S. Vazhkudai, Geoffroy R. Vallée, Seung-
Hwan Lim, and Ali R. Butt. 2017. Tagit: An Integrated Indexing and Search
Service for File Systems. In Proceedings of the 2017 International Conference for
High Performance Computing, Networking, Storage, and Analysis (SC 17). Article
5, 12 pages. https://doi.org/10.1145/3126908.3126929

[69] J. Soumagne, D. Kimpe, J. Zounmevo, M. Chaarawi, Q. Koziol, A. Afsahi, and
R. Ross. 2013. Mercury: Enabling remote procedure call for high-performance
computing. In Proceedings of the 2013 IEEE International Conference on Cluster
Computing (CLUSTER 13). 1ś8. https://doi.org/10.1109/CLUSTER.2013.6702617

[70] Jan Stender, Björn Kolbeck, Mikael Högqvist, and Felix Hupfeld. 2010. BabuDB:
Fast and Efficient File System Metadata Storage. In Proceedings of the 2010 Inter-
national Workshop on Storage Network Architecture and Parallel I/Os (SNAPI 10).
51ś58. https://doi.org/10.1109/SNAPI.2010.14

[71] Michael Stonebraker and Ugur Cetintemel. 2005. "One Size Fits All": An Idea
Whose Time Has Come and Gone. In Proceedings of the 21st International Confer-
ence on Data Engineering (ICDE 05). 2ś11. https://doi.org/10.1109/ICDE.2005.1

[72] Osamu Tatebe, Shukuko Moriwake, and Yoshihiro Oyama. 2020. Gfarm/BB Ð
Gfarm File System for Node-Local Burst Buffer. Journal of Computer Science and
Technology 35, 1 (2020), 61ś71. https://doi.org/10.1007/s11390-020-9803-z

[73] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. 1997. Frangi-
pani: A Scalable Distributed File System. In Proceedings of the Sixteenth ACM
Symposium on Operating Systems Principles (SOSP 97). 224ś237. https://doi.org/
10.1145/268998.266694

[74] Marc-André Vef, Nafiseh Moti, Tim Süß, Markus Tacke, Tommaso Tocci, Ramon
Nou, Alberto Miranda, Toni Cortes, and André Brinkmann. 2020. Gekkofs - a
temporary burst buffer file system for HPC applications. Journal of Computer
Science and Technology 35, 1 (2020), 72ś91. https://doi.org/10.1007/s11390-020-
9797-6

[75] Jeffrey S. Vetter. 2019. Contemporary High Performance Computing: From Petascale
toward Exascale. Vol. 1-2-3. CRC Press.

[76] Teng Wang, Kathryn Mohror, Adam Moody, Kento Sato, and Weikuan Yu. 2016.
An Ephemeral Burst-buffer File System for Scientific Applications. In Proceedings
of the 2016 International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC 16). Article 69, 12 pages. https://doi.org/10.1109/SC.
2016.68

[77] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos
Maltzahn. 2006. Ceph: A Scalable, High-performance Distributed File System. In
Proceedings of the 7th Symposium on Operating Systems Design and Implementation
(OSDI 06). 307ś320.

[78] Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and Carlos Maltzahn. 2007.
RADOS: A Scalable, Reliable Storage Service for Petabyte-scale Storage Clusters.
In Proceedings of the 2Nd International Workshop on Petascale Data Storage (PDSW
07). 35ś44. https://doi.org/10.1145/1374596.1374606

[79] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson, Brian Mueller, Jason
Small, Jim Zelenka, and Bin Zhou. 2008. Scalable Performance of the Panasas
Parallel File System. In Proceedings of the 6th USENIX Conference on File and
Storage Technologies (FAST 08). Article 2, 17 pages.

[80] Steven Whitehouse. 2007. The GFS2 Filesystem. In Proceedings of the 2007 Linux
Symposium. 253ś260.

[81] Charles P. Wright, Jay Dave, Puja Gupta, Harikesavan Krishnan, David P. Quigley,
Erez Zadok, and Mohammad Nayyer Zubair. 2006. Versatility and Unix Semantics
in Namespace Unification. ACM Trans. Storage 2, 1 (Feb. 2006), 74ś105. https:
//doi.org/10.1145/1138041.1138045

[82] Lin Xiao, Kai Ren, Qing Zheng, and Garth A. Gibson. 2015. ShardFS vs. IndexFS:
Replication vs. Caching Strategies for Distributed Metadata Management in
Cloud Storage Systems. In Proceedings of the Sixth ACM Symposium on Cloud
Computing (SoCC 15). 236ś249. https://doi.org/10.1145/2806777.2806844

[83] Jing Xing, Jin Xiong, Ninghui Sun, and Jie Ma. 2009. Adaptive and Scalable
Metadata Management to Support a Trillion Files. In Proceedings of the 2009
International Conference for High Performance Computing, Networking, Storage,
and Analysis (SC 09). Article 26, 11 pages. https://doi.org/10.1145/1654059.1654086

[84] D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe, P. Carns, R. Ross, and I.
Raicu. 2014. FusionFS: Toward supporting data-intensive scientific applications
on extreme-scale high-performance computing systems. In Proceedings of the
2014 IEEE International Conference on Big Data (BigData 14). 61ś70. https:
//doi.org/10.1109/BigData.2014.7004214

[85] Qing Zheng, Charles D. Cranor, Danhao Guo, Gregory R. Ganger, George
Amvrosiadis, Garth A. Gibson, Bradley W. Settlemyer, Gary Grider, and Fan Guo.
2018. Scaling Embedded In-situ Indexing with DeltaFS. In Proceedings of the 2018
International Conference for High Performance Computing, Networking, Storage,
and Analysis (SC 18). Article 3, 15 pages. https://doi.org/10.1109/SC.2018.00006

[86] Qing Zheng, Kai Ren, and Garth Gibson. 2014. BatchFS: Scaling the File System
Control Plane with Client-funded Metadata Servers. In Proceedings of the 9th
Parallel Data Storage Workshop (PDSW 14). 1ś6. https://doi.org/10.1109/PDSW.
2014.7

14

https://doi.org/10.1145/3126908.3126928
https://doi.org/10.1109/IPDPS47924.2020.00105
https://doi.org/10.1109/SC.2016.49
https://doi.org/10.1109/SC.2016.49
https://doi.org/10.14778/1920841.1920886
https://doi.org/10.1145/3433954
https://doi.org/10.1145/35037.42183
https://doi.org/10.1007/s002360050048
https://doi.org/10.1109/SC41405.2020.00088
https://doi.org/10.1109/CCGrid49817.2020.00-77
https://doi.org/10.1109/MASS.1999.829973
https://doi.org/10.14778/3151106.3151108
https://doi.org/10.1109/SC.2014.25
https://doi.org/10.1109/SC.2014.25
https://doi.org/10.1145/361011.361061
https://doi.org/10.1145/146941.146943
https://doi.org/10.1007/s11390-020-9802-0
https://doi.org/10.1007/s11390-020-9802-0
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1145/3126908.3126929
https://doi.org/10.1109/CLUSTER.2013.6702617
https://doi.org/10.1109/SNAPI.2010.14
https://doi.org/10.1109/ICDE.2005.1
https://doi.org/10.1007/s11390-020-9803-z
https://doi.org/10.1145/268998.266694
https://doi.org/10.1145/268998.266694
https://doi.org/10.1007/s11390-020-9797-6
https://doi.org/10.1007/s11390-020-9797-6
https://doi.org/10.1109/SC.2016.68
https://doi.org/10.1109/SC.2016.68
https://doi.org/10.1145/1374596.1374606
https://doi.org/10.1145/1138041.1138045
https://doi.org/10.1145/1138041.1138045
https://doi.org/10.1145/2806777.2806844
https://doi.org/10.1145/1654059.1654086
https://doi.org/10.1109/BigData.2014.7004214
https://doi.org/10.1109/BigData.2014.7004214
https://doi.org/10.1109/SC.2018.00006
https://doi.org/10.1109/PDSW.2014.7
https://doi.org/10.1109/PDSW.2014.7

	Abstract
	1 Introduction
	2 Motivation
	3 System Overview
	4 No Ground Truth
	5 Per-Job Log Management
	6 Dynamic Service Instantiation
	7 Cross-Job Parallel Log Compaction
	8 Experiments
	8.1 Single-Job Performance
	8.2 Multi-Job Performance

	9 Related Work
	References

