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Abstract

Federated learning is a distributed optimization paradigm that enables a large
number of resource-limited client nodes to cooperatively train a model without
data sharing. Several works have analyzed the convergence of federated learning
by accounting of data heterogeneity, communication and computation limitations,
and partial client participation. However, they assume unbiased client participation,
where clients are selected at random or in proportion of their data sizes. In this paper,
we present the first convergence analysis of federated optimization for biased client
selection strategies, and quantify how the selection bias affects convergence speed.
We reveal that biasing client selection towards clients with higher local loss achieves
faster error convergence. Using this insight, we propose POWER-OF-CHOICE, a
communication- and computation-efficient client selection framework that can
flexibly span the trade-off between convergence speed and solution bias. Our
experiments demonstrate that POWER-OF-CHOICE strategies converge up to 3×
faster and give 10% higher test accuracy than the baseline random selection.

1 Introduction

Until recently, machine learning models were largely trained in the data center setting [1] using
powerful computing nodes, fast inter-node communication links, and large centrally available training
datasets. The future of machine learning lies in moving both data collection as well as model
training to the edge. The emerging paradigm of federated learning [2–4] considers a large number of
resource-constrained mobile devices that collect training data from their environment. Due to limited
communication capabilities and privacy concerns, these data cannot be directly sent over to the cloud.
Instead, the nodes locally perform a few iterations of training using local-update stochastic gradient
descent (SGD) [5–8], and only send model updates periodically to the aggregating cloud server.
Besides communication limitations, the key scalability challenge faced by the federated learning
framework is that the client nodes can have highly heterogeneous local datasets and computation
speeds. The effect of data heterogeneity on the convergence of local-update SGD is analyzed in
several recent works [9–19] and methods to overcome the adverse effects of data and computational
heterogeneity are proposed in [19–21], among others.

Partial Client Participation. Most of the recent works described above assume full client partic-
ipation, that is, all nodes participate in every training round. In practice, only a small fraction of
client nodes participate in each training round, which can exacerbate the adverse effects of data
heterogeneity. While some existing convergence guarantees for full client participation and methods
to tackle heterogeneity can be generalized to partial client participation [22], these generalizations
are limited to unbiased client participation, where each client’s contribution to the expected global
objective optimized in each round is proportional to its dataset size. In [23], the authors analyze the
convergence with flexible device participation, where devices can freely join or leave the training
process or send incomplete updates to the server. However, adaptive client selection that is cognizant
of the training progress at each client has not been understood yet.
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It is important to analyze and understand biased client selection strategies because they can sharply
accelerate error convergence, and hence boost communication efficiency in heterogeneous environ-
ments by preferentially selecting clients with higher local loss values, as we show in this paper. This
idea has been explored in a couple of recent empirical studies [24–26]. [27] proposed grouping
clients based on hardware and wireless resources in order to save communication resources. [24]
(which we include as a benchmark in our experiments) proposed client selection with local loss, and
[26] proposed utilizing the progression of clients’ weights. But these schemes are limited to empirical
demonstration without a rigorous analysis of how selection bias affects convergence speed.

Another relevant line of work [28–31] employs biased selection or importance sampling of data to
speed-up convergence of classic centralized SGD – they propose preferentially selecting samples
with highest loss or highest gradient norm to perform the next SGD iteration. In contrast, [30]
proposes biased selection of lower loss samples to improve robustness to outliers. Generalizing such
strategies to the federated learning setting is a non-trivial and open problem because of the large-scale
distributed and heterogeneous nature of the training data.

Our Contributions. In this paper, we present the first (to the best of our knowledge) convergence
analysis of federated learning with biased client selection that is cognizant of the training progress
at each client. We discover that biasing the client selection towards clients with higher local losses
increases the rate of convergence compared to unbiased client selection. Using this insight, we
propose the POWER-OF-CHOICE client selection strategy and show by extensive experiments that
POWER-OF-CHOICE yields up to 3× faster convergence with 10% higher test performance than
the standard federated averaging with random selection. POWER-OF-CHOICE is designed to incur
minimal communication and computation overhead, enhancing resource efficiency in federated
learning. In fact, we show that even with 3× less clients participating in each round as compared to
random selection, POWER-OF-CHOICE gives 2× faster convergence and 5% higher test accuracy.

2 Problem Formulation

Consider a cross-device federated learning setup with total K clients, where client k has a local
dataset Bk consisting |Bk| = Dk data samples. The clients are connected via a central aggregating
server, and seek to collectively find the model parameter w that minimizes the empirical risk:

F (w) =
1∑K

k=1Dk

K∑
k=1

∑
ξ∈Bk

f(w, ξ) =

K∑
k=1

pkFk(w) (1)

where f(w, ξ) is the composite loss function for sample ξ and parameter vector w. The term
pk = Dk/

∑K
k=1Dk is the fraction of data at the k-th client, and Fk(w) = 1

|Bk|
∑
ξ∈Bk

f(w, ξ) is the
local objective function of client k. In federated learning, the vectors w∗, and w∗k for k = 1, . . . ,K
that minimize F (w) and Fk(w) respectively can be very different from each other. We define
F ∗ = minw F (w) = F (w∗) and F ∗k = minw Fk(w) = Fk(w∗k).

Federated Averaging with Partial Client Participation. The most common algorithm to solve (1)
is federated averaging (FedAvg) proposed in [2]. The algorithm divides the training into commu-
nication rounds. At each round, to save communication cost at the central server, the global server
only selects a fraction C of m = CK clients to participate in the training. Each selected/active client
performs τ iterations of local SGD [6, 7, 5] and sends its locally updated model back to the server.
Then, the server updates the global model using the local models and broadcasts the global model to
a new set of active clients.

Formally, we index the local SGD iterations with t ≥ 0. The set of active clients at iteration t is
denoted by S(t). Since active clients performs τ steps of local update, the active set S(t) also remains
constant for every τ iterations. That is, if (t+ 1) mod τ = 0, then S(t+1) = S(t+2) = · · · = S(t+τ).
Accordingly, the update rule of FedAvg can be written as follows:

w
(t+1)
k =

{
w

(t)
k − ηtgk(w

(t)
k , ξ

(t)
k ) for (t+ 1) mod τ 6= 0

1
m

∑
j∈S(t)

(
w

(t)
j − ηtgj(w

(t)
j , ξ

(t)
j )
)
, w(t+1) for (t+ 1) mod τ = 0

(2)

where w(t+1)
k denotes the local model parameters of client k at iteration t, ηt is the learning rate, and

gk(w
(t)
k , ξ

(t)
k ) = 1

b

∑
ξ∈ξ(t)k

∇f(w
(t)
k , ξ) is the stochastic gradient over mini-batch ξ(t)

k of size b that
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select 1select 2
F1(w) > F2(w)

<latexit sha1_base64="NWVzmvheNBTqjR4fwbJ8+xNKMHk=">AAACCnicbVDLSsNAFJ34rPEVdelmtAh1U5Iq6EqKQnFZwT6gDWEynbRDJ5MwM1FK6NqNv+LGhSJu/QJ3/o2TNovaeuDC4Zx7ufceP2ZUKtv+MZaWV1bX1gsb5ubW9s6utbfflFEiMGngiEWi7SNJGOWkoahipB0LgkKfkZY/vMn81gMRkkb8Xo1i4oaoz2lAMVJa8qyjmueUuiFSAz9IH8enV2bNq8wKpmcV7bI9AVwkTk6KIEfds767vQgnIeEKMyRlx7Fj5aZIKIoZGZvdRJIY4SHqk46mHIVEuunklTE80UoPBpHQxRWcqLMTKQqlHIW+7sxulPNeJv7ndRIVXLop5XGiCMfTRUHCoIpglgvsUUGwYiNNEBZU3wrxAAmElU4vC8GZf3mRNCtl56xcuTsvVq/zOArgEByDEnDABaiCW1AHDYDBE3gBb+DdeDZejQ/jc9q6ZOQzB+APjK9f04uZFA==</latexit>

F1(w) < F2(w)
<latexit sha1_base64="2ug1duX8xb6a9t/ZaDnQwpEO9dk=">AAACCnicbVDLSsNAFJ34rPEVdelmtAh1U5Iq6MJFUSguK9gHtCFMppN26GQSZiZKCV278VfcuFDErV/gzr9x0mZRWw9cOJxzL/fe48eMSmXbP8bS8srq2nphw9zc2t7Ztfb2mzJKBCYNHLFItH0kCaOcNBRVjLRjQVDoM9LyhzeZ33ogQtKI36tRTNwQ9TkNKEZKS551VPOcUjdEauAH6eP49MqseZVZwfSsol22J4CLxMlJEeSoe9Z3txfhJCRcYYak7Dh2rNwUCUUxI2Ozm0gSIzxEfdLRlKOQSDedvDKGJ1rpwSASuriCE3V2IkWhlKPQ153ZjXLey8T/vE6igks3pTxOFOF4uihIGFQRzHKBPSoIVmykCcKC6lshHiCBsNLpZSE48y8vkmal7JyVK3fnxep1HkcBHIJjUAIOuABVcAvqoAEweAIv4A28G8/Gq/FhfE5bl4x85gD8gfH1C9BhmRI=</latexit>

w(0)
<latexit sha1_base64="yMuy7PMLLpmLoz+gD5VTwrPeQtI=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUliopSDBWsDAWiT6kNlSO67RWHTuyHVAVZWDhV1gYQIiVj2Djb3DaDNByJEtH59wj33v8iFGlHefbKqysrq1vFDdLW9s7u3v2/kFbiVhi0sKCCdn1kSKMctLSVDPSjSRBoc9Ix59cZX7nnkhFBb/V04h4IRpxGlCMtJEGdrkvjJ2lk36I9NgPkoc0vUuqzkk6sCtOzZkBLhM3JxWQozmwv/pDgeOQcI0ZUqrnOpH2EiQ1xYykpX6sSITwBI1Iz1COQqK8ZHZECo+NMoSBkOZxDWfq70SCQqWmoW8ms0XVopeJ/3m9WAcXXkJ5FGvC8fyjIGZQC5g1AodUEqzZ1BCEJTW7QjxGEmFteiuZEtzFk5dJu15zT2v1m7NK4zKvowjK4AhUgQvOQQNcgyZoAQwewTN4BW/Wk/VivVsf89GClWcOwR9Ynz9dGJiJ</latexit>

w(1)
<latexit sha1_base64="rJBPAn+BBGkkyEBGbd85gozzLeE=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUliopSDBWsDAWiT6kNlSO67RWHTuyHVAVZWDhV1gYQIiVj2Djb3DaDNByJEtH59wj33v8iFGlHefbKqysrq1vFDdLW9s7u3v2/kFbiVhi0sKCCdn1kSKMctLSVDPSjSRBoc9Ix59cZX7nnkhFBb/V04h4IRpxGlCMtJEGdrkvjJ2lk36I9NgPkoc0vUuq7kk6sCtOzZkBLhM3JxWQozmwv/pDgeOQcI0ZUqrnOpH2EiQ1xYykpX6sSITwBI1Iz1COQqK8ZHZECo+NMoSBkOZxDWfq70SCQqWmoW8ms0XVopeJ/3m9WAcXXkJ5FGvC8fyjIGZQC5g1AodUEqzZ1BCEJTW7QjxGEmFteiuZEtzFk5dJu15zT2v1m7NK4zKvowjK4AhUgQvOQQNcgyZoAQwewTN4BW/Wk/VivVsf89GClWcOwR9Ynz9enpiK</latexit>

w(3)
<latexit sha1_base64="v735lefLVmBf+SUsh0ARxoyFuh4=">AAACBHicbVC7TsMwFHV4lvIKMHaxqJDKUiUtEowVLIxFog+pDZXjOq1Vx45sB1RFGVj4FRYGEGLlI9j4G5w2A7QcydLROffI9x4/YlRpx/m2VlbX1jc2C1vF7Z3dvX374LCtRCwxaWHBhOz6SBFGOWlpqhnpRpKg0Gek40+uMr9zT6Sigt/qaUS8EI04DShG2kgDu9QXxs7SST9EeuwHyUOa3iWV+mk6sMtO1ZkBLhM3J2WQozmwv/pDgeOQcI0ZUqrnOpH2EiQ1xYykxX6sSITwBI1Iz1COQqK8ZHZECk+MMoSBkOZxDWfq70SCQqWmoW8ms0XVopeJ/3m9WAcXXkJ5FGvC8fyjIGZQC5g1AodUEqzZ1BCEJTW7QjxGEmFteiuaEtzFk5dJu1Z169XazVm5cZnXUQAlcAwqwAXnoAGuQRO0AAaP4Bm8gjfryXqx3q2P+eiKlWeOwB9Ynz9hqpiM</latexit>

w(4)
<latexit sha1_base64="xi5HCYRbQsVVpJhMAcWCQJDfrmA=">AAACBHicbVC7TsMwFHV4lvIKMHaxqJDKUiWlEowVLIxFog+pDZXjOq1Vx45sB1RFGVj4FRYGEGLlI9j4G5w2A7QcydLROffI9x4/YlRpx/m2VlbX1jc2C1vF7Z3dvX374LCtRCwxaWHBhOz6SBFGOWlpqhnpRpKg0Gek40+uMr9zT6Sigt/qaUS8EI04DShG2kgDu9QXxs7SST9EeuwHyUOa3iWV+mk6sMtO1ZkBLhM3J2WQozmwv/pDgeOQcI0ZUqrnOpH2EiQ1xYykxX6sSITwBI1Iz1COQqK8ZHZECk+MMoSBkOZxDWfq70SCQqWmoW8ms0XVopeJ/3m9WAcXXkJ5FGvC8fyjIGZQC5g1AodUEqzZ1BCEJTW7QjxGEmFteiuaEtzFk5dJu1Z1z6q1m3q5cZnXUQAlcAwqwAXnoAGuQRO0AAaP4Bm8gjfryXqx3q2P+eiKlWeOwB9Ynz9jMJiN</latexit>

w(5)
<latexit sha1_base64="DFuKykVoHWqEx49GzOv6DTky/H0=">AAACBHicbVC7TsMwFHV4lvIKMHaxqJDKUiUFBGMFC2OR6ENqQ+W4TmvVsSPbAVVRBhZ+hYUBhFj5CDb+BqfNAC1HsnR0zj3yvcePGFXacb6tpeWV1bX1wkZxc2t7Z9fe228pEUtMmlgwITs+UoRRTpqaakY6kSQo9Blp++OrzG/fE6mo4Ld6EhEvRENOA4qRNlLfLvWEsbN00guRHvlB8pCmd0nl7Djt22Wn6kwBF4mbkzLI0ejbX72BwHFIuMYMKdV1nUh7CZKaYkbSYi9WJEJ4jIakayhHIVFeMj0ihUdGGcBASPO4hlP1dyJBoVKT0DeT2aJq3svE/7xurIMLL6E8ijXhePZREDOoBcwagQMqCdZsYgjCkppdIR4hibA2vRVNCe78yYukVau6J9XazWm5fpnXUQAlcAgqwAXnoA6uQQM0AQaP4Bm8gjfryXqx3q2P2eiSlWcOwB9Ynz9ktpiO</latexit>

w⇤
<latexit sha1_base64="wVT2PPwBmpyxmwYenJ3CBkd2x7s=">AAAB83icbVDLSsNAFL2pr1pfVZduBosgLkpSBV0W3bisYB/QxDKZTtqhk0mYmSgl9DfcuFDErT/jzr9xkmahrQcGDufcyz1z/JgzpW372yqtrK6tb5Q3K1vbO7t71f2DjooSSWibRDySPR8rypmgbc00p71YUhz6nHb9yU3mdx+pVCwS93oaUy/EI8ECRrA2kuuGWI/9IH2aPZwNqjW7budAy8QpSA0KtAbVL3cYkSSkQhOOleo7dqy9FEvNCKezipsoGmMywSPaN1TgkCovzTPP0IlRhiiIpHlCo1z9vZHiUKlp6JvJLKNa9DLxP6+f6ODKS5mIE00FmR8KEo50hLIC0JBJSjSfGoKJZCYrImMsMdGmpoopwVn88jLpNOrOeb1xd1FrXhd1lOEIjuEUHLiEJtxCC9pAIIZneIU3K7FerHfrYz5asoqdQ/gD6/MHHgaRuw==</latexit> w

<latexit sha1_base64="0DLpkSsq+1eBpGeVUYfKUBtZm5M=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+8C2lEx6pw3NZIYko5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpViveeaV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kD/QKRHw==</latexit>

F1(w)
<latexit sha1_base64="9POfp0Y/39y0WklkLNIhXlQNdxs=">AAAB+HicdVDLSgMxFM3UV62Pjrp0EyxC3QzzaG27KwjisoJ9QDuUTJppQzMPkoxSh36JGxeKuPVT3Pk3ZtoKKnogcDjnXu7J8WJGhTTNDy23tr6xuZXfLuzs7u0X9YPDjogSjkkbRyziPQ8JwmhI2pJKRnoxJyjwGOl604vM794SLmgU3shZTNwAjUPqU4ykkoZ68XJolQcBkhPPT+/mZ0O9ZBpmo246NjQN265VHUuRaqXhOOfQMswFSmCF1lB/H4winAQklJghIfqWGUs3RVxSzMi8MEgEiRGeojHpKxqigAg3XQSfw1OljKAfcfVCCRfq940UBULMAk9NZhHFby8T//L6ifTrbkrDOJEkxMtDfsKgjGDWAhxRTrBkM0UQ5lRlhXiCOMJSdVVQJXz9FP5POrZhOYZ9XSk17VUdeXAMTkAZWKAGmuAKtEAbYJCAB/AEnrV77VF70V6XozlttXMEfkB7+wRhAZLh</latexit>

F2(w)
<latexit sha1_base64="/NYgN75f1A3luiVle24BWJX3xp8=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSxC3YQktmm7KwjisoJ9QBvKZDpph04ezEyUGvolblwo4tZPceffOGkrqOiBgcM593LPHC9mVEjT/NBya+sbm1v57cLO7t5+UT847Igo4Zi0ccQi3vOQIIyGpC2pZKQXc4ICj5GuN73I/O4t4YJG4Y2cxcQN0DikPsVIKmmoFy+HdnkQIDnx/PRufjbUS6ZhNhqOVYWmYddrdaeiiGU71YYDLcNcoARWaA3198EowklAQokZEqJvmbF0U8QlxYzMC4NEkBjhKRqTvqIhCohw00XwOTxVygj6EVcvlHChft9IUSDELPDUZBZR/PYy8S+vn0i/7qY0jBNJQrw85CcMyghmLcAR5QRLNlMEYU5VVogniCMsVVcFVcLXT+H/pGMb1rlhX1dKTXtVRx4cgxNQBhaogSa4Ai3QBhgk4AE8gWftXnvUXrTX5WhOW+0cgR/Q3j4BgpWS+A==</latexit>

F (w)
<latexit sha1_base64="4wyAdb0hXPOSGJJeiBiDhO7pd4I=">AAAB9HicdVDLSsNAFJ3UV62vqks3g0Wom5C0xWRZEMRlBfuANpTJdNIOnUzizKRSQr/DjQtF3Pox7vwbJ20EFT0wcDjnXu6Z48eMSmVZH0ZhbX1jc6u4XdrZ3ds/KB8edWSUCEzaOGKR6PlIEkY5aSuqGOnFgqDQZ6TrTy8zvzsjQtKI36p5TLwQjTkNKEZKS95VdRAiNfGD9H5xPixXLPPCdetODVqmtURGbKfhOtDOlQrI0RqW3wejCCch4QozJGXftmLlpUgoihlZlAaJJDHCUzQmfU05Con00mXoBTzTyggGkdCPK7hUv2+kKJRyHvp6Mosof3uZ+JfXT1TgeinlcaIIx6tDQcKgimDWABxRQbBic00QFlRnhXiCBMJK91TSJXz9FP5POjXTrpu1m0alWcvrKIITcAqqwAYOaIJr0AJtgMEdeABP4NmYGY/Gi/G6Gi0Y+c4x+AHj7ROtzJIB</latexit>

w(2)
<latexit sha1_base64="5s8Qsv8JaiCzKGFH0LU1AFThQwc=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUliopSDBWsDAWiT6kNlSO67RWHTuyHVAVZWDhV1gYQIiVj2Djb3DaDNByJEtH59wj33v8iFGlHefbKqysrq1vFDdLW9s7u3v2/kFbiVhi0sKCCdn1kSKMctLSVDPSjSRBoc9Ix59cZX7nnkhFBb/V04h4IRpxGlCMtJEGdrkvjJ2lk36I9NgPkoc0vUuq9ZN0YFecmjMDXCZuTiogR3Ngf/WHAsch4RozpFTPdSLtJUhqihlJS/1YkQjhCRqRnqEchUR5yeyIFB4bZQgDIc3jGs7U34kEhUpNQ99MZouqRS8T//N6sQ4uvITyKNaE4/lHQcygFjBrBA6pJFizqSEIS2p2hXiMJMLa9FYyJbiLJy+Tdr3mntbqN2eVxmVeRxGUwRGoAhecgwa4Bk3QAhg8gmfwCt6sJ+vFerc+5qMFK88cgj+wPn8AYCSYiw==</latexit>

(a) Selecting Higher Loss Clients

F1(w)
<latexit sha1_base64="9POfp0Y/39y0WklkLNIhXlQNdxs=">AAAB+HicdVDLSgMxFM3UV62Pjrp0EyxC3QzzaG27KwjisoJ9QDuUTJppQzMPkoxSh36JGxeKuPVT3Pk3ZtoKKnogcDjnXu7J8WJGhTTNDy23tr6xuZXfLuzs7u0X9YPDjogSjkkbRyziPQ8JwmhI2pJKRnoxJyjwGOl604vM794SLmgU3shZTNwAjUPqU4ykkoZ68XJolQcBkhPPT+/mZ0O9ZBpmo246NjQN265VHUuRaqXhOOfQMswFSmCF1lB/H4winAQklJghIfqWGUs3RVxSzMi8MEgEiRGeojHpKxqigAg3XQSfw1OljKAfcfVCCRfq940UBULMAk9NZhHFby8T//L6ifTrbkrDOJEkxMtDfsKgjGDWAhxRTrBkM0UQ5lRlhXiCOMJSdVVQJXz9FP5POrZhOYZ9XSk17VUdeXAMTkAZWKAGmuAKtEAbYJCAB/AEnrV77VF70V6XozlttXMEfkB7+wRhAZLh</latexit>

F2(w)
<latexit sha1_base64="/NYgN75f1A3luiVle24BWJX3xp8=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSxC3YQktmm7KwjisoJ9QBvKZDpph04ezEyUGvolblwo4tZPceffOGkrqOiBgcM593LPHC9mVEjT/NBya+sbm1v57cLO7t5+UT847Igo4Zi0ccQi3vOQIIyGpC2pZKQXc4ICj5GuN73I/O4t4YJG4Y2cxcQN0DikPsVIKmmoFy+HdnkQIDnx/PRufjbUS6ZhNhqOVYWmYddrdaeiiGU71YYDLcNcoARWaA3198EowklAQokZEqJvmbF0U8QlxYzMC4NEkBjhKRqTvqIhCohw00XwOTxVygj6EVcvlHChft9IUSDELPDUZBZR/PYy8S+vn0i/7qY0jBNJQrw85CcMyghmLcAR5QRLNlMEYU5VVogniCMsVVcFVcLXT+H/pGMb1rlhX1dKTXtVRx4cgxNQBhaogSa4Ai3QBhgk4AE8gWftXnvUXrTX5WhOW+0cgR/Q3j4BgpWS+A==</latexit>

F (w)
<latexit sha1_base64="4wyAdb0hXPOSGJJeiBiDhO7pd4I=">AAAB9HicdVDLSsNAFJ3UV62vqks3g0Wom5C0xWRZEMRlBfuANpTJdNIOnUzizKRSQr/DjQtF3Pox7vwbJ20EFT0wcDjnXu6Z48eMSmVZH0ZhbX1jc6u4XdrZ3ds/KB8edWSUCEzaOGKR6PlIEkY5aSuqGOnFgqDQZ6TrTy8zvzsjQtKI36p5TLwQjTkNKEZKS95VdRAiNfGD9H5xPixXLPPCdetODVqmtURGbKfhOtDOlQrI0RqW3wejCCch4QozJGXftmLlpUgoihlZlAaJJDHCUzQmfU05Con00mXoBTzTyggGkdCPK7hUv2+kKJRyHvp6Mosof3uZ+JfXT1TgeinlcaIIx6tDQcKgimDWABxRQbBic00QFlRnhXiCBMJK91TSJXz9FP5POjXTrpu1m0alWcvrKIITcAqqwAYOaIJr0AJtgMEdeABP4NmYGY/Gi/G6Gi0Y+c4x+AHj7ROtzJIB</latexit>

w⇤
<latexit sha1_base64="wVT2PPwBmpyxmwYenJ3CBkd2x7s=">AAAB83icbVDLSsNAFL2pr1pfVZduBosgLkpSBV0W3bisYB/QxDKZTtqhk0mYmSgl9DfcuFDErT/jzr9xkmahrQcGDufcyz1z/JgzpW372yqtrK6tb5Q3K1vbO7t71f2DjooSSWibRDySPR8rypmgbc00p71YUhz6nHb9yU3mdx+pVCwS93oaUy/EI8ECRrA2kuuGWI/9IH2aPZwNqjW7budAy8QpSA0KtAbVL3cYkSSkQhOOleo7dqy9FEvNCKezipsoGmMywSPaN1TgkCovzTPP0IlRhiiIpHlCo1z9vZHiUKlp6JvJLKNa9DLxP6+f6ODKS5mIE00FmR8KEo50hLIC0JBJSjSfGoKJZCYrImMsMdGmpoopwVn88jLpNOrOeb1xd1FrXhd1lOEIjuEUHLiEJtxCC9pAIIZneIU3K7FerHfrYz5asoqdQ/gD6/MHHgaRuw==</latexit>

w(0)
<latexit sha1_base64="yMuy7PMLLpmLoz+gD5VTwrPeQtI=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUliopSDBWsDAWiT6kNlSO67RWHTuyHVAVZWDhV1gYQIiVj2Djb3DaDNByJEtH59wj33v8iFGlHefbKqysrq1vFDdLW9s7u3v2/kFbiVhi0sKCCdn1kSKMctLSVDPSjSRBoc9Ix59cZX7nnkhFBb/V04h4IRpxGlCMtJEGdrkvjJ2lk36I9NgPkoc0vUuqzkk6sCtOzZkBLhM3JxWQozmwv/pDgeOQcI0ZUqrnOpH2EiQ1xYykpX6sSITwBI1Iz1COQqK8ZHZECo+NMoSBkOZxDWfq70SCQqWmoW8ms0XVopeJ/3m9WAcXXkJ5FGvC8fyjIGZQC5g1AodUEqzZ1BCEJTW7QjxGEmFteiuZEtzFk5dJu15zT2v1m7NK4zKvowjK4AhUgQvOQQNcgyZoAQwewTN4BW/Wk/VivVsf89GClWcOwR9Ynz9dGJiJ</latexit>

w(2)
<latexit sha1_base64="5s8Qsv8JaiCzKGFH0LU1AFThQwc=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUliopSDBWsDAWiT6kNlSO67RWHTuyHVAVZWDhV1gYQIiVj2Djb3DaDNByJEtH59wj33v8iFGlHefbKqysrq1vFDdLW9s7u3v2/kFbiVhi0sKCCdn1kSKMctLSVDPSjSRBoc9Ix59cZX7nnkhFBb/V04h4IRpxGlCMtJEGdrkvjJ2lk36I9NgPkoc0vUuq9ZN0YFecmjMDXCZuTiogR3Ngf/WHAsch4RozpFTPdSLtJUhqihlJS/1YkQjhCRqRnqEchUR5yeyIFB4bZQgDIc3jGs7U34kEhUpNQ99MZouqRS8T//N6sQ4uvITyKNaE4/lHQcygFjBrBA6pJFizqSEIS2p2hXiMJMLa9FYyJbiLJy+Tdr3mntbqN2eVxmVeRxGUwRGoAhecgwa4Bk3QAhg8gmfwCt6sJ+vFerc+5qMFK88cgj+wPn8AYCSYiw==</latexit>

w(5)
<latexit sha1_base64="DFuKykVoHWqEx49GzOv6DTky/H0=">AAACBHicbVC7TsMwFHV4lvIKMHaxqJDKUiUFBGMFC2OR6ENqQ+W4TmvVsSPbAVVRBhZ+hYUBhFj5CDb+BqfNAC1HsnR0zj3yvcePGFXacb6tpeWV1bX1wkZxc2t7Z9fe228pEUtMmlgwITs+UoRRTpqaakY6kSQo9Blp++OrzG/fE6mo4Ld6EhEvRENOA4qRNlLfLvWEsbN00guRHvlB8pCmd0nl7Djt22Wn6kwBF4mbkzLI0ejbX72BwHFIuMYMKdV1nUh7CZKaYkbSYi9WJEJ4jIakayhHIVFeMj0ihUdGGcBASPO4hlP1dyJBoVKT0DeT2aJq3svE/7xurIMLL6E8ijXhePZREDOoBcwagQMqCdZsYgjCkppdIR4hibA2vRVNCe78yYukVau6J9XazWm5fpnXUQAlcAgqwAXnoA6uQQM0AQaP4Bm8gjfryXqx3q2P2eiSlWcOwB9Ynz9ktpiO</latexit>

w
<latexit sha1_base64="0DLpkSsq+1eBpGeVUYfKUBtZm5M=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+8C2lEx6pw3NZIYko5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpViveeaV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kD/QKRHw==</latexit>

client selected:
2 à 2 à 1 à 1 à 2

w(4)
<latexit sha1_base64="xi5HCYRbQsVVpJhMAcWCQJDfrmA=">AAACBHicbVC7TsMwFHV4lvIKMHaxqJDKUiWlEowVLIxFog+pDZXjOq1Vx45sB1RFGVj4FRYGEGLlI9j4G5w2A7QcydLROffI9x4/YlRpx/m2VlbX1jc2C1vF7Z3dvX374LCtRCwxaWHBhOz6SBFGOWlpqhnpRpKg0Gek40+uMr9zT6Sigt/qaUS8EI04DShG2kgDu9QXxs7SST9EeuwHyUOa3iWV+mk6sMtO1ZkBLhM3J2WQozmwv/pDgeOQcI0ZUqrnOpH2EiQ1xYykxX6sSITwBI1Iz1COQqK8ZHZECk+MMoSBkOZxDWfq70SCQqWmoW8ms0XVopeJ/3m9WAcXXkJ5FGvC8fyjIGZQC5g1AodUEqzZ1BCEJTW7QjxGEmFteiuaEtzFk5dJu1Z1z6q1m3q5cZnXUQAlcAwqwAXnoAGuQRO0AAaP4Bm8gjfryXqx3q2P+eiKlWeOwB9Ynz9jMJiN</latexit>

w(1)
<latexit sha1_base64="rJBPAn+BBGkkyEBGbd85gozzLeE=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUliopSDBWsDAWiT6kNlSO67RWHTuyHVAVZWDhV1gYQIiVj2Djb3DaDNByJEtH59wj33v8iFGlHefbKqysrq1vFDdLW9s7u3v2/kFbiVhi0sKCCdn1kSKMctLSVDPSjSRBoc9Ix59cZX7nnkhFBb/V04h4IRpxGlCMtJEGdrkvjJ2lk36I9NgPkoc0vUuq7kk6sCtOzZkBLhM3JxWQozmwv/pDgeOQcI0ZUqrnOpH2EiQ1xYykpX6sSITwBI1Iz1COQqK8ZHZECo+NMoSBkOZxDWfq70SCQqWmoW8ms0XVopeJ/3m9WAcXXkJ5FGvC8fyjIGZQC5g1AodUEqzZ1BCEJTW7QjxGEmFteiuZEtzFk5dJu15zT2v1m7NK4zKvowjK4AhUgQvOQQNcgyZoAQwewTN4BW/Wk/VivVsf89GClWcOwR9Ynz9enpiK</latexit>

w(3)
<latexit sha1_base64="v735lefLVmBf+SUsh0ARxoyFuh4=">AAACBHicbVC7TsMwFHV4lvIKMHaxqJDKUiUtEowVLIxFog+pDZXjOq1Vx45sB1RFGVj4FRYGEGLlI9j4G5w2A7QcydLROffI9x4/YlRpx/m2VlbX1jc2C1vF7Z3dvX374LCtRCwxaWHBhOz6SBFGOWlpqhnpRpKg0Gek40+uMr9zT6Sigt/qaUS8EI04DShG2kgDu9QXxs7SST9EeuwHyUOa3iWV+mk6sMtO1ZkBLhM3J2WQozmwv/pDgeOQcI0ZUqrnOpH2EiQ1xYykxX6sSITwBI1Iz1COQqK8ZHZECk+MMoSBkOZxDWfq70SCQqWmoW8ms0XVopeJ/3m9WAcXXkJ5FGvC8fyjIGZQC5g1AodUEqzZ1BCEJTW7QjxGEmFteiuaEtzFk5dJu1Z169XazVm5cZnXUQAlcAwqwAXnoAGuQRO0AAaP4Bm8gjfryXqx3q2P+eiKlWeOwB9Ynz9hqpiM</latexit>

(b) Random Client Selection

Figure 1: A toy example with F1(w), F2(w) as the local objective, and F (w) = (F1(w) +
F2(w))/2 as the global objective function with global minimum w∗. At each round, only one client
is selected to perform local updates. (a): Model updates for sampling clients with larger loss; (b):
Model updates for sampling clients uniformly at random (we select client in the order of 2,2,1,1,2).

is randomly sampled from client k’s local dataset Bk. Moreover, w(t+1) denotes the global model
at server. Although w(t) is only updated after every τ iterations, for the purpose of convergence
analysis we consider a virtual sequence of w(t) that is updated at each iteration as follows:

w(t+1) = w(t) − ηtg(t) = w(t) − ηt

 1

m

∑
k∈S(t)

gk(w
(t)
k , ξ

(t)
k )

 (3)

with g(t) = 1
m

∑
k∈S(t) gk(w

(t)
k , ξ

(t)
k ). Note that in (2) and (3) we do not weight the client models by

their dataset fractions pk because pk is considered in the client selection scheme used to decide the
set S(t). Our convergence analysis can be generalized to when the global model is a weighted average
instead of a simple average of client models, and we show in Appendix E that our convergence
analysis also covers the sampling uniformly at random without replacement scheme proposed by [22].
The set S(t) can be sampled either with or without replacement. For sampling with replacement, we
assume that multiple copies of the same client in the set S(t) behave as different clients, that is, they
perform local updates independently.

Client Selection Strategy. To guarantee FedAvg converges to the stationary points of the objective
function (1), most current analysis frameworks [22, 21, 20] consider a strategy that selects the set S(t)

by sampling m clients at random (with replacement) such that client k is selected with probability
pk, the fraction of data at that client. This sampling scheme is unbiased since it ensures that in
expectation, the update rule (3) is the same as full client participation. Hence, it enjoys the same
convergence properties as local-update SGD methods [6, 7]. We denote this unbiased random client
selection strategy as πrand.

In this paper, we consider a class of biased client selection strategies that is cognizant of the global
training progress which (to the best of our knowledge) has not been worked on before. For example,
in the two-client example in Figure 1, we set S(t+1) = arg maxk∈[K] Fk(w(t)), a single client with
the highest local loss at the current global model. In this toy example, the selection strategy cannot
guarantee the updates (3) equals to the full client participation case in expectation. Nevertheless, it
gives faster convergence to the global minimum than the random one. Motivated by this observation,
we define a client selection strategy π as a function that maps the current global model w to a selected
set of clients S(π,w).

3 Convergence Analysis

In this section we analyze the convergence of federated averaging with partial device participation for
any client selection strategy π as defined above. This analysis reveals that biased client selection can
give faster convergence, albeit at the risk of having a non-vanishing gap between the true optimum
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w∗ = arg minF (w) and limt→∞w(t). We use this insight in Section 4 to design client selection
strategies that strike a balance between convergence speed and bias.

3.1 Assumptions and Definitions

First we introduce the assumptions and definitions utilized for our convergence analysis.
Assumption 3.1. F1, ..., Fk are all L−smooth, i.e., for all v and w, Fk(v) ≤ Fk(w) + (v −
w)T∇Fk(w) + L

2 ‖v −w‖22.
Assumption 3.2. F1, ..., Fk are all µ−strongly convex, i.e., for all v and w, Fk(v) ≥ Fk(w) +
(v −w)T∇Fk(w) + µ

2 ‖v −w‖22.
Assumption 3.3. For the mini-batch ξk uniformly sampled at random from Bk from user k, the
resulting stochastic gradient is unbiased, that is, E[gk(wk, ξk)] = ∇Fk(wk). Also, the variance of
stochastic gradients is bounded: E‖gk(wk, ξk)−∇Fk(wk)‖2 ≤ σ2 for all k = 1, ...,K.
Assumption 3.4. The stochastic gradient’s expected squared norm is uniformly bounded, i.e.,
E‖gk(wk, ξk)‖2 ≤ G2 for k = 1, ...,K.

Next, we introduce two metrics, the local-global objective gap and the selection skew, which feature
prominently in the convergence analysis presented in Theorem 3.1.
Definition 3.1 (Local-Global Objective Gap). For the global optimum w∗ = arg minw F (w) and
local optimum w∗k = arg minw Fk(w) we define the local-global objective gap as

Γ , F ∗ −
K∑
k=1

pkF
∗
k =

K∑
k=1

pk(Fk(w∗)− Fk(w∗k)) ≥ 0. (4)

Note that Γ is an inherent property of the local and global objective functions, and it is independent
of the client selection strategy. A larger Γ implies higher data heterogeneity. If Γ = 0 then it implies
that the local and global optimal values are consistent, and there is no solution bias due to the client
selection strategy (see Theorem 3.1). Next, we define another metric called selection skew, which
captures the effect of the client selection strategy on the local-global objective gap.
Definition 3.2 (Selection Skew). For any k ∈ S(π,w) we define,

ρ(S(π,w),w′) =
ES(π,w)[

1
m

∑
k∈S(π,w)(Fk(w′)− F ∗k )]

F (w′)−
∑K
k=1 pkF

∗
k

≥ 0, (5)

which reflects the skew of a client selection strategy π. The first w in ρ(S(π,w),w′) is the parameter
vector that governs the client selection and w′ is the point at which Fk and F in the numerator and
denominator respectively are evaluated. Note, ES(π,w)[·] is the expectation over the randomness
from the selection strategy π, since there can be multiple sets S that π can map from a specific w.

Since ρ(S(π,w),w′) is a function of versions of the global model w and w′, which change during
training, we define two related metrics that are independent of w and w′. These metrics enable us to
obtain a conservative error bound in the convergence analysis.

ρ , min
w,w′

ρ(S(π,w),w′), ρ̃ , max
w

ρ(S(π,w),w∗) (6)

where w∗ = arg minw F (w). From (6), we have ρ ≤ ρ̃ for any client selection strategy π.

Effect of the Client Selection Strategy on ρ and ρ̃. For the unbiased client selection strategy πrand
we have ρ(S(πrand,w),w′) = 1 for all w and w′ since the numerator and denominator of (5) become
equal, and ρ = ρ̃ = 1. For a client selection strategy π that chooses clients with higher Fk(w) more
often, ρ and ρ̃ will be larger (and ≥ 1). In the convergence analysis we show that a larger ρ implies
faster convergence, albeit with a potential error gap, which is proportional to (ρ̃/ρ− 1). Motivated
by this, in Section 4 we present an adaptive client selection strategy that prefers selecting clients with
higher loss Fk(w) and achieves faster convergence speed with low solution bias.

3.2 Main Convergence Result

Here, we present the convergence results for any client selection strategy π for federated averaging
with partial device participation in terms of local-global objective gap Γ, and selection skew ρ, ρ̃.
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Theorem 3.1 (Convergence with Decaying Learning Rate). Under Assumptions 3.1 to 3.4, for
learning rate ηt = 1

µ(t+γ) with γ = 4L
µ , and any client selection strategy π, the error after T

iterations of federated averaging with partial device participation satisfies

E[F (w(T ))]− F ∗ ≤

1

(T + γ)

[
4L(32τ2G2 + σ2/m)

3µ2ρ
+

8L2Γ

µ2
+
Lγ‖w(0) −w∗‖2

2

]
︸ ︷︷ ︸

Vanishing Error Term

+
8LΓ

3µ

(
ρ̃

ρ
− 1

)
︸ ︷︷ ︸

Non-vanishing bias,Q(ρ,ρ̃)

(7)

To the best of our knowledge, Theorem 3.1 provides the first convergence analysis of federated
averaging with a biased client selection strategy π. We also show the results for fixed learning rate
in Appendix A. The proof is presented in Appendix C. In the following paragraphs, we discuss the
effects of the two terms in (7) in detail.

Large ρ and Faster Convergence. A key insight from Theorem 3.1 is that a larger selection skew ρ
results in faster convergence at the rate O( 1

Tρ ). Note that since we obtain ρ (defined in (6)) by taking
a minimum of the selection skew ρ(S(π,w),w′) over w,w′, this is a conservative bound on the
true convergence rate. In practice, since the selection skew ρ(S(π,w),w′) changes during training
depending on the current global model w and the local models w′, the true convergence rate can be
improved by a factor larger than and at least equal to ρ.

Non-vanishing Bias Term. The second term Q(ρ, ρ̃) = 8LΓ
3µ

(
ρ̃
ρ − 1

)
in (7) denotes the solution

bias, which is dependent on the selection strategy. By the definitions of ρ and ρ̃, it follows that ρ̃ ≥ ρ,
which implies that Q(ρ, ρ̃) ≥ 0. For an unbiased selection strategy, we have ρ = ρ̃ = 1, Q(ρ, ρ̃) = 0,
and hence (7) recovers previous bound for unbiased selection strategy as [22]. For ρ > 1, while
we gain faster convergence rate by a factor of ρ, we cannot guarantee Q(ρ, ρ̃) = 0. Thus, there is
a trade-off between the convergence speed and the solution bias. Later in the experimental results,
we show that even with biased selection strategies, the term ρ̃

ρ − 1 in Q(ρ, ρ̃) can be close to 0, and
hence Q(ρ, ρ̃) has a negligible effect on the final error floor.

4 Proposed POWER-OF-CHOICE Client Selection Strategy

From (5) and (6) we discover that a selection strategy π that prefers clients with larger Fk(w)− F ∗k
will result in a larger ρ, yielding faster convergence. Using this insight, a naive client selection
strategy can be choosing the clients with highest local loss Fk(w). However, a larger selection skew
ρ may result in a larger ρ/ρ̃, i.e., a larger non-vanishing error term. This naive selection strategy has
another drawback – to find the current local loss Fk(w), it requires sending the current global model
to all K clients and having them evaluate Fk and sending it back. This additional communication
and computation cost can be prohibitively high because the number of clients K is typically very
large, and these clients have limited communication and computation capabilities.

In this section, we use these insights regarding the trade-off between convergence speed, solution
bias and communication/computation overhead to propose the POWER-OF-CHOICE client selection
strategy. POWER-OF-CHOICE is based on the power of d choices load balancing strategy [32], which
is extensively used in queueing systems. In the POWER-OF-CHOICE client selection strategy (denoted
by πpow-d), the central server chooses the active client set S(t) as follows:

1. Sample the Candidate Client Set. The central server samples a candidate set A of d (m ≤ d ≤
K) clients without replacement such that client k is chosen with probability pk, the fraction of
data at the k-th client for k = 1, . . .K.

2. Estimate Local Losses. The server sends the current global model w(t) to the clients in set A,
and these clients compute and send back to the central server their local loss Fk(w(t)).

3. Select Highest Loss Clients. From the candidate set A, the central server constructs the active
client set S(t) by selecting m = max(CK, 1) clients with the largest values Fk(w), with ties
broken at random. These S(t) clients participate in the training during the next round, consisting
of iterations t+ 1, t+ 2, . . . t+ τ .
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(a) Global loss for optimizing the quadratic optimization model
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Figure 2: Performance of πpow-d for the quadratic experiments. πpow-d convergences faster than πrand
for even selecting from a small pool of clients (K = 30). As convergence speed (ρ) increases,
solution bias (ρ̃/ρ) also increases for πpow-d, aligning well with our analysis in Section 3.2.

Variations of πpow-d. The three steps of πpow-d can be flexibly modified to take into account
practical considerations. For example, intermittent client availability can be accounted for in step
1 by constructing set A only from the set of available clients in that round. We demonstrate the
performance of πpow-d with intermittent client availability in Appendix G.3. The local computation
cost and server-client communication cost in step 2 can be reduced or eliminated by the following
proposed variants of πpow-d (see Appendix F for their pseudo-codes).

• Computation-efficient Variant πcpow-d: To save local computation cost, instead of evaluating
the Fk(w) by going through the entire local dataset Bk, we use an estimate

∑
ξ∈ξ̂k f(w, ξ)/|ξ̂k|,

where ξ̂k is the mini-batch of b samples sampled uniformly at random from Bk.
• Communication- and Computation-efficient Variant πrpow-d: To save both local computation

and communication cost, the selected clients for each round sends their accumulated averaged loss
over local iterations, i.e., 1

τ |ξ(l)k |
∑t
l=t−τ+1

∑
ξ∈ξ(l)k

f(w
(l)
k , ξ) when they send their local models

to the server. The server uses the latest received value from each client as a proxy for Fk(w) to
select the clients. For the clients that have not been selected yet, the latest value is set to∞.

Selection Skew of POWER-OF-CHOICE Strategy. The size d of the candidate client set A is an
important parameter which controls the trade-off between convergence speed and solution bias. With
d = m we have random sampling without replacement in proportion of pk. As d increases, the
selection skew ρ increases, giving faster error convergence at the risk of a higher error floor. However,
note that the convergence analysis replaces ρ(w,w′) with ρ to get a conservative error bound. In
practice, the convergence speed and the solution bias is dictated by ρ(w(τbt/τc),w(t)) which changes
during training. With πpow-d which is biased towards higher local losses, we expect the selection skew
ρ(w,w′) to reduce through the course of training. We conjecture that this is why πpow-d gives faster
convergence as well as little or no solution bias in our experiments presented in Section 5.

5 Experimental Results

We evaluate our proposed πpow-d and its practical variants πcpow-d and πrpow-d, by three sets of
experiments: (1) quadratic optimization, (2) logistic regression on a synthetic federated dataset,
Synthetic(1,1) [19], and (3) DNN trained on a non-iid partitioned FMNIST dataset [33]. We also
benchmark the selection strategy proposed by [24], active federated learning, denoted as πafl. Details
of the experimental setup are provided in Appendix F, and the code for all experiments are shared in
the supplementary material.

Quadratic and Synthetic Simulation Results. In Figure 2(a), even with few clients (K = 30),
πpow-d converges faster than πrand with nearly negligible solution bias for small d. The convergence
speed increases with the increase in d, at the cost of higher error floor due to the solution bias. For
K = 100, πpow-d shows convergence speed-up as with K = 30, but the bias is smaller. Figure 2(b)
shows the theoretical values ρ and ρ̃/ρ which represents the convergence speed and the solution bias
respectively in our convergence analysis. Compared to πrand, πpow-d has higher ρ for all d implying
higher convergence speed than πrand. By varying d we can span different points on the trade-off
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Figure 3: Global loss for logistic regression on the synthetic dataset, Synthetic(1,1), with πrand
and πpow-d for d ∈ {2m, 10m} where K = 30, m ∈ {1, 2, 3}. πpow-d converges approximately 3 ×
faster for d = 10m and 2 × faster for d = 2m than πrand to the global loss ≈ 0.5.

(a) Test accuracy and training loss for α = 2 (b) Test accuracy and training loss for α = 0.3

Figure 4: Test accuracy and training loss for different sampling strategies with K = 100, C = 0.03
for varying d on the FMNIST dataset. For both small and large α, πpow-d achieves at least 10% test
accuracy improvement than πrand and the training loss converges at a much higher rate than πrand.

between the convergence speed and bias. For d = 15 and K = 100, ρ̃/ρ of πpow-d and πrand are
approximately identical, but πpow-d has higher ρ, implying that πpow-d can yield higher convergence
speed with negligible solution bias. In Appendix G.1, we present the clients’ selected frequency ratio
for πpow-d and πrand which gives novel insights regarding the difference between the two strategies.

For the synthetic dataset simulations, we present the global losses in Figure 3 for πrand and πpow-d for
different d and m. We show that πpow-d converges approximately 3× faster to the global loss ≈ 0.5
than πrand when d = 10m, with a slightly higher error floor. Even with d = 2m, we get 2× faster
convergence to global loss ≈ 0.5 than πrand.

Experiments with Heterogeneously Distributed FMNIST. As elaborated in Appendix F, α deter-
mines the data heterogeneity across clients. Smaller α indicates larger data heterogeneity. In Figure 4,
we present the test accuracy and training losses for the different sampling strategies from the FMNIST
experiments with α = 0.3 and α = 2. Observe that πpow-d achieves approximately 10% and 5%
higher test accuracy than πrand and πafl respectively for both α = 2 and α = 0.3. For higher α (less
data heterogeneity) larger d (more selection skew) performs better than smaller d.

Figure 4(a) shows that this performance improvement due to the increase of d eventually converges.
For smaller α, as in Figure 4(b), smaller d = 6 performs better than larger d which shows that too
much solution bias is adversarial to the performance in the presence of large data heterogeneity. The
observations on training loss are consistent with the test accuracy results.

Performance of the Communication- and Computation-Efficient variants. Next, we evaluate
πcpow-d and πrpow-d which were introduced in Section 4. In Figure 5, for α = 2, πrpow-d and πcpow-d
each yields approximately 5% and 6% higher accuracy than πrand, but both yield lower accuracy
than πpow-d that utilizes the highest computation and communication resources. For α = 0.3, πcpow-d
and πrpow-d perform as well as πpow-d and give a 10% accuracy improvement over πrand. Moreover,
πpow-d, πrpow-d and πcpow-d all have higher accuracy and faster convergence than πafl.

We evaluate the communication and computation efficiency of POWER-OF-CHOICE by comparing
different strategies in terms of R60, the number of communication rounds required to reach test
accuracy 60%, and tcomp, the average computation time (in seconds) spent per round. The computation
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(a) Test accuracy and training loss for α = 2 (b) Test accuracy and training loss for α = 0.3

Figure 5: Test accuracy and training loss for different sampling strategies including πcpow-d and
πrpow-d, for K = 100, C = 0.03 on the FMNIST dataset. πrpow-d which requires no additional
communication and minor computation, yields higher test accuracy than πrand and πafl.

time includes the the time taken by the central server to select the clients (including the computation
time for the d clients to compute their local loss values) and the time taken by selected clients to
perform local updates. In Table 1, with only C = 0.03 fraction of clients, πpow-d, πcpow-d, and πrpow-d
have about 5% higher test accuracy than (πrand, C = 0.1). The R60 for πpow-d, πcpow-d, πrpow-d is
0.52, 0.47, 0.57 times that of (πrand, C = 0.1) respectively. This implies that even for πrpow-d which
does not incur any additional communication cost for client selection, we can get a 2× reduction in
the number of communication rounds using 1/3 of clients compared to (πrand, C = 0.1) and still get
higher test accuracy performance. Note that the computation time tcomp for πcpow-d and πrpow-d with
C = 0.03 is smaller than that of πrand with C = 0.1. In Appendix G.2, we show that the results for
α = 2 are consistent with the α = 0.3 case shown in Table 1. In Appendix G.4, we also show that
for C = 0.1, the results are consistent with the C = 0.03 case.

Table 1: Comparison of R60, tcomp(sec), and test accuracy (%) for different sampling strategies with
α = 0.3. In the parentheses we show the ratio of each value with that for πrand with C = 0.1.

C = 0.1 C = 0.03

rand rand pow-d, d = 6 cpow-d, d = 6 rpow-d, d = 50 afl
R60 172 234(1.36) 89(0.52) 80 (0.47) 98 (0.57) 121(0.70)
tcomp 0.43 0.36(0.85) 0.48(1.13) 0.37 (0.88) 0.37 (0.85) 0.36(0.84)
Test Acc. 71.21±2.41 64.87±1.97 76.47±0.87 76.63±0.79 76.56±1.00 73.28±1.05

6 Concluding Remarks

In this work, we present the convergence guarantees for federated learning with partial device
participation with any biased client selection strategy. We discover that biasing client selection
can speed up the convergence at the rate O( 1

Tρ ) where ρ is the selection skew towards clients with
higher local losses. Motivated by this insight, we propose the adaptive client selection strategy
POWER-OF-CHOICE. Extensive experiments validate that POWER-OF-CHOICE yields 3× faster
convergence and 10% higher test accuracy than the baseline federated averaging with random
selection. Even with using fewer clients than random selection, POWER-OF-CHOICE converges 2 ×
faster with high test performance. An interesting future direction is to improve the fairness [34–37]
and robustness [38] of POWER-OF-CHOICE by modifying step 3 of the algorithm to use a different
metric such as the clipped loss or the q-fair loss proposed [34] instead of Fk(w).
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A Additional Theorem

Theorem A.1 (Convergence with Fixed Learning Rate). Under Assumptions 3.1 to 3.4, a fixed
learning rate η ≤ min{ 1

2µB ,
1

4L} where B = 1 + 3ρ
8 , and any client selection strategy π as defined

above, the error after T iterations of federated averaging with partial device participation satisfies

F (w(T ))− F ∗

≤ L

µ

[
1− ηµ

(
1 +

3ρ

8

)]T F (w(0))− F ∗ −
4
[
η
(

32τ2G2 + σ2

m + 6ρLΓ
)

+ 2Γ(ρ̃− ρ)
]

8 + 3ρ


︸ ︷︷ ︸

Vanishing Term

+
4Lη

(
32τ2G2 + σ2

m + 6ρLΓ
)

µ(8 + 3ρ)
+

8LΓ(ρ̃− ρ)

µ(8 + 3ρ)︸ ︷︷ ︸
Non-vanishing bias

(8)

As T → ∞ the first term in (8) goes to 0 and the second term becomes the bias term for the fixed
learning rate case. For a small η, we have that the bias term for the fixed learning rate case in
Theorem A.1 is upper bounded by 8LΓ

3µ

(
ρ̃
ρ − 1

)
which is identical to the decaying-learning rate case.

The proof is presented in Appendix D.

B Preliminaries for Proof of Theorem 3.1 and Theorem A.1

We present the preliminary lemmas used for proof of Theorem 3.1 and Theorem A.1. We will denote
the expectation over the sampling random source S(t) as ES(t) and the expectation over all the
random sources as E.
Lemma B.1. Suppose Fk is L−smooth with global minimum at w∗k, then for any wk in the domain
of Fk, we have that

‖∇Fk(wk)‖2 ≤ 2L(Fk(wk)− Fk(w∗k)) (9)

Proof.

Fk(wk)− Fk(w∗k)− 〈∇Fk(w∗k),wk −w∗k〉 ≥
1

2L
‖∇Fk(wk)−∇Fk(w∗k)‖2 (10)

Fk(wk)− Fk(w∗k) ≥ 1

2L
‖∇Fk(wk)‖2 (11)

Lemma B.2 (Expected average discrepancy between w(t) and w
(t)
k for k ∈ S(t)).

1

m
E[
∑
k∈S(t)

‖w(t) −w
(t)
k ‖

2] ≤ 16η2
t τ

2G2 (12)

Proof.

1

m

∑
k∈S(t)

‖w(t) −w
(t)
k ‖

2 =
1

m

∑
k∈S(t)

‖ 1

m

∑
k′∈S(t)

(w
(t)
k′ −w

(t)
k )‖2 (13)

≤ 1

m2

∑
k∈S(t)

∑
k′∈S(t)

‖w(t)
k′ −w

(t)
k ‖

2 (14)

=
1

m2

∑
k 6=k′,

k,k′∈S(t)

‖w(t)
k′ −w

(t)
k ‖

2 (15)
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Observe from the update rule that k, k′ are in the same set S(t) and hence the terms where k = k′ in
the summation in (14) will be zero resulting in (15). Moreover for any arbitrary t there is a t0 such
that 0 ≤ t− t0 < τ that w(t0)

k′ = w
(t0)
k since the selected clients are updated with the global model

at every τ . Hence even for an arbitrary t we have that the difference between ‖w(t)
k′ −w

(t)
k ‖2 is upper

bounded by τ updates. With non-increasing ηt over t and ηt0 ≤ 2ηt, (15) can be further bounded as,

1

m2

∑
k 6=k′,

k,k′∈S(t)

‖w(t)
k′ −w

(t)
k ‖

2 ≤ 1

m2

∑
k 6=k′,

k,k′∈S(t)

‖
t0+τ−1∑
i=t0

ηi(gk′(w
(i)
k′ , ξ

(i)
k′ )− gk(w

(i)
k , ξ

(i)
k ))‖2 (16)

≤
η2
t0τ

m2

∑
k 6=k′,

k,k′∈S(t)

t0+τ−1∑
i=t0

‖(gk′(w(i)
k′ , ξ

(i)
k′ )− gk(w

(i)
k , ξ

(i)
k ))‖2 (17)

≤
η2
t0τ

m2

∑
k 6=k′,

k,k′∈S(t)

t0+τ−1∑
i=t0

[2‖gk′(w(i)
k′ , ξ

(i)
k′ )‖2 + 2‖gk(w

(i)
k , ξ

(i)
k )‖2] (18)

By taking expectation over (18),

E[
1

m2

∑
k 6=k′,

k,k′∈S(t)

‖w(t)
k′ −w

(t)
k ‖

2] ≤
2η2
t0τ

m2
E[

∑
k 6=k′,

k,k′∈S(t)

t0+τ−1∑
i=t0

(‖gk′(w(i)
k′ , ξ

(i)
k′ )‖2 + ‖gk(w

(i)
k , ξ

(i)
k )‖2)]

(19)

≤
2η2
t0τ

m2
ES(t) [

∑
k 6=k′,

k,k′∈S(t)

t0+τ−1∑
i=t0

2G2] (20)

=
2η2
t0τ

m2
ES(t) [

∑
k 6=k′,

k,k′∈S(t)

2τG2] (21)

≤ 16η2
t (m− 1)τ2G2

m
(22)

≤ 16η2
t τ

2G2 (23)

where (22) is because there can be at most m(m− 1) pairs such that k 6= k′ in S(t).

Lemma B.3 (Upper bound for expectation over ‖w(t)−w∗‖2 for any selection strategy π). With E[·],
the total expectation over all random sources including the random source from selection strategy we
have the upper bound:

E[‖w(t) −w∗‖2] ≤ 1

m
E[
∑
k∈S(t)

‖w(t)
k −w∗‖2] (24)

Proof.

E[‖w(t) −w∗‖2] = E[‖ 1

m

∑
k∈S(t)

w
(t)
k −w∗‖2] = E[‖ 1

m

∑
k∈S(t)

(w
(t)
k −w∗)‖2] (25)

≤ 1

m
E[
∑
k∈S(t)

‖w(t)
k −w∗‖2] (26)
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C Proof of Theorem 3.1

With g(t) = 1
m

∑
k∈S(t) gk(w

(t)
k , ξ

(t)
k ) as defined in Section 2, we have that

‖w(t+1) −w∗‖2 =‖w(t) − ηtg(t) −w∗‖2 (27)

=‖w(t) − ηtg(t) −w∗ − ηt
m

∑
k∈S(t)

∇Fk(w
(t)
k ) +

ηt
m

∑
k∈S(t)

∇Fk(w
(t)
k )‖2 (28)

=‖w(t) −w∗ − ηt
m

∑
k∈S(t)

∇Fk(w
(t)
k )‖2 + η2

t ‖
1

m

∑
k∈S(t)

∇Fk(w
(t)
k )− g(t)‖2

+ 2ηt〈w(t) −w∗ − ηt
m

∑
k∈S(t)

∇Fk(w
(t)
k ),

1

m

∑
k∈S(t)

∇Fk(w
(t)
k )− g(t)〉 (29)

=‖w(t) −w∗‖2−2ηt〈w(t) −w∗,
1

m

∑
k∈S(t)

∇Fk(w
(t)
k )〉

︸ ︷︷ ︸
A1

+ 2ηt〈w(t) −w∗ − ηt
m

∑
k∈S(t)

∇Fk(w
(t)
k ),

1

m

∑
k∈S(t)

∇Fk(w
(t)
k )− g(t)〉

︸ ︷︷ ︸
A2

+ η2
t ‖

1

m

∑
k∈S(t)

∇Fk(w
(t)
k )‖2

︸ ︷︷ ︸
A3

+ η2
t ‖

1

m

∑
k∈S(t)

∇Fk(w
(t)
k )− g(t)‖2

︸ ︷︷ ︸
A4

(30)

First let’s bound A1.

− 2ηt〈w(t) −w∗,
1

m

∑
k∈S(t)

∇Fk(w
(t)
k )〉 = −2ηt

m

∑
k∈S(t)

〈w(t) −w∗,∇Fk(w
(t)
k )〉 (31)

= −2ηt
m

∑
k∈S(t)

〈w(t) −w
(t)
k ,∇Fk(w

(t)
k )〉 − 2ηt

m

∑
k∈S(t)

〈w(t)
k −w∗,∇Fk(w

(t)
k )〉 (32)

≤ ηt
m

∑
k∈S(t)

(
1

ηt
‖w(t) −w

(t)
k ‖

2 + ηt‖∇Fk(w
(t)
k )‖2

)
− 2ηt

m

∑
k∈S(t)

〈w(t)
k −w∗,∇Fk(w

(t)
k )〉

(33)

=
1

m

∑
k∈S(t)

‖w(t) −w
(t)
k ‖

2 +
η2
t

m

∑
k∈S(t)

‖∇Fk(w
(t)
k )‖2 − 2ηt

m

∑
k∈S(t)

〈w(t)
k −w∗,∇Fk(w

(t)
k )〉

(34)

≤ 1

m

∑
k∈S(t)

‖w(t) −w
(t)
k ‖

2 +
2Lη2

t

m

∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )

−2ηt
m

∑
k∈S(t)

〈w(t)
k −w∗,∇Fk(w

(t)
k )〉

(35)

≤ 1

m

∑
k∈S(t)

‖w(t) −w
(t)
k ‖

2 +
2Lη2

t

m

∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )

−2ηt
m

∑
k∈S(t)

[
(Fk(w

(t)
k )− Fk(w∗)) +

µ

2
‖w(t)

k −w∗‖2
] (36)

≤ 16η2
t τ

2G2 − ηtµ

m

∑
k∈S(t)

‖w(t)
k −w∗‖2 +

2Lη2
t

m

∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )

−2ηt
m

∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w∗))

(37)
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where (33) is due to the AM-GM inequality and Cauchy–Schwarz inequality, (35) is due to
Lemma B.1, (36) is due to the µ-convexity of Fk, and (37) is due to Lemma B.2. Next, in ex-
pectation, E[A2] = 0 due to the unbiased gradient. Next again with Lemma B.1 we bound A3 as
follows:

η2
t ‖

1

m

∑
k∈S(t)

∇Fk(w
(t)
k )‖2 =

η2
t

m

∑
k∈S(t)

∥∥∥∇Fk(w
(t)
k )
∥∥∥2

(38)

≤ 2Lη2
t

m

∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k ) (39)

Lastly we can bound A4 using the bound of variance of stochastic gradients as,

E[η2
t ‖

1

m

∑
k∈S(t)

∇Fk(w
(t)
k )− g(t)‖2] = η2

tE[‖
∑
k∈S(t)

1

m
(gk(w

(t)
k , ξ

(t)
k )−∇Fk(w

(t)
k ))‖2] (40)

=
η2
t

m2
ES(t) [

∑
k∈S(t)

E‖gk(w
(t)
k , ξ

(t)
k )−∇Fk(w

(t)
k )‖2] (41)

≤ η2
t σ

2

m
(42)

Using the bounds ofA1, A2, A3, A4 above we have that the expectation of the LHS of (27) is bounded
as

E[‖w(t+1) −w∗‖2]

≤E[‖w(t) −w∗‖2]− ηtµ

m
E[
∑
k∈S(t)

‖w(t)
k −w∗‖2] + 16η2

t τ
2G2

+
η2
t σ

2

m
+

4Lη2
t

m
E[
∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )]− 2ηt

m
E[
∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w∗))] (43)

≤(1− ηtµ)E[‖w(t) −w∗‖2] + 16η2
t τ

2G2

+
η2
t σ

2

m
+

4Lη2
t

m
E[
∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )]− 2ηt

m
E[
∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w∗))]

︸ ︷︷ ︸
A5

(44)

where (44) is due to Lemma B.3. Now we aim to bound A5 in (44). First we can represent A5 in a
different form as:

E[
4Lη2

t

m

∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )− 2ηt

m

∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w∗))]

=E[
4Lη2

t

m

∑
k∈S(t)

Fk(w
(t)
k )− 2ηt

m

∑
k∈S(t)

Fk(w
(t)
k )− 2ηt

m

∑
k∈S(t)

(F ∗k − Fk(w∗))

+
2ηt
m

∑
k∈S(t)

F ∗k −
4Lη2

t

m

∑
k∈S(t)

F ∗k ] (45)

=E[
2ηt(2Lηt − 1)

m

∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )

︸ ︷︷ ︸
A6

] + 2ηtE[
1

m

∑
k∈S(t)

(Fk(w∗)− F ∗k )] (46)
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Now with ηt < 1/(4L) and νt = 2ηt(1− 2Lηt), we have that A6 can be rewritten and bounded as

− νt
m

∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w(t)) + Fk(w(t))− F ∗k )

=− νt
m

∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w(t)))− νt

m

∑
k∈S(t)

(Fk(w(t))− F ∗k ) (47)

≤− νt
m

∑
k∈S(t)

[
〈∇Fk(w(t)),w

(t)
k −w(t)〉+

µ

2
‖w(t)

k −w(t)‖2
]
− νt
m

∑
k∈S(t)

(Fk(w(t))− F ∗k )

(48)

≤νt
m

∑
k∈S(t)

[
ηtL(Fk(w(t))− F ∗k ) +

(
1

2ηt
− µ

2

)
‖w(t)

k −w(t)‖2
]
− νt
m

∑
k∈S(t)

(Fk(w(t))− F ∗k )

(49)

=− νt
m

(1− ηtL)
∑
k∈S(t)

(Fk(w(t))− F ∗k ) +

(
νt

2ηtm
− νtµ

2m

) ∑
k∈S(t)

‖w(t)
k −w(t)‖2 (50)

≤− νt
m

(1− ηtL)
∑
k∈S(t)

(Fk(w(t))− F ∗k ) +
1

m

∑
k∈S(t)

‖w(t)
k −w(t)‖2 (51)

where (48) is due to µ−convexity, (49) is due to Lemma B.1 and the AM-GM inequality and
Cauchy–Schwarz inequality, and (51) is due to the fact that νt(1−ηtµ)

2ηt
≤ 1. Hence using this bound

of A6 we can upper bound A5 as

E[
4Lη2

t

m

∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )− 2ηt

m

∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w∗))]

≤ 1

m
E[
∑
k∈S(t)

‖w(t)
k −w(t)‖2]− νt

m
(1− ηtL)E[

∑
k∈S(t)

(Fk(w(t))− F ∗k )]

+
2ηt
m

E[
∑
k∈S(t)

(Fk(w∗)− F ∗k )] (52)

≤16η2
t τ

2G2 − νt
m

(1− ηtL)E[
∑
k∈S(t)

(Fk(w(t))− F ∗k )] +
2ηt
m

E[
∑
k∈S(t)

(Fk(w∗)− F ∗k )] (53)

=16η2
t τ

2G2 − νt(1− ηtL)E[ρ(S(π,w(τbt/τc)),w(t))(F (w(t))−
K∑
k=1

pkF
∗
k )]

+ 2ηtE[ρ(S(π,w(τbt/τc)),w∗)(F ∗ −
K∑
k=1

pkF
∗
k )] (54)

≤16η2
t τ

2G2−νt(1− ηtL)ρ(E[F (w(t))]−
K∑
k=1

pkF
∗
k )︸ ︷︷ ︸

A7

+2ηtρ̃Γ (55)
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where (54) is due to the definition of ρ(S(π,w),w′) in Definition 3.2 and (55) is due to the definition
of Γ in Definition 3.1 and the definitions of ρ, ρ̃ in Definition 3.2. We can expand A7 in (55) as

− νt(1− ηtL)ρ(E[F (w(t))]−
K∑
k=1

pkF
∗
k ) (56)

=− νt(1− ηtL)ρ

K∑
k=1

pk(E[Fk(w(t)]− F ∗ + F ∗ − F ∗k ) (57)

=− νt(1− ηtL)ρ

K∑
k=1

pk(E[Fk(w(t)]− F ∗)− νt(1− ηtL)ρ

K∑
k=1

pk(F ∗ − F ∗k ) (58)

=− νt(1− ηtL)ρ(E[F (w(t))]− F ∗)− νt(1− ηtL)ρΓ (59)

≤− νt(1− ηtL)µρ

2
E[‖w(t) −w∗‖2]− νt(1− ηtL)ρΓ (60)

≤− 3ηtµρ

8
E[‖w(t) −w∗‖2]− 2ηt(1− 2Lηt)(1− ηtL)ρΓ (61)

≤− 3ηtµρ

8
E[‖w(t) −w∗‖2]− 2ηtρΓ + 6η2

t ρLΓ (62)

where (60) is due to the µ−convexity, (61) is due to −2ηt(1− 2Lηt)(1− ηtL) ≤ − 3
4ηt, and (62) is

due to −(1− 2Lηt)(1− ηtL) ≤ −(1− 3Lηt). Hence we can finally bound A5 as

4Lη2
t

m
E[
∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )− 2ηt

m

∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w∗))]

≤− 3ηtµρ

8
E[‖w(t) −w∗‖2] + 2ηtΓ(ρ̃− ρ) + η2

t (6ρLΓ + 16τ2G2) (63)

Now we can bound E[‖w(t+1) −w∗‖2] as

E[‖w(t+1) −w∗‖2] ≤
[
1− ηtµ

(
1 +

3ρ

8

)]
E[‖w(t) −w∗‖2]

+ η2
t

(
32τ2G2 +

σ2

m
+ 6ρLΓ

)
+ 2ηtΓ(ρ̃− ρ)

(64)

By defining ∆t+1 = E[‖w(t+1)−w∗‖2], B = 1+ 3ρ
8 , C = 32τ2G2 + σ2

m +6ρLΓ, D = 2Γ(ρ̃−ρ),
we have that

∆t+1 ≤ (1− ηtµB)∆t + η2
tC + ηtD (65)

By setting ∆t ≤ ψ
t+γ , ηt = β

t+γ and β > 1
µB , γ > 0 by induction we have that

ψ = max

{
γ‖w(0) −w∗‖2, 1

βµB − 1

(
β2C +Dβ(t+ γ)

)}
(66)

Then by the L-smoothness of F (·), we have that

E[F (w(t))]− F ∗ ≤ L

2
∆t ≤

L

2

ψ

γ + t
(67)

D Proof of Theorem A.1

With fixed learning rate ηt = η, we can rewrite (65) as

∆t+1 ≤ (1− ηµB)∆t + η2C + ηD (68)

and with η ≤ min{ 1
2µB ,

1
4L} using recursion of (68) we have that

∆t ≤ (1− ηµB)t∆0 +
η2C + ηD

ηµB
(1− (1− ηµB)t) (69)
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Using ∆t ≤ 2
µ (F (w(t))− F ∗) and L-smoothness, we have that

F (w(t))− F ∗ ≤ L

µ
(1− ηµB)t(F (w(0))− F ∗) +

L(ηC +D)

2µB
(1− (1− ηµB)t) (70)

=
L

µ

[
1− ηµ

(
1 +

3ρ

8

)]t
(F (w(0))− F ∗) +

4L(ηC +D)

µ(8 + 3ρ)

[
1−

[
1− ηµ

(
1 +

3ρ

8

)]t]
(71)

E Extension: Generalization to different averaging schemes

While we considered a simple averaging scheme where w(t+1) = 1
m

∑
k∈S(t)

(
w

(t)
k − ηtgk(w

(t)
k )
)

,
we can extend the averaging scheme to any scheme q such that the averaging weights qk are
invariant in time and satisfies

∑
k∈S(t) qk = 1 for any t. Note that q includes the random sam-

pling without replacement scheme introduced by [22] where the clients are sampled uniformly
at random without replacement with the averaging coefficients qk = pkK/m. With such av-
eraging scheme q, we denote the global model for the averaging scheme qk as ŵ(t), where
ŵ(t+1) ,

∑
k∈S(t) qk

(
w

(t)
k − ηtgk(w

(t)
k )
)

, and the update rule changes to

ŵ(t+1) = ŵ(t) − ηtĝ(t) = ŵ(t) − ηt

 ∑
k∈S(t)

qkgk(w
(t)
k , ξ

(t)
k )

 (72)

where ĝ(t) =
∑
k∈S(t) qkgk(w

(t)
k , ξ

(t)
k ). We show that the convergence analysis for the averaging

scheme q is consistent with Theorem 3.1. In the case of the averaging scheme q, we have that
Lemma B.2 and Lemma B.3 shown in Appendix B, each becomes

1

m
E[
∑
k∈S(t)

‖ŵ(t) −w
(t)
k ‖

2] ≤ 16η2
tm(m− 1)τ2G2 (73)

E[‖ŵ(t) −w∗‖2] ≤ mE[
∑
k∈S(t)

qk‖w(t)
k −w∗‖2] (74)

Then, using the same method we used for the proof of Theorem 3.1, we have that

E[‖ŵ(t+1) −w∗‖2] ≤
(

1− ηtµ

m

)
E[‖ŵ(t) −w∗‖2] + η2

t σ
2m+ 16m2(m− 1)η2

t τ
2G2+

E

2Lη2
t (1 +m)

∑
k∈S(t)

qk(Fk(w
(t)
k )− F ∗k )− 2ηt

∑
k∈S(t)

qk(Fk(w
(t)
k )− Fk(w∗))


︸ ︷︷ ︸

M

(75)

By defining the selection skew for averaging scheme q similar to Definition 5 as

ρq(S(π,w),w′) =
ES(π,w)[

∑
k∈S(π,w) qk(Fk(w′)− F ∗k )]

F (w′)−
∑K
k=1 pkF

∗
k

≥ 0, (76)

and
ρq , min

w,w′
ρq(S(π,w),w′) (77)

ρ̃q , max
w

ρq(S(π,w),w∗) =
maxw ES(π,w)[

∑
k∈S(π,w) qk(Fk(w∗)− F ∗k )]

Γ
(78)

With ηt < 1/(2L(1 +m)), using the same methodology for proof of Theorem 3.1 we have that M
becomes upper bounded as

E

2Lη2
t (1 +m)

∑
k∈S(t)

qk(Fk(w
(t)
k )− F ∗k )− 2ηt

∑
k∈S(t)

qk(Fk(w
(t)
k )− Fk(w∗))

 (79)

≤ −
ηtµρq

2
E[‖ŵ(t) −w∗‖2] + 2ηtΓ(ρ̃q − ρq) + 16m2(m− 1)η2

t τ
2G2 + 2Lη2

t (2 +m)ρqΓ

(80)

18



Finally we have that

E[‖ŵ(t+1) −w∗‖2] ≤
[
1− ηtµ

(
1

m
+
ρq
2

)]
E[‖ŵ(t) −w∗‖2] + 2ηtΓ(ρ̃q − ρq)

+η2
t [32m2(m− 1)τ2G2 + σ2m+ 2L(2 +m)ρqΓ]

(81)

By defining ∆̂t+1 = E[‖ŵ(t+1)−w∗‖2], B̂ = 1
m +

ρq
2 , Ĉ = 32m2(m− 1)τ2G2 +σ2m+ 2L(2 +

m)ρqΓ, D̂ = 2Γ(ρ̃q − ρq), we have that

∆̂t+1 ≤ (1− ηtµB̂)∆̂t + η2
t Ĉ + ηtD̂ (82)

Again, by setting ∆̂t ≤ ψ
t+γ , ηt = β

t+γ and β > 1

µB̂
, γ > 0 by induction we have that

ψ = max

{
γ‖w(0) −w∗‖2, 1

βµB̂ − 1

(
β2Ĉ + D̂β(t+ γ)

)}
(83)

Then by the L-smoothness of F (·), we have that

E[F (w(t))]− F ∗ ≤ L

2
∆̂t ≤

L

2

ψ

γ + t
(84)

With β = m
µ , γ = 4m(1+m)L

µ and ηt = β
t+γ , we have that

E[F (ŵ(T ))]− F ∗ ≤

1

(T + γ)

[
Lm2(32m(m− 1)τ2G2 + σ2)

µ2ρq
+

2L2m(m+ 2)Γ

µ2
+
Lγ‖w(0) −w∗‖2

2

]
︸ ︷︷ ︸

Vanishing Error Term

+
2LΓ

ρqµ

(
ρ̃q
ρq
− 1

)
︸ ︷︷ ︸

Non-vanishing bias

(85)

which is consistent with Theorem 3.1.

F Experiment Details

Quadratic Model Optimization. For the quadratic model optimization, we set each local objective
function as strongly convex as follows:

Fk(w) =
1

2
w>Hkw − e>k w +

1

2
e>kH

−1
k ek (86)

Hk ∈ Rv×v is a diagonal matrix Hk = hkI with hk ∼ U(1, 20) and ek ∈ Rv is an arbitrary vector.
We set the global objective function as F (w) =

∑K
k=1 pkFk(w), where the data size pk follows the

power law distribution P (x; a) = axa−1, 0 ≤ x ≤ 1, a = 3. We can easily show that the optimum
for Fk(w) and F (w) is w∗k = H−1

k ek and w∗ = (
∑K
k=1 pkHk)−1(

∑K
k=1 pkek) respectively. The

gradient descent update rule for the local model of client k in the quadratic model optimization is

w
(t+1)
k = w

(t)
k − η(Hkw

(t)
k − ek) (87)

where the global model is defined as w(t+1) = 1
m

∑
k∈S(t) w

(t+1)
k . We sample m = KC clients

for every round where for each round the clients perform τ gradient descent local iterations with
fixed learning rate η and then these local models are averaged to update the global model. For all
simulations we set τ = 2, v = 5, η = 2× 10−5.

For the estimation of ρ and ρ̃ for the quadratic model, we get the estimates of the theoretical
ρ, ρ̃ values by doing a grid search over a large range of possible w,w′ for ρ(S(π,w),w′) and
ρ(S(π,w),w∗) respectively. The distribution of S(π,w) is estimated by simulating 10000 iterations
of client sampling for each π and w.
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Logistic Regression on Synthetic Dataset. We conduct simulations on synthetic data which allows
precise manipulation of heterogeneity. Using the methodology constructed in [19], we use the dataset
with large data heterogeneity, Synthetic(1,1). We assume in total 30 devices where the local dataset
sizes for each device follows the power law. We set the mini batch-size to 50 with τ = 30, and
η = 0.05, where η is decayed to η/2 every 300 and 600 rounds.

DNN on FMNIST Dataset. We train a deep multi-layer perceptron network with two hidden layers
on the FMNIST dataset [33]. We construct the heterogeneous data partition amongst clients using
the Dirichlet distribution DirK(α) [39], where α determines the degree of the data heterogeneity
across clients (the data size imbalance and degree of label skew across clients). Smaller alpha
indicates larger data heterogeneity. For all experiments we use mini-batch size of 64, with τ = 30
and η = 0.005, where η is decayed by half for every 150, 300 rounds. We experiment with three
different seeds for the randomness in the dataset partition across clients and present the averaged
results.

All experiments are conducted with clusters equipped with one NVIDIA TitanX GPU. The number
of clusters we use vary by C, the fraction of clients we select. The machines communicate amongst
each other through Ethernet to transfer the model parameters and information necessary for client
selection. Each machine is regarded as one client in the federated learning setting. The algorithms
are implemented by PyTorch.

Pseudo-code of the variants of pow-d: cpow-d and rpow-d. We here present the pseudo-code for
πcpow-d and πrpow-d. Note that the pseudo-code for πcpow-d in Algorithm 1 can be generalized to the
algorithm for πpow-d, by changing 1

|ξ̂k|
∑
ξ∈ξ̂k f(w, ξ) to Fk(w).

Algorithm 1 Pseudo code for cpow-d: computation efficient variant of pow-d

1: Input: m, d, pk for k ∈ [K], mini-batch size b = |ξ̂k| for computing 1

|ξ̂k|
∑
ξ∈ξ̂k f(w, ξ)

2: Output: S(t)

3: Initialize: empty sets S(t) and A
4: Global server do
5: Get A = {d indices sampled without replacement from [K] by pk}
6: Send the global model w(t) to the d clients in A
7: Receive 1

|ξ̂k|
∑
ξ∈ξ̂k f(w, ξ) from all clients in A

8: Get S(t) = {m clients with largest 1

|ξ̂k|
∑
ξ∈ξ̂k f(w, ξ) (break ties randomly)}

9: Clients in A in parallel do
10: Create mini-batch ξ̂k from sampling b samples uniformly at random from Bk and compute

1

|ξ̂k|
∑
ξ∈ξ̂k f(w, ξ) and send it to the server

11: return S(t)

Algorithm 2 Pseudo code for rpow-d: computation & communication efficient variant of pow-d

1: Input: m, d, pk for k ∈ [K]
2: Output: S(t)

3: Initialize: empty sets S(t) and A, and list Atmp with K elements all equal to inf
4: All client k ∈ S(t−1) do
5: For t mod τ = 0, send 1

τb

∑t
l=t−τ+1

∑
ξ∈ξ(l)k

f(w
(l)
k , ξ) to the server with its local model

6: Global server do
7: Receive and update Atmp[k] = 1

τb

∑t
l=t−τ+1

∑
ξ∈ξ(l)k

f(w
(l)
k , ξ) for k ∈ S(t−1)

8: Get A = {d indices sampled without replacement from [K] by pk}
9: Get S(t) = {m clients with largest values in [Atmp[i] for i ∈ A], (break ties randomly)}

10: return S(t)
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G Additional Experiment Results

G.1 Selected Client Profile

We further visualize the difference between our proposed sampling strategy πpow-d and the baseline
scheme πrand by showing the selected frequency ratio of the clients for K = 30, C = 0.1 for the
quadratic simulations in Figure 6. Note that the selected ratio for πrand reflects each client’s dataset
size. We show that the selected frequencies of clients for πpow-d are not proportional to the data size
of the clients, and we are selecting clients frequently even when they have relatively low data size
like client 6 or 22. We are also not necessarily frequently selecting the clients that have the highest
data size such as client 26. This aligns well with our main motivation of POWER-OF-CHOICE that
weighting the clients’ importance based on their data size does not achieve the best performance, and
rather considering their local loss values along with the data size better represents their importance.
Note that the selected frequency for πrand is less biased than πpow-d.
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Figure 6: Clients’ selected frequency ratio for optimizing the quadratic model for πrand and πpow-d
with K = 30, C = 0.1. The selected ratio is sorted in the descending order.

G.2 Communication and Computation Efficiency with larger data heterogeneity

Table 2: Comparison of R60, tcomp (sec), and test accuracy (%) for different sampling strategies with
α = 2. The ratio R60 / (R60 for rand, C = 0.1) and tcomp / (tcomp for rand, C = 0.1) are each shown
in the parenthesis.

C = 0.1 C = 0.03

rand rand pow-d, d = 6 cpow-d, d = 6 rpow-d, d = 50 afl
R60 135 136(1.01) 82 (0.61) 89 (0.66) 99(0.73) 131(0.97)
tcomp 0.42 0.36(0.85) 0.46 (1.08) 0.38 (0.88) 0.36(0.86) 0.36(085)
Test Acc. 63.50±2.74 66.03±1.47 73.81±1.14 73.36±1.17 72.52±0.89 70.64±1.99

In Table 2, we show the communication and computation efficiency of POWER-OF-CHOICE for
α = 2, as we showed for α = 0.3 in Table 1 in Section 5. With C = 0.03 fraction of clients,
πpow-d, πcpow-d, and πrpow-d have better test accuracy of at least approximately 10% higher test
accuracy performance than (πrand, C = 0.1). R60 for πpow-d, πcpow-d, πrpow-d is 0.61, 0.66, 0.73
times that of (πrand, C = 0.1) respectively. This indicates that we can reduce the number of
communication rounds by at least 0.6 using 1/3 of clients compared to (πrand, C = 0.1) and still get
higher test accuracy performance. The computation time tcomp for πcpow-d and πrpow-d with C = 0.03
is smaller than that of (πrand, C = 0.1).

G.3 Intermittent Client Availability

In real world scenarios, certain clients may not be available due to varying availability of resources
such as battery power or wireless connectivity. Hence we experiment with a virtual scenario, where
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(a) Test accuracy and training loss for α = 2 (b) Test accuracy and training loss for α = 0.3

Figure 7: Test accuracy and training loss in the virtual environment where clients have intermittent
availability for K = 100, C = 0.03 with πrand, πpow-d, and πrpow-d on the FMNIST dataset. For both
α = 2 and α = 3, πpow-d achieves approximately 10% higher test accuracy than πrand.

(a) Test accuracy and training loss for α = 2 (b) Test accuracy and training loss for α = 0.3

Figure 8: Test accuracy and training loss for different sampling strategies forK = 100, C = 0.1 with
πrand, πpow-d, πcpow-d, πrpow-d and πafl on the FMNIST dataset. For larger C = 0.1, πpow-d performs
with 15% and 5% higher test accuracy than πrand for α = 2 and α = 0.3 respectively.

amongst K clients, for each communication round, we select clients alternately from one group out of
two fixed groups, where each group has 0.5K clients. This altering selection reflects a more realistic
client selection scenario where, for example, we have different time zones across clients. For each
communication round, we select 0.1 portion of clients from the corresponding group uniformly at
random and exclude them from the client selection process. This random exclusion of certain clients
represents the randomness in the client availability within that group for cases such as low battery
power or wireless connectivity. In Figure 7 we show that πpow-d and πrpow-d achieves 10% and 5% test
accuracy improvement respectively compared to πrand for α = 2. For α = 3, both πpow-d and πrpow-d
shows 10% improvement. Therefore, we demonstrate that POWER-OF-CHOICE also performs well in
a realistic scenario where clients are available intermittently.

G.4 Effect of the fraction of selected clients

In Figure 8, for larger C = 0.1 with α = 2, the test accuracy improvement for πpow-d is even higher
than the case of C = 0.03 with approximately 15% improvement. πcpow-d performs slightly lower in
test accuracy than πpow-d but still performs better than πrand and πafl. πrpow-d performs as well as πafl.
For α = 0.3, πpow-d, πcpow-d, and πrpow-d have approximately equal test accuracy performance, higher
than πrand by 5%. The POWER-OF-CHOICE strategies all perform slightly better than πafl. Therefore
we show that POWER-OF-CHOICE performs well for selecting a larger fraction of clients, i.e., when
we have larger C = 0.1 > 0.03.
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