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Abstract

Systematic testing, first demonstrated in small, specialized cases 15 years ago, has matured sufficiently for large-scale systems
developers to begin to put it into practice. With actual deployment comes new, pragmatic challenges to the usefulness of the
techniques. In this report we are concerned with scaling dynamic partial order reduction, a key technique for mitigating the state
space explosion problem, to very large clusters. In particular, we present a new approach for distributed dynamic partial order
reduction. Unlike previous work, our approach is based on a novel exploration algorithm that 1) enables trading space complexity
for parallelism, 2) achieves efficient load-balancing through time-slicing, 3) provides for fault tolerance, 4) has been demonstrated
to scale to more than a thousand parallel workers, and 5) is guaranteed to avoid redundant exploration of overlapping portions of
the state space.
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1 Introduction

Testing of concurrent systems is challenging because concurrency manifests as test non-determinism. A
traditional approach to address this problem is stress testing. Stress testing repeatedly exercises concurrent
operations of the system under test, hoping that sooner or later all concurrency scenarios (and errors) of
interest will be covered.

Unfortunately, as the scale of concurrent systems and the heterogeneity of environments in which these
systems are deployed increases, the state space of possible scenarios explodes and stress testing stops being
an effective mechanism for exercising all scenarios of interest.

To address the increasing complexity of software testing, researchers have turned their attention to
systematic testing [7, 10, 12, 13, 17, 18]. Similar to stress testing, systematic testing also repeatedly exercises
concurrent operations of the system under test. However, unlike stress testing, systematic testing avoids
test non-determinism by controlling the order in which concurrent operations happen, exercising different
concurrency scenarios across different test executions.

To scale systematic testing to ever more complex programs, existing tools use a combination of stateless
exploration [7] paired with state space reduction [5, 6] and parallel processing [20].

In this report, we present a new method for concurrent systematic testing at scale, which pushes the lim-
its of systematic testing to an unprecedented scale. Unlike previous work on the topic [20], our approach is
based on a novel exploration algorithm that 1) enables trading space complexity for parallelism, 2) achieves
load-balancing through time-slicing, 3) provides for fault tolerance, 4) has been demonstrated to scale to
more than a thousand parallel workers, and 5) is guaranteed to avoid redundant exploration of overlapping
portions of the state space.

The rest of the report is organized as follows. Section 2 reviews stateless exploration, state space
reduction, and parallel processing. Section 3 presents a novel exploration algorithm and details its use for
concurrent systematic testing at scale. Section 4 presents the experimental evaluation of the implementation.
Lastly, Section 5 discusses related work and Section 6 presents the conclusions drawn from the results
presented in this report.

2 Background

In this section we give an overview of stateless exploration [7], dynamic partial order reduction [5], and
distributed dynamic partial order reduction [20]. Together these techniques represent the state of the art in
scalable systematic testing of concurrent systems.

2.1 Stateless Exploration

Stateless exploration is a technique that targets systematic testing of concurrent programs. The goal of
stateless exploration is to explore the state space of different program states of a concurrent program by
systematically enumerating different total orders in which concurrent events of the program can occur.

To keep track of the exploration progress, stateless exploration abstractly represents the state space of
different program states using an execution tree. Nodes of the execution tree represent non-deterministic
choice points and edges represent program state transitions. A path from the root of the tree to a leaf then
uniquely encodes a program execution as a sequence of program state transitions.

Abstractly, enumeration of branches of the execution tree corresponds to enumeration of different se-
quences of program state transitions. Notably, the set of explored branches of a partially explored execution
tree identifies which sequences of program state transitions have been explored. Further, assuming that con-
currency is the only source of non-determinism in the program, the information collected by past executions
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can be used to generate schedules that describe in what order to sequence program state transitions of future
executions in order to explore new parts of the execution tree.

Typically, stateless exploration uses depth-first search to explore the execution tree because the use
of depth-first search results in space-efficient exploration. Further, tools for stateless exploration such as
VeriSoft [7] use partial order reduction [6] to avoid exploration of equivalent sequences of program state
transitions.

Algorithm 1 EXPLOREPOR(root)
Require: A root node root of an execution tree.
Ensure: The execution tree rooted at the node root is explored.

1: frontier← NEWSTACK

2: PUSH({root}, frontier)
3: DFS-POR(root, frontier)

Algorithm 2 DFS-POR(node, frontier)
Require: A node node of an execution tree and a reference to a non-empty stack frontier of sets of nodes

such that node ∈ TOP(frontier).
Ensure: The previously unexplored node node of the execution tree is explored and the exploration frontier

frontier is updated according to the partial order reduction algorithm.
1: remove node from TOP(frontier)
2: if PERSISTENTSET(node) 6= /0 then
3: PUSH(PERSISTENTSET(node), frontier)
4: for all child ∈ TOP(frontier) do
5: navigate execution to child
6: DFS-POR(child, frontier)
7: end for
8: POP(frontier)
9: end if

The pseudocode depicted in Algorithm 1 and 2 gives a high-level overview of stateless exploration.
The EXPLOREPOR algorithm maintains an exploration frontier, represented as a stack of sets of nodes,
and uses depth-first search to explore the execution tree. The PERSISTENTSET(node) function uses static
analysis to identify what subtrees of the execution tree need to be explored. In particular, it inputs a node
of the execution tree and outputs a subset of children of this node that need to be explored in order to
explore all non-equivalent sequences of program state transitions of the execution tree. The details behind
the computation of PERSISTENTSET(node) are beyond the scope of this report and can be found in [6].
Note that unlike the presentation in [7], our presentation omits the use of sleep sets [6]. This omission is
to achieve consistency with the techniques presented in the remainder of the report. The sleep sets can be
added as described in [7].

2.2 Dynamic Partial Order Reduction

Dynamic partial order reduction is a technique that targets efficient stateless exploration. The goal of dy-
namic partial order reduction is to further mitigate the combinatorial explosion resulting from systematic
enumeration of different total orders of concurrent events through the use of dynamic analysis.

The stateless exploration discussed in the previous subsection uses static analysis to identify which
subtrees of the execution tree need to be explored. However, precise static analysis of complex programs
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is often costly or infeasible which results in larger than necessary persistent sets. To address this problem,
dynamic partial order reduction computes persistent sets using dynamic analysis.

When stateless exploration explores an edge of the execution tree, dynamic partial order reduction com-
putes the happens-before [11] and the independence [6] relations over the set of program state transitions.
These two relations are then used to augment the existing exploration frontier based on the newly discovered
information.

Algorithm 3 EXPLOREDPOR(root)
Require: A root node root of an execution tree.
Ensure: The execution tree rooted at the node root is explored.

1: frontier← NEWSTACK

2: PUSH({root}, frontier)
3: DFS-DPOR(frontier)

Algorithm 4 DFS-DPOR(node, frontier)
Require: A node node of an execution tree and a reference to a non-empty stack frontier of sets of nodes

such that node ∈ TOP(frontier).
Ensure: The previously unexplored node node of the execution tree is explored and the exploration frontier

frontier is updated according to the dynamic partial order reduction algorithm.
1: remove node from TOP(frontier)
2: UPDATEPERSISTENTSETS(frontier,node)
3: if CHILDREN(node) 6= /0 then
4: child← arbitrary element of CHILDREN(node)
5: PUSH({child}, frontier)
6: for all child ∈ TOP(frontier) do
7: navigate execution to child
8: DFS-DPOR(child, frontier)
9: end for

10: POP(frontier)
11: end if

The pseudocode depicted in Algorithm 3 and 4 gives a high-level overview of dynamic partial order
reduction. The EXPLOREDPOR algorithm maintains an exploration frontier, represented as a stack of sets of
nodes, and uses depth-first search to explore the execution tree. The UPDATEPERSISTENTSETS(frontier,node)
function uses dynamic analysis to identify what subtrees of the execution tree need to be explored. In par-
ticular, the function inputs the current exploration frontier and the current node and infers which nodes need
to be further added to the exploration frontier in order to explore all non-equivalent sequences of program
state transitions of the execution tree. Importantly, the UPDATEPERSISTENTSETS(frontier,node) function
modifies the exploration frontier in a non-local fashion as it can add nodes to an arbitrary set of the explo-
ration frontier stack. The details behind the computation of UPDATEPERSISTENTSETS(frontier,node) are
beyond the scope of this report and can be found in [5].

2.3 Distributed Dynamic Partial Order Reduction

Distributed dynamic partial order reduction is a technique that targets concurrent stateless exploration. The
goal of distributed dynamic partial order reduction is to offset the combinatorial explosion resulting from
systematic enumeration of different total orders of concurrent events through parallel processing.

3



At a first glance, parallelization of dynamic partial order reduction seems straightforward: assign dif-
ferent parts of the execution tree to different workers and let the workers explore the execution tree concur-
rently. However, as pointed out in [20], such a straightforward parallelization suffers from two problems.
First, due to the non-local nature in which dynamic partial order reduction updates the exploration frontier,
different workers may end up exploring identical parts of the state space. Second, since the sizes of the
different parts of the execution tree are not known in advance, effective load balancing is needed to enable
linear speed up.

To address these two problems, the authors of [20] proposed two heuristics. Their first heuristic modi-
fies dynamic partial order reduction so that it adds nodes to the exploration frontier eagerly instead of lazily,
which was the case in [5]. As evidenced by the experiments of [20], introduction of this heuristic seems
to avoid redundant exploration of identical parts of the execution tree by different workers. Their second
heuristic assumes the existence of a centralized load-balancer that workers can contact in case they believe
they have too much work on their hands and would like to offload some of it. The centralized load-balancer
keeps track of which workers are idle and which workers are active and facilitates offloading of work from
active to idle workers.

3 Scalable Dynamic Partial Order Reduction

While scaling distributed dynamic partial order reduction to a very large cluster inside of Google [14], we
have identified several problems with the distributed dynamic partial order reduction of [20]:

1. At a very large scale, a failure of a worker is not a question of if but a question of when. Although [20]
suggests how fault tolerance could be implemented, it does not implement it.

2. Although the mostly decentralized nature of [20] renders the communication overhead negligible, it
complicates addition of features that are facilitated by centralized collection of information such as
support for fault tolerance or state space size estimation.

3. The load balancing of the original design uses a heuristic based on a threshold to offload work from
active to idle workers. It is likely that for different programs and different number of workers, different
threshold values should be used. However, [20] provides little insight into the problem of selecting a
good threshold.

4. The dynamic partial order reduction modification used for avoiding redundant exploration in [20] is a
heuristic and provides no guarantee that different workers will in fact explore disjoint portions of the
execution tree.

In this section we present an alternative to [20]. In comparison, our design is more centralized and
uses a single master and n workers to explore the execution tree. Despite the more centralized nature of
the design, our experiments show that it scales to more than a thousand workers. Further, unlike [20],
the new design can tolerate worker faults, is guaranteed to avoid redundant exploration, and is based on a
novel exploration algorithm that allows 1) trading off space complexity for parallelism and 2) efficient load
balancing through time-slicing.

3.1 Novel Exploration Algorithm

The key advantage of using depth-first search for the purpose of dynamic partial order reduction is its
favorable space complexity [7]. In fact, experience with systematic testing of concurrent programs based on
stateless exploration [5, 13, 15, 18] suggests that for current computer architectures stateless exploration is
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bottle-necked by its CPU (and not memory) requirements. This is hardly surprising given that the worst-case
time complexity of stateless exploration is linear in the size of the execution tree, while its space complexity
is linear in the depth of the execution tree.

To enable parallel processing, the authors of [20] depart from the strict depth-first search nature of
stateless exploration. Instead, the execution tree is explored using a collection of (possibly overlapping)
depth-first searches and the exploration order is determined by a load-balancing heuristic.

To overcome the limitations of [20] mentioned above, we have designed a novel exploration algorithm,
called n-partitioned depth-first search, which relaxes the strict depth-first search nature of dynamic partial
order reduction in a controlled manner and, unlike traditional depth-first search, is amenable to paralleliza-
tion.

For the sake of the presentation, we first present a sequential version of the dynamic partial order
reduction based on n-partitioned depth-first search. The main difference between depth-first search and n-
partitioned depth-first search is that the exploration frontier of the new algorithm is partitioned into up to
n frontier fragments and the new algorithm explores each fragment using a depth-first search, interleaving
exploration of different fragments.

Algorithm 5 EXPLOREDPOR(n,root)
Require: A positive integer n and a root node root of an execution tree.
Ensure: The execution tree rooted at the node root is explored.

1: frontier← NEWSET

2: INSERT(PUSH({root},NEWSTACK), frontier)
3: while SIZE(frontier)> 0 do
4: PARTITION(n, frontier)
5: fragment← an arbitrary element of frontier
6: node← an arbitrary element of TOP(fragment)
7: PDFS-DPOR(node, fragment, frontier)
8: if SIZE(fragment) = 0 then
9: REMOVE(fragment, frontier)

10: end if
11: end while

Algorithm 6 PARTITION(frontier,n)
Require: A non-empty set frontier of non-empty stacks of sets of nodes and a positive integer n such that

n≥ SIZE(frontier).
Ensure: SIZE(frontier) = n or ∀fragment ∈ frontier : the sum of sizes of all sets contained in fragment is 1.

1: for all fragment ∈ frontier do
2: if SIZE(frontier) = n then
3: return
4: end if
5: while the sum of sizes of all sets contained in fragment is greater than 1 and SIZE(frontier)< n do
6: node← an arbitrary element of a set contained in fragment
7: remove node from fragment
8: new-fragment← a new frontier fragment for node
9: INSERT(new-fragment, frontier)

10: end while
11: end for
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Algorithm 7 PDFS-DPOR(node, fragment, frontier)
Require: A node node of an execution tree, a reference to a non-empty stack fragment of sets of nodes such

that node ∈ TOP(fragment), and a reference to a set frontier of non-empty stacks of sets of nodes.
Ensure: The previously unexplored node node of the execution tree is explored and the fragment fragment

of the exploration frontier is updated according to the dynamic partial order reduction algorithm.
1: remove node from TOP(fragment)
2: UPDATEPERSISTENTSETS(frontier, fragment,node)
3: if CHILDREN(node) 6= /0 then
4: child← arbitrary element of CHILDREN(node)
5: PUSH({child}, fragment)
6: navigate execution to child
7: end if
8: while TOP(fragment) = /0 do
9: POP(fragment)

10: end while

The pseudocode depicted in Algorithm 5, 6, and 7 gives a high-level overview of dynamic partial
order reduction algorithm based on n-partitioned depth-first search. The algorithm maintains an exploration
frontier, represented as a set of up to n stacks of sets of nodes. The elements of the exploration frontier are
referred to as fragments and together they constitute a partitioning of the exploration frontier. The execution
tree is explored by interleaving depth-first search exploration of frontier fragments. Algorithm 5 implements
this idea by repeating two steps – PARTITION and PDFS-DPOR – until the execution tree is fully explored.

The PARTITION step is detailed in Algorithm 6. During the PARTITION step, the current frontier
is inspected to see whether existing frontier fragments should be and can be further divided in order to
increase the number of frontier fragments. A new frontier fragment should be created in case there is less
than n frontier fragments. A new frontier fragment can be created if there exists a frontier fragment with at
least two nodes.

The PDFS-DPOR step is detailed in Algorithm 7. The PDFS-DPOR step is given one of the frontier
fragments and uses depth-first search to explore the next edge of the subtree induced by the selected frontier
fragment (a subtree of the execution tree that contains all ancestors and descendants of the nodes contained
in the selected frontier fragment). The UPDATEPERSISTENTSETS(frontier, fragment,node) function oper-
ates in a similar fashion to the UPDATEPERSISTENTSETS(frontier,node) function described in the previous
section. The main distinction is that after the function identifies which nodes are to be added to the explo-
ration frontier using the algorithm of [5], it adds these nodes to the current frontier fragment unless they
are already present in some other frontier fragment. This way, the set of sets of nodes contained in each
frontier fragments remains a partitioning of the set of nodes of the exploration frontier – an invariant that is
maintained throughout the exploration.

3.2 Parallelization

In this subsection we describe how the above, seemingly sequential and inefficient, implementation of dy-
namic partial order reduction based on n-partitioned depth-first search can be efficiently parallelized.

First, observe that the presence or absence of the PARTITION step in the body of the main loop of the
EXPLOREDPOR function has no effect on the correctness of the algorithm. This allows us to string several
PDFS-DPOR steps together, which hints at possible distribution of the exploration.

Namely, one could spawn concurrent workers and use them to carry out sequences of PDFS-DPOR steps
over different frontier fragments. However, a straightforward implementation of this idea would require
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synchronization when concurrent workers access and update the exploration frontier, which is shared by all
workers. The trick to overcome this obstacle to efficient parallelization is to give each worker a private copy
of the execution tree. As pointed out by [20], such a copy can be concisely represented using the depth-first
search stack state of the frontier fragment to be explored.

A worker can then repeatedly invoke the PDFS-DPOR function over (a copy of) the assigned frontier
fragment. Once the worker either completes the exploration of the assigned frontier fragment or it exceeds
the time budget allocated for its exploration, it reports back with the results of the exploration. The results
can be again concisely represented using the original and the final state of the depth-first search stack of the
assigned frontier fragment.

Algorithm 8 EXPLOREDISTRIBUTEDDPOR(n,budget,root)
Require: A positive integer n, a time budget budget for worker exploration, and a root node root of an

execution tree.
Ensure: The execution tree rooted at the node root is explored.

1: frontier← NEWSET

2: INSERT(PUSH(root,NEWSTACK), frontier)
3: while SIZE(frontier)> 0 do
4: PARTITION(n, frontier)
5: while exists an idle worker and an unassigned frontier fragment do
6: fragment← an arbitrary unassigned element of frontier
7: SPAWN(EXPLORELOOP, fragment,budget,EXPLORECALLBACK)
8: end while
9: wait until signaled by EXPLORECALLBACK

10: end while

Algorithm 8 presents the pseudocode of EXPLOREDISTRIBUTEDDPOR function, which approximates
the actual implementation of our distributed dynamic partial order reduction. The implementation operates
with the concept of fragment assignment. When a frontier fragment is created, it is unassigned. Later, a
fragment becomes assigned to a particular worker through the invocation of the SPAWN function. When the
worker finishes its exploration and reports back the results, the fragment assigned to this worker becomes
unassigned again. The results of worker exploration are mapped back to the “master” copy of the execution
tree using the EXPLORECALLBACK callback function. The PARTITION function behaves identically to the
original one, except for the fact that it partitions unassigned fragments only.

Algorithm 9 EXPLORELOOP(fragment,budget)
Require: A non-empty stack fragment of sets of nodes.
Ensure: Explores previously unexplored branches of the subtree induced by the nodes of fragment until all

branches are explored or the timeout expires or all branches are explored.
1: start-time← GETTIME

2: repeat
3: node← an arbitrary element of TOP(fragment)
4: PDFS-DPOR(node, fragment)
5: current-time← GETTIME

6: until current-time− start-time > budget or SIZE(fragment) = 0

Algorithm 9 presents the pseudocode of the EXPLORELOOP function, which is executed by a worker.
The PDFS-DPOR function is identical to the sequential version of the algorithm. The workers are started
through the SPAWN function which creates a private copy of a part of the execution tree. Notably, the copy
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contains only the nodes that the worker needs to further the exploration of the assigned frontier fragment.
Structuring the concurrent exploration in this fashion enables both multi-threaded and multi-process imple-
mentations of EXPLOREDISTRIBUTEDDPOR.

Since our goal has been to scale the stateless exploration to thousands workers, our implementations ac-
tually implements each worker as an RPC server running as a separate process. In such a setting, the SPAWN

function issues an asynchronous RPC request that triggers invocation of the EXPLORELOOP function with
the appropriate arguments at the RPC server of the worker. The response to the RPC request is then handled
asynchronously by the EXPLORECALLBACK function, which maps the results of the worker exploration
into the master copy of the execution tree and resumes execution of the main loop of Algorithm 8.

3.3 Fault Tolerance

Our design and implementation assumes that the master process running EXPLOREDISTRIBUTEDDPOR is
a reliable service and will not fail. The worker fleet on the other hand is not assumed to be a reliable and the
exploration can recover from worker failures.

In particular, an RPC request issued by the master to a worker RPC server uses a deadline to decide
whether the worker has failed or not. The value of the deadline is usually set to whatever the time bud-
get assigned to the worker was plus several seconds to account for communication overhead and transient
failures.

When the deadline expires without an RPC response arriving, the master simply assumes that the
worker has failed and makes no changes to the frontier fragment originally assigned to the failed worker.
The fragment becomes unassigned and other workers get a chance to further its exploration.

3.4 Load-balancing

The key to high utilization of the worker fleet is to create enough fragments so that each worker can con-
tribute towards the exploration of the execution tree. There are two factors that impact the availability of
unassigned fragments.

First factor the upper bound n on the number of frontier fragments that the EXPLOREDISTRIBUTEDDPOR

creates. This parameter determines the size of the pool of available work units. The higher this number, the
higher the memory requirements of the master but the higher the opportunity for parallelism. In our ex-
perience, setting n to twice the number of workers imposes reasonable space overhead while ensuring that
workers that happen to complete exploration of a frontier fragment can be promptly assigned a new frag-
ment.

Second factor is the size of the time budget used for worker exploration. Smaller time budgets lead to
more frequent generation of new fragments but this elasticity comes at the cost of higher communication
overhead. Although originally our implementation supported only fixed time budget values, the initial eval-
uation made us realize that a variable time budget can increase the worker fleet utilization at large scales.
We discuss the benefits of using variable time budget in more detail in Section 4.

3.5 Avoiding Redundant Exploration

For clarity of presentation the description of EXPLOREDISTRIBUTEDDPOR omitted a provision that pre-
vents concurrent workers from exploring overlapping portions of the execution tree. This could happen
when two concurrent workers make calls to UPDATEPERSISTENTSETS and add identical nodes to their
frontier fragment copies.

To avoid this problem, our implementation introduces the concept of node ownership. A worker exclu-
sively owns a node if it is contained in the original frontier fragment currently assigned to the worker, or is
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a descendant of a node that the worker already owns. All other nodes are assumed to be shared with other
workers and the node ownership is used to restrict which nodes a worker may explore.

In particular, the depth-first search exploration of a worker is allowed to operate only over nodes that the
worker owns. When it encounters a shared node during its exploration, the worker terminates its exploration
and sends an RPC response to the master indicating which nodes of the final frontier fragment are shared.
The EXPLORECALLBACK function checks which newly discovered shared nodes are already part of some
other frontier fragment. If a newly discovered node is not part of some other fragment, the node is added
to the master copy of the currently processed frontier fragment (ownership is claimed). Otherwise, the
ownership of the node has been already claimed and the node is not added to the master copy of the currently
processed frontier fragment.

Thus, if two concurrent workers make calls to UPDATEPERSISTENTSETS and add identical nodes to
their frontier fragment copies, they won’t be allowed to explore a potentially shared subtree. Instead, they
will be forced to inform the master of their intention to do so and the master will assign the ownership of
the subtree to one of the respective frontier fragments.

Although this provision could in theory lead to premature termination of worker exploration – causing
increased communication overhead and decreased worker fleet utilization – our experiments indicate that in
practice the provision does not affect the performance.

4 Evaluation

To evaluate our design of scalable dynamic partial order reduction, we implemented its prototype on top of
ETA [14]. ETA is a tool developed at Google used for systematic testing of multi-threaded components that
are part of the next generation of Google’s cluster management system. These components are written using
a library based on the actors paradigm [1] and the ETA tool is used to systematically enumerate different
total orders in which messages between actors can be delivered in order to exercise different concurrency
scenarios.

4.1 Experimental Setup

For the purpose of evaluation of our implementation we have used instances of the three following tests.
These tests exercise fundamental functionality of certain components of the cluster management system and
are part of the unit test suite of the system.

The RESOURCE(X,Y) test is representative of a class of actor program tests that evaluate interactions of
x different users that acquire and release resources from a pool of y resources. Each resource is represented
as an actor that expects Acquire() and Release() messages and maintains a boolean flag that denotes
availability of the resource. When an Acquire() message is received and the resource is available, the
resource is granted to the sender of the Acquire() message. If the resource is unavailable, the actor repre-
senting the resource queues the request and produces no immediate response. When a Release() message
is received and there are no outstanding acquisition requests, the resource becomes available. Otherwise,
the resource is used to satisfy one of the outstanding acquisition requests. Each user is also represented as
an actor that acquires and releases resource according to its internal logic. A test passes when all users are
able to acquire all resources they requested.

The STORE(X,Y,Z) test is representative of a class of actor program tests that evaluate interactions of x
users of a distributed key-value store with y front-end nodes and z back-end nodes. Each back-end node is
represented as an actor that owns part of the key range and expects Put(k,v) and Get(k) messages. Each
front-end node is represented as an actor that routes access requests to appropriate back-ends nodes. The
front-end actor expects PutRequest(k,v), PutReply(), GetRequest(k) and GetReply(v) messages.
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Finally, each user is also represented as an actor that generates PutRequest(k,v) and GetRequest(k)

messages and expects PutReply() and GetReply(v) messages according to its internal logic. A test
passes when all get requests return the value set by the latest put request.

The SCHEDULING(X) test is representative of a class of actor program tests that evaluate interac-
tions of x users issuing concurrent scheduling requests. Each user is represented as an actor that generates
Schedule(r) messages that detail the nature of the scheduling request. Further, each actor program con-
tains a single scheduling coordinator actor that expects Schedule(r) messages and determines whether the
request can be serviced given a local snapshot of the global state of the cluster resources. A test passes when
the set of scheduled requests is satisfiable from the available cluster resources.

Unless stated otherwise, each measurement presented in the remainder of this section was repeated
three times and the results report the mean and the standard deviation of these measurements. Lastly, all
experiments were carried out inside of a Google data center [8] using stock hardware and running each
process on a separate machine.

4.2 Time Budget Selection

First, we focused on determining the effects of using different values of a fixed worker time budget. For the
purpose of this evaluation, we measured the runtime of several test instances while ranging the value of a
fixed time budget for the worker exploration.

Figures 1, 2, and 3 detail the results of these experiments. These experiments used a configuration with
32 workers and the upper bound on the number of frontier fragments was set to 64.

The results of the experiments validate the intuition mentioned in the previous section. Namely, a small
time budget (1 second) is not sufficient to amortize the communication cost over useful work done by the
workers, while a large time budget (50 seconds) leads to infrequent creation of new fragments that can cause
unnecessary idling of workers. For the tests used in this evaluation, a 10-second time budget seemed to be a
good compromise between the two conflicting trends on the size of the budget.

4.3 Faults

Next, we evaluated the ability of the implementation to handle worker failures. For the purpose of this
evaluation, we extended the ETA tool with an option to simulate an RPC fault with a certain probability.
When an RPC fault is simulated, the master ignores the RPC response from a worker and waits for the RPC
deadline to trigger instead. These experiments used a time budget of 10 seconds, a configuration with 32
workers, and the upper bound on the number of frontier fragments was set to 64.

Figures 4, 5, and 6 detail the results of these experiments. For each test instance we present two graphs:
one that visualizes how runtime changes with changing fault probability and one that visualizes the number
of simulated RPC faults.

The results demonstrate that even if 10% RPC requests were to fail due to temporary worker or network
failures, the impact on the exploration runtime would be negligible. In actual deployments of ETA, RPC
requests fail with less than 1% probability, which implies that our support for fault tolerance is practical.

4.4 Scalability

Next, to measure the scalability of the implementation, we compared the time needed to complete an explo-
ration by a sequential implementation of dynamic partial order reduction against the time needed to complete
the same exploration by our distributed implementation.
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Figure 1: RESOURCE(6,6)
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Figure 2: SCHEDULING(10)
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Figure 3: STORE(12,3,3)

4.4.1 Small Scale

First, we considered configurations with 1, 2, 4, 8, 16, 32, and 64 workers and examined the RESOURCE(5,5),
STORE(11,3,3), and SCHEDULING(9) actor program tests. These experiments were run inside of a homo-
geneous cluster, with each worker having exclusive access to its machine. The time budget of each worker
exploration was set to 10 seconds and the target number of frontier fragments was set to twice the number
of workers.

The results of RESOURCE(5,5), STORE(11,3,3), and SCHEDULING(9) experiments are presented in
Figure 7, Figure 8, and Figure 9 respectively. The figures visualize the speedup over the sequential algorithm
and compare it to the ideal speedup. Note that both axes of the graphs are in logarithmic scale.

These results illustrate the scalability of our concurrent implementation of dynamic partial order reduc-
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Figure 4: RESOURCE(6,6) with fault injection

 0

 10000

 20000

 30000

 40000

 50000

 60000

0.00 0.01 0.05 0.10 0.50

R
un

tim
e 

(s
ec

s)

Fault Probability

Scheduling(10) with fault injection

1e+02

1e+03

1e+04

1e+05

1e+06

0.01 0.05 0.10 0.50

R
PC

 fa
ul

ts

Fault Probability

Scheduling(10) with fault injection

Figure 5: SCHEDULING(10) with fault injection
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Figure 6: STORE(12,3,3) with fault injection

tion at a small scale. The largest configuration uses 64 workers and our implementation achieves a modest
speedup that ranges between 40.81× and 52.78×.

4.4.2 Large Scale

Second, we considered configurations with 32, 64, 128, 256, 512, and 1,024 workers and applied the algo-
rithm to the RESOURCE(6,6), STORE(12,3,3), and SCHEDULING(10) actor program tests. These experi-
ments were run inside of a heterogeneous cluster, sharing the worker machines with other workloads. The
time budget of each worker exploration was set to 10 seconds and the target number of frontier fragments
was set to twice the number of workers.

The results of RESOURCE(6,6), STORE(12,3,3), and SCHEDULING(10) experiments are presented in
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CONF RUNTIME(S) SPEEDUP

1 Worker 14,681.67 0.99
2 Workers 8,408.00 1.73
4 Workers 4,050.00 3.59
8 Workers 2,148.00 6.77
16 Workers 1,043.00 13.92
32 Workers 600.00 24.18
64 Workers 355.67 40.81

Figure 7: For this example, the sequential implementation of dynamic partial order reduction explores
461,504 branches and requires 4 hours to finish.
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CONF RUNTIME(S) SPEEDUP

1 Worker 81,284.33 1.03
2 Workers 39,859.67 2.09
4 Workers 23,686.00 3.53
8 Workers 10,865.00 7.70
16 Workers 6,030.67 13.87
32 Workers 2,879.00 29.06
64 Workers 1,584.67 52.78

Figure 8: For this example, the sequential implementation of dynamic partial order reduction explores
2,766,228 branches and requires 23.2 hours to finish.
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Realized
Ideal

CONF RUNTIME(S) SPEEDUP

1 Worker 32,417.00 0.95
2 Workers 16,035.00 1.92
4 Workers 8,480.00 3.64
8 Workers 4,161.33 7.39
16 Workers 2,343.33 13.11
32 Workers 1,194.33 25.73
64 Workers 646.67 47.50

Figure 9: For this example, the sequential implementation of dynamic partial order reduction explores
362,880 branches and requires 8.5 hours to finish.

Figure 10, Figure 11, and Figure 12 respectively. Due to the magnitude of the state spaces being explored,
the runtime required by the sequential algorithm to explore these state spaces was extrapolated using the
speedup measurements from the previous subsection. The figures visualize the speedup over the extrapolated
runtime of the sequential algorithm and compare it to the ideal speedup. Note that both axes of the graphs
are in logarithmic scale.

These results illustrate the scalability of our concurrent implementation of dynamic partial order re-
duction at a large scale. The largest configuration uses 1,024 workers and our implementation achieves a
modest speedup that ranges between 538.49× and 696.21×.
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Figure 10: For this example, dynamic partial order reduction explores on the order of 18.5 million branches
and the sequential implementation is expected to require 209 hours to finish.
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512 Workers 1,784.00 434.54
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Figure 11: For this example, dynamic partial order reduction explores on the order of 21 million branches
and the sequential implementation is expected to require 215 hours to finish.
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32 Workers 17,707.33 25.73
64 Workers 8,870.67 51.36
128 Workers 4,468.33 101.96
256 Workers 2,278.33 199.98
512 Workers 1,046.00 435.67
1024 Workers 655.67 696.21

Figure 12: For this example, dynamic partial order reduction explores on the order of 3.6 million branches
and the sequential implementation is expected to require 126 hours to finish.

4.5 Improving Utilization

Although our initial scalability experiments achieved decent speedup, we observed that as the number of
workers increases a gap between the realized and the ideal speed up opens up. Our next step was to under-
stand where does this gap come from.

To this end we identified two factors that impact the realized speedup: 1) the heterogeneous nature of
the large scale cluster, 2) time periods with insufficient number of frontier fragments to keep all workers
busy.

The study of the former factor is beyond the scope of the report. We simply acknowledge that different
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workers might have different relative speeds and thus the speed up measurements presented here should be
taken with a grain of salt.

To study the impact of the latter factor, we repeated some of our measurements, recording the number of
active workers over time. Figure 13 plots this information for the SCHEDULING(10) test on a configuration
with 1,024 workers and an upper bound of 2,048 frontier fragments. The figure is representative of all other
measurements at such a scale.
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Figure 13: SCHEDULING(10) Without Optimizations

Note that one can identify three phases of the exploration. In the first phase, as the exploration starts
unfolding the execution tree, the number of active workers gradually increases until there is enough frontier
fragments to keep everyone busy. In the second phase, all workers are kept busy. Finally, in the third phase,
as the exploration is nearing its end, the number of active workers gradually decreases all the way to zero.

Ideally, the first and the third phase should be as short as possible in order to minimize the inefficiency
resulting from not fully utilizing the available worker fleet. In part, the nature of the first and the third phase
depends on factors that we assume are fixed such as the program under test and the number of workers used
for the exploration. Thus, a complete elimination of these two phases is impossible. However, we have
developed two techniques that are expected to reduce the length of these two phases.

First, we employ a variable time budget. In particular, if the exploration is configured to use a time
budget b, the master actually uses fractions of b instead in proportion to the number of active workers. For
example, the first worker will receive a budget of b

n , where n is the number of workers and when half of
the workers are active, the next worker to be assigned work will receive a budget of b

2 . The scaling of the
time budget is intended to accelerate creation of new frontier fragments when possible and thus reduce the
duration of the first and the third phase.

Second, we employ a technique that is intended to minimize the risk that the last few frontier fragments
need to be re-explored because of worker failures. In particular, as soon as the implementation believes it
has reached the third phase, it starts assigning each fragment to multiple workers. Note that this optimization
will cause multiple workers exploring overlapping portions of the state space. Since the workers would be
otherwise idle, we do not consider this redundancy as a source of inefficiency.

We implemented these two techniques and re-ran the our scalability measurements for the configuration
with 1,024 workers. For comparison with Figure 13, Figure 14 plots the number of active workers over time
for the optimized implementation. For this example, the two techniques reduced the runtime from 655
seconds to 527 seconds, increasing the realized speed up from 696× to 865×. For RESOURCE(6,6) and
STORE(12,3,3), the two techniques improved realized speed up from 538× to 916× and from 610× to
759× respectively.
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Figure 14: SCHEDULING(10) With Optimizations

4.6 Theoretical Limits

Finally, we carried out measurements that helped us evaluate the theoretical scalability limits of our imple-
mentation. To this aim we focused on measuring the memory and CPU requirements of the master.

Memory Requirements The memory overhead of our implementation is dominated by the cost to store
the exploration frontier of the master copy of the execution. To approximate the memory needed to record
the exploration frontier, we measured the number of explicitly stored nodes of the execution tree over time.
Figure 15 plots this information for the SCHEDULING(10) test on a configuration with 1,024 workers and
an upper bound of 2,048 frontier fragments. The graph of Figure 15 is representative of other measurements
at such a scale. Further, the space complexity of our implementation is linear with respect to the number of
nodes, requiring less than 100 bytes per node. Thus, for the experiment plotted in Figure 15 the memory
overhead of our implementation is is less than 4MB. Consequently, for the current computer architectures,
the memory requirements of our implementation allow it to scale to hundreds of thousands of workers and
frontier fragments.
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Figure 15: SCHEDULING(10) memory requirements

CPU requirements With 1024 workers and a 10-second time budget, the master is expected to issue
around 100 RPC requests and to process around 100 RPC responses every second. For such a load, the
stock hardware running exclusively the master process was experiencing CPU utilization under 20%. Con-
sequently, for a 10-second time budget, our implementation is expected to scale to around 5,000 workers
on the current hardware and software infrastructure. To scale our implementation beyond that, one could
proportionally scale the time budget, hardware performance, or optimize the software stack.
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5 Related Work

Concurrent state space exploration have been previously studied in the context of several projects:

• Inspect [19] is a tool for systematic testing of pthreads C programs that implements the distributed
dynamic partial order reduction [20] discussed in Section 2. Unlike our work, the Inspect tool does
not support fault tolerance, is not guaranteed to avoid redundant exploration, and has not been demon-
strated to scale beyond 64 workers.

• DeMeter [9] provides a framework for extending existing sequential model checkers, such as [10,
18], with a parallel and distributed exploration engine. Similar to our work, the framework focuses
on efficient state space exploration of concurrent programs. Unlike our work, the design has not
thoroughly described or analyzed and has been demonstrated to scale only up to 32 workers.

• Cloud9 [3] is a parallel engine for symbolic execution of sequential programs. In comparison to our
work, the state space being explored in the context of [3] is the space of all possible programs inputs.
Systematic enumeration of different program inputs is an orthogonal problem to the one addressed by
this report.

• DiVinE [2] is a parallel and distributed explicit state LTL model checker. Unlike the technique pre-
sented here, DiVinE uses a stateful approach to state space exploration, storing different program
states explicitly. Stateful exploration is less common for implementation-level model checkers, such
as [7, 14, 18], where the cost of storing a program state explicitly becomes prohibitively expensive.

• In [4], the authors presented a parallel algorithm that explores the state space using a number of inde-
pendent randomized depth-first searches to decrease the time needed to locate an error. In comparison,
our parallelization of systematic testing aims to cover the full state space faster.

• Lastly, the work of [16] targets parallelization of symbolic execution using randomness and static
partitioning. The parallelization presented in this report is systematic and uses dynamic partitioning.

6 Conclusions

This paper presented a technique that improves the state of the art of scalable techniques for systematic
testing of concurrent programs. Our design for distributed dynamic partial order reduction enables the
exploitation of a large-scale cluster for the purpose of systematic testing. At the core of the design lies a
novel exploration algorithm n-partitioned depth-first search, which has proved to be an essential building
stone for scaling our design to thousands of workers.

Unlike previous work, our design provides support for fault tolerance and is guaranteed to avoid redun-
dant exploration of identical parts of the state space by different workers. Further, a thorough evaluation of
a prototype implementation of the design has demonstrated that the design achieves almost linear speed up
for up to 1,024 workers. Finally, a theoretical analysis of the potential bottlenecks of the design suggest that
the design could be scaled up to hundreds of thousands of workers.
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[2] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček. DiVinE – A Tool for Distributed Verification (Tool Paper). In Computer
Aided Verification, volume 4144/2006 of LNCS, pages 278–281. Springer Berlin / Heidelberg, 2006.

[3] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. Parallel symbolic execution for automated real-world software testing. In
EuroSys, pages 183–198, 2011.

[4] Matthew B. Dwyer, Sebastian Elbaum, Suzette Person, and Rahul Purandare. Parallel randomized state-space search. In Proceedings of the
29th international conference on Software Engineering, ICSE ’07, pages 3–12, Washington, DC, USA, 2007. IEEE Computer Society.

[5] Cormac Flanagan and Patrice Godefroid. Dynamic Partial Order Reduction for Model Checking Software. SIGPLAN Not., 40(1):110–121,
2005.

[6] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems - An Approach to the State-Explosion Problem, volume
1032 of LNCS. Springer, 1996.

[7] Patrice Godefroid. Model Checking for Programming Languages using VeriSoft. In POPL ’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 174–186. ACM, 1997.

[8] Google Data Centers. http://www.google.com/about/datacenters/, 2011.

[9] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang, and Lintao Zhang. Practical software model checking via dynamic interface
reduction. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages 265–278, New York, NY,
USA, 2011. ACM.

[10] Charles Edwin Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat. Life, Death, and the Critical Transition: Finding Liveness Bugs in
Systems Code. In NSDI ’07: Proceedings of the 5th Conference on USENIX Symposium on Networked Systems Design and Implementation,
2007.

[11] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM, 21(7):558–565, 1978.

[12] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler, and David L. Dill. CMC: A pragmatic approach to model checking
real code. In OSDI ’02: Proceedings of the 5th Conference on USENIX Symposium on Operating Systems Design and Implementation, 2002.

[13] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Piramanayagam Arumuga Nainar, and Iulian Neamtiu. Finding and Repro-
ducing Heisenbugs in Concurrent Programs. In OSDI ’08: Proceedings of the 8th Conference on USENIX Symposium on Operating Systems
Design and Implementation, pages 267–280, 2008.

[14] Jiri Simsa, Randy Bryant, Garth Gibson, and Jason Hickey. Efficient Exploratory Testing of Concurrent Systems. PDL-CMU Technical
Report, 113, November 2011.

[15] Jiri Simsa, Garth Gibson, and Randy Bryant. dBug: Systematic Evaluation of Distributed Systems. In SSV ’10: Proceedings of 5th Interna-
tional Workshop on System Software Verification, 2010.
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