
1 Abstract

We discuss CTIP, an implementation of a network filesystem exten-
sion of the successful TIP informed prefetching and cache manage-
ment system. Using a modified version of TIP in NFS client machines
(and unmodified NFS servers), CTIP takes advantage of application-
supplied hints that disclose the application’s future read accesses.
CTIP uses these hints to aggressively prefetch file data from an NFS
file server and to make better local cache replacement decisions.
This prefetching hides disk latency and exposes storage parallelism.
Preliminary measurements that show CTIP can reduce execution
time by a ratio comparable to that obtained with local TIP over a
suite of I/O-intensive hinting applications. (For four disks, the reduc-
tions in execution time range from 17% to 69%). If local TIP execu-
tion requires that data first be loaded from remote storage into a
local scratch area, then CTIP execution is significantly faster than
the aggregate time for loading the data and executing. Additionally,
our measurements show that the benefit of CTIP for hinting applica-
tions improves in the face of competition from other clients for server
resources. We conclude with an analysis of the remaining problems
with using unmodified NFS servers.

2 Introduction
Our motivation is a familiar one: processor speeds are

increasing faster than peak disk bandwidths, which in turn
are improving much faster than disk drive seek times. Stor-
age parallelism [6] can provide more storage bandwidth, and
aggressive prefetching can hide latency [2][4] but still, the
fraction of time that applications spend waiting for disk drive
activity continues to increase. CMU’s informed prefetching
and caching system (TIP [7]) exploits knowledge of applica-
tion workloads to perform aggressive prefetching. In TIP,
applications disclose their future I/O accesses as hints, and
the TIP system uses this information both to manage the sys-
tem’s file cache more effectively and to prefetch data from
disk into the cache before the application requests the data.
When the storage subsystem has hints for many future disk
requests, it can make better use of I/O parallelism. Consider
a single-threaded application that makes a series of nonse-
quential reads one at a time in a large file striped over several
disks: without knowledge of the upcoming reads, the storage
system cannot start other disks seeking for the targets of
future reads while it waits for the current read in the

sequence to complete. Through disclosure, TIP can take
advantage of such parallelism. Figure 1 shows that TIP is
able to reduce application stall times even with small num-
bers of drives; with 10 disks, application runtime is reduced
by 20% - 83% over a suite of I/O-intensive benchmarks.

To date, TIP has been confined to direct-attached stor-
age. This is a natural domain for computation requiring high-
performance I/O, but we would like to get TIP’s benefits
without having spend time and money making local copies of
datasets on dedicated parallel storage arrays within a 25m
differential-SCSI-bus-length of our machines. Distributed
filesystems free us from these constraints: they allow us to
share data, amortize storage costs, and centralize manage-
ment. Hence, in this work, we explore client-driven remote
TIP, or CTIP, a modification to the TIP system that
prefetches data from NFS file servers. CTIP applies TIP’s
cost-benefit model to networked storage by treating the
remote storage NFS server simply as a disk with higher
latency and increased CPU driver cost.

In the remainder of the paper, we give an overview of
the TIP system and discuss how it is modified to create CTIP.
We then analyze the performance of CTIP on the TIP bench-
mark suite, both with and without competition for file server
resources, and discuss the limitations of our initial CTIP
approach.

3 Extending TIP to the network

3.1 An overview of TIP

In TIP, applications supply hints that disclose their
future behavior to the cache-management and prefetching

Prefetching Over a Network: Early Experience With CTIP

David Rochberg Garth Gibson
Computer Science Department

Carnegie Mellon University Pittsburgh PA 15213
{david.rochberg,garth.gibson}@cs.cmu.edu

This research is sponsored by DARPA/ITO through DARPA (order
D306), under contract N00174-96-0002. Additional support was pro-
vided by an NSF graduate fellowship and the member companies of
CMU’s Parallel Data Consortium (including Hewlett-Packard Labo-
ratories, Symbios Logic Inc., Data General Clariion, Compaq, Quan-
tum Corporation, Seagate Technology, Wind River Systems, and
Storage Technology Corporation). The views and conclusions con-
tained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or
implied, of any supporting organization or the U.S. Government.

Figure 1. Average stall time for the hinting version of the
benchmark suite described in Section 4.2 divided by stall time
for the unhinting version of the suite running under the same
number of disks. Application hints allow TIP to overlap
computation and I/O on multiple disks and to manage its cache
better. This results in a substantial reduction in stall time, even
for small numbers of disks.

1 2 3 4 10
Number of disks

0.0

0.2

0.4

0.6

0.8

1.0

H
in

te
d

st
al

l t
im

e
/ u

nh
in

te
d

st
al

l t
im

e

Appears in SIGMETRICS Performance Evaluation Review, volume 25, number 3, (pp 29-36).

system. Each application hint specifies a file, either by file
descriptor (for files the application has already opened) or by
name, and an ordered list of offsets within the file. Applica-
tions deliver hints (through a special system call) for data in
the order that they expect to read the data. Applications are
free to read blocks that they have not hinted (and almost all
applications do so) without negating the benefit of the hints
they give. However, the benefits of TIP depend on applica-
tions issuing all the reads they have hinted; the current imple-
mentation makes little effort to improve the performance of
applications that issue incorrect hints. When TIP receives no
hints or inaccurate hints, it falls back on traditional cache-
management and prefetching techniques. In these cases, our
implementation uses a least-recently-used (LRU) cache
replacement scheme and Digital Unix’s aggressive sequential
readahead policy (which prefetches up to 64KB ahead for
sequential reads of files on local disks).

Given information about the state of the system and
good hints describing the future I/O plans of running applica-
tions, TIP attempts to allocate buffers in a way that mini-
mizes the I/O stall time, or the time spent servicing I/O
requests and waiting for I/O completion. To do this, it main-
tains a set of estimators for the benefit of buffer allocation
actions, like caching a block that is the target of a future hint
or devoting a block to the prefetcher. The estimators compute
the cost or benefit of their corresponding buffer allocation
decision in a common currency: change in application I/O
stall time per buffer access. For tractability, the estimators
base their calculations on a simple model of disk and appli-
cation behavior. This model assumes that there are “enough”
disks arms available, so that TIP does not need to model
queue depth at the disk drives and it pessimistically assumes
that applications may not spend any time computing between
adjacent requests. Three factors potentially contribute to the
stall time for a given request: Tdisk is the latency for actually

retrieving a block from disk once the command to read the

block has been sent. Tdriver is the amount of CPU time

required to issue and receive a disk request, and the amount
of time to service a hit in the cache is Thit. A complete

description of the estimators and their implementation is
beyond the scope of this paper (a detailed exposition is in
[7]), so we give an intuitive overview here.

The four cache actions that TIP can choose from, and
their associated estimators are:

• Allocating a buffer for prefetching: Just as for a regular
read, TIP must allocate a buffer to hold the results of
prefetching a hinted block before it issues the prefetching
read to storage. Since applications hint accesses in the
order that the corresponding reads will occur, it makes
sense to talk about an application’s (read) position in its

hint stream. The prefetching estimator, then, estimates
the benefit of allocating an additional buffer so that the
TIP system can prefetch one buffer further ahead of the
application’s current position. The benefit of adding
prefetching buffers starts out high, because if a hinted
block is not prefetched in time for its consumption, the
application will stall for more than Tdisk. As the prefetch-

ing depth increases, the benefit of increasing it further
diminishes quickly. Finally, since we are modeling disk
accesses as constant-time operations (where that constant
is Tdisk), and it takes at least Thit to read a block, a

prefetched block will always arrive in time if it is
prefetched Tdisk/Thit accesses before it is needed. We call

this quantity the prefetching horizon and assume that
there is no benefit to prefetching beyond it.

• Allocating cache blocks for demand reads: An
unhinted read or a hinted read whose data has not yet
been prefetched is a demand read. Because the applica-
tion will stall indefinitely unless it receives resources to

Figure 2. The parameters for the TIP and CTIP models. Part a) shows the parameters for the local case and part b) the parameters for the
remote case. All the time spent in filesystem code or waiting for the disk is stall time. We split that time into three components: Thit is the

CPU time to retrieve a block from the cache, Tdriver measures the CPU time required to issue and receive a one-block read from storage, and

Tdisk measures the latency of retrieving a block from storage.

user

kernel

App

Cache

Disk driver

Thit

Tdriver

Tdisk

App
user

kernel

App

Cache

NFS stack

Thit

Tdriver

Tdisk

App

NFS Server

a) Local
TIP

b) Remote
CTIP

network

disks

disks

satisfy the demand read, there is no estimation involved
with demand reads—it always makes sense to allocate
blocks for them.

• Shrinking or growing the LRU cache: TIP maintains a
traditional LRU cache to satisfy many unhinted accesses
without fetching from storage. The LRU estimator keeps
track of what the hit rate in the LRU cache would be for
several LRU cache sizes, and uses this information, cou-
pled with the disk-model cost of an additional cache miss
(Tdisk +Tdriver), to estimate the benefit or cost of making

the LRU cache larger or smaller, respectively.

• Shrinking or growing the hinted cache: TIP also tracks
cache blocks for which future accesses are hinted. If TIP
allows such a cached and hinted block to be ejected
(because it falls off the tail of the LRU queue), it will
later have to stall the application for at least Tdriver to

read the block back into memory. Since the benefit of
avoiding this driver work is amortized over all accesses
until the block is fetched, the cost of allowing such a
block to be ejected decreases from Tdriver as the number

of accesses before the block will be fetched back in
increases.

Given these estimations, TIP uses a straightforward
greedy algorithm to manage the cache. On every access, it
(efficiently) finds the buffer whose ejection has the least cost.
If the cost of ejecting this least valuable buffer is less than the
benefit of adding to the prefetching depth, or if there is an
outstanding demand read, it ejects the buffer.

3.2 CTIP

CTIP is a minimal extension of the TIP model to net-
worked storage; it treats the file server as a disk with longer
latency. To do this, we make two modifications to the local
TIP system: the first is the addition of a set of routines for
prefetching from an NFS server and the second is a new set
of estimates for the time required to retrieve data from stor-
age.

The added prefetching routines are similar to those
used by local filesystems. Digital’s original NFS (version 3)
code has a one block sequential readahead routine. When
CTIP has hints to act on, we disable this default readahead,
but, for comparison, we leave it enabled in our unhinted runs.
Since disclosure exposes more parallelism, CTIP tends to
issue more concurrent requests than an unhinted NFS system
does. To make sure that there are contexts available to handle
these requests promptly, we substantially increase the num-
ber of NFS I/O daemon processes and threads on both the
client (from the suggested 7 to 64) and on the server (from
the suggested 16 to 70, enough to handle all the asynchro-
nous threads on the client plus a few additional synchronous
requests).

Our measurements for the model parameters are simi-
lar to those in [7]. We used a microbenchmark that repeat-
edly issued a series of nonsequential 8KB reads to a large
file. When the series does not fit into the cache, the CPU time

per access is Tdriver + Thit, and the idle time per access is

Tdisk (we ran the tests in single-user mode, so there were no

other processes available to use the CPU when the
microbenchmark was waiting for the disk) When the series
does fit into the cache and the program is run with a warm
cache, the CPU time per access is Thit (and there is no signif-

icant idle time). Table 3 shows the values for these parame-
ters for the system described in Section 4.1

4 Experiments

4.1 Experimental setup

To evaluate the performance of the CTIP system, we
ran the benchmark suite on a DEC 3000/500 workstation
(with an Alpha 21064 CPU running at 150MHz, 128MB of
RAM, 12MB of which was dedicated to the buffer cache)
running our TIP-modified version of Digital Unix 3.2g. Since
TIP shows most of its possible performance benefit with
arrays as small as four drives, we ran the benchmark on a
filesystem striped over 4 HP 2247 1GB drives with a striping
psuedo-device driver. For the CTIP runs, we also used a DEC
3000/600 (with an Alpha 21064 running at 175MHz and a
12MB buffer cache) server running NFSv3. The server
exported a local filesystem striped over 4 HP 2247 drives. To
connect the machines, we used 155 Mbit/s OC-3 ATM links
through a DEC Gigaswitch.

For this configuration, the values for the parameters
discussed above (in section 3.1) are in Table 3. While the
Tdisk costs in the two systems are similar, the CTIP spends

more CPU time for network storage accesses than TIP pays
for local disk accesses.

For all the benchmarks, we stored the application exe-
cutables in the same filesystem that we ran the benchmarks
from, and we ran the benchmarks from cold caches with the
client machine in single-user mode. The figures in the graphs
are the mean of five trials, and the standard deviation of the
run times over those trials was less than 2% of the mean in
every case but one (unhinted agrep, where the deviation was
still under 1 second).

Parameter
Local
(TIP)

Remote
(CTIP)

Tdisk 13.6ms 15ms

Tdriver 580µs 877µs

Thit 190µs 190µs

Table 3. Storage model parameters for TIP and CTIP. Because
of our fast network, Tdisk for the remote case is surprisingly

close to Tdisk for the local case. CTIP must send its request

through an expensive set of protocol stacks (ONC RPC over
UDP) while TIP uses a faster SCSI stack. Because of this
difference, Tdriver, the client CPU time cost to retrieve an 8KB

block, is substantially higher for CTIP. This increased cost
translates into longer run times for remote applications.

4.2 Benchmark Suite

We use the benchmark suite from Patterson’s TIP
paper [7] to measure the macro performance of CTIP. The
benchmark suite includes seven I/O-intensive applications
that we have modified to be able to disclose hints:

• XDataSlice, a scientific-visualization application that
displays arbitrary planar slices taken from a 3-D dataset.
Our benchmark takes 25 random slices out of a
512x512x512 cube of 64-bit values. For each slice,
XDataSlice hints all of the blocks it will need to display
the slice before it starts reading the slice.

• Gnuld, the GNU link editor. Gnuld makes several passes
over its object files. Parts of the first (table-building) pass
are unhinted, but after that, Gnuld’s reads are largely
nonsequential and hinted. We time Gnuld as it links
approximately 64MB of OSF/1 v2.0 kernel objects, pro-
ducing an 8.8MB kernel.

• Agrep, a text searching program. We time agrep as it
searches for (and does not find) a simple string in 11 MB
of OSF/1 v2.0 kernel sources scattered over 1349 files
and 2922 disk blocks. Agrep hints all the files as it starts
up, and then it reads the files sequentially.

• Sphinx, a speech-recognition program that we have mod-
ified to use an out-of-core language model. After a table-
building start-up phase, Sphinx makes several passes
through the utterance to be recognized. For each 10ms
acoustical frame of the utterance, Sphinx hints and then
reads as many as 100 short selections from its 200MB
language model. Sphinx has an effective internal cache,
so these reads result in only a few disk accesses. Our
benchmark tests the time it takes for Sphinx to recognize
an 18-second utterance.

• Davidson, a computational physics application that
sequentially reads the same 16.3MB matrix 63 times.
Since the reads are sequential, traditional sequential
readahead in the non-TIP case can substantially reduce
stall time waiting for disk latency, but the traditional
LRU caching strategy means that the entire matrix is read
into and ejected from the cache on each iteration. TIP’s
informed caching keeps much of the matrix in cache, and
hence substantially reduces the number of reads (and
hence the amount of Tdriver stall) required.

• Postgres, a relational database executing two joins. Each
run joins an outer relation with 20,000 tuples (3.2 MB)
and an inner relation with 200,000 tuples (32 MB). The
inner relation is indexed by the join field (5MB). The first
join benchmark matches 20% of tuples and the second
matches 80%. We modified Postgres to split its computa-
tion for these joins to allow hint generation and provide
better cache locality for the index. This modification
improves Postgres performance even in the unhinted
case. Postgres first makes a (hinted) sequential read of

the outer relation. For each tuple in the outer relation, it
looks the tuple up in the index for the inner relation (with
unhinted accesses), and stores the address of a matching
inner tuple in memory. It then uses this array of tuple
addresses to generate hints and read addresses for the
matching tuples in the inner relation.

This benchmark suite is diverse; it includes sequential,
non-sequential, cache-intensive, and small-file workloads.
The average reduction in I/O stall time provided by TIP over
these applications is shown in Figure 1.

4.3 Results without server competition

Figure 4 shows the execution times of each benchmark
in four cases: hinted and unhinted in the remote filesystem
(CTIP) and in the local filesystem (TIP). Each execution time
is divided into CPU busy time and idle time. Since no signif-
icant tasks were running during the benchmark runs, the idle
time closely approximates time spend waiting for storage.
Although our TIP experiments repeat work presented in
Patterson’s 1995 paper, we re-measured them on our (slightly
different) system with little change.

4.3.1 CTIP improves remote performance
The most important, if expected, result in Figure 4 is

that disclosing and acting on hints always helps. For remote
storage, the hinted versions of the applications experience
reductions in elapsed execution time of 17%-62% (or speed-
ups of 1.2 to 2.6). The magnitude of these savings suggests
that informed prefetching and caching is worthwhile, even if
application data must be accessed over a network.

4.3.2 CTIP and TIP speedups are comparable
We can compare CTIP to TIP in many ways: raw exe-

cution time, raw reduction in execution time from unhinted
to hinted, and percentage savings in execution time from
unhinted to hinted. We consider the last two comparisons
first.

We expect CTIP to perform slightly better in terms of
raw execution time differential; for every I/O whose latency
TIP hides, CTIP should be hiding an I/O of slightly higher
latency. Table 5 reports the differences in execution time and
the corresponding speedups and percentage reductions that
come from exploiting hints in both the remote and local
cases. For each benchmark, the absolute time difference
between unhinted and hinted runs is better (larger) for CTIP.

Comparing the multiplicative speedups (or percentage
reductions), however, shows both cases where CTIP is nota-
bly more and less effective than TIP. To quantify these, we
compute the geometric mean of the speedups: on average,
CTIP provides a speedup of 2.0 and TIP provides a speedup
of 2.2, which suggests that hints benefit local storage about
10% more than they do remote storage.

4.3.3 Why is CTIP still slower than local TIP?
We would like to be able to say that CTIP manages to

overlap the additional latency of remote storage access with
local computation, and that it thus allows applications to run

as fast under CTIP as they do under local TIP. Unfortunately,
our benchmarks still do not run as fast under CTIP as they do
on a local system. There are several reasons for this disparity.

The first is the high CPU cost of accessing networked
storage. Applications under CTIP must pay the higher Tdriver

costs of accessing network storage through multiple protocol
stacks (see Figure 3) for each I/O access. This difference is

apparent in Figure 4; remote experiments use more CPU
time than do the corresponding local experiments.

A second reason for the disparity is increased latency
for unhinted accesses. In addition to the increased CPU time,
CTIP must pay increased stall time on applications’ remain-
ing unhinted accesses as it waits for data to traverse the
server’s CPU and the network between the client and server.

0
50

100
150
200
250

I/O stall time
CPU time

0

50

100

150

200

250

Sphinx

0

100

200

300

XDataSlice

Remote unhinted
Remote hinted

Local unhinted
Local hinted

0

50

100

Gnuld

0

100

200

300

Davidson

0

10

20

30

agrep

0

20

40

60

80

100

Postgres-20%

0

50

100

150

200

250

Postgres-80%
Figure 4. A comparison of the run times (in seconds) of our benchmarks running under CTIP (remote), TIP (local), unhinted local, and
unhinted remote accesses. Each bar shows total run time for the corresponding benchmark, and the darker bar at the bottom represents
total CPU consumption (by the application and the I/O system). All application code and data was striped over four disks.

CTIP (Remote) TIP (local)

Benchmark difference speedup reduction difference speedup reduction

Davidson 137.2s 1.74 42% 23.9s 1.16 14%

Gnuld 82.5s 2.56 61% 60.5s 2.69 63%

Postgres 20% 43.1s 1.67 40% 40.3s 1.77 43%

Postgres 80% 157.2s 2.35 57% 152.2s 2.76 64%

Sphinx 47.3s 1.20 17% 43.3s 1.20 17%

agrep 18.8s 2.64 62% 15.4s 3.69 73%

XDataSlice 240.3s 2.63 69% 237.6s 3.21 62%
Table 5. Comparing the benefits of TIP and CTIP. The geometric mean of the multiplicative speedups is 2.0 for CTIP and 2.2 for TIP, and
CTIP reduces runtime by more than TIP for every benchmark.

A third reason for this disparity, particularly evident in
the Davidson benchmark, is clustering. In the local case, the
I/O system coalesces, or clusters, requests for contiguous
blocks into larger requests. This clustering has two effects: it
allows the drive to transfer data more efficiently (without
extra rotational delays), and it allows the client to amortize
some of the driver cost over more data. The Digital Unix
NFS code (like many NFS implementations) makes only sin-
gle-block requests, and hence it cannot make the larger
requests necessary to take advantage of this I/O clustering.
Under NFS, the I/O subsystem must make eight separate
8KB requests and pay Tdriver 8 times when the local filesys-

tem could make a single 64KB request.
To quantify the extent of this clustering disparity, we

repeated the experiments we used to compute Tdriver, but

with a 64KB requests (the maximum cluster size for the local
filesystem). The results are shown in Table 6. The local sys-

tem is amortizing part of the driver work over multiple
blocks while the remote system is doing even more work per
block. We believe this increase in work results from the over-
head of context switching between the multiple NFS threads
that handle the multiple blocks requested. Clearly, the NFS
implementation is wasting performance relative to the more
sophisticated local-disk management code.

4.3.4 For remote data, CTIP is faster
In some sense, our model is too pessimistic. Many

users must run their jobs against shared data on storage
attached to a machine where they cannot run their applica-
tions (either because policy prohibits it, or because their stor-
age servers do not support general-purpose computation).
Before these users can use the faster TIP system, they must
copy the data to a temporary local store. Figure 7 shows how
much time this “load” phase adds on to the execution of a
single TIP run. For every benchmark except Davidson, the
load cost must be amortized over several runs before using
copy-and-TIP becomes faster than using CTIP.

4.4 CTIP with competition for server resources

Since file servers are shared resources, clients cannot
always expect to be the sole users of their storage servers. To
investigate the effect of competition for file service, we ran
our benchmarks with a competing load on the file server. We
induced the competing load with a process on the server that
issued random 8KB reads into the same storage array that the

Parameter
(per 8k block)

Local
(TIP)

Remote
(CTIP)

Tdriver (8K req) 580µs 877µs

Tdriver (64K req) 198µs 1158µs

Table 6. Storage model parameters for TIP and CTIP and large
requests. Remote performance suffers because remote
filesystems cannot take advantage of clustering.

0

20

40

60

80

100

Gnuld

0

20

40

60

agrep

0

50

100

150

200

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

Load time
Execution time

0

50

100

150

Davidson

0

50

100

Postgres-80%

0

20

40

60

80

Postgres-20%

0

100

200

300

Sphinx

0

50

100

150

200

XDataSlice

Figure 7. Reprise of hinted runs from Figure 4 with execution times for the local case enlarged by the
time required to load the application and its data from remote (NFS) storage into local storage.

TIP with load timeCTIP

client was making requests from. We used a process on the
server so that we could easily make the reads span the entire

array.

Figure 8 shows the time required to run our bench-
marks as we varied the applied load from no competition to
96 reads/s (.75MB/s). As the competing load increases,
queue depths at the server drives increase, and most applica-
tions experience significantly more wait time. The exception
is Davidson, where aggressive sequential readahead on the
server suffices to hide the additional latency. Notice that for
applications other than Davidson, the increase in execution
time due to this competition is smaller for the CTIP case than
it is for the unhinted case.

This latency hiding comes at a cost. Although CTIP
can reduce an application’s bandwidth requirements through
effective caching, it is often the case that CTIP applications
issue more I/Os per second than their unhinting counterparts
while they execute. When this happens, the competing pro-
cess sees an increase in the response time for the reads that it
issues. The read response time for the competing process
started out between 20ms and 25ms with no CTIP bench-
marks running against the server. Running an unhinted
benchmark increased this latency by 5ms-20ms. For David-
son, this increase went down when hints were turned on,
because CTIP substantially reduces the number of reads
Davidson must make, but for other applications, response
times got substantially worse. Gnuld is an extreme case: the

96 I/O/s competition process experiences a 27ms read
response time against unhinted gnuld and a 53ms read
response time against hinted gnuld.

5 Discussion
CTIP provides useful speedup, but its performance suf-

fers in several cases because the client and storage do not
share information effectively.

Although the network storage system has a potentially
large cache (whatever cache is available on the server in
addition to the cache already available on the client), CTIP
does not currently make efficient use of the server cache; in
fact, blocks recently read by the client are likely to be cached
in both the server and the client. Cooperative caching tech-
niques [3] [1] [8] hold promise in this area.

Our experience with clustering suggests that it is
important to add enough richness to the network client-stor-
age interface that the clients can (and do) adequately express
clustered read requests.

In Section 4.4, we see that aggressive prefetching to a
server can hurt performance for non-prefetching users of the
same server. More intelligent access scheduling may be
effective at ameliorating this problem. At the very least, serv-
ers should be able to distinguish between low-priority
prefetching requests and regular demand reads.

Finally, if the client models the array of drives at the
storage as a single black box, it cannot apply more advanced

Figure 8. CTIP running in the face of competition. We present an increasing load on the file server and measure execution times
for both hinted and unhinted runs. For some benchmarks (like XDataSlice and Agrep), the speedup for CTIP increases with the
competing load.

vs. 0 I/O /s

vs. 32 I/O /s

vs. 64 I/O /s

vs. 96 I/O /s

0

200

400

600

800

 T
im

e
(s

ec
on

ds
)

0

50

100

150

200

Gnuld

0

100

200

300

Sphinx

0

200

400

600

800

XDataSlice

0

100

200

300

Davidson

0

10

20

30

40

50

agrep

0

50

100

150

Postgres-20%

0

100

200

300

400

Postgres-80%

Unhinted

Hinted

CPU
Time

techniques like TIPTOE and FORESTALL [9] [5] to modify
its prefetching and compensate for load imbalances. A client-
server interface that exposed this information to the client
could help fix this problem.

6 Conclusion
We have examined CTIP, a straightforward extension

of the TIP system based on treating remote storage as a repa-
rameterized local disk. Though CTIP stretches TIP’s simplis-
tic storage model, TIP’s cost-benefit buffer management
strategies are robust enough to cope: CTIP reduces run times
by from 17% to 62% over our benchmark suite, and in every
benchmark, the amount of time saved under CTIP exceeds
the amount of time saved under local TIP. The geometric
mean of CTIP speedups is only 10% less than that for TIP.
For TIP to be used on shared data stored on servers that do
not support computation, that data must first be copied to
local storage on the client. In almost every case, the time
required for this copy overwhelms the differential advantage
of local TIP.

Finally, hinting applications under CTIP perform
robustly in the face of competition for server resources, slow-
ing down much more slowly in the face of load than do
unhinting applications. The principal limitations of CTIP are
the increased CPU cost of going through the longer code
path required to access networked storage, the increased
latency of unhinted network accesses, and the standard NFS
interface, which makes it difficult or impossible to express
information about hints, I/O priorities, clustering, and load
balancing.

7 Acknowledgments
We profited greatly from our discussions of this work

with Jim Zelenka and Hugo Patterson. We would like to
thank them, as well as David Kotz, who provided valuable
feedback on this paper.

8 References

[1] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D.
Roselli, and R. Wang “Serverless Network File Sys-
tems” Proc. of the 15th ACM Symposium of Operating
Systems Principles, Copper Mountain Resort, CO,
December, 1995.

[2] Cao, P., Felten, E.W., Li, K., “Implementation and Per-
formance of Application-Controlled File Caching,”
Proc. of the First USENIX Symp. on Operating Systems
Design and Implementation, Monterey, CA, Nov., 1994,
pp.165-178.

[3] Michael J. Feeley, William E. Morgan, Frederic H.
Pighin, Anna R. Karlin, Henry M. Levy, and Chan-
dramohan A. Thekkath.Implementing Global Memory
Management in a Workstation Cluster. Proc. of the 15th
ACM Symposium on Operating Systems Principles,
Copper Mountain Resort, CO, December 1995.

[4] Garth A. Gibson, R. Hugo Patterson, and M. Satya-
narayanan. Disk Reads with DRAM Latency. Third
Workshop on Workstation Operating Systems, April
1992.

[5] T. Kimbrel, A. Tomkins, R. H. Patterson, B. Bershad, P.
Cao, E. Felten,G. Gibson, A. Karlin, and K. Lee. “A
Trace-Driven Comparison of Algorithms for Parallel
Prefetching and Caching,” Proc. of the 2nd USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), Seattle, WA, October 28-31, 1996,
pp. 19-34.

[6] Patterson, D., Gibson, G., Katz, R., A, “A Case for
Redundant Arrays of Inexpensive Disks (RAID),” Proc.
of the 1988 ACM Conf. on Management of Data (SIG-
MOD), Chicago, IL, Jun. 1988, pp. 109-116.

[7] R. Hugo Patterson, Garth A. Gibson, Eka Ginting,
Daniel Stodolsky, and Jim Zelenka. “Informed Prefetch-
ing and Caching,” Proc. of the 15th ACM Symposium
of Operating Systems Principles, Copper Mountain
Resort, CO, December, 1995.

[8] Prasenjit Sarkar and John Hartman, “Efficient Coopera-
tive Caching Using Hints,” Proc. of the 2nd USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI),Seattle, WA, October 28-31, 1996.

[9] Andrew Tomkins, R. Hugo Patterson, and Garth Gib-
son. “Informed Multi-Process Prefetching and Cach-
ing,” Proc. of the ACM International Conference on
Measurement and Modeling of Computer Systems (Sig-
metrics ‘97), Seattle, Washington, June 15-18, 1997.

