
Appears in Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems

(Sigmetrics '97), Seattle, Washington, June 15{18, 1997.

Informed Multi-Process Prefetching and Caching

Andrew Tomkins, R. Hugo Patterson and Garth Gibson

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3891

fandrewt,rhp,garthg@cs.cmu.edu�

http://www.cs.cmu.edu/Groups/PDL

Abstract

Informed prefetching and caching based on application dis-
closure of future I/O accesses (hints) can dramatically re-

duce the execution time of I/O-intensive applications. A

recent study showed that, in the context of a single hint-
ing application, prefetching and caching algorithms should

adapt to the dynamic load on the disks to obtain the best

performance. In this paper, we show how to incorporate
adaptivity to disk load into the TIP2 system, which uses

cost-bene�t analysis to allocate global resources among mul-
tiple processes. We compare the resulting system, which we

call TIPTOE (TIP with Temporal Overload Estimators) to

Cao et al's LRU-SP allocation scheme, also modi�ed to in-
clude adaptive prefetching. Using disk-accurate trace-driven

simulation we show that, averaged over eleven experiments

involving pairs of hinting applications, and with data striped
over one to ten disks, TIPTOE delivers 7% lower execution

time than LRU-SP. Where the computation and I/O de-

mands of each experiment are closely matched, in a two-disk
array, TIPTOE delivers 18% lower execution time.

1 Introduction

Storage parallelism in the form of striping device drivers and

disk arrays provides increased I/O bandwidth to match in-
creasing processor performance. Unfortunately many work-

loads are composed of streams of computation interspersed

with synchronous I/O calls employing only one disk of an

�This research was supported in part by Advanced Research

Projects Agency contracts DABT63-93-C-0054 and N00174-96-0002,

in part by the Data Storage Systems Center under National Science

Foundation grant number ECD-8907068, and in part by generous con-

tributions from the member companies of the Parallel Data Consor-

tium: Hewlett-Packard Laboratories, Symbios Logic Inc., Data Gen-

eral, Compaq, IBM Corporation, Seagate Technology, EMC Corpo-

ration, Storage Technology Corporation, and Digital Equipment Cor-

poration. The views and conclusions contained in this document are

those of the authors and should not be interpreted as representing

the o�cial policies, either expressed or implied, of any supporting

organization or the U.S. Government.

c
1997 by the Association for Computing Machinery, Inc. Permission to make

digital or hard copies of part of all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or

commercial advantage and that new copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

to republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request Permissions from Publications Dept, ACM Inc.

Fax +1 (1212) 869-0481, or <permissions@acm.org>.

array at a time. A powerful mechanism for overcoming this

problem is system-managed prefetching and �le cache man-
agement based on application disclosure1 of future I/O ac-

cesses, which has been shown to reduce the elapsed time of

I/O-intensive applications by up to 83% [PGG+95, CFL94b,
CFKL95, PG94]. There are a variety of ways to obtain these

disclosures. For the programmer, it is both easier and more

e�ective to disclose future accesses than to implement ap-
plication prefetching by asynchronous I/O [PGG+95]. Fur-

thermore, recent work has shown that compilers can induce

some programs to disclose their future accesses automati-
cally [MDK96].

A system to deliver this functionality must provide so-
lutions to two distinct problems. First, it must manage

prefetching and caching within each stream of hinted ac-

cesses. Second, it must address the allocation problem of di-
viding disk and cache resources among multiple hinted and

unhinted access streams.

In a recent collaboration with Kimbrel, Karlin, Cao et
al [KTP+96] we addressed the �rst of those problems, ana-

lyzing prefetching and caching algorithms in the context of

a single process disclosing all its accesses at startup. In this
single-process, fully-hinted domain, prefetching and caching

decisions are made without reference to global allocation;

that is, each process assumes that all resources are dedicated
to it. Restricted to this model, the bounded-depth prefetch-

ing algorithms of Patterson et al [PG94, PGG+95], which

assume large disk arrays, may fail to prefetch deeply enough
into the request stream when disk parallelism is limited or

when the I/O workload is highly unbalanced across the disks

of an array. On the other hand, the Aggressive algorithm of
Cao et al [CFKL95], which prefetches deeply without regard

to disk load, may incur substantial computational overhead

by performing many unnecessary I/Os when there is ample
disk bandwidth. To solve this problem our collaboration de-

veloped a new algorithm, Forestall, whose prefetch depth is

based on a dynamic estimate of upcoming disk load. This
algorithm performs well in the single-process fully-hinted do-

main on a variety of trace-driven simulation comparisons to

the load-oblivious approaches mentioned above.

In this paper we study the second problem that must be

addressed by a system for informed prefetching and caching:

the allocation of resources among competing processes. The

1A disclosure is a hint delivered in the language of the existing I/O

interface; ie, in terms of �lenames, �le descriptors, and byte ranges.

1



TIP2 system of Patterson et al [PGG+95] demonstrated that
resource allocation decisions can be made by weighing the

bene�t of providing resources to a consumer against the cost

of taking them from a supplier. This cost-bene�t framework
provides a general, extensible method for reasoning about

allocation decisions in the face of multiple processes, each

o�ering arbitrary fractions of hinted and unhinted accesses.
Essential to this cost-bene�t approach is the ability to esti-

mate bene�t and cost in terms of impact on execution time.

Combining our experience with single-process fully-hinted
prefetching and caching and TIP2's cost-bene�t resource al-

location, we present in this paper a more accurate system

model for TIP2 that estimates upcoming hotspots due to
load imbalance or insu�cient aggregate bandwidth. This

new algorithm called TIPTOE, or TIP with Temporal Over-

load Estimators, combines the multi-process advantages of
cost-bene�t allocation with the single-process advantages of

dynamic, load-aware prefetching as demonstrated by Fore-

stall.
Another strategy for resource allocation in an informed

prefetching and caching system is LRU-SP, presented by

Cao et al [CFL94a, Cao96], which extends traditional LRU
replacement to a mechanism for selecting the bu�er sup-

plier forced to evict a cache block. It is straightforward to

implement the Forestall algorithm with LRU-SP.
With TIPTOE and LRU-SP/Forestall we have compa-

rable prefetching and caching components and dramatically

di�erent allocation strategies. This paper analyzes these
two informed prefetching and caching systems, contrasting

them to each other and to their predecessor systems, TIP2

[PGG+95] and LRU-SP/Aggressive [CFKL95].
For our experiments we collected traces of six I/O-intensive

hinting applications (described in [PGG+95]) that range

from databases to scienti�c computation to speech recog-
nition. Our tracing tools capture and timestamp hints and

accesses, allowing accurate modeling of the implications of

late-arriving hints and unhinted accesses. Using a disk-
accurate, trace-driven simulator, we compare multi-process

simulations of applications under TIP2, TIPTOE, LRU-SP/

Aggressive and LRU-SP/Forestall. Our primary result is
that cost-bene�t outperforms LRU-SP, improving execution

time on average across our hinted two-process experiments
by 13% relative to LRU-SP/Aggressive, 7% relative to LRU-

SP/Forestall and 3% relative to TIP2. TIPTOE improves

run-time by more than 25% in 14% of our fully-hinted two-
process experiments relative to LRU-SP/Aggressive, 8% rel-

ative to LRU-SP/Forestall, and 1% relative to TIP2. We

also consider experiments in which hinting and unhinting
processes run together, and three-process experiments. The

aggregate improvement over all experiments is 7.6% ver-

sus LRU-SP/Aggressive, 5.3% versus LRU-SP/Forestall and
3.6% versus TIP2. TIPTOE's primary advantage over TIP2

is that it does not su�er from the shortcomings identi�ed in

[KTP+96].

1.1 Related Work

The bulk of work on prefetching and caching has been based

on inferring the future from the past starting with the semi-

nal work that measured the e�ectiveness of the LRU replace-

ment algorithm [Bel66]. Since then, sequential readahead

has become a widely-used technique [FO71, MJLF84]. Oth-
ers have shown how to extract much more complex access

patterns from an examination of past accesses [LD97, GA95,

CKV93, KE93, PZ91, TD91, Kor90]. Unfortunately, such
speculative prefetching risks hurting, rather than helping,

performance [Smi85]. As a result, history-based prefetch-

ing must be conservative and need not address the resource
management issues related to very deep prefetching that are

the focus of this paper.

Sometimes an application may have advance knowledge
of resource needs and advise speci�c action [Tri79, SM88,

CFL94b]. In contrast, we ask that applications disclose in-

formation and then allow the �lesystem to make decisions
in the presence of global resource knowledge. Mowry et

al [MDK96] show that for some workloads, primarily sci-

enti�c computing, it is possible for the compiler to gen-
erate these disclosures automatically. Others have devel-

oped richer languages for expressing and exploiting disclo-

sure [SS95, Kot94, GJ91].
Large integrated applications may implement their own

resource management. Some database researchers have shown

how to use a query access plan to allocate bu�ers [NFS91,
CR93]. Ng, Faloutsos and Sellis's work on marginal gains

considered the question of how much bene�t a query would

derive from an additional bu�er. Their work stimulated the
development of TIP2's cost-bene�t approach to cache man-

agement.

2 Cost-Benefit Allocation and the TIPTOE Algorithm

In this section, we present TIPTOE (TIP with Temporal
Overload Estimators), the major theoretical contribution of

this paper. TIPTOE extends the TIP2 system within its

cost-bene�t framework. We give a review of this framework,
reprise the assumptions made in the original TIP2, and show

that when applications violate these assumptions TIP2 may

miss opportunities to improve performance. These observa-
tions motivate the development of TIPTOE, which is based

on a more accurate system model. We then give the details

of the TIPTOE algorithm.
To summarize, TIP2's assumption of in�nite disk paral-

lelism leads to a model in which there is never any bene�t

from prefetching very deeply into a hint stream, and little
bene�t from caching deeply. In practice, there are occa-

sions when prefetching more deeply substantially reduces

elapsed time. TIPTOE quanti�es the costs and bene�ts of
deeper prefetching, allowing the allocator to trade o� the

resources that must be dedicated to performing a deep pre-

fetch against the reduction in stall that will result.

2.1 Cost-Benefit Analysis

Our goal is to allocate resources to minimize I/O service

time, the time it takes a read or write system call to com-

plete. The managed resources are disks and �le cache bu�ers.

The consumers of these resources are demand accesses that

miss in the cache and prefetches of hinted blocks. The two

bu�er suppliers are the traditional cache of unhinted blocks

managed with the Least-Recently-Used replacement policy

(the LRU cache) and the cache of blocks for which there are

hints (the hinted cache).

2



demand miss LRU cache
cost of

prefetch
benefit

hinted cache
ejection cost

hints from process A
hints from process B

shrinking

Figure 1: TIP2's informed cache manager schematic. Inde-
pendent estimators express di�erent strategies for reducing

I/O service time. Demand misses need a bu�er immediately

to minimize the stall that has already started. Informed
prefetching would like a bu�er to initiate a read and avoid

disk latency. To respond to these bu�er requests, the bu�er

allocator compares their estimated bene�t to the cost of tak-
ing a bu�er from a bu�er supplier. The LRU queue caches

blocks for unhinted accesses. Informed caching holds on to

the blocks that will be re-accessed soonest. The bu�er allo-
cator takes the least-valuable bu�er held by any supplier to

ful�ll a bu�er demand when the estimated bene�t exceeds

the estimated cost.

An I/O resource manager must decide whether reallocat-
ing a bu�er from a supplier to a consumer to initiate an I/O

will reduce overall I/O service time. Employing cost-bene�t

analysis, we estimate the bene�t (decrease in I/O service
time) of using a bu�er to initiate a disk access and the cost

(increase in I/O service time) of taking a bu�er from a bu�er

supplier. Figure 1 gives a schematic of TIP2's cost-bene�t
system. Each potential bu�er consumer and supplier has

an estimator that independently computes the value of its

use of a bu�er. The bu�er allocator continually compares
these estimates and reallocates bu�ers when doing so would

reduce I/O service time.

For di�erent estimates to be comparable, they must be
expressed in the same terms. We therefore de�ne a com-

mon currency for the expression of cost and bene�t esti-

mates that relates the goal of reducing I/O service time to
the usage of the system bu�er cache resource. We de�ne

the unit of bu�er usage, or bu�erage, as the occupation of

one bu�er for one inter-access period and call it one bu�er-
access. Then, we de�ne the common currency as the mag-

nitude of the change in I/O service time per bu�er-access.

2.1.1 TIP2 Estimators

The TIP2 cost and bene�t estimates given in [PGG+95] are

derived from a speci�c system model. The model assumes

that all application I/O accesses request a single �le block

that can be read in a single disk access; that system param-
eters such as disk access latency, Tdisk, are constants; and

that there is enough disk parallelism for there never to be

any congestion (that is, there is no disk queueing). In the
model, Tcpu is the inter-access application compute time;

Thit is the time to read a block from the cache; and Tdriver is

the computational overhead of allocating a bu�er, queueing
the request at the drive, and servicing the interrupt when

the disk operation completes. Tmiss, the time to service a
demand miss, is then Tmiss = Thit + Tdriver + Tdisk:

To estimate the cost of taking a bu�er from the LRU

cache, TIP2 maintains an estimate of the hit ratio of the
cache as a function of the length, n, of the LRU queue,

H(n). Then, removing a bu�er from a cache of size n will

increase the average I/O service time for unhinted accesses
by (H(n)�H(n� 1))(Tmiss � Thit).

If a hinted block is ejected from the cache, it will have

to be prefetched back in at some later time. The cost of
ejecting a hinted block is the cost of prefetching the block

back in. This prefetch adds a CPU overhead, Tdriver, and

possibly some stall, Tstall , while the prefetch completes to
the I/O service time. To express the cost in terms of the

common currency, the ejection estimator averages this in-

crease in service time over the number of accesses that the
ejection frees a bu�er.

In estimating the bene�t of using a bu�er to prefetch one

access more deeply, the key observation is that the applica-
tion's data consumption rate is �nite. Even if the applica-

tion performs no computation, it must read the data from

the cache which requires Thit time for each block. Under
the assumption of no disk queueing, a prefetch completes

in time Tdisk. In that time, an application can perform at

most P̂ = Tdisk=Thit accesses; we call P̂ the prefetch hori-

zon. Under this analysis, there is no bene�t to prefetching

more deeply than the prefetch horizon because prefetches

initiated now for data needed more than P̂ accesses in the
future can be issued later with no additional stall time.

2.1.2 Problems with TIP2; the Forestall Algorithm

In a recent collaboration with Kimbrel, Karlin, Cao, and

others, we undertook a simulation study of prefetching and

caching for single processes that hint all future accesses at
the start of execution [KTP+96]. This study showed that,

for some applications and some disk array sizes, TIP2's as-

sumption of unlimited disk bandwidth results in unnecessary
stall.

An alternative to TIP2 that achieves less stall in some of

these situations is Cao et al's Aggressive algorithm [CFKL95].
Aggressive ejects block e to prefetch block p if the disk is

currently idle, p is not in memory, e is in memory, and p

occurs before e in the hint stream. Essentially, the algo-

rithm prefetches as aggressively as reasonable, subject to

disk bandwidth availability.

Figure 2 shows an example situation in which TIP2 leaves

a single disk idle and incurs unnecessary stall whereas Ag-

gressive prefetches as deeply as the disk allows and incurs

less stall. In this example, TIP2's assumption of in�nite
parallelism does not hold and prefetches do not complete in

time. This phenomenon also occurs when there is an ample

number of disks, but the accesses are unevenly distributed

over the disks. E�ectively, only a portion of the disk array

is in active use and that portion does not provide enough

parallelism to avoid stall.

On the other hand, the study also showed that when

there is su�cient disk parallelism, prefetching too aggres-

sively may cause unnecessary disks accesses, each of which

adds a CPU overhead of Tdriver to the application's exe-

cution. Figure 3 shows how this phenomenon may occur.

3



TIP

Aggressive

P̂ Cached Uncached

Disk Idlez }| {z}|{
Fetching
Beginsz }| {

Fetching
Continues

| {z }
Fetching Continues

Figure 2: Lost opportunities: TIP2 prefetches a bounded

number of accesses, P̂ , into the future. If a long sequence of
accesses is cached, TIP2 lets the storage system go idle even

if subsequent prefetching cannot satisfy the later uncached

accesses and large stalls result. In contrast, Aggressive takes
advantage of the lull in I/O activity during the read of the

cached sequence to prefetch as many uncached blocks as

possible.

Here, TIP2's assumption of in�nite parallelism is a reason-
able approximation, whereas Aggressive's assumption that

disk accesses have no overhead leads to increased application

CPU time.
The study ultimately concluded that when stall is an-

ticipated even far in the future, it is better to prefetch ag-

gressively. On the other hand, when there is su�cient par-
allelism to avoid stall, it is better not to prefetch beyond

the prefetch horizon. The Forestall algorithm presented in

that paper incorporates these lessons and has performance
comparable to the best of TIP2 and Aggressive. cases.

In this paper we extend the TIP2 system to incorporate

these lessons into the cost-bene�t framework. The result is
TIPTOE.

2.2 TIPTOE

TIPTOE is built upon TIP2's cost-bene�t framework, but

it develops new estimators for the bene�t of prefetching and
the cost of ejecting hinted blocks. These new estimators no

longer assume that there is in�nite disk parallelism and that

there is no bene�t from prefetching beyond the prefetch hori-
zon. We describe the new estimators in terms of the same

system parameters used by TIP2 (Tdisk, Thit and so forth).

We present the estimator for the bene�t of prefetching in
two distinct pieces. First, Section 2.2.1 describes how we

anticipate upcoming hotspots that will lead to application

stalls. Our approach follows the model of the Forestall algo-

rithm [KTP+96]. Next, Section 2.2.2 shows how we estimate

the system resources necessary to perform a deep prefetch.

Finally, we combine these two values to express the bene�t

of deep prefetching in terms of TIP2's common currency.

2.2.1 Detecting Constrained Disks

Figure 4 is a graphical illustration of a scenario in which

upcoming hotspots will cause stall. Disk a represents the
ideal case: there is always enough time to prefetch the data

without stalling. TIP2's bounded prefetching works well for

Aggressive

Time 1

Time 2

Time 3

Time 4

Time 5

TIP2

Time 1

Time 2

Time 3

Time 4

Time 5

Figure 3: Wasted e�ort: Aggressive always ejects a cached

block if it can take advantage of an idle disk to prefetch

a closer block. When su�cient parallelism exists, there are
often idle disks and Aggressive 
ushes distant, cached blocks

to �ll the cache with prefetched blocks. In applications with

signi�cant re-use this will incur unnecessary driver overhead
by performing a disk I/O for each request, which can have

a signi�cant impact on overall execution time. In contrast,

TIP2's bounded prefetching does not incur stall and retains
the distantly cached blocks for re-use.

this disk. Unfortunately, accesses may come in bursts such

as the requests for blocks b1, b2 and b3 in the �gure. Such a
burst necessitates earlier prefetching that TIP2 would fail to

perform. Nevertheless, the burst on disk b is small enough

that we need not begin prefetching immediately; this disk is
not yet constrained. Intuitively, a disk is constrained when

there is not enough time to prefetch all missing blocks by the

time they are needed (the formal de�nition is given below).
On disk c, considering only accesses c1{c4 it appears that

there is enough time to prefetch all the blocks. However,

because access c5 comes so soon after c4, it is too late to
avoid stalling for c5 even if prefetching begins immediately.

Access c5 constrains disk c. The best we can do is to start

prefetching now to minimize the stall for c5. Note that the
access to c6 does not change the picture. Since the disk

will be fully utilized just to minimize stall for c5, there will

be no opportunity to prefetch deeply to reduce stall for any
subsequent access. Thus, there is no reason to examine a

hint sequence beyond a request that constrains the disk.

On the other hand, if a disk is nearly-constrained, even a
small burst of activity far in the future can constrain the

disk and make it necessary to begin the entire prefetching

schedule earlier in order to avoid stall.
Informally, then, the critical idea of deep prefetching is

to add up the time it will take to prefetch all uncached

blocks before a given request and if this time is greater then
the expected time until the request arrives then the disk is

constrained. Immediately initiating deep prefetching on the

constrained disk can reduce application stall on the request
causing the constraint, but the bene�t must be compared to

the cost of the resources necessary to complete the prefetch.

We describe how to detect constraint, and then describe the
associated bene�t of deep prefetching.

Detecting constraint requires estimations of three things:

the blocks that will have to be prefetched, the time it will

4



b2 b3 b4

a3a2a1

a1c1 c2a2 c3 a3c4c5c6 b4b3b2b1

c2 c3 c4 c5

sequence
access

disk c

disk a

disk b

disk b constrained

c1

b1

disk c already constrained
disk a constrained

Figure 4: Constrained disks. The upper bar represents the

future request sequence; black segments represent requests
to cached blocks, and all other segments represent requests

for missing blocks on one of the three disks. The three lower
bars represent schedules for each disk that satisfy all re-

quests in time without incurring stall. Disk a represents the

ideal situation because prefetching for each block can begin
one fetch time before the block will be consumed. Disk b

contains a burst of requests b1, b2 and b3, but we do not

need to begin fetching those blocks until we reach the line
marked \disk b constrained." The schedule for disk c shows

that in order to service all requests without stall, we would

have to begin prefetching in the past, and therefore we will
incur stall at some point. We say that disk c is currently

the only constrained disk of the three.

take to prefetch these blocks, and the time it will take the

application to consume the intervening cached blocks. We
determine which blocks must be prefetched based on the

following simple cache model: a hinted block will be miss-

ing if it is not cached and it is the earliest hint for its block.
Essentially, we make the optimistic assumption that the sys-

tem will only have to prefetch each missing block once. Our

estimate of Tdisk, the time to fetch a block, is the average
system I/O time up to that point in the trace. Finally, our

estimate of Tapp, the time between hinted accesses, is the

average amount of computation performed by that process
between hinted accesses up to that point in the trace.

With this background, we can now formally specify how

the system identi�es a constrained disk. Let r1r2 : : : be the
sequence of hints. Let Incore(i) be a boolean variable rep-

resenting our estimate, described above, of whether request

i will be in cache or will need to be prefetched. Finally, let
disk(i) be the disk holding request ri. Then, disk d is con-

strained by request i if and only if ri is the �rst reference to

an uncached block and

X

j�ijdisk(j)=d

Incore(j) � Tdisk > i � Tapp: (1)

This speci�cation of a constrained disk is very similar

to that used by the Forestall algorithm in the earlier study
[KTP+96], but it di�ers in two details. First, the Incore

function used here only counts the �rst access to a block as a

miss instead of assuming all accesses to currently uncached
blocks will have to be prefetched. Second, we do not vary

our estimate of Tdisk in a manner that that corresponds to

Forestall's overestimation F 0, of the ratio between Tdisk and
Tapp.

Even with our simplifying assumptions, identifying a con-

strained disk could still be very expensive since it could re-

Sequence:

Delay 1:

Delay 0:

Tdisk

Tapp

change in  bufferage

constraining access

change in stall

early allocation

rnrlrkrj

Figure 5: The Bene�t of Deep Prefetching. The �gure shows
a hint sequence for which most accesses are cached but a

few must be prefetched, the last of which, rn, cannot be

prefetched in time and therefore constrains the disk. The
bene�t of deep prefetching in terms of the common cur-

rency is the marginal change in stall time with respect to

the change in bu�er usage. Deep prefetching requires that
bu�ers be allocated early for all of the accesses up to the

constrained access. Each one-access delay in initiating deep

prefetching adds one inter-access period, Tapp, of stall, but it
reduces by one access the time each of the deep-prefetching

bu�ers must be held, under the assumption that bu�ers are

released after they are read. If rn is n accesses in the future,
then, as shown in the text, the marginal change in stall time

with respect to bu�er usage is Tdisk=n.

quire revisiting every hint every time deep prefetching is

considered. In practice, this is not necessary. We will re-
visit this issue after we complete the derivation of the bene�t

of deep prefetching in terms of the common currency.

2.2.2 The Benefit of Deep Prefetching

Having computed that access rc constrains disk d, TIP-
TOE must determine the bene�t of allocating bu�ers for

deep prefetching for that constraint. Expressing this bene-

�t in the common currency requires determining the change
in stall time for a given change in bu�er usage. Figure 5

gives an example that shows the relation between bu�er

usage and stall time. Delaying deep prefetching one ac-
cess adds one inter-access period, Tapp, of stall, but reduces

by one access the time each of the deep-prefetch bu�ers

must be held, assuming that bu�ers are released after be-

ing read. If the constraining access is n accesses in the fu-

ture, then from the de�nition of a constrained disk, there

must be (nTapp)=Tdisk such deep prefetch bu�ers. Then,
the marginal change in stall with respect to bu�er usage is

Tapp=(nTapp=Tdisk) = Tdisk=n. This is the common-currency

bene�t of deep prefetching.

�Tdeep pf(x) =
Tdisk

x
: (2)

2.3 The Cost of Ejecting from a Constrained Disk

Recall that ejecting a hinted block will require that the block

be prefetched back at a later time. Thus, the change in I/O

service time is sum of the Tdriver overhead for prefetching
the block back and any stall that will be incurred on the

eventual access to the ejected block. On a constrained disk,

there is no opportunity to prefetch in advance and mask

5



the latency of the access. Thus, the access will add a full
Tdisk of stall to the application's I/O service time. If the

hint indicates the block will be accessed in x accesses, then

the ejection does free a bu�er for the x accesses until it is
needed to fault the block back in. Averaging the change in

I/O service time over these x bu�er-accesses of savings in

bu�er usage, we �nd that, in terms of the common currency,
the cost of ejecting a block from a constrained disk is:

�Teject constrained(x) =
Tdriver + Tdisk

x
: (3)

Note that the cost of ejection is greater than the bene�t
of deep prefetching as given in Equation 2 by a Tdriver=x

term. This di�erence adds some hysteresis which reduces

the likelihood of thrashing the same block in and out of the
cache.

2.4 TIPTOE Implementation

To avoid recalculating constraints from scratch at each ac-

cess, our implementation breaks the hint sequence into seg-
ments called \epochs." Each epoch keeps track of the num-

ber of accesses and missing blocks within the epoch. The

contribution of the entire epoch of hints to Equation 1 can
then be calculated in a single step. Whenever a block is

loaded or evicted, we perform a single constant-time oper-

ation to �nd the earliest hint for that block, look up the
associated epoch, and modify the count of missing blocks

within that epoch. To detect a constraint, it is only nec-

essary to sum the contributions of the epochs and not the
hints individually. Epochs reduce algorithmic overhead by

a large constant factor. In our implementation, the target

size for epochs is 100 accesses, though the algorithm admits
other implementations that place distant hints into larger

epochs.

Because deep prefetching is only relevant over large num-
bers of accesses, it is not necessary to reconsider the deep

prefetching decision at every access. Instead, we further

reduce overhead by recomputing constraints only every 5
accesses.

With or without epochs, the computational overhead is

bounded, not by the number of hints, but by the bene�t
of prefetching. Because the bene�t of prefetching from a

constrained disk falls o� with the distance to the constraint,

there comes a point where, even if a constraint were found,
the bene�t of prefetching for it would not be su�cient to

warrant allocating a bu�er for deep prefetching. There is
no need ever to examine the hints beyond this point. The

exact point at which this happens depends dynamically on

the current cost of taking a bu�er from a cache supplier.
TIP2 considers issuing prefetches whenever a change in

cost or bene�t calculations creates the chance that there

might now be su�cient bene�t from prefetching to merit a
bu�er. Most often, this occurs when the application con-

sumes a hinted block which shifts all remaining hints one

access closer. In particular, it shifts a hint from beyond
the prefetch horizon to within the prefetch horizon which

raises the bene�t of prefetching from zero to some positive

value. Thus, TIP2's prefetching is fundamentally gated by
the application's consumption of data.

In contrast, deep prefetching must be disk-aware because
it takes advantage of disk idleness to prefetch more deeply

regardless of application activity. Thus, TIPTOE also con-

siders prefetching whenever a disk goes idle. At that time,
TIPTOE identi�es the earliest missing block on the idle disk.

If the hint falls within the prefetch horizon, it bids for a

bu�er with TIP2's bene�t function. If the hint is beyond
the prefetch horizon, the prefetcher bids for a bu�er with the

deep prefetching bene�t, if any. If multiple disks are idle,

it considers prefetching �rst for the missing block across all
the idle disks that comes earliest in the hint sequence.

Should the prefetcher issue just one prefetch at a time

per disk, or should it issue more? Modern disks and their
low-level device drivers are capable of reordering fetches to

reduce average disk service time and increase e�ective disk

bandwidth. A prefetcher can exploit this capability by queu-
ing multiple prefetches at the device. In general, longer

queues provide greater reordering opportunities and larger

reductions in average disk service time. Moreover, the same
positioning e�ects that make disk fetch reordering e�ective

suggest that cache evictions should be sensitive to disk loca-

tion. For many workloads, especially sequential ones, prox-
imity in the hint sequence is a good indicator of proximity

on disk. In such cases, simultaneously evicting larger num-

bers of neighboring blocks in the hint sequence can reduce
disk service time for the refetches of the evicted blocks.

A number of costs o�set these bene�ts of simultaneously

issuing large numbers of prefetches. First, large queues tie
up cache bu�ers that might be better used to cache data for

re-use. Second, �lling a large queue forces earlier replace-

ment decisions which may itself reduce cache e�ectiveness.
Lastly, very deep queues allow early prefetches to be re-

ordered behind many other, later prefetches which may lead

to unnecessary stall.
TIPTOE strikes a balance and issues groups of up to 16

requests, a technique that Cao has called batching [CFKL95].

When TIPTOE issues prefetches, it keeps bidding for bu�ers
for the earliest remaining uncached block until either the

batch is full, or the bene�t of prefetching for that disk is not

great enough to win any more bu�ers. At that point, the
prefetcher issues the batch of requests and that disk is no

longer considered idle. The prefetcher continues to try to

�ll batches for the remaining idle disks.

3 LRU-SP Resource Allocation

Pei Cao's LRU-SP [CFL94a, CFL94b, Cao96] algorithm is

an alternative to TIP2's cost-bene�t strategy for allocating

bu�ers among multiple processes in the presence of hints

disclosing future accesses. The goal of the algorithm is to

adapt the time-tested LRU algorithm's fairness and perfor-
mance qualities to this new domain. LRU-SP uses a global

LRU queue to partition the cache bu�ers among the com-

peting processes. It then applies a prefetching and caching
algorithm within each partition.

Figure 6 is a schematic diagram of the LRU-SP resource

allocation system. When a bu�er is required, either for
a demand read or for a prefetch, LRU-SP �nds the pro-

cess that owns the Least Recently Used block of the com-

6



.....3 7 2419
A A B A B AProcess:

Kernel

1

7
2

4
9

Process A

Process B

A owns LRU Block

“Give up a block”

“Take block 1” 3

Figure 6: LRU-SP resource allocation algorithm. When the
kernel needs a block it �nds the process holding the global

Least-Recently-Used block, in this case Process A. The ker-

nel then asks Process A for a block, suggesting the LRU
block. Process A may either accept the kernel's suggestion

and give up block 2, or may use information not available

to the kernel to choose a di�erent block for eviction, in this
case block 1.

plete bu�er cache2 and asks that process if it would like to

eject that block. The process may choose to give up the

LRU block itself, or may make a di�erent decision based
on application-speci�c information. If all processes give up

the block suggested by the kernel then LRU-SP becomes the

standard LRU bu�er replacement policy. However, if a pro-
cess chooses to give up an alternate block, that process will

again hold the global LRU block and would be asked to give

up another block when the kernel requires one. To address
this di�culty the kernel swaps the LRU block into the do-

nated block's position in the LRU queue. Finally, to prevent

a malicious or foolish process from mis-using this swapping
capability to gain an unfair share of the bu�er cache, a place-

holder structure keeps track of swaps. If the donated block

is re-accessed before the swapped block, the swapped block
is immediately ejected. The resulting algorithm is called

LRU-SP, LRU with swapping and placeholders.

LRU-SP's partitioning of the cache makes it easy to
combine di�erent prefetching and caching algorithms with

it. In the evaluations that follow, we consider two com-

binations. LRU-SP/Aggressive was the �rst combination
described in the literature [CFKL95]. It uses the Aggres-

sive deep prefetching algorithm described above to make

prefetching and caching decisions within an individual pro-

cess' partition. Because our recent collaboration with the

inventors of LRU-SP/Aggressive found that the Forestall al-

gorithm outperforms Aggressive [KTP+96], we also consider

LRU-SP/Forestall. In the implementation of LRU-SP/Fore-

stall considered here, we use the same algorithm for detect-
ing constraints as is used in TIPTOE. This allows a more

direct comparison between the LRU-SP and cost-bene�t re-

source allocation algorithms.

2The owner of a block is the last process to access the block.

4 Methodology

Our study is based on trace-driven simulation of six hint-

ing applications. In this section, we describe our simula-

tor, the applications we have traced, and the trace-collection
methodology.

4.1 Simulation Environment

Our simulator is built on top of the Berkeley RaidSim [CP90,

LK91] simulator. RaidSim can simulate various 
avors of
RAID disk arrays using a disk geometry module to deter-

mine disk access times. In our simulations, we run with data

striped over an array of from 1{10 disks with no parity and
a stripe unit of eight 8K blocks. The geometry module sim-

ulates the performance of the HP97560 disk drive [RW94].

We use the CSCAN request scheduling discipline.
We augmented RaidSim to include a bu�er cache module

layered on top of the disk array and implemented modules

for all four of our algorithms. We also added a module to
drive RaidSim from traces instead of relying on randomly

generated workloads. We took advantage of RaidSim's sup-

port for multiple threads to allow the concurrent simulation
of multiple separately-scripted processes.

4.2 Applications

We drive the simulator with traces of a suite of six I/O-

intensive applications. These applications were used in the

evaluation of the original TIP2 system [PGG+95], and are
carefully documented in that paper. We give a brief de-

scription here. The applications have all been modi�ed to

provide hints as they run, and our traces capture these hints
as they arrive. The overwhelming majority of these hints are

accurate. We do not explore how to prefetch when many of

the hints are inaccurate.

Davidson is a computational-physics program that com-
putes, by successive re�nement, the extreme eigenvalue-eigen-

vector pairs of a large, sparse, matrix stored on disk [SF94].

In our benchmark, Davidson sequentially reads a 16.3 MByte
matrix 61 times.

Gnuld is version 2.5.2 of the Free Software Foundation's

object code linker. Our benchmark links the 562 object

�les of a Digital UNIX kernel. These object �les comprise

approximately 64 MB, and produce an 8.8MB kernel.

Postgres is version 4.2 of an extensible, object-oriented,
relational database system from the University of Califor-

nia at Berkeley [SR86, SRH90]. In our test, Postgres ex-

ecutes a join of two relations. The outer relation contains
20,000 unindexed tuples (3.2 MB) while the inner relation

has 200,000 tuples (32MB) and is indexed (5 MB). We run

two cases. In the �rst (Postgres1), 20% of the outer re-
lation �nds a match in the inner relation. In the second

(Postgres2), 80% �nd a match. One output tuple is writ-

ten sequentially for every tuple match.

Sphinx is a high-quality, speaker-independent, continuous-

voice, speech-recognition system [LHR90]. In our experi-

ments, Sphinx recognizes an 18-second recording commonly

used in Sphinx regression testing.

7



Agrep is a variant of grep written by Wu and Manber at
the University of Arizona [WM92]. It is a full-text pat-

tern matching program that performs approximate matches.

In our benchmark, Agrep sequentially searches 1349 kernel
source �les occupying 1922 disk blocks for a simple string

that does not occur in any of the �les.

XDataSlice (Xds) is an interactive scienti�c visualization
tool developed at the National Center for Supercomputer

Applications at the University of Illinois [Nat89]. In our

benchmark, Xds renders 25 random slices through a dataset
of 5123 32-bit 
oating point values requiring 512 MByte of

disk storage.

4.3 Traces

The six applications (seven counting the two Postgres cases)
were run on a Digital 3000/600 workstation containing a

175 MHz Alpha (21064) processor, 128 MByte of memory,

and a single HP 2247 1GB disk attached via a fast SCSI-
2 adapter. The Digital Unix 3.2g-3 kernel was modi�ed to

trace read, write, open, and close system calls as well as

hint delivery. Trace records included a �le name or vnode
number and, where appropriate, the byte ranges for the call.

We also traced task switches to obtain accurate, per task,

CPU usage information. Traces were recorded into a 20
MByte statically-allocated bu�er.

O�-line, we obtained the actual on-disk layout for �les

referenced in the trace so that we could map byte ranges to
disk blocks. There were a very small number of temporary

�les whose maps we could not obtain. These �les were as-

sumed to lie at a random location on the disk, but did not
account for a signi�cant fraction of the operations. We post-

processed the traces into a script that speci�es the disk block
or blocks touched by a request and the inter-access process

CPU time.

Because our traces capture per-process CPU time and
high-level �le requests, we can run multiple scripts simulta-

neously to explore the interaction of multiple processes.

There are two e�ects that this simulation environment
fails to capture. First, the traces do not capture either

memory usage information or paging activity. When multi-

ple processes are run together, they may compete for virtual

memory causing an increase in paging activity that would

not occur in our simulator. The second e�ect is an inaccu-

racy in the inter-access CPU time that arises because the
traces do not record when disk access occurred. Thus, we

cannot subtract the CPU time required to initiate a disk

access. When the simulator initiates a disk access, it adds a
disk driver overhead, Tdriver, to the process' CPU time. This

has the e�ect of slightly dilating the process CPU time for

accesses that caused disk accesses on the original system.
Table 1 shows the balance of reads, writes and hints for

each trace. All the applications are read-dominated and able

to hint a substantial fraction of their total I/O's.

4.4 Single Process Performance

As a baseline for our multi-process experiments, we present

the performance of our four test algorithms when applied to

each of the benchmark applications individually. Figure 7

Trace Reads Writes Hints Total

Davidson 133656 1403 127429 262488

Gnuld 18348 2621 14106 35075

Postgres1 8695 141 4455 13291

Postgres2 31264 522 16325 48111

Sphinx 77428 24 74700 152152

Agrep 4270 0 2921 7191

Xds 46348 0 45241 91589

Table 1: Breakdown of Traces by Operations

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

T
ot

al
 T

im
e

1 2 3 4 5 8 10
Number of Disks

0

50

100

150

T
ot

al
 T

im
e

Davidson Gnuld

1 2 3 4 5 8 10
Number of Disks

0

20

40

60

80

100

T
ot

al
 T

im
e

1 2 3 4 5 8 10
Number of Disks

0

50

100

150

200

T
ot

al
 T

im
e

Postgres1 Postgres2

1 2 3 4 5 8 10
Number of Disks

0

50

100

150

200

250

T
ot

al
 T

im
e

1 2 3 4 5 8 10
Number of Disks

0

5

10

15

20

25

T
ot

al
 T

im
e

Sphinx Agrep

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Xds

Figure 7: Single-Process Trace Results

presents the results. Overall, they a�rm the results of the
earlier study [KTP+96].

As before, TIP2 sometimes fails to take advantage of

transient disk idleness to perform deep prefetching. This is
particularly visible when Davidson is running on a single

disk. TIP2 caches a portion of the dataset and lets the

disk go idle while it reads the cached data. The e�ect is
also visible when Xds runs on four and eight disks. Here,

strided accesses result in a highly unbalanced distribution

of accesses when the array size is a power of two. There are
stretches of hundreds of accesses that only touch two of four

disks in the array. TIP2's bounded prefetching lets the other

two disks go idle even though, over the long term, they are
constrained. Deep prefetching in TIPTOE and both LRU-

SP algorithms relieves this problem.

We also see that on larger arrays, LRU-SP/Aggressive
prefetches too aggressively for Davidson, and achieves little

re-use. This leads to unnecessary prefetches which add sub-

stantial CPU overhead to the elapsed time. As expected,
neither TIPTOE nor LRU-SP/Forestall su�ers from this

problem.

8



500 550 600 700 800 900 1000 1100 1200 1300 1400 1500

Buffer Cache Size

0

100

200

300

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive

Figure 8: Xds takes bu�ers from a synthetic process with

high re-use.

These experiments reveal a couple of other e�ects. Be-

cause TIP2 may have a full prefetch horizon of 63 requests

queued at the disk whereas the other algorithms have a max-
imum of 16, TIP2 sometimes bene�ts more from request

reordering than the others do. This e�ect is particularly

visible when Agrep is running on one or two disks. It is
visible to a lesser extent when Gnuld runs on a single disk.

Finally, we note that TIP2 performs poorly for Post-

gres2 on one and two disks, and for TIPTOE on one disk.
TIP2 on a single disk evicts hinted cache blocks that lie

beyond the prefetch horizon, and caches 2400 fewer hinted

cache blocks than LRU-SP/Aggressive. TIPTOE's hinted
cache estimator (Equation 3) is not subject to this problem;

it increases its estimate of the value of the hinted cache be-

cause the disk is constrained. However, its LRU hit rate
estimator keeps track of accesses from the beginning of the

trace, which results in an average LRU hit rate that is lo-

cally incorrect during the second phase. If the estimator
is modi�ed to allow aging of LRU hit probabilities, TIP-

TOE's performance on one disk is identical to the LRU-SP

algorithms.

5 Multi-Process Trace Results

5.1 Synthetic Workloads and Caching

In this section we demonstrate through a micro-benchmark

that LRU-based allocation may give bu�ers to applications
that consume data quickly but have limited re-use, rather

than to applications that consume more slowly but derive

higher overall bene�t from bu�ers because they have higher
re-use. To �rst approximation, LRU-SP allocates bu�ers

to processes according to their access rate; thus, LRU-SP

will cache data for an application that has a high data con-
sumption rate but low re-use.. We consider the Xds trace

described above running in parallel with a process that re-
peatedly reads a 500-block �le sequentially. This arti�cial

process computes for 10ms between each read; Xds com-

putes for 700 microseconds between reads on average. Fig-
ure 8 shows the results of varying cache size from 500 blocks

to 1500 blocks.

As expected, with 500 cache bu�ers no algorithm derives
any caching bene�t because some blocks are used to prefetch

for the hinting process. With 550 cache bu�ers, however,

the cost-bene�t estimators conclude that caching data for

Disks TIP LRU-SP/AGG LRU-SP/Forestall

1 1.032 1.050 1.051

2 1.040 1.121 1.103

3 1.025 1.090 1.057

4 1.047 1.078 1.029

5 1.038 1.083 1.029

8 1.047 1.077 1.012

10 1.009 1.067 1.006

* 1.034 1.081 1.041

Table 2: Summary of results for two hinting processes.

This table gives ratio of elapsed time for an algorithm to

the elapsed time for TIPTOE. Numbers are the geometric
mean of the ratios for the eleven experiments. The last line,

marked with a '*', is the mean over all array sizes.

the non-hinting process is more important than prefetching

ahead for the hinting process. LRU-SP splits the bu�er
cache according to the relative rates of the processes, giving

much of the cache to the hinting process even though it does

not re-use its data. The high rate ofXds relative to the non-
hinting process means that the cache must become quite

large (1500 bu�ers) before LRU-SP will allocate su�cient

bu�ers to hold the 500 bu�er working set.

5.2 Two Hinting Processes

Our primary experimental results are given in Figure 9,

which shows execution times for our test suite of eleven pairs

of processes. These pairs were chosen from the
�
7

2

�
= 21 pos-

sible pairs based on greatest similarity in overall standalone

execution time. To summarize the results, Table 2 shows, for

each array size, the geometric mean of the factor by which
TIPTOE performs better than each of the other algorithms,

taken over the eleven experiments.

We have distilled our experience with informed caching
and prefetching into a few lessons which these experimen-

tal results illustrate. The primary lesson is that LRU-SP

induces a partition of the bu�er cache that, to �rst order,
depends on the relative access rates of the processes, but

that relative access rate is not a good predictor of caching

value. In contrast, cost-bene�t partitions the cache based on
estimates of the value of each piece of data. This algorithmic

di�erence is responsible for the greatest performance di�er-

ences in the graphs, and was the initial reason we undertook
this study. Other lessons have signi�cant impact, but often

in particular situations such as when a disk is routinely con-

strained or unconstrained. Throughout the discussion we
refer to experiments by the numbers in Figure 9.

5.2.1 Experience with Informed Prefetchingand Caching

Lesson 1: Access rate is not a good predictor of caching

value. Our experiments reveal two situations in which dif-

ferences between data rates and re-use characteristics re-

sult in LRU-SP and cost-bene�t �nding di�erent allocations.

First, if a trace displays a substantial fraction of unhinted

reads but consumes data slowly, LRU-SP will not dedicate

bu�ers to LRU caching and will su�er demand misses. Cost-

bene�t's LRU estimator will detect re-use and publish a

9



1 2 3 4 5 8 10
Number of Disks

0

200

400

600

T
ot

al
 T

im
e

1 2 3 4 5 8 10
Number of Disks

0

200

400

600

T
ot

al
 T

im
e

Experiment 1: Davidson/Xds Experiment 2: Davidson/Sphinx

1 2 3 4 5 8 10
Number of Disks

0

200

400

600

T
ot

al
 T

im
e

1 2 3 4 5 8 10
Number of Disks

0

200

400

600

T
ot

al
 T

im
e

Experiment 3: Xds/Sphinx Experiment 4: Xds/Postgres2

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

400

500

T
ot

al
 T

im
e

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

400
T

ot
al

 T
im

e

Experiment 5: Sphinx/Postgres2 Experiment 6: Postgres2/Gnuld

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

T
ot

al
 T

im
e

1 2 3 4 5 8 10
Number of Disks

0

200

400

600

T
ot

al
 T

im
e

Experiment 7: Gnuld/Postgres1 Experiment 8: Davidson/Postgres2

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

400

500

T
ot

al
 T

im
e

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

T
ot

al
 T

im
e

Experiment 9: Sphinx/Gnuld Experiment 10: Postgres2/Postgres1

1 2 3 4 5 8 10
Number of Disks

0

50

100

150

T
ot

al
 T

im
e

I/O stall time
disk driver time
application CPU time

TIP2
LRU-SP/Aggressive
TIPTOE
LRU-SP/Forestall

Experiment 11: Postgres1/Agrep

Figure 9: Multi-Process Trace Results

10



high value, re
ecting the advantage of using bu�ers for LRU
caching, and the cost-bene�t allocator will grow the LRU

cache in response. Second, if one hinting process shows

signi�cant re-use and another hinting process shows little
re-use, but their relative access rates are not similarly dis-

proportionate, the hinted cache of the �rst process will be

larger under cost-bene�t than under LRU-SP. Cost-bene�t
will send the post-consumption blocks of the low re-use pro-

cess to the LRU queue where estimation will show that they

are not used and can be evicted with low cost;3 it will assign
a higher value to the hinted blocks of the high re-use pro-

cess, so will allow the high re-use process a larger fraction of

the cache. LRU-SP will partition the cache based on process
rates, giving a large fraction to the low re-use process.

The �rst situation, in which a process exhibits a large num-

ber of unhinted reads but does not consume data quickly,

appears in experiments 4, 5, 6, 7, 10, and 11 (most notably
experiment 4). The Postgres1 and Postgres2 traces,

which issue large numbers of unhinted accesses, appear in

all these experiments. These traces also include a phase of
unhinted accesses followed by a phase of hinted accesses so

the cache management algorithm must also be adaptive to

this change in application behavior. In experiment 4, for
instance, LRU-SP/Aggressive su�ers a factor of 7.7 more

demand misses then TIPTOE on two disks, and still shows

82% more demand reads on ten disks even though su�cient
bandwidth exists to prefetch all hinted data without stall.

Experiment 1 demonstrates the second situation described
above, in which two hinting processes compete for bu�ers

but one process has more re-use and therefore uses bu�ers

more e�ectively. Average computation time per operation is
0.83 ms for Davidson and 0.72 ms for Xds. However, when

each process runs alone Xds re-uses only 3.5% of its data

while Davidson's re-use is 38%. On two disks, LRU-SP/
Aggressive shows 43% fewer hinted cache hits than TIPTOE

because it dedicates bu�ers to holding Xds data blocks that

will not be re-used.

Lesson 2: On unconstrained disks, hinted blocks can always

be prefetched in time so caching them is not as important

as caching for unhinted accesses. Experiments 4, 5, 6, 7,
10, and 11 show an increase in stall for LRU-SP/Aggress-

ive and, in some instances, LRU-SP/Forestall on larger ar-

rays. None of this stall results from hinted reads that have
not completed; it all results from unhinted reads, some of

which could have been cached if su�cient bu�er resources

had been given to the LRU queue. In experiment 6 on ten

disks, for instance, LRU-SP/Aggressive incurs 2.2 times as

many demand misses as TIPTOE: 4303 versus 1851. These

misses translate directly into stall if they cannot be over-

lapped against computation in another process.

Lesson 3: On constrained disks, hinted blocks that are ejected

cannot be re-fetched without stall so caching them is as im-

portant as caching for unhinted accesses. TIP2's hinted

cache estimator assumes disks are unconstrained and esti-

mates that ejecting a hinted block beyond the prefetch hori-

3Section 5.4 shows that, if these post-consumption blocks exhibit

di�erent re-use patterns than unhinted demand read blocks, it is sim-

ple to integrate a separate \posthint estimator" into the cost-bene�t

framework.

zon will only add Tdriver overhead. TIPTOE modi�es this
estimator so that if the block lies on a constrained disk, the

cost of ejecting the block includes the stall to re-fetch it (see

Equation 3). This e�ect is signi�cant in experiments 1, 2
and 8. In experiment 8 on a single disk, for instance, TIP-

TOE caches 37% more data blocks for Davidson despite

TIP2's much more conservative prefetching policy because
TIPTOE values the blocks more highly.

Lesson 4: Eviction decisions impact locality of \re-fetch-

ed" data. Hinted cache data that is evicted must be fetched
back later. A prefetching scheme may attempt to select

data for eviction so as to increase disk locality when the

data must be read back in. As we mentioned above, a full
treatment of this topic requires a theoretical model of non-

constant disk service time so a treatment within TIPTOE is

beyond our scope; nonetheless, we observe the phenomenon
in simulations. As described in Section 2.4, Cao et al in

their presentation of Aggressive[CFKL95] describe a mech-
anism they call \batching" in which the prefetching algo-

rithm waits for the disk to go idle and then submits up to B

requests, where the batchsize B is a parameter of the algo-
rithm. LRU-SP, TIPTOE and LRU-SP/Forestall all adopt

this scheme in our implementation. On cyclic datasets, the

B evicted elements are typically the most recently consumed
blocks. Since neighboring blocks in the access stream dis-

play locality on the disk, this scheme allows the blocks to be

refetched with low average disk service time. In experiment
2, for instance, TIP2's average I/O service time is 7% larger

than the other algorithms on a single disk. The di�erence

is not even larger because TIP2's conservative prefetching
does not evict many blocks from the hinted cache. However,

LRU-SP/Aggressive's average disk service time increases by

15% in experiment 1 when its batching mechanism is turned
o� and it instead submits its prefetches to the driver one at

a time.

Lesson 5: Constraint-aware prefetching only reasons about

known constraints. The Sphinx trace typically gives small

batches of hints. There are 113 batches containing 449 hints

as the program reads a large dictionary �le at the beginning
of the trace, then 50 other batches containing more than 64

hints, and the remainder of the batches (41% of the total

batches) follow the distribution shown in Figure 10. Ex-
periments 2 and 9 show LRU-SP/Aggressive exhibiting less

stall than TIPTOE and LRU-SP/Forestall on various array

sizes because the Forestall algorithms, noting that the small
batch of hints received so far do not require prefetching,

assume that future batches will not cause the disk to be-

come constrained. LRU-SP/Aggressive, on the other hand,
begins prefetching immediately. In experiment 9 with ten

disks, for instance, TIPTOE and LRU-SP/Forestall incur

1.55 and 2.05 times as many prefetches that have not com-
pleted when the read arrives as LRU-SP/Aggressive does.

Lesson 6: Deeper disk queues yield lower average disk ser-

vice times. Both TIP2 and TIPTOE are based upon a sys-

tem model that assumes a constant disk service time, so

modeling of queue sorting and locality is beyond the scope
of our theoretical analysis. However our simulator performs

CSCAN sorting in the queues and our disk simulator in-

cludes such non-constant e�ects as seek, rotate and transfer

11



20 30 40 50 60

Length of Hint Batch

0

5

10
N

um
be

r 
of

 B
at

ch
es

Figure 10: Distribution of hint batch sizes for the Sphinx
trace.

latencies, SCSI bus overhead and on-disk readahead bu�er-

ing. Therefore we exhibit e�ects resulting from the policy

used by each prefetching algorithm to determine when ex-
actly to submit prefetches to the disk driver. TIP2's policy

is to submit prefetches out to the prefetch horizon, which in

our implementation is 63; thus, TIP2 will commonly keep
63 bu�ers at the disk queue. The other algorithms submit

up to sixteen requests whenever the disk goes idle in order

to attain the bene�ts discussed in Lesson 4, but in doing so
they typically generate shorter disk queues. Experiments 5,

7 and 9 display this e�ect. In experiment 5, for instance,

TIP2's average disk service time is 18% faster than TIP-
TOE's on a single disk.

Lesson 7: Leaving a constrained disk idle leads to addi-

tional stall. This e�ect was documented in [KTP+96] for

the single-process case. We discuss it in Figure 2, and men-

tion it here because it arises in the two-process case as well.
Experiments 2 and 8 both show TIP2 performing worse than

TIPTOE on a single disk; in experiment 2, for instance, on

a single disk TIP2 has 7% more prefetches still in progress
when the corresponding read arrives than TIPTOE because

TIPTOE is willing to perform deep prefetches when the disk

goes idle. This e�ect alone is not responsible for all the dif-
ference between the two algorithms in these experiments;

Lesson 3 is the primary contributor to the disparity.

Lesson 8: Submitting an I/O requires Tdriver computational

overhead. This e�ect was also documented in the single-

process case in [KTP+96]. We discuss it in Figure 3, and

it appears in experiments 1, 2, 5, 8 and 9 on larger array

sizes. In experiment 1, for instance, LRU-SP/Aggressive on

ten disks incurs 52% more driver overhead than TIPTOE.

Lesson 9: Over-aggressive prefetching may result in evic-

tion of prefetched but unread data. LRU-SP/Aggressive pre-

fetches deeply even when no disk is constrained. If a prefetch-
ing process is running alongside either another prefetch-

ing process or a process with signi�cant demand reads, the

prefetching process might fetch a block and then be asked
to give it up to provide a block to the other process. Experi-

ments 1, 4, 8 and 9 display this behavior; experiment 8 is the

most consistent example with LRU-SP/Aggressive on �ve
disks evicting 26% of its data before reading it. These evic-

tions do not increase stall; in fact, LRU-SP/Aggressive stalls

less waiting for prefetches to complete than any other algo-
rithm. However, again on �ve disks, LRU-SP/Aggressive in-

curs 80% more Tdriver overhead than TIPTOE, adding 13%

Disks TIP LRU-SP/AGG LRU-SP/Forestall

1 0.982 1.001 1.003

2 1.090 1.033 1.031

3 1.063 1.038 1.029

4 1.075 1.036 1.037

5 1.042 1.045 1.038

8 1.024 1.034 1.023

10 1.008 1.034 1.018

* 1.040 1.032 1.025

Table 3: Two-process experiments, 1 process gives hints, the

other does not. Average slowdown of overall execution time

for other algorithms with respect to TIPTOE taken over 22
experiments.

to the overall execution time. The other instances within

this trace, and in the other speci�ed experiments, are less

signi�cant.

5.3 Experiments with Unhinting Processes and More
Multiprogramming

In this subsection we consider two modi�cations to the ex-

periments of Section 5.2. First, we re-run each of the 11
two-process experiments with only one of the two processes

giving hints. This results in 22 experiments. For TIP2,

LRU-SP/Aggressive and LRU-SP/Forestall, and each array
size, we compute the ratio of the algorithm's execution time

to TIPTOE's execution time and take the geometric mean

of these values over the 22 experiments; these results are re-
ported in Table 3. The graphs demonstrate the same lessons

described in Section 5.2, but di�erences of 25% in overall ex-

ecution time relative to any of the other algorithms occur
in only 5% of the cases, as opposed to 16% of the cases in

the fully-hinted case (a case is de�ned as a particular exper-

iment on a particular disk array size). As the table shows,
TIPTOE performs better overall but the di�erence is not

marked.

The second modi�cation we consider is the addition of a
third process. We construct �ve experiments by taking the

�ve sets of three processes that are most similar in overall

execution time. We then run each of these �ve experiments
in all three con�gurations of two hinting processes and one

unhinting process. The results are given in Table 4. Again,

TIPTOE performs better overall, and the relative speedup
is larger in this case than in the two-process case. In many

of these experiments servicing of unhinted reads represents

the dominant component of execution time, but in 13% of
the cases there are signi�cant di�erences (25% or more, as

computed above) in overall execution time. In general, the

addition of a third process increases the bene�t seen by TIP-
TOE and by cost-bene�t.

5.4 Cost-Benefit Analysis and Post-Consumption Hints

When a hinted read arrives and there is no future hint for

the same data, the system must decide how long the block

should be kept in memory. In the original TIP2 system the

block was added to the tail of the LRU queue under the

assumption that, since it was recently accessed, it might be

12



Disks TIP LRU-SP/AGG LRU-SP/Forestall

1 0.998 1.038 1.040

2 1.094 1.136 1.136

3 1.055 1.155 1.132

4 1.054 1.110 1.079

5 1.033 1.114 1.074

8 1.024 1.104 1.057

10 0.997 1.097 1.036

* 1.036 1.107 1.078

Table 4: Three-process experiments, two processes give

hints, one does not. Average slowdown of other algorithms

with respect to TIPTOE taken over �ve three-process work-
loads run three times to consider each process not giving

hints.

accessed again in the near future. However, if an Xds-like

process is streaming through a large amount of hinted data
with minimal re-use, and another process like Postgres2 is

performing unhinted reads with strong locality4 this policy

will \dilute" the LRU queue with bu�ers that are never re-
used. The opposite policy is to take lack of hints for a block

as a \release" of the block, and place the block on the head of

the LRU queue for immediate eviction. However under this
policy a process such as Sphinx, which o�ers hints in small

batches just before the data is required, would be prone to


ush blocks that might soon be hinted.
The cost-bene�t framework provides a simple, elegant so-

lution to this problem. Rather than releasing these problem-

atic \posthint" bu�ers to the LRU queue, the system instead
releases them to a separate posthint queue which maintains

an independent estimate of the value of its bu�ers. If the

posthint bu�ers are often re-read, as in Sphinx's case, the al-
locator will choose to grow the posthint cache at the expense

of the LRU cache. On the other hand if the posthint bu�ers

are never accessed but unhinted accesses demonstrate re-
use, as in the case of Postgres2 and Xds, the allocator

will instead choose to dedicate resources to the LRU cache.

In general, the cost-bene�t framework allows the system
designer to identify subclasses of a resource that display uni-

form or similar patterns of behavior or re-use. The designer

can then tailor estimators to each subclass, such as posthint
bu�ers or unhinted bu�ers. Bu�ers can be members of mul-

tiple classes, and can be valued by multiple estimators,5 and

the allocator will automatically incorporate any new esti-
mates into the global valuation described earlier.

Figure 11 shows an example of the posthint estimator
compared to the original TIP2 system that placed posthint

bu�ers onto the tail of the LRU queue.

Figure 12 compares the posthint estimator to the oppo-
site approach of releasing posthint bu�ers to the head of the

LRU queue for immediate eviction.

Tables 5 and 6 show the aggregate results of the posthint
estimator compared to the LRU-tail and LRU-head schemes.

4The same situation could arise within a single process.
5For instance, a block could be read as a demand miss, placed

into the LRU queue, and then have a hint arrive that says it will be

read again in 300 accesses. The LRU estimator and the hinted cache

estimator will independently value the bu�er, and if either estimator

assigns high cost the bu�er will not be evicted.

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

400

500

T
ot

al
 T

im
e I/O stall time

disk driver time
application CPU time

TIP2 LRU Tail
TIP2 Posthint
TIPTOE LRU Tail
TIPTOE Posthint

Xds/Postgres2

Figure 11: When Xds's hinted blocks are released to the
tail of the free list, they mingle with Postgres2's unhinted

reads, reducing the LRU hit rate. When Xds's hinted blocks

are instead released to the posthint estimator, the allocator
grows the LRU cache at the expense of the posthint cache.

1 2 3 4 5 8 10
Number of Disks

0

100

200

300

400

500

T
ot

al
 T

im
e I/O stall time

disk driver time
application CPU time

TIP2 LRU Head
TIP2 Posthint
TIPTOE LRU Head
TIPTOE Posthint

Postgres2/Postgres1

Figure 12: Both Postgres traces hint the read of the outer

relation and then re-read the outer relation without giving

hints for it; placing post-consumption hinted bu�ers onto
the head of the LRU queue reduces the number of cache

hits for the second set of reads.

For each experiment we compute the ratio of overall execu-

tion without the posthint estimator time to overall execu-
tion time with the posthint estimator. For each array size

we then take the geometric mean of these ratios over all

the experiments. We use the same seven single-process ex-

periments and eleven multi-process experiments descried in

Sections 4.4 and 5.

6 Conclusion

Systems for informed prefetching and caching based on ap-

plication disclosure of future I/O accesses address two dis-

tinct issues. First, how should each hinting process use the

limited resources available to it for prefetching and caching;

and second, how should system resources be allocated among

multiple competing processes. An earlier paper with collab-
orators [KTP+96] addressed the �rst problem and showed

that prefetching algorithms that are conservative or aggres-

sive without regard to disk load perform worse than algo-
rithms that adapt their prefetching behavior dynamically

based on load. We leverage upon these results to address

the second problem by incorporating adaptive load-aware

13



Disks TIP TIPTOE

1 1.031 1.016

2 1.077 1.082

3 1.057 1.061

4 1.054 1.039

5 1.044 1.045

8 1.043 1.028

10 1.031 1.050

* 1.048 1.046

Table 5: Average improvement of releasing posthint bu�ers
to the posthint estimator rather than to the tail of the LRU

queue.

Disks TIP TIPTOE

1 1.086 1.011

2 1.090 1.006

3 1.085 1.008

4 1.092 1.013

5 1.100 1.018

8 1.104 1.017

10 1.096 1.036

* 1.093 1.016

Table 6: Average improvement of releasing posthint bu�ers

to the posthint estimator rather than to the head of the LRU

queue.

prefetching into the two existing systems for informed re-
source allocation: the TIP2 system of [PGG+95], and the

LRU-SP system of [CFL94a, Cao96]. Integrating adaptive

prefetching into TIP2 is signi�cantly more challenging be-
cause it requires an estimate of the bene�t of deep prefetch-

ing in terms of reduction in I/O service time per unit of

bu�er resource. However, we found that the resulting algo-
rithm, TIPTOE (TIP with Temporal Overload Estimators),

yields lower overall execution times than LRU-SP/Forestall

because bene�t estimation is a better predictor of caching
value than application access rate.

We also discovered a number of more speci�c lessons.

Our experiments con�rm the conclusions of [KTP+96], and

extend the scope of those results to the multi-process do-

main. Speci�cally, we found that leaving a constrained disk

idle leads to additional stall and that over-aggressive prefetch-
ing from unconstrained disks leads to unnecessary I/Os and

higher associated CPU overhead.

Next, we found that cache replacement decisions should
be adaptive to disk load just as prefetching should be. On

unconstrained disks, hinted accesses may be prefetched with-

out stall, so it is less important to cache for them than it
is to cache for unhinted accesses which stall whenever they

miss in the cache. On the other hand, on constrained disks,

both hinted and unhinted accesses stall so it is equally im-
portant to cache for both of them. A related lesson in the

I/O-bound case is that cache replacement decisions a�ect

the locality of blocks that will need to be re-fetched back
later. Higher locality leads to lower disk service times and

better performance. Incorporating sensitivity to the layout

of ejected blocks into the cost-bene�t framework is an area

for future research.
Our experiments were performed using disk-accurate,

trace-driven simulation on traces drawn from six hint-

generating I/O-intensive applications described in [PGG+95].
TIPTOE performs the best of the algorithms we studied,

improving execution time on average across our hinted two-

process experiments by 13% relative to LRU-SP/Aggressive,
7% relative to LRU-SP/Forestall and 3% relative to TIP2.

TIPTOE improves run-time by more than 25% in 14% of

our fully-hinted two-process experiments relative to LRU-
SP/Aggressive, 8% relative to LRU-SP/Forestall, and 1%

relative to TIP2. We also consider experiments in which

hinting and unhinting processes run together, and three-
process experiments. The aggregate improvement over all

experiments is 7.6% versus LRU-SP/Aggressive, 5.3% ver-

sus LRU-SP/Forestall and 3.6% versus TIP2. TIPTOE's
primary advantage over TIP2 is that it does not su�er from

the shortcomings identi�ed in [KTP+96].

In the future, we would like to extend this work to man-
age virtual memory pages and prefetching over the network

from distributed �lesystems.

7 Acknowledgments

We thank David Rochberg for collecting and post-processing
the traces, and the rest of the PDL group at CMU for pro-

viding support and cycles. Thanks also to Tracy Kimbrel,

Anna Karlin and Pei Cao for contributing to our under-
standing of the problem. Finally, we thank the referees for

many helpful suggestions.

References

[Bel66] L.A. Belady. A study of replacement algorithms for

virtual storage computers. IBM Systems Journal,

5:78{101, 1966.

[Cao96] Pei Cao. Application-Controlled File Caching and

Prefetching. PhD thesis, Princeton University, 1996.

[CFKL95] P. Cao, E.W. Felten, A. Karlin, and K. Li. A study

of integrated prefetching and caching strategies. In

Proceedings of the ACM SIGMETRICS, May, 1995.

[CFL94a] P. Cao, E.W. Felten, and K. Li. Application-

controlled �le caching policies. In 1994 Usenix

Summer Technical Conference, pages 171{182, June,

1994.

[CFL94b] P. Cao, E.W. Felten, and K. Li. Implementation and

performance of application-controlled �le caching. In

Proceedings of the First USENIX Symposium on Op-

erating Systems Design and Implementation, Mon-

terey, CA, pages 165{178, November, 1994.

[CKV93] K. Curewitz, P. Krishnan, and J.S. Vitter. Practical

prefetching via data compression. In Proceedings of

the 1993 ACM Conference on Management of Data

(SIGMOD), pages 257{266, May, 1993.

[CP90] Peter M. Chen and David A. Patterson. Maximizing

performance in a striped disk array. In Proceedings of

the 17th Annual International Symposium on Com-

puter Architecture, pages 322{331. IEEE Computer

Society Press, May 1990.

14



[CR93] C. Chen and N. Roussopoulos. Adaptive database

bu�er allocation using query feedback. In Proc. of

the 19th VLDB Conference, Dublin, Ireland, 1993.

[FO71] R. J. Feiertag and E. I. Organisk. The Multics In-

put/Output system. In Proc. of the 3rd Symp. on

Operating System Principles, pages 35{41, 1971.

[GA95] J. Gri�oen and R. Appleton. Performance measure-

ments of automaticprefetching. In Proc. of the ISCA

International Conference on Parallel and Distributed

Computing Systems, September 1995.

[GJ91] A.S. Grimshaw and E.C. Loyot Jr. ELFS: Object-

oriented extensible �le systems. Technical Report

Computer Science Technical Report No. TR-91-14,

University of Virginia, 1991.

[KE93] David Kotz and Carla Schlatter Ellis. Practical

prefetching techniques for multiprocessor �le sys-

tems. Journal of Distributed and Parallel Databases,

1(1):33{51, January, 1993.

[Kor90] Kim Korner. Intelligent caching for remote �le ser-

vice. In Proceedings of the 10th Intl. Conf. on Dis-

tributed Computing Systems, pages 220{226, 1990.

[Kot94] D. Kotz. Disk-directed I/O for MIMD multiproces-

sors. In Proc. of the 1st USENIX Symp. on Operat-

ing Systems Design and Implementation, Monterey,

CA, pages 61{74, Nov. 1994.

[KTP
+
96] T. Kimbrel, A. Tomkins, R.H. Patterson, B. Bershad,

P. Cao, E.W. Felten, G. Gibson, A. Karlin, and K. Li.

A trace-driven comparison of algorithms for parallel

prefetching and caching. In Proceedings of the Sec-

ond Symposium on Operating Systems Design and

Implementation, pages 19{34, 1996.

[LD97] Hui Lei and Dan Duchamp. An analytical approach

to �le prefetching. In 1997 USENIX Annual Techni-

cal Conference, January 1997.

[LHR90] Kai-Fu Lee, Hsiao-Wuen Hon, and Raj Reddy. An

overview of the SPHINX speech recognition system.

IEEE Transactions on Acoustics, Speech and Signal

Processing, (USA), 38(1):35{45, Jan, 1990.

[LK91] Edward K. Lee and Randy H. Katz. Performance

consequences of parity placement in disk arrays. In

ASPLOS4, pages 190{199. ACM, 1991.

[MDK96] T. Mowry, A. Demke, and O. Krieger. Automatic

compiler-inserted I/O prefetching for out-of-core ap-

plications. In Proceedings of the Second Symposium

on Operating Systems Design and Implementation,

1996.

[MJLF84] M. K. McKusick, W. J. Joy, S. J. Le�er, and R. S.

Fabry. A fast �le system for Unix. ACM Trans. on

Computer Systems, 2(3):181{197, Aug. 1984.

[Nat89] National Center for Supercomputing Applications.

XDataSlice for the X window system. Technical Re-

port http://www.nsca.uiuc.edu/, University of Illi-

nois at Urbana-Champaign, 1989.

[NFS91] Raymond Ng, Christos Faloutsos, and Timos Sellis.

Flexible bu�er allocation based on marginal gains.

In Proc. of the 1991 ACM Conf. on Management of

Data (SIGMOD), pages 387{396, 1991.

[PG94] R. Hugo Patterson and Garth Gibson. Exposing I/O

concurrency with informed prefetching. In Proceed-

ings of the Third International Conference on Paral-

lel and Distributed Information Systems, pages 7{16,

September 1994. Unpublished version in lab.

[PGG
+
95] R. Hugo Patterson, Garth A. Gibson, Eka Gint-

ing, Daniel Stodolsky, and Jim Zelenka. Informed

prefetching and caching. In Proceedings of the 15th

Symposium on Operating Systems Principles, pages

79{95, December, 1995.

[PZ91] Mark Palmer and Stanley B. Zdonik. FIDO: A cache

that learns to fetch. In Proceedings of the 17th In-

ternational Conference on Very Large Data Bases,

pages 255{264, September, 1991.

[RW94] Chris Ruemmler and John Wilkes. An introduction

to disk drive modelling. IEEE Computer, 27(3):17{

28, March, 1994.

[SF94] A. Stathopoulos and C. F. Fischer. A Davidson pro-

gram for �nding a few selected extreme eigenpairs of

a large, sparse, real, symmetric matrix. Computer

Physics Communications, 79:268{290, 1994.

[SM88] Inc. Sun Microsystems. Sun OS reference manual,

part number 800-1751-10, revision A, May 9, 1988.

[Smi85] A.J. Smith. Disk cache | miss ratio analysis and de-

sign considerations. ACM Trans. on Computer Sys-

tems, 3(3):161{203, Aug. 1985.

[SR86] M. Stonebrakerand L.A. Rowe. The design of POST-

GRES. In Proceedings of the ACM SIGMOD 1986

International Conference on Management of Data,

Washington, DC, pages 28{30, 1986.

[SRH90] M. Stonebraker, L.A. Rowe, and M. Horohama. The

implementation of POSTGRES. IEEE Transactions

on Knowledge and Data Engineering, 2(1):125{142,

March, 1990.

[SS95] D. Steere and M. Satyanarayanan. Using Dynamic

Sets to overcome high I/O latencies during search.

In Proc. of the 5th Workshop on Hot Topics in Op-

erating Systems, Orcas Island, WA, pages 136{140,

May 4{5, 1995.

[TD91] C. Tait and D. Duchamp. Detection and exploitation

of �le working sets. In Proc. Eleventh Intl. Conf. on

Distributed Computing Systems, pages 2{9, IEEE,

1991.

[Tri79] K.S. Trivedi. An analysis of prepaging. Computing,

22:191{210, 1979.

[WM92] S. Wu and U. Manber. Agrep | a fast approximate

pattern-matching tool. In Proc. of the 1992 Winter

USENIX Conference, San Francisco, CA, pages 20{

24, Jan, 1992.

15


