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ABSTRACT

The unabating growth of the memory needs of emerging datacenter

applications has exacerbated the scalability bottleneck of virtual

memory. However, reducing the excessive overhead of address

translation will remain onerous until the physical memory contigu-

ity predicament gets resolved. To address this problem, this paper

presents Contiguitas, a novel redesign of memory management in

the operating system and hardware that provides ample physical

memory contiguity. We identify that the primary cause of memory

fragmentation in Meta’s datacenters is unmovable allocations scat-

tered across the address space that impede large contiguity from

being formed. To provide ample physical memory contiguity by

design, Contiguitas first separates regular movable allocations from

unmovable ones by placing them into two different continuous

regions in physical memory and dynamically adjusts the boundary

of the two regions based on memory demand. Drastically reduc-

ing unmovable allocations is challenging because the majority of

unmovable pages cannot be moved with software alone given that

access to the page cannot be blocked for a migration to take place.

Furthermore, page migration is expensive as it requires a long

downtime to (a) perform TLB shootdowns that scale poorly with

the number of victim TLBs, and (b) copy the page. To this end, Con-

tiguitas eliminates the primary source of unmovable allocations by

introducing hardware extensions in the last-level cache to enable

the transparent and efficient migration of unmovable pages even

while the pages remain in use.
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We build the operating system component of Contiguitas into

the Linux kernel and run our experiments in a production environ-

ment at Meta’s datacenters. Our results show that Contiguitas’s OS

component successfully confines unmovable allocations, drastically

reducing unmovable 2MB blocks from an average of 31% scattered

across the address space down to 7% confined in the unmovable re-

gion, leading to significant performance gains. Specifically, we show

that for three major production services, Contiguitas achieves end-

to-end performance improvements of 2-9% for partially fragmented

servers, and 7-18% for highly fragmented servers, which account

for nearly a quarter of Meta’s fleet. We further use full-system simu-

lations to demonstrate the effectiveness of the hardware extensions

of Contiguitas. Our evaluation shows that Contiguitas-HW enables

the efficient migration of unmovable allocations, scales well with

the number of victim TLBs, and does not affect application perfor-

mance. We are currently in the process of upstreaming Contiguitas

into Linux.
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1 INTRODUCTION

Memory capacity has increased dramatically over the last decades,

yet modern operating systems have throughout stuck with a small

base page size. This divergence has resulted in excessive manage-

ment overhead for memory-intensive applications. In particular,

virtual memory implementations are plagued by expansive page

table trees, and a corresponding appetite for hardware TLB capacity

that is difficult to satiate.

Even with architectural innovations such as larger and multi-

level TLBs and page walk caches [4, 14–16, 21–24, 29, 60, 82], appli-

cations today suffer a substantial performance penalty due to TLB

misses. Google’s internal profiling revealed that approximately 20%

of cycles are stalled on TLBmisses [48]. Unfortunately, this problem

is only bound to get worse due to: i) the inherent hardware limits of

TLB scaling, already surpassing L2 cache latencies [112], ii) terabyte-

scale memory capacity through technologies like CXL [56, 93], iii)

additional levels of page tables [51], iv) the increase of memory-

intensive applications, and v) upcoming confidential computing

platforms that place security checks at page granularity during

address translation [10, 53].

A large body of prior research has focused on reducing the

address translation overhead [1–3, 14, 16, 20, 23, 30, 36, 45, 48,

60, 62, 71, 77, 83, 92, 95, 96, 98–100, 108, 115]. Conceptually, we

can separate prior work based on the amount of physical memory

contiguity required and how it is exploited. On the one hand, earlier

works propose leveraging physical memory contiguity to back the

application dataset [4, 16, 36, 37, 60, 61, 82]. These approaches

create range-based translations, similar to segments, that map large

contiguous regions of virtual memory to equally large contiguous

physical memory. Their goal is to ultimately reduce the number of

TLB entries needed. However, they face the fundamental challenge

that it is very hard to create multi-gigabyte contiguous physical

address ranges to cover the complete application dataset.

On the other hand, another line of research has explored alter-

native page table structures such as hashed page tables [32, 47,

58, 59, 95, 99, 101, 115]. Indeed, recent work [95, 98, 99, 115] has

solved some of their traditional shortcomings [15, 33, 41, 49, 50].

Such solutions aim to replace sequential multi-level page tables

and drastically reduce the cost of page walks by accelerating page

table accesses. Notably, they relax the physical memory contiguity

requirements to apply not on the whole dataset, but only on the

page table organization. However, they impose strict requirements

for physical memory contiguity availability on the critical path

of page table creation. As a result, such approaches still remain

challenging to adopt. Several other architectural extensions that

implicitly rely on contiguity [44, 72, 82, 108, 114] are hindered by

the same fundamental challenge.

Today’s operating systems, such as Linux, have mostly relied

on 2MB huge pages to land performance improvements. The pri-

mary mechanism to leverage huge pages is Transparent Huge Pages

(THP) [105] that opportunistically try to provide 2MB pages. Un-

fortunately, in today’s systems, finding physical contiguity even

for 2MB pages is often hard due to memory fragmentation [38,

40, 43, 64, 77, 78, 83]. THPs have also been under scrutiny due to

their performance implications such as latency spikes and mem-

ory bloating [9, 25, 26, 38, 43, 66, 76]. Alternative approaches, such

as userspace allocators [48, 67, 68] still rely on the OS to provide

physical contiguity and larger mappings.

Addressing excessive memory management overhead will re-

quire a fundamental shift towards larger page granularities. How-

ever, fragmentation remains as the primary obstacle. Illumina-

tor [78] is a major prior work that tries to address fragmentation.

Within a 2MB block, it prevents mixing unmovable allocations and

movable ones that the kernel can move on-demand. This work,

while innovative, has some key limitations.

First, the fundamental problem of unmovable allocations, i.e.,

that the OS cannot move them after their allocation, remains. Sec-

ond, avoiding mixing movable and unmovable allocations within

2MB blocks still fragments the address space, prevents large con-

tiguous regions from being formed, and consequently blocks larger

translations. This is because it limits the maximum available con-

tiguity to at most 2MB. For example, a single unmovable 4 KB

page can render a 1GB region unmovable; as a result just 0.19% of

2MB unmovable allocations can fragment the whole of memory ir-

recoverably. Third, the effectiveness of defragmentation is severely

hindered by the presence of unmovable allocations [114]. Overall,

despite significant efforts in virtual memory research, eliminating

the address translation overhead will remain onerous in real world

environments until the physical memory contiguity predicament

gets resolved.

1.1 This Paper: Ample Physical Memory
Contiguity by Design.

In this work, we start with a detailed investigation of physical mem-

ory contiguity at hyperscale across Meta’s datacenters. We sample

servers across the fleet and show that 23% of servers do not even have

physical memory contiguity for a single 2MB huge page. We also

find that it is practically impossible to dynamically allocate 1GB

pages in a production environment. Pertinently, fragmentation af-

fects all servers as there is little to no correlation between memory

contiguity availability and server up-time. In practice, servers can

quickly get heavily fragmented within the first hour after boot-up

while the mean server uptime is multiple days or weeks—turning

memory fragmentation into a major challenge. Finally, our study ex-

poses unmovable memory allocations as the root cause for the lack

of physical memory contiguity. In particular, we identify several

sources of unmovable allocations, including networking buffers,

slab, filesystem, and page tables.

To address these issues, we introduce Contiguitas with the goal of

eliminating fragmentation due to unmovable allocations. Contigui-

tas separates movable allocations from unmovable ones by placing

them into two different continuous regions and dynamically adjusts

the boundary of the two regions based on memory demand. To

avoid wasting memory in the unmovable region, Contiguitas solves

two problems: i) how to dynamically resize the unmovable region

and place unmovable allocations; and ii) how to drastically reduce

unmovable allocations. For the first problem, Contiguitas performs

resizing by tracking the demand for unmovable allocations. More-

over, it reduces internal fragmentation of the unmovable region by

differentiating different types of unmovable allocations.

For the second problem, Contiguitas focuses on unmovable allo-

cations that cannot be moved with software alone because access
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to the page cannot be blocked for a migration to take place. At

Meta, networking allocations account for 73% of unmovable pages

(Section 2.5). We expect unmovable allocation to become an increas-

ingly bigger problem. This is because of new I/O technologies such

as kernel-bypass and RDMA for networking and storage, GPUs,

and other accelerators that heavily really on unmovable pages.

To this end, Contiguitas introduces a set of surgical hardware

extensions in the last-level cache (LLC) that enable the transparent

migration of unmovable pages while in use. Contiguitas’s design

builds off of two ideas: First, Contiguitas introduces migration

mappings in the LLC, enabling hardware to redirect traffic to the

appropriate cache line of each page based on the progress of the mi-

gration. Second, Contiguitas relaxes the TLB shootdown operation

from being synchronous and requiring acknowledgements from all

victim TLBs to a local TLB invalidation that can be performed by

each core independently and in a lazy manner. Naturally, movable

page migrations can also benefit from this hardware support.

We build the OS component of Contiguitas into the Linux kernel

and run our experiments in Meta’s production environment. Our

results show that this component successfully confines unmovable

allocations, drastically reducing unmovable 2MB blocks from an

average of 31% scattered across the address space down to 7% con-

fined in the unmovable region, leading to significant performance

gains. Specifically, we show that for three major production ser-

vices, Contiguitas achieves performance improvements between

2-9% for partially fragmented servers that represent the majority

of the servers, and between 7-18% for highly fragmented servers

representative of nearly a quarter of the fleet at Meta. Notably,

Contiguitas’s contiguity gains enable Web, one of Meta’s largest

services, to dynamically allocate 1GB huge pages, leading to a 7.5%

performance win that is unattainable with 2MB pages alone. We

use full-system simulations to demonstrate the effectiveness of the

hardware extensions of Contiguitas. Our evaluation shows that

Contiguitas-HW enables the efficient migration of unmovable al-

locations while scaling the number of victim TLBs and does not

affect application performance. We are currently in the process of

upstreaming Contiguitas into Linux.

2 MEMORY CONTIGUITY CHALLENGES AND
OPPORTUNITIES IN DATACENTERS

In this section, we first provide a brief overview of memory man-

agement of modern operating systems. Then we showcase the

challenges and opportunities of memory contiguity across Meta’s

datacenters through a detailed study of i) memory capacity and

TLB trends, ii) performance implications of address translation, iii)

memory fragmentation, and iv) unmovable allocations and their

sources.

2.1 Memory Management

Multiple Page Sizes.Modern operating systems, such as Linux,

managememory in small 4 KB page granularity. The primary reason

behind this decision is to reduce memory bloating and expensive IO

operations during paging. However, 4 KB pages cause significant

address translation overhead due to the limited capacity of the TLBs

and expensive page walks in the event of a TLB miss. To that end,

huge pages of 2MB and 1GB have been retrofitted in the kernel

with additional hardware support. Huge pages reduce the number

of translation entries and further shorten page walks.

Linux has two primary mechanisms to allow applications to

leverage huge pages. The HugeTLB subsystem allows a system

administrator to allocate a certain number of persistent huge pages

which can then be explicitly mapped by userspace applications.

HugeTLB requires careful coordination between system adminis-

trators and application developers to ensure a proper number of

huge pages are available.

Alternatively, Transparent Huge Pages (THP) [105] can be used

to allocate huge pages transparently to the application. THPs only

support 2MB pages and opportunistically assign huge pages to ap-

plications, either in page fault handling or through background page

promotion. The OS forms huge pages on top of contiguous physical

memory regions that it keeps on free lists. However, userspace

memory pages, kernel structures, and other sources can cause a

fragmented physical address space with no huge pages available.

Memory Fragmentation.Memory fragmentation can be allevi-

ated by memory compaction, also known as defragmentation. Mem-

ory compaction [28] tries to consolidate physical pages by moving

them around, freeing up contiguous memory areas for huge page

allocations. During movement, the page becomes temporarily un-

available until the page is copied to the new location and the new

mapping is established.

Page Migration and TLB shootdowns. Figure 1 shows the pro-

cess of page migration. A translation for a page is cached in the

TLBs. However, in contemporary processors TLBs are not cache-

coherent. Hence, the OS needs to invalidate all potential victim

TLBs of cores that might be caching the translation. First, in Step 1

the OS running on top of the initiator core clears the present bit of

the page table entry of the page under migration. Then, the initia-

tor invalidates the entry from the local TLB and initiates the TLB

shootdown procedure, in Step 2 . Specifically, the OS sends inter-

processor interrupts (IPIs) in Step 3 to all remote victim cores. Each

core receiving an IPI invokes an interrupt handler that flushes their

private TLB, shown in Step 4 , and then sends an acknowledgment

in Step 5 . After the initiator receives all the required acknowl-

edgments, it performs the copy of the page in Step 6 . Finally, it

updates the PTE in Step 7 .

Figure 1: Page migration procedure.

TLB shootdowns are very costly as they scale poorly with the

number of involved cores and may require several thousands of

cycles to complete [7, 8, 12, 17, 63, 63, 90, 109]. Upcoming hard-

ware [6, 11, 54] aims to reduce the TLB invalidation overhead,

but a page still becomes unavailable during migration. The same

steps are followed by processors that make use of IOMMUs with

IOTLBs [5, 55, 80] and NICs with private TLBs [84, 104].

Unmovable Allocations. An impediment to memory compaction

is unmovable allocations that cannot be migrated. Unmovable al-

locations exist across different operating systems, called wired
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Figure 2: Memory and TLB coverage of computing hardware

across generations.

allocations in FreeBSD, and non-paged in Windows [74, 91, 114].

While there are many sources of unmovable allocations such as

slab, page tables, and other kernel structures, they can be catego-

rized into two types. The first type of unmovable allocations are

formed because the kernel opts for faster translation of kernel ob-

jects through a simple offset into a linear map [107]. Addresses to

these data structures may be stored all over memory. As a result,

such data structures cannot be moved.

Other types of unmovable allocations are related to I/O and the

IOMMU, including memory for kernel-bypass networking and stor-

age, GPUs, accelerators, and in general operations that mark pages

as busy and thus unmovable. Such allocations are impossible to

move with software alone. The reason is that the software cannot

atomically perform both the translation update and the page copy.

Hence, the only way for software to migrate a page without poten-

tial spurious writes to the page taking place during migration is to

first block access to the page, perform the copy, and then update the

translation. However, access to such unmovable pages cannot be

blocked as incoming operations from a device need to be serviced.

Even if access to the page could be blocked, page migration itself

is expensive because it requires a long downtime to (a) perform a

TLB shootdown procedure that scales poorly with the number of

victim TLBs, and (b) copy the page.

2.2 Memory Capacity and TLB Trends

Trends in Meta’s hardware show increases in memory capacity

without comparable increases in TLB capacity. This discrepancy

puts increased emphasis on contiguity availability to reduce address

translation overheads.

Figure 2 shows the relative increase of memory capacity and TLB

coverage of computing infrastructure across hardware generations

in Meta’s datacenters. The x-axis shows different hardware genera-

tions. The Gen-1 hardware is near its end of life while Gen-4 and

Gen-5 are expected to be deployed in the near future. We normalize

the results based on the first generation. Memory capacity is bound

to increase by almost 8×. However, the number of TLB entries

and consequently TLB coverage remain stagnant. Specifically, the

number of TLB entries has steadily remained in the range of a few

thousands in the last few generations. As a result, TLB coverage

with contemporary 4 KB pages, and even larger 2MB pages will be

significantly insufficient. 1 GB pages do provide sufficient coverage

that is larger than the main memory capacity of Gen-5 hardware.

Reducing translation overheads will require ever larger page sizes,

and hence contiguity, in hand with techniques to reduce page walk

latency.
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Figure 3: Percentage of cycles lost due to page walks.

2.3 Lost Cycles Due to Lack of Contiguity

To quantify the potential of memory contiguity we select a few

representative services across Meta’s fleet and measure the im-

pact of contiguity. We perform measurements using: i) only 4 KB

pages, ii) 2MB pages, iii) 2MB and 1GB. For 2MB we use THP and

further reserve huge pages through HugeTLB [106] for services

that have already been optimized to support HugeTLB. To leverage

1GB pages we solely rely on HugeTLB. We focus the evaluation on

the most widely used machine type which has 64GB memory. At

Meta, services are deployed directly on Linux servers within con-

tainers. Furthermore, services are optimized heavily to fit within

the available memory. Hence, the results provide a lower bound of

the potential address translation overhead and gains from larger

page sizes—we expect such overheads to be further exacerbated as

memory capacity increases.

Figure 3 shows page walk cycles as percentages of the total

cycles, due to Data and Instructions, using performance counters

of production workloads. For Data we show the aggregate of loads

and stores. We observe that page walk cycles can account for close

to 20% of total cycles in Meta’s datacenters. Memory contiguity

has the potential to significantly alleviate TLB overheads of both

instructions and data. Focusing on Web, one of the largest services

within Meta, we see that 2MB huge pages can halve the number of

instruction page walk cycles. Notably, while 2MB pages offer little

improvement for data page walk cycles, 1 GB huge pages have a

major impact by reducing such cycles from 14% down to 8%.

2.4 Memory Fragmentation

Memory fragmentation prevents the OS from creating large con-

tiguous regions. To quantify fragmentation across Meta’s fleet, we

randomly sample tens of thousands of 64GB servers in produc-

tion independently of workloads and perform a full scan of each

server’s physical memory. Figure 4 shows the cumulative distri-

bution function (CDF) of memory contiguity as a percentage of

free memory at the 2MB, 4MB, 32MB and 1GB allocation levels.

Servers having less than 1GB of free memory are filtered out. We

observe that memory fragmentation is severe across the fleet i.e.,

23% of the servers do not have enough contiguity for even a single

2MB allocation. This number increases to 59% for 32MB alloca-

tions. Dynamically allocating 1GB pages is practically impossible

in production.

Correlation With Uptime. It is commonly assumed that memory

fragmentation is correlated with server up-time [78, 114]. In partic-

ular, freshly brought-up servers are expected to have an abundance
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Figure 4: Contiguity availability as the percentage of free

memory.

of available memory contiguity that slowly deteriorates as work-

loads execute. Interestingly, our analysis showed there is little to

no correlation between memory contiguity availability and server

uptime, with the Pearson correlation coefficient between server

uptime and the number of free 2MB pages being only 0.00286. We

further looked into servers with only a few hours of uptime and dis-

covered that the correlation still remained weak, with a coefficient

of 0.16. Finally, we performed a set of experiments that indicated

that servers can get highly fragmented within the first hour of

running workloads. Given that the mean uptime of Meta’s servers

is multiple days or weeks, memory fragmentation affects nearly all

servers.

2.5 Unmovable Memory Allocations

Despite high amounts of fragmentation, the kernel could succeed

in allocating huge pages by compacting allocated pages into fewer

contiguous regions. Unmovable allocations inherently limit mem-

ory contiguity as they impede memory compaction. To quantify

unmovable allocations we follow the same process for studying

memory fragmentation. Figure 5 shows the percentage of 2MB

unmovable pages relative to the total memory. As we can see, a

median server has 34% of its memory occupied by unmovable al-

locations. As a result, a significant portion of the memory cannot

be used for huge pages, and forming any larger contiguous regions

(at 4 MB, 32 MB or 1GB) will be even harder. Furthermore, the

variance across machines is a major obstacle for using huge pages.

At Meta it is desirable to treat the servers interchangeably so that a

workload can potentially land on any available server in the fleet. In

practice, for some critical services that depend on the existence of

sufficient huge pages, automatic server reboots are used to resolve

high fragmentation.

Furthermore, we identified that unmovable allocations are scat-

tered across the address space. The median ratio of the number of

unmovable 4 KB pages over the total number of pages is only 7.6%,

but it makes 34% of 2MB pages unmovable, showing that scattering

is greatly exacerbating the unmovable memory issue.

To identify the sources of unmovable allocations, we track all allo-

cations marked as unmovable and backtrace their allocation sources.

Figure 6 shows the breakdown of various sources of unmovable

allocations. Networking-related operations are a major source of

unmovable allocations, accounting for more than 73%. Such alloca-

tions include send and receive buffers maintained by the OS. These

buffers carry the data received or to be sent through the processing

of different layers of the networking stack, from the applications

that own the sockets down to NICs [46]. In Meta’s environment
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Figure 5: Distribution of unmovable pages in contiguous

regions of 2MB, 4MB, 32MB, and 1GB.

the number of networking-related pages constantly remains high.

More importantly, we expect unmovable networking allocations

to become an increasingly bigger problem for two reasons. First,

with the adoption of high bandwidth NICs [103] and the increased

number of queues based on the number of cores, the number of

networking allocations are expected to increase drastically. Second,

with kernel bypass and RDMA technologies [34, 42, 73, 85, 117] in

datacenters, networking pages are pinned to memory and remain

unmovable for the lifetime of an application.

0% 20% 40% 60% 80% 100%
Percentage of Unmovable Allocations

Networking Slab File systems Page tables Others

Figure 6: Sources of unmovable allocations.

The second source, which accounts for 12%, is related to slab

allocations. The slab allocator is the small object allocator in the

Linux kernel that packs objects in pages obtained from the page

allocator. It is the primary memory source for kernel data structures

which cannot be moved. File systems frequently allocate pages as

buffers for compression and decompression. Page tables are used to

store translation entries from virtual addresses to physical addresses.

About 4% of allocations are related to other sources.

In the future, we expect additional sources of unmovable mem-

ory driven by the increased deployment of heterogeneous hardware

such as GPUs, accelerators, and other devices that rely on unmov-

able allocations. As a result, managing unmovable allocations is

critical for efficient memory management.

3 CONTIGUITAS DESIGN

The goal of Contiguitas is to provide ample physical memory conti-

guity by reducing memory fragmentation due to unmovable allo-

cations. To that end, Contiguitas redesigns memory management

in the OS to confine unmovable allocations and completely sepa-

rate them from movable ones. In addition, Contiguitas drastically

reduces unmovable pages in datacenters. Specifically, Contiguitas

introduces a set of hardware extensions in the last-level cache (LLC)

that enable the transparent migration of unmovable pages while in

use.

3.1 Overview

Figure 7 provides a high level overview of Contiguitas and how it

transforms the physical address space. There are two key design

principles guiding Contiguitas. The first one, is to strictly separate

unmovable from movable allocations using two dedicated regions
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Figure 7: Contiguitas design overview.

and, thus, prevent unmovable allocations from scattering across

the address space. The result is shown in Step 1 . Next, Contiguitas

introduces a dynamic resizing mechanism in Step 2 , that monitors

the demand for allocations in each region and grows or shrinks

the corresponding region accordingly. Contiguitas further reduces

internal fragmentation of the unmovable region by placing certain

types of allocations away from the region’s border.

The second design principle of Contiguitas, is to drastically re-

duce the amount of unmovable allocations by turning them into

movable ones. Our study at Meta’s datacenters in Section 2.5 re-

vealed that a significant portion of unmovable allocations are impos-

sible to move as access to the page cannot be blocked for a software

migration to take place. Hence, a software solution is inadequate.

To this end, Contiguitas introduces a set of hardware extensions in

step 3 that enable the transparent migration of unmovable alloca-

tions. Naturally, these hardware extensions can further be leveraged

by movable pages.

3.2 Confining Unmovable Allocations

Contiguitas separates the physical address space into two contin-

uous regions, one for movable and one for unmovable memory.

Allocations are confined in their respective region. Contiguitas

categorizes the physical pages based on their addresses and keeps

them on distinct free lists for each region. Memory in each region

can only be allocated from pages in the free lists belonging to that

region. When a page is freed, it is returned back to its respective

list. This approach simplifies the critical path of allocations as the

OS can quickly pick a free page while avoiding mixing different

types of allocations.

Confinement is sufficient for allocations that are deemed un-

movable during their whole lifetime. However, some allocations

might first be allocated as movable but later become unmovable.

For example, due to operations such as memory pinning for zero-

copy network send operations. In such scenarios, Contiguitas first

migrates them to the unmovable region and then marks them as

unmovable. This approach avoids the dynamic pollution of the

movable region and subsequent compaction failures.

The major challenge in designing confinement is the sizing of the

unmovable region. If it is too big, unused memory in the unmovable

region is wasted while there is limited movable memory for the ap-

plications, causing frequent reclaims, swapping, or even allocation

failures. On the other hand, if the unmovable region is too small,

it may fail unmovable allocations. Therefore, Contiguitas needs

to dynamically balance the sizes of the movable and unmovable

regions.

Dynamic Region Resizing. As the need for movable or unmov-

able memory may change across applications and their phases,

static sizing would be ineffective. To this end, Contiguitas dynami-

cally resizes the two regions to keep the unmovable region small

while not negatively affecting application performance. Contiguitas

sets up the physical memory layout during system boot-up, and

gives the unmovable region a configurable initial size based on the

memory capacity of the system and the behavior of workloads in

our fleet. For our 64GB servers, we configure this initial size to

4GB. The boundary of the two regions is then tracked in the OS

to support resizing. To expand the unmovable region, Contiguitas

adjusts the boundary, moves away allocated pages, and takes over

space from the movable region, adding pages to the unmovable free

list.

Dynamic resizing of the unmovable region introduces three

major design challenges. The first challenge is to move resizing

operations off the critical path of memory allocation. The second

challenge is to choose the placement policy of unmovable alloca-

tions within the unmovable region and avoid internal fragmenta-

tion. Allocations exhibit various lifetimes and as a result, placing

an unmovable allocation with a long lifetime close to the bound-

ary, might unnecessarily block the shrinking of the region even if

free space is abundant within the region. The last challenge is to

choose the proper size of the unmovable region, which is workload

dependent.

Contiguitas performs resizing off the critical path of memory

allocation to avoid latency overheads. This is accomplished by

monitoring the amount of free memory when periodic memory

reclaim is triggered by the kernel. Contiguitas extends reclaim to

wake up a kernel thread to perform resizing when the free memory

in either region falls below a low-watermark threshold.

In addition, Contiguitas introduces a bias to prefer physical pages

further away from the region border. Some unmovable allocations

that are inherently long lived, e.g., kernel code pages, are safely

placed by Contiguitas early on, at the end of the unmovable region

that is farthest from the movable region. On the other hand, pages

that are initially in the movable region and later on migrated to

the unmovable region often exhibit short lifetimes. In general, Con-

tiguitas prefers allocating pages away from the region border as

long as sufficient free space is available. This approach increases

the chance that shrinking will be successful. Later on, in Section 3.3

we will further introduce the hardware extensions of Contiguitas

that enables the migration of unmovable pages.

Finally, to aide in deciding when and how much to resize, Con-

tiguitas introduces the concept of per-region memory pressure,

which builds on top of the kernel’s pressure stall information (PSI)

used for reclaim [110]. PSI tracks the percentage of time wasted due

to lack of free memory (e.g. due to page faults of recently resident

memory, or direct reclaim). We extend PSI to track time wasted due

to lack of free memory in both the movable and unmovable region

separately.

The resizing algorithm is depicted in Algorithm 1. Given per-

region pressure, 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑢𝑛𝑚𝑜𝑣 |𝑚𝑜𝑣 , configurable thresholds,

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑢𝑛𝑚𝑜𝑣 |𝑚𝑜𝑣 , and coefficients that fine-tune the expansion

and shrinkage of the region, 𝑐𝑢𝑒 , 𝑐𝑚𝑒 , 𝑐𝑢𝑠 , and 𝑐𝑚𝑠 , the algorithm

resizes the unmovable region. Depending on pressure the kernel
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Algorithm 1: Region resizing algorithm.

1 function Resize(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑢𝑛𝑚𝑜𝑣 ,𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑢𝑛𝑚𝑜𝑣 , 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑚𝑜𝑣 ,

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑚𝑜𝑣 , 𝑐𝑢𝑒 , 𝑐𝑢𝑠 , 𝑐𝑚𝑒 , 𝑐𝑚𝑠 )
2 if 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑢𝑛𝑚𝑜𝑣 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑢𝑛𝑚𝑜𝑣 and

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑚𝑜𝑣 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑚𝑜𝑣 then
3 // Expand unmovable upon high pressure

4 𝐹 ←
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑢𝑛𝑚𝑜𝑣
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑢𝑛𝑚𝑜𝑣

· 𝑐𝑢𝑒 +
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑚𝑜𝑣

max(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑚𝑜𝑣,1)
· 𝑐𝑚𝑒

5 𝑈 ← (1 + 𝐹 ) · 𝑀𝑒𝑚𝑢𝑛𝑚𝑜𝑣
6 else
7 // Shrink for all other cases

8 𝐹 ←
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑚𝑜𝑣
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑚𝑜𝑣

· 𝑐𝑚𝑠 +
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑢𝑛𝑚𝑜𝑣

max(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑢𝑛𝑚𝑜𝑣,1)
· 𝑐𝑢𝑠

9 𝑈 ← (1 − 𝐹 ) · 𝑀𝑒𝑚𝑢𝑛𝑚𝑜𝑣
10 return𝑈 ;

expands or shrinks the unmovable region. Contiguitas sets parame-

ters for dynamically resizing empirically by observing the patterns

for movable and unmovable allocations of the workloads, and tunes

the parameters iteratively. Contiguitas uses global parameters that

work well for a diverse set of workloads, and we leave automated

parameter space search as future work.

3.3 Architectural Support for Transparent Page
Mobility

The goal of the hardware extensions of Contiguitas, Contiguitas-

HW, is to enable the migration of the subset of unmovable pages

that must remain accessible even during migration. Such pages

represent a major chunk of allocations in datacenters that is bound

to increase in the near future (Section 2.5). Hardware support is

required because it is impossible for software to move such pages

as it cannot atomically perform both the translation update and the

page copy operation. Hence, software has to block access to the

page for the duration of page migration in order to avoid spurious

writes to it. Even if access to the page could be blocked, software

page migration induces a long downtime due to (a) TLB shootdowns

that scale poorly with the number of victim TLBs, and (b) the page

copy.

To this end, Contiguitas-HW enables transparent page migration

while the page remains in use. Such migrations can substantially

reduce the size of the unmovable region and lead to more efficient

defragmentation and memory management as the vast majority

of pages can be moved on demand. While Contiguitas-HW is mo-

tivated by unmovable allocations, its design is suitable for both

movable and unmovable allocations.

Platform Overview. Figure 8(a) shows a high-level overview of

the hardware platform of Contiguitas-HW. The hardware exten-

sions of Contiguitas-HW are located in the LLC. Contiguitas-HW

targets environments that are representative of current and upcom-

ing hardware platforms such as those based on CXL [27]. Specifi-

cally, Contiguitas-HW targets a multi-core processor with a cache-

coherent interconnect. The hardware platform further includes

an IOMMU [5, 55] with local TLBs. The IOMMU performs simi-

lar duties to the MMU on the CPU side, such as page walks and

caching of translations in the TLB for devices. The NIC includes a

TLB and is cache-coherent with the LLC. The core performs IOTLB

shootdowns by putting invalidation requests onto a queue in mem-

ory [55]. Device TLBs cache translations from the IOMMU, and

the core can synchronize them with the IOMMU by submitting

invalidation requests through the aforementioned queue.

Figure 8: Contiguitas hardware overview. (a) shows the hard-

ware extension of Contiguitas-HW in the LLC. (b) shows the

metadata table of Contiguitas-HW. (c) shows the page migra-

tion process followed by Contiguitas-HW.

Hardware Operations. At a high level, Contiguitas-HW aliases a

physical page under migration with a destination page and redirects

appropriate traffic to the destination page based on the progress of

the migration.

Specifically, a page migration is initiated in Step 1 by the OS

that provides the source and destination physical page numbers

(PPNs) to the Contiguitas-HW. Contiguitas-HW stores them in a

metadata table shown in Figure 8(b). In addition, Contiguitas-HW

stores a Ptr field that points to the next line to be copied [18, 86, 95].

It effectively tracks the number of cache lines that have been copied.

Before a cache line can be copied, Contiguitas-HW issues BusRdX

events for both the source and the destination cache lines, shown

in Step 2 . This step guarantees that the most recent version of the

source cache line is located in the LLC and that both source and

destination cache lines are invalidated in higher level caches. Next,

Contiguitas-HW copies the line from the source to the destination,

as shown in Step 3 . Then, it increments Ptr by one. This process

continues until the page is completely copied.

During the migration process, a request, e.g., 𝐿𝐷𝐴𝑖 may arrive

at the LLC, as shown in Step 4 . If the request is for the source

page then Contiguitas-HW uses the page offset of the address and

compares it to the value of Ptr. For addresses less than Ptr, the LLC

returns the line from the destination page. This is because the cache

line has already been migrated. Otherwise, the LLC returns the line

from the source page.

When the copy of the page is complete, Contiguitas-HW sets

a flag that is periodically checked by the OS. In our design, we

opt to perform this check whenever the kernel naturally runs next

on each core e.g., due to context switches or system calls. When

the OS detects that the flag is set, it updates the page table entry

to point to the destination page. Then, the OS performs a local

TLB invalidation, shown in Step 5 . When all TLBs are eventually

invalidated, the OS clears the entry from the metadata table in

Figure 8(b).

Critically, Contiguitas-HW opts to maintain both mappings con-

currently active for the duration of page migration and rely on the

LLC to redirect traffic. This approach allows TLBs to switch from

the source to the destination mapping without a long downtime,

greatly simplifying the TLB shootdown procedure. In Contiguitas-

HW, TLB shootdowns do not require inter-processor interrupts

(IPIs), as each TLB can be locally invalidated without coordination

and synchronous acknowledgements. Similarly, any available core

can issue a TLB invalidation to the NIC and the IOMMU. During

this process the page under migration is always accessible.
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Ultimately, Contiguitas-HW enables the a page under migration

to be accessed by the source and destination mappings. Depend-

ing on the underlying cache microarchitecture, Contiguitas-HW is

amenable to multiple optimizations. Next we discuss two design

points that shed light on the trade-offs between noncacheable and

cacheable accesses for the page under migration based on underlin-

ing microarchitecture mechanisms.

Noncacheable Accesses. One approach to realize the Contiguitas-

HW is to rely on noncheable accesses during migration. When a

cache line in the source page has been copied, the LLC treats it from

then on as noncacheable for the L1 and L2 caches. This optimization

is useful because at any point a core may issue requests based on

the source mapping found in the TLB while Contiguitas-HW may

respond based on the data in the destination mapping.

While it is possible to allow the caching of the line in the private

caches, this approach would introduce two implications: First, it

would require Contiguitas-HW to keep track of such lines to main-

tain coherence. Second, writes performed to the source page would

have to be propagated to the destination as well. Noncacheables

accesses resolve this issue as all traffic is redirected to the LLC.

Noncacheable accesses are already supported by contemporary

processors [52]. In existing processors, page table entries maintain

a page-level cache disable (PCD) bit that is also installed in the TLB.

Requests for a page with the PCD bit set in the TLB are performed

as noncacheable accesses. However, in current processors such

accesses bypass the complete cache hierarchy, including the LLC.

Contiguitas-HW piggybacks on existing hardware support for non-

cacheable accesses, but instead selectively activates noncacheable

accesses while allowing caching in the LLC.

At a high level, one possible approach would be for Contiguitas-

HW to set the noncacheable bit when a line is returned from the

LLC to the private caches, notifying them to not cache the line.

However, since noncacheable information is available a priori, at

translation time, noncacheable requests issued by the core may

follow a different and simpler path when traversing the cache hier-

archy.

To this end, Contiguitas can integrate with existing noncacheable

mechanisms as follows. When Contiguitas-HW issues a BusRdX

it also notifies the cache agents in the private caches to install an

entry in their miss status holding registers (MSHRs) corresponding

to the source PPN, marking it as noncacheable. When the migration

is complete Contiguitas-HW notifies the private caches to clear

the entry. Finally, there is one special case that Contiguitas-HW

needs to handle—a core that has not received an invalidation is-

sues a request for the source page for the first time. In this case,

Contiguitas-HW nacks the request and notifies the private caches

as before. Then the cache agent will retry the cache access as non-

cacheable. This mechanism can further be implemented on top of

upcoming hardware extensions [54] that will support efficient and

extensible IPIs in hardware.

Cacheable Accesses. Noncacheable accesses resolve the challenge

of maintaining coherence for a line that can be accessed by different

mappings. However, with careful examination of the migration

process, we identify that private caching can stay enabled as long

as only a single mapping is used to cache a line at any given time.

The benefit of this approach is twofold. First, lines under migration

Figure 9: Contiguitas operations in a sliced last-level cache

architecture.

can reside in private caches. Second, it eliminates the need to notify

the private cache agents to handle migration pages as noncacheable.

To achieve this goal, Contiguitas-HW performs the following

steps. First, when the OS notifies the Contiguitas-HW to start mi-

grating a page, the hardware enables traffic redirection but does

not start the copy process. Instead, the OS immediately modifies

the page table entry to point to the destination page and starts

invalidating each TLB. During this process, a page may be accessed

with either the source or the destination mapping. If a request hits

in the private caches, it is serviced without further action as in a

regular cache hit. Otherwise, on a miss the Contiguitas-HW checks

whether a line is currently stored in private caches with the op-

posite mapping of the request i.e., if a request is for the source

mapping and the line is stored with the destination mapping, and

vice versa. If the condition is true, the request invalidates any cached

copy. Otherwise, the request is serviced regularly. This invariant

allows the caching of lines under migration as only the source or

the destination mapping is active in the private caches.

When the TLB invalidations are complete, the OS notifies the

Contiguitas-HW to start the copy. At this point only the destination

mapping is active at any given TLB. During the copy process, a

request for the destination mapping might be in a modified state.

In that case, the copying of that line is skipped as the destination

already contains the most up-to-date data. Other operations are

handled regularly. By the end of the migration the Contiguitas-HW

notifies the OS as before.

Distributed Last-level Cache Slices. So far we have discussed the

operations of Contiguitas-HW in the context of a monolithic last-

level cache (LLC). In practice, the LLC usually consists of multiple

slices that communicate over an interconnect such as a ring bus [52].

Figure 9 shows a high level overview of a sliced cache architecture.

In this environment, a physical address is passed through a hash

function 𝑓 that spreads the cache lines of the page across different
slices. As a result, a given source page A and destination page B,

𝑓 (𝐴𝑖 ) and 𝑓 (𝐵𝑖 ), may map each of their source and destination

cache lines to different slices.

In this environment, Contiguitas-HW and its metadata table are

replicated across each slice. In addition, Contiguitas-HW adds a

copy of the slice selection hash function. This is needed because

the hash function is usually located at the private L2 caches. The

added hardware is cheap because such hash functions are a simple

combination of logic gates e.g., XOR [116]. To use the Src PPN to

initiate the copy of the lines, it first computes the slice selection

function, 𝑓 (𝐴𝑖 ) and checks if the address corresponds to the local

slice.

If the line belongs to this slice, then Contiguitas-HW issues a

BusRdX event as before, in Step 1 . When the line is invalidated in
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the private caches and the most recent version of the line is in the

LLC slice, Contiguitas-HW uses the Dst PPN, 𝑓 (𝐵𝑖 ) to identify the
“home" slice of the destination line. If the home is the current slice

then the copy is performed locally as before. Otherwise, Contiguitas-

HW sends a Write request to the destination slice, shown in Step 2 .

After the write is complete, the destination slice responds in Step 3

with an acknowledgement. At this point, in Step 4 Contiguitas

increments Ptr. If the line does not belong to this slice, Contiguitas-

HW increments Ptr until it reaches a line that belongs to the local

slice. This is correct because each local slice is only responsible for

the lines within the slice.

Meanwhile, a request for the source page𝐴𝑖 may arrive at a slice,

shown in Step 5 . The slice responds in the following manner. First,

it compares the address to Ptr to identify the migration status of

the line as before. If the line has been migrated then Contiguitas-

HW uses 𝑓 (𝐵𝑖 ) to identify the destination slice. If the destination
slice is the current one, then the operation continues locally as

before. Otherwise, Contiguitas-HW does not need to perform the

lookup in this slice. Instead, in Step 6 it forwards the request to

the destination slice that then responds to the request. Overall, this

process is similar to handling the case that a request arrives at an

LLC slice but the line is dirty in a private cache.

The final piece of this process is how slices coordinate on when

to perform their local copy procedures for a given page. With the

above protocol in place and the natural parallelism provided by a

distributed cache architecture, each slice could operate indepen-

dently. This approach would significantly improve the performance

of the copy operation. However, it would also add additional pres-

sure to the interconnect during the copy operation. Instead, given

the target operation of Contiguitas-HW of moving unmovable allo-

cations, we opt for a simpler and less aggressive design. Specifically,

after each slice completes its portion of the copies, it then sends a

notification to the next slice to start. In the future, if an even lower

latency page copy might be beneficial, leveraging slice parallelism

might be more attractive.

Variable Buffer Sizes. Depending on the application characteris-

tics it might be beneficial to support variable mapping sizes for

device TLBs. Contiguitas-HW naturally supports this use case.

When a mapping is composed of smaller independent translations,

Contiguitas-HW can independently move each mapping one at

at time. Alternatively, the metadata table of Contiguitas can be

extended to maintain a Size field that defines the range of the trans-

lation. Depending on how the OS opts to map the allocation on the

CPU side, the OS can perform TLB updates at a finer granularity

than device TLB ones. Overall, Contiguitas-HW enables a large

optimization space depending on the application characteristics.

Interface Contiguitas-HW supports two commands to interact

with the OS. Migrate (PPN_Src, PPN_Dst, Flag) sets up a mi-
gration mapping by providing the source and destination physical

page numbers. Based on the flag argument the mapping is simply

installed or a migration is initiated based on the cacheable model of

the microarchitecture. Clear(PPN_Src) clears the metadata table
entry, ending a page migration.

Contiguitas-HW accepts commands from the OS via a work

queue similarly to Intel’s DSA [57]. The OS prepares a work descrip-

tor inmemory containing commands and parameters to Contiguitas-

HW, and submits the descriptor to thework queue using the existing

ENQCMD instruction [31]. The work descriptor contains a completion
address that Contiguitas-HW writes to indicate to the OS that a

work is completed.

4 EVALUATION METHODOLOGY

To evaluate Contiguitas, we follow a two-pronged approach. We

evaluate the OS components of Contiguitas in Meta’s production

environment and further perform full-system simulations for the

hardware components.

Production Environment. Unless otherwise noted, the hardware

used for the production experiments is Intel Cooper Lake single-

socket 64GB servers running Linux 5.12. We implement Contiguitas

on top of Linux 5.12. In the rest of this section, we refer to the

default kernel as Linux, our kernel implementation on top of Linux

as Contiguitas, and the combination of our kernel implementation

and hardware extensions as Contiguitas-HW. Since it is hard to run

our production workloads on a simulator, we evaluate Contiguitas-

HW with a page migration microbenchmark on top of NGINX [88],

and memcached [35].

Production Workloads With Live Traffic. Our production eval-

uation leverages three major workloads at Meta, Web, Cache A,

and Cache B. Web is a web server and one of the largest appli-

cations in deployment across Meta’s fleet. Cache A and Cache B

are the two largest in-memory caching services that handle traf-

fic for most of the internal services at Meta. Cache B is a forked

version of memcached. We leverage production-grade load-testing

A/B infrastructure that has been developed internally at Meta to

evaluate hardware selection and software optimizations. During

our experiments, all workloads receive real production traffic.

Full-system Simulation. To evaluate the hardware components of

Contiguitas we use full-system cycle-level simulations.We integrate

QEMU [19] with SST [89] and DRAMSim3 [65]. We model a server

architecture with 8 cores, 64GB of main memory. We run Linux

5.12 as the baseline and compare it with Contiguitas-HW. The

architecture parameters are shown in Table 1. Each out-of-order

core has private L1 and L2 caches, and a slice of the shared L3

cache. In addition, each core has private L1 and L2 TLBs and fully

associative (FA) page walk caches. For Contiguitas’s metadata table

we use a fully associative structure with 16 entries per slice. To

model TLB invalidations we intercept INVLPG instructions [52]

issued by the OS and perform a traversal of the TLB hierarchy and

page walk caches. Through measurements on a real processor, we

find that the cost of the INVLPG instruction is substantially higher

than the TLB round-trip and close to 250 cycles. We believe that it

is due to the interactions of the instruction with the core pipeline.

We model this behavior by adding a fixed penalty of 250 cycles,

accounting for the cost of a full pipeline flush when an INVLPG

instruction is issued.
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Table 1: Architectural parameters.

Full-System Simulation Parameters

Multicore Chip 8 4-issue OoO cores, 200-entry ROB, 2GHz
L1 Cache 32KB, 8-way, 2 cycles round trip (RT), 64B line
L1 TLB 64 entries, 4-way, 2 cycles RT
L2 TLB 1536 entries, 16-way, 12 cycles RT
Page Walk Cache 3 levels, 32 entries per level, FA, 2 cycles
L2 cache 256KB, 8-way, 14 cycles RT
L3 cache 2MB slice, 16-way, 40 cycles RT
Contiguitas-HW 16 entries, FA, 1 cycle
Main memory 64GB, DDR4 3200, 16 Banks, 1GHz
OS Linux 5.12

5 EVALUATION

Our evaluation attempts to answer the following questions:

(1) Does Contiguitas improve application’s end-to-end perfor-

mance?

(2) What is Contiguitas’s impact on unmovable allocations?

(3) What is Contiguitas’s impact on memory contiguity?

(4) Does page migration in Contiguitas-HW scale with the num-

ber of cores?

(5) How do Contiguitas-HW page migrations affect page avail-

ability and application performance?

(6) What are the hardware resource requirements of Contiguitas-

HW?

5.1 End-to-end Performance Impact

We evaluate the performance of three major workloads at Meta,

Web, Cache A, and Cache B. The performance metric is requests per

second under certain latency SLAs based on the characteristics of

each workload. In all cases, THP is set to “always”. Additionally,

Web attempts to allocate 2MB and 1GB huge pages directly.

We consider two setups, Full Fragmentation and Partial Fragmen-

tation. Full Fragmentation represents the case where a workload

lands on a server whose memory is already fully fragmented. As

we showed in Section 2.4, 23% of production servers are fully frag-

mented. To represent this scenario, we run a fragmentation process

to fragment the server fully before the workload is deployed.

Partial Fragmentation represents the case where a workload

lands on a partially fragmented server that is representative of

the majority of servers at Meta. As each workload fragments the

address space at different levels, we first run the same workload

to fragment the server and then restart the workload before our

experiment. This behavior is common in production due to frequent

code deployments.

Figure 10 shows the results. Contiguitas produces the same re-

sult under Full Fragmentation and Partial Fragmentation and hence

we show one bar. In "Linux Partial" and "Linux Full", dynamically

allocating 1GB HugeTLB pages always fails due the lack of conti-

guity. For Web, we show a stacked bar for Contiguitas to highlight

the gain with 1GB pages. Overall, Contiguitas delivers substan-

tial performance improvements between 2% and 18% across major

workloads at Meta.

Looking at Web, compared to Linux in the fully fragmented case,

Contiguitas achieves 18% higher performance. Compared to Linux

in the partial fragmented case, Contiguitas delivers a performance

gain of 9%. Notably, looking at the breakdown of Contiguitas we see

that substantial gains are due to Contiguitas being able to dynam-

ically allocate 1GB HugeTLB pages. Diving deeper, we find that

Linux with partial fragmentation was able to allocate 14 GB worth
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Figure 10: End-to-end performance over Meta’s production

workloads. The red bar of Contiguitas for Web shows the

performance gains from 1GB pages.

of 2MB huge pages compared to 20 GB allocated by Contiguitas. For

1GB huge pages, Contiguitas allocated 4GB in total whereas Linux

allocated none. Note that, in Contiguitas, 1 GB pages provided a

major performance win of 7.5%, which highlights the importance of

bigger contiguity beyond 2MB. Finally, we compared Contiguitas

and Linux when both were forced to use only 4 KB pages. While the

results are not shown in the figure, they had identical performance,

showing that Contiguitas introduces no measurable overhead even

if it finds no opportunities to allocate huge pages in the worst case.

5.2 Unmovable Allocations and Memory
Contiguity.
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Figure 11: Unmovable 2MB pages forMeta’s productionwork-

loads.

Unmovable allocations. To assess the impact of Contiguitas on

unmovable allocations, we compare the percentage of memory that

becomes unmovable for different workloads at Meta. We further

include Meta’s continuous-integration (CI) workload that executes

various build and test jobs. For this experiment, we start our work-

loads on freshly booted servers and then profile the servers once

every 15 minutes.

Figure 11 shows the percentages of 2MB unmovable pages. We

observe that for all workloads we consider, unmovable memory

increases drastically within the first hour and then plateaus. There-

fore, we show the percentages at their stable state. As we discussed

in Section 2.4, given the long uptime of servers, fragmentation

is ubiquitous across the fleet. Under Linux, the unmovable mem-

ory is between 19% to 42%, with an average of 31%. In contrast,

Contiguitas has the highest value at 9%, with an average of 7%.

This demonstrates that Contiguitas’s confinement strategy success-

fully restricts the spread of unmovable 2MB pages and keeps the

unmovable region small.
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Figure 12: Potential memory contiguity as a percentage of

total memory.

To understand the internals of the unmovable region, we charac-

terize its fragmentation. Specifically, we scan the unmovable region

and count the number of unmovable pages within each 2MB block.

Note that, in the unmovable region a page is either unmovable

or free. We find that 22% of the pages in a typical 2MB block in

the unmovable region are free. This internal fragmentation of the

unmovable region further motivates the need for Contiguitas-HW,

especially as the number of unmovable allocations increases (Sec-

tion 2.5).

Potential memory contiguity. To quantify the impact of Conti-

guitas on memory contiguity, we compare each workload’s steady

state under Linux and Contiguitas. Specifically, we quantify the

contiguous regions that can be formed if we hypothetically run a

perfect software compaction in order to service allocation requests

of 2MB, 32MB, and 1GB. Figure 12 shows the results. With Linux

we see that some 2MB allocation are possible given that less than

half the memory is composed of unmovable 2MB pages as we dis-

cussed above. However, Linux struggles as we search for larger

contiguous regions, and fails to find even a single 1GB page. On the

other hand, Contiguitas, by design, isolates the unmovable region

and hence the whole movable region can potentially be used after

compaction for large contiguous allocations, even 1GB pages as

we showed in Section 5.1.

5.3 Contiguitas-HW Characterization.

Scalability. To evaluate the scalability of Contiguitas-HW with re-

spect to the number of cores we use full system simulations. Specif-

ically, we develop a micro-benchmark that triggers page migrations

in software and Contiguitas-HW. We simulate all the operations of

Contiguitas-HW and instrument Linux to track the page migration

procedure, including TLB shootdowns and page copy operations.

We then measure the number of cycles a page is unavailable during

migration from the perspective of a memory operation to that page.

Figure 13 shows the results. The measurement with one core means

that we perform a TLB shootdown on one remote core. Linux-Sim

shows the result of a simulated system, which is compared to the

result of a real system, denoted Linux-Real. We see that the two

systems match well (-6% to +10% difference), which confirms the

accuracy of the simulation.

From the results we see that as the number of cores/TLBs in-

volved in the TLB shootdown increases, the amount of time during

which access to the page is blocked increases linearly. The cost

of the page copy remains the same, at approximately 1,300 cycles.

Finally, we plot the result from Contiguitas-HW. By design, the cost
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Figure 13: Page unavailable cycles during migration.

of Contiguitas-HW is constant and equal to a local TLB invalidation,

because its TLB shootdowns do not require inter-processor inter-

rupts and each TLB can be locally invalidated without coordination

or synchronous acknowledgements. The cost of a 4 KB page mi-

gration in Contiguitas-HW is close to 2us in our microbenchmark.

Although the absolute migration time will vary based on the cache

behavior of the page, access to the page is never blocked during a

migrations.

Performance.We evaluate with full system simulations the per-

formance implications of Contiguitas-HW on two open source

applications NGINX and Memcached. We select these workloads

to cover both ends of the spectrum. NGINX is insensitive to huge

pages and it makes use of networking buffers. In this scenario, our

goal is to move umovable pages that will benefit other applica-

tions without interfering with the application that makes use of

unmovable allocations. Memcached is a close proxy to our Cache

B workload, which is a fork of memcached; it is sensitive to huge

page availability and also relies on networking buffers.

In both cases we consider an aggressively disadvantageous sce-

nario where Contiguitas-HWmoves unmovable networking buffers

only of the application while the application serves requests at peak

throughput without any available slack. We consider two rates: (i)

Regular is the expected rate of unmovable page movement set at

100/second based on the ratio of unmovable and movable pages, (ii)

Very High which is the rate if we were to move unmovable pages

at the highest rate we observed our production systems to move

movable pages, set at 1000/second. We evaluate both workloads

without huge pages in order to understand any potential negative

performance impact by unmovable page movement without any

performance gains from huge pages.

At Regular rate Contiguitas-HWwith noncacheable and cacheable

accesses do not have an impact on application performance. Even

at Very High rate, which would be unwarranted for a real environ-

ment, Contiguitas-HW with noncacheable accesses only shows a

marginal overhead of 0.2% for NGINX and 0.3% for memcached.

The Contiguitas-HW with cacheable accesses does not have an

impact on application performance even at this rate. This is be-

cause Contiguitas-HW is able to very efficiently redirect traffic and

perform copy operations in the background.

When combined with the benefits of contiguity and 2MB huge

pages, memcached performance improves by 7%. Overall, Contiguitas-

HW does not negatively impact applications that do not benefit

from contiguity while improving contiguity for those that do. In ad-

dition, Contiguitas-HW successfully achieves its goal to drastically

reduce the unmovable region. Specifically, it enables the migra-

tion of the majority of the unmovable pages and further enables
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the defragmentation of the unmovable region that can potentially

unblock 22% of the region’s memory (Section 5.2).

Sizing and Hardware Requirements. To size the metadata table

of Contiguitas-HW we consider the following parameters. First,

Contiguitas-HW enables local TLB invalidations that can occur

whenever the kernel naturally executes on top of a core. Hence,

we need to take into account the amount of time a mapping needs

to be maintained. To this end we consider the rate of system calls

and context switches on a core that is observed to be 40K-100K per

second in production. This provides a window of at least 25us for

an invalidation to take place. Accounting conservatively for 5us for

a 4KB page copying to take place this provides us with 30us per

migration. As a result, a single entry already provides a very high

theoretical number of migrations/second.

To facilitate concurrent migrations, we size the metadata table

to store 16 entries as a fully associative structure. Requests across

slices are buffered in existing slice queues that handle regular cache

requests. Contiguitas-HW augments messages to pass additional

information e.g., noncacheable. However, it does not require addi-

tional buses as requests and responses are flowing in existing paths

between L3 slices and the L2 caches. Our Cacti [13] analysis for

a 22𝑛𝑚 technology node shows that the area for Contiguitas-HW

per slice is 0.0038𝑚𝑚2, the energy per access is 0.0017𝑛𝑗 , and the
leakage power is 0.64𝑚𝑊 . We conservatively account for 2-cycle

access time to the metadata table. Compared to the size of a core,

the cost of Contiguitas-HW is only 0.014%. Overall, the hardware

cost of Contiguitas-HW is negligible.

6 DISCUSSION

As servermemory capacity increases drastically, resolving excessive

memory management overheads will require a fundamental rebuild

of the operating system and hardware layers. Contiguitas tames

unmovable allocations and introduces a reliable source of physical

memory contiguity that can enable a plethora of prior [38, 40, 43,

44, 48, 64, 67, 68, 72, 77, 78, 82, 83, 95, 98, 99, 108, 114, 115] and

future works that aim to tackle the address translation overhead.

In the near term, we expect that 2MB huge pages can become a

primary choice for memory intensive applications and curb the

address translation overhead. Finally, existing 1GB huge pages can

provide major performance benefits for certain applications when

carefully deployed, however we believe that additional support

and research is needed as the substantial increase in page size can

exacerbate the severity of data movement overheads and memory

bloating.

7 RELATEDWORK

TLB efficiency has been a major target of prior work [15, 23, 29,

60, 60, 69, 72, 75, 79, 81, 82, 94, 97, 108, 114]. Works have focused

on coalesced [81], range-based [60], and part of memory TLB de-

signs [70, 92]. Contiguitas can boost their efficiency by providing

ample contiguity.

Huge page support has received significant attention in the

past [39, 48, 64, 67, 68, 77, 78, 87, 102, 113, 114]. Other efforts have

focused on upstreaming 1GB THP support [113]. As we showed

in Section 2.2, 1GB huge pages can be effective in reducing the

address translation cost. Work on capabilities [111] can reduce ad-

dress translation overheads; the approach of Contiguitas could be

useful in such environments in order to efficiently manage DMA

and other sources of unmovable pages. More recent proposals have

also focused on improving the efficiency of userspace allocators

to better utilize huge pages [48, 67, 68]. Contiguitas can further

boost the efficiency of userspace allocators as they rely on the OS

to provide contiguity.

Another body of work has focused on improving TLB shootdown

operations [7, 8, 12, 17, 63, 63, 90, 109]. For example, UNITD [90] pro-

poses TLBs to be included in the regular cache coherence protocol

in order to reduce their overhead. LATR [63] proposes asynchro-

nous TLB invalidation’s for operations that are amenable to lazy

TLB shootdowns but this mechanism is not applicable to unmovable

pages because such mappings cannot afford to become unavailable.

Overall, the primary focus of these works is to perform fast TLB

shootdown operations so their frequency can be increased [12].

Instead, the goal of Contiguitas is to enable transparent migration

of unmovable pages while in use. As a result, Contiguitas arrives

at a vastly different design point that requires minimal hardware

changes in the last-level cache.

8 CONCLUSION

This paper presented Contiguitas, a holistic solution across the op-

erating system and hardware that reduces memory fragmentation

due to unmovable allocations. Our evaluation at Meta’s datacenters

and full-system simulations showed that Contiguitas is a generic,

production-ready solution to provide ample memory contiguity for

not only the current demand but also a future where the optimal

page size will continue to grow alongside ever-increasing memory

capacities.
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