
Scheduling for Efficiency and Fairness in Systems with Redundancy

Kristen Gardner∗

Computer Science Department, Carnegie Mellon University

Mor Harchol-Balter

Computer Science Department, Carnegie Mellon University

Esa Hyytiä

Department of Computer Science, University of Iceland

Rhonda Righter

IEOR Department, UC Berkeley

Abstract

Server-side variability—the idea that the same job can take longer to run on one server than another due to

server-dependent factors—is an increasingly important concern in many queueing systems. One strategy for

overcoming server-side variability to achieve low response time is redundancy, under which jobs create copies

of themselves and send these copies to multiple different servers, waiting for only one copy to complete service.

Most of the existing theoretical work on redundancy has focused on developing bounds, approximations, and

exact analysis to study the response time gains offered by redundancy. However, response time is not the

only important metric in redundancy systems: in addition to providing low overall response time, the system

should also be fair in the sense that no job class should have a worse mean response time in the system with

redundancy than it did in the system before redundancy is allowed.

In this paper we use scheduling to address the simultaneous goals of (1) achieving low response time and

(2) maintaining fairness across job classes. We develop new exact analysis for per-class response time under

First-Come First-Served (FCFS) scheduling for a general type of system structure; our analysis shows that

FCFS can be unfair in that it can hurt non-redundant jobs. We then introduce the Least Redundant First

(LRF) scheduling policy, which we prove is optimal with respect to overall system response time, but which

can be unfair in that it can hurt the jobs that become redundant. Finally, we introduce the Primaries First

(PF) scheduling policy, which is provably fair and also achieves excellent overall mean response time.

Key words: queueing theory, redundancy, replication, scheduling, stochastic processes, resource allocation

∗Corresponding author
Email addresses: ksgardne@cs.cmu.edu (Kristen Gardner), harchol@cs.cmu.edu (Mor Harchol-Balter), esa@hi.is (Esa

Hyytiä), rrighter@berkeley.edu (Rhonda Righter)

Preprint submitted to Elsevier July 7, 2017

1. Introduction

In many queueing systems, customers can experience long and highly variable response times because of

server-side factors that make service times unpredictable. For example, in cloud computing many virtual

machines (VMs) are co-located on the same physical machine; the VMs compete for resources, and the

speed of any given VM at any time depends on the particular balance of resources being used by all of the

co-located VMs. Another example is the deceased donor organ transplant waitlist, in which the waiting

times for patients at the head of the queue in different regions can be very different because organs become

available independently in different regions due to factors that are hard to predict. Even in smaller everyday

systems such as daycare center waitlists or library book holds, it can be hard to tell which queue is the best

to join, simply because waiting times depend largely on unobservable and unpredictable server-side factors

(e.g., the reading speed of the person who currently has a library book checked out). In the face of this

variability, traditional queueing paradigms often are ineffective at achieving low response times.

One increasingly popular strategy for overcoming server-side variability is redundancy, the idea of making

multiple copies of a job and sending these copies to different servers. The job is considered complete as soon

as the first copy completes service, at which time all other copies are cancelled. Redundancy helps for two

reasons. First, by waiting in multiple queues, the job gets to experience the shortest queueing time without

knowing in advance the service times that the jobs ahead of it will experience. Second, the job may end

up in service at multiple servers simultaneously; when service times are unpredictable and largely server-

dependent, running on multiple servers can help a job to experience a shorter service time. In many systems,

such as computer systems and kidney transplant waitlists, redundancy has been demonstrated empirically

to significantly reduce response times for the overall system (e.g., [2, 4]).

However, in many applications there are some jobs that cannot be made redundant, for example because

of data locality constraints or geographic constraints, and one of the major concerns about redundancy

is that its potential benefits are not felt equally across different classes of jobs. In particular, jobs that

can become redundant are likely to benefit from being redundant, whereas their redundancy might hurt

some non-redundant jobs. This observation, which is particularly important in applications such as organ

transplant waitlists where patients’ ability to become redundant correlates with their socioeconomic status,

leads us to a second goal: in addition to reducing overall mean response time, we want response time gains

to be experienced fairly across classes. To understand what we mean by “fairness,” consider two systems.

In the first system, no jobs are redundant; each job is dispatched to a single server, where this server is

determined by the job’s class. In the second system, some jobs become redundant. The redundant jobs are

dispatched to their original server as well as to one or more additional servers, where the additional servers

again are determined by the job’s new class. Our goal is to improve efficiency, i.e., overall response time,

while ensuring that each job class experiences a mean response time in the second (redundant) system that is

no worse than what that job class experiences in the first (non-redundant) system. This notion of fairness—

that a “fair” scheduling policy ensures that no job performs worse than under a baseline policy—has also

2

been used to develop fair variations on the Shortest Remaining Processing Time policy [5].

While there are many ways in which one could attempt to control the effects of job redundancy, in

this paper we focus on server-side scheduling policies. We assume that each job class replicates itself to a

particular subset of the servers, where this subset is determined by, e.g., data locality constraints. Given

this replication, we ask in what order each server should work on the jobs in its queue in order to achieve

our dual goals of (1) achieving low overall mean response time (high system efficiency), and (2) maintaining

per-class fairness. Throughout, we assume that job sizes are not known, hence we focus on non-size-based

scheduling policies. We also assume that jobs are preemptible. Importantly, all of the scheduling policies we

propose—First-Come First-Served with redundancy (FCFS-R), Least Redundant First (LRF), and Primaries

First (PF)—are easily implementable, requiring only that each job maintains a small amount of metadata

recording, for example, its class.

We focus on a particular system structure called a nested structure. In a nested redundancy system, if

two classes of jobs share a server, then one of the class’s servers must be a subset of the other class’s servers.

The nesting structure is common in operating systems such as Multics and UNIX for organizing access

to resources via hierarchical protection domains, known as “nested protection rings.” The most privileged

classes of users have access to all resources. Less privileged classes of users have access to smaller and smaller

subsets of the resources. Classes are nested so that, for any two user classes, A and B, that share access to

some resource, either A’s set of resources is a subset of B’s set, or vice versa [12, 14]. In this paper we think

of nested structures as existing not at the operating system level, but at the level of an entire data center,

where data may be replicated across servers on the same rack, or across multiple racks. The nested structure

is required both for the closed form formulas we derive under FCFS-R scheduling (Section 4), and for our

proof of optimality of LRF scheduling (Section 5). It is not required for our results regarding PF scheduling

(Section 6).

We start with a system that has no redundancy in which each server schedules jobs in first-come first-

served (FCFS) order, and ask what happens when some jobs become redundant and the servers continue

to use first-come first-served scheduling (FCFS-R). We provide an exact analysis of the full distribution of

response time for each class.

While FCFS-R can yield significant response time improvements relative to FCFS (with no redundancy),

it turns out that FCFS-R is not the best way to leverage the available redundancy. We propose a new policy,

Least Redundant First (LRF), which gives less redundant jobs preemptive priority over more redundant

jobs. We prove that LRF is optimal in a very strong sense. It stochastically maximizes the cumulative job

departure process, and hence it minimizes overall mean response time. While response time under LRF is

not analytically tractable, we derive upper and lower bounds on per-class and overall system mean response

time. Surprisingly, mean response time under FCFS-R is nearly as low as that under the optimal LRF policy.

The observation that unsophisticated policies like FCFS-R achieve near-optimal performance has impor-

tant implications for where to focus our efforts in system design, because unfortunately, both FCFS-R and

3

LRF fail to achieve our second goal: maintaining per-class fairness. Although FCFS-R always helps the jobs

that become redundant, the non-redundant jobs can be hurt. On the other hand, LRF is so conservative

about protecting non-redundant jobs that the redundant jobs can actually suffer and experience higher re-

sponse times than they would if they were not redundant at all. To balance out the benefits of LRF, under

which non-redundant jobs are isolated from competing redundant jobs, and FCFS-R, under which redundant

jobs get to retain their place in line, we propose the Primaries First (PF) policy. Under PF, each job has

a single primary copy which joins a queue and is served in FCFS order. If the job is redundant all new

copies are designated secondaries and are given lowest preemptive priority. Like FCFS-R, PF provides over-

all mean response times that are nearly indistinguishable from the optimal LRF, thereby achieving our first

goal. Furthermore, we prove that all classes of jobs are at least as well off under PF as under non-redundant

FCFS, thereby achieving our second goal.

2. Prior Work

As redundancy becomes increasingly common in computer systems, there is a growing body of theoretical

work on analyzing systems with redundancy. Here we review the related work both on exact analysis and

on scheduling in redundancy systems.

The limiting distribution on the state space was derived under FCFS-R for the same model we study

in [7], but the authors only find per-class response time distributions for a few simple 2- and 3-server systems.

In [3] this result is generalized to derive the limiting distribution on the state space in networks of redundant

queues. The mean response time in systems with any number of identical servers in which each job sends

copies to d servers chosen at random is derived in [6]; the full response time distribution is derived in the

many-server limit. Nested structures do not fit this structure; in this paper we provide a new generalization

of the results presented in [7] to derive exact per-class response time distributions in nested redundancy

systems with heterogeneous servers.

Visschers, Adan, and Weiss [1, 15] consider a similar model with different job and server classes that

determine which jobs can be served on which servers, but without redundancy. They assume jobs are served

in FCFS order, and a job that arrives to find multiple idle compatible servers is assigned to the compatible

server that has been idle longest [1] or to a randomly chosen idle compatible server according to a specific

routing probability [15]. Under the routing assumptions in [1, 15], the system exhibits a similar product-form

limiting distribution to that in our redundancy system under FCFS-R scheduling, but with a different state

space, and in both systems per-class response times can be expressed as a sum of M/M/1 queueing times

(see Section 4).

On the scheduling side, when all jobs are capable of running on all servers and service times follow a

new-worse-than-used distribution (intuitively, a distribution under which the longer a job has been running

so far, the larger its expected remaining service time), it is optimal to schedule the same job on all servers

at the same time [10, 11]. Unlike in our model, in [10, 11] jobs do not have classes that restrict the set of

4

(a) A nested redundancy structure (b) Central queue system representation

Figure 1: (a) A nested redundancy structure with k = 5 servers and ` = 6 job classes. The most redundant class, in this case
class 3, replicates itself to subsystem B, which consists of servers 1 and 2 and job classes 1 and 2; and subsystem A, which
consists of servers 3, 4, and 5 and job classes 4, 5, and 6. The two subsystems are disjoint: they have no servers or job classes in
common except for class 3, which replicates to all servers in both subsystems. In this example, the jobs arrived in the following
order: 4(1), 1(1), 5(1), 2(1), 6(1), 3(1), 2(2), where i(j) denotes the jth arrival of class-i, illustrated in the central queue in (b).

servers to which each job can replicate, so the result does not extend to our system.

The setting in which each job can replicate to only a subset of the servers has been studied in [13]. Unlike

in our model, in the system studied in [13] each job consists of k subtasks, all of which must complete service

in order for the job to be complete (in our model, k = 1). The scheduling question in this setting is very

different from the question we pose because [13] studies policies that choose both which job and which task

to run, possibly allowing tasks to run redundant copies. In a related system called the (n, k) system, each

job sends a request to all n servers and waits for only the first k requests to complete service. This setting

is motivated by the idea that coding schemes can be used to ensure that downloading any k out of n coded

file segments suffices to reconstruct the entire file; bounds and approximations for response time have been

derived [9, 16].

3. Model

We consider a general multi-server system consisting of k servers and ` classes of jobs, as shown in

Figure 1. Jobs arrive to the system with average rate λ. Arrivals form an exogenous renewal process; in

some cases we restrict ourselves to a Poisson arrival process. Each job belongs to class j independently with

probability pj ; the arrival rate of class j is λj = λ · pj . Each job of class j replicates itself upon arrival by

joining the queues at a fixed subset of the servers Sj = {s | server s can serve class j}. A job is allowed to

be in service at multiple servers simultaneously. Each job departs the system immediately as soon as its first

replica completes service, at which time all remaining replicas are immediately cancelled.

5

The k servers are heterogeneous, where each server s provides service rate µs. Service times are as-

sumed to be exponential and independent across jobs on the same server and across the same job on dif-

ferent servers. That is, if a job is in service at both servers s and r, its remaining time is distributed as

min{Exp (µs) ,Exp (µr)} ∼ Exp (µs + µr). We denote the set of job classes that a particular server s can

serve by Js = {j | s ∈ Sj}. Note that in our model, if we have multiple identical servers (identical in the

sense that they can serve the same classes of jobs, not necessarily in service rates), we can think of these

servers as a single fast server. This is because a single job will occupy all the identical servers, releasing

them all at the same time for the next job to be assigned.

We restrict our attention to a specific type of redundancy structure called a nested system.

Definition 1. In a nested system, for all job classes i and j, we have either (1) Si ⊂ Sj, (2) Si ⊃ Sj, or

(3) Si ∩ Sj = ∅.

Figure 1 shows an example of a nested system with 5 servers and 6 classes of jobs. As examples of the above

cases, we see that S4 ⊂ S5 (Case 1), S3 ⊃ S6 (Case 2), and S1 ∩ S5 = ∅ (Case 3).

In Lemmas 1 and 2 we note two properties of nested systems that we use in the remainder of this

paper. These properties follow from the fact that a nested system can be seen to be a partially ordered

set; we present short proofs here for completeness and, for Lemma 2, to define a particular construction of

subsystems.

Lemma 1. In a nested redundancy system with k servers, either there exists a class-R such that SR =

{1, . . . , k} (i.e., class-R jobs replicate to all k servers), or the system can be separated into two or more

independent subsystems that have no servers or classes of jobs in common, and each of which is itself a

nested system.

Proof. If there is some class of jobs that replicates to all k servers, we are done. So suppose this is not

the case. Let class i denote the most redundant class, i.e., |Sj | ≤ |Si| for all classes j 6= i, and let set

S = {s : s /∈ Si} denote the set of servers to which class-i jobs do not replicate. For every job class j that

shares a server with class i, it must be the case that Sj ⊂ Si, and so there does not exist a server s such

that s ∈ Sj and s ∈ S. Hence Si and S do not have any servers or job classes in common, so they form two

independent subsystems. �

From Lemma 1 we assume without loss of generality that the most redundant class, R, replicates to

all k servers. In Lemma 2 we make the observation that the fully redundant class-R jobs can be viewed as

replicating themselves to two independent subsystems, which we will call subsystems A and B (see Figure 1).

Lemma 2. Let class-R be the most redundant job class in the nested system (i.e., class-R jobs replicate to

all k servers). Then the remaining `− 1 job classes can be partitioned into two nested subsystems, denoted

A and B, by the following construction such that for all classes i ∈ A, j ∈ B, Si ∩ Sj = ∅. That is, none of

the classes in A have any servers in common with any of the classes in B.

6

Proof. Assume the job classes (excluding class R) are sorted with nonincreasing |Sj |, so that |Sj | ≥ |Sj+1|

for j = 1, . . . , ` − 1. We will construct A and B as follows. Begin by initializing A = {1} and B = ∅. For

each class j = 2, . . . , `− 1,

1. If there exists a class i ∈ A such that Sj ⊂ Si, add class j and all servers in Sj to A.

2. Otherwise, by the nesting property and the fact that all classes i already in A have |Si| ≥ |Sj |, we

know that for all classes i ∈ A we have Si ∩ Sj = ∅. Hence we add class j and all servers in Sj to B.

After each addition of a class to either set A or B, we continue to have the property that for all classes i ∈ A,

j ∈ B, Si ∩ Sj = ∅. If at this point there remains any server s that has not been assigned to A or B, we add

server s to B. �

Note that under this construction, it is possible that subsystem B itself consists of multiple disjoint subsys-

tems (i.e., there may not be a class of jobs that replicates to all servers in B). In this case, for the purpose

of our notation and analysis, we imagine that such a class does exist and simply has arrival rate 0.

Example 1. In Figure 1, class 3 jobs are fully redundant. We sort the remaining job classes in nonincreasing

order of redundancy degree: 5, 2, 1, 4, 6. Starting at the beginning of this list, we set A = {5} and B = ∅.

Since S2 ∩ S5 = ∅, we add class 2 to B; we then add class 1 to B for the same reason. Since S4 ⊂ S5, we

add class 4 to A. Finally, we add class 6 to A. Observe that A = {5, 4, 6} and B = {2, 1} are disjoint.

Throughout much of the remainder of this paper, we use a specific nested system called the W model as

a case study to illuminate the effects of different scheduling policies on different classes of jobs. We begin

with a system in which there are two classes of jobs, each with its own server (see Figure 2(a)). Class-A jobs

are non-redundant and join the queue at server 1 only. Class-B jobs are non-redundant and join the queue

at server 2 only. We let pA and pB denote the fraction of jobs that are class-A and class-B respectively,

where pA + pB = 1. To understand the impact that different redundancy-based scheduling policies have on

response time, we compare this system to the W model, in which some jobs become redundant class-R jobs,

which join the queues at both servers 1 and 2. We consider two cases: the case in which pR fraction of the

jobs become redundant, where originally all of these jobs were class-A (Figure 2(b)), and the case in which

pR fraction of the jobs become redundant, where originally half of these jobs were class-A and half were

class-B (Figure 2(c)).

For notational simplicity, we let λA, λB and λR denote the arrival rates of class-A, B, and R jobs

respectively, where λi is defined differently in terms of λ, pA, pB , and pR for each of the systems shown in

Figure 2. For example, in Figure 2(a) λA = pAλ, whereas in Figure 2(b) λA = (pA−pR)λ and in Figure 2(c)

λA = (pA − pR
2)λ.

4. First-Come First-Served with Redundancy (FCFS-R)

We first consider redundancy systems using the standard first-come first-served scheduling policy, which

we call FCFS-R to distinguish this policy from FCFS scheduling in a system in which no jobs are redundant.

7

(a) No redundancy (b) Some class-A jobs
become class-R jobs

(c) Some class-A jobs and
some class-B jobs
become class-R jobs

Figure 2: The W model. Class-A jobs join the queue at server 1 only, class-B jobs join the queue at server 2 only, and class-R
jobs join both queues. Throughout this paper, we compare (a) The system in which there are no redundant jobs (pR = 0)
to (b) The system in which some class-A jobs become class-R jobs, and (c) The system in which some class-A jobs and some
class-B jobs become class-R jobs.

Under FCFS-R, each server works on the jobs in its queue in FCFS order; a job may be in service at multiple

servers at the same time. Throughout this section we assume that arrivals form a Poisson process.

4.1. Response Time Analysis

Our goal in this section is to derive the distribution of response time—defined as the time from when a

job arrives to the system until its first copy completes service—in nested redundancy systems under FCFS-R

scheduling. We do so using a Markov chain approach. Following [7], our state space tracks all of the jobs

in the system in the order in which they arrived; this can be viewed as a single central queue, as shown in

Figure 1(b). We denote the system state by (cm, cm−1, . . . , c1), where there are m jobs in the system and

ci is the class of the ith job in the (central) queue; the head of the queue is at the right. In the example

shown in Figure 1 the system state is (2, 3, 6, 2, 5, 1, 4). Note that without knowing the arrival order of the

jobs shown in Figure 1(a), we do not have enough information to distinguish between the states shown in

Table 1. While we know that both of the class-2 jobs arrived after the class-1 job, and the class-6 job arrived

after the class-5 job, which in turn arrived after the class-4 job, we do not know how the class-1 and class-2

jobs are interleaved with the class-4, class-5, and class-6 jobs because the two sets of jobs have no servers in

common. However, all of the states listed in Table 1 are equivalent in terms of the future evolution of the

system.

Theorem 1 in [7] tells us that the limiting probability of being in state (cm, cm−1, . . . , c1) is

π(cm, . . . , c1) = C
m∏
i=1

λci∑
s∈
⋃
j≤i

Scj
µs
, (1)

8

(2, 3, 6, 5, 4, 2, 1) (2, 3, 6, 5, 2, 4, 1) (2, 3, 6, 5, 2, 1, 4) (2, 3, 6, 2, 5, 4, 1) (2, 3, 6, 2, 5, 1, 4)
(2, 3, 6, 2, 1, 5, 4) (2, 3, 2, 6, 5, 4, 1) (2, 3, 2, 6, 5, 1, 4) (2, 3, 2, 6, 1, 5, 4) (2, 3, 2, 1, 6, 5, 4)

Table 1: Each of these tuples represents a possible ordering of arrivals to the system. All of these arrival orderings are consistent
with the system state shown in Figure 1(a).

where C is a normalizing constant. For example, the limiting probability of the state shown in Figure 1(b) is

π(2, 3, 6, 2, 5, 1, 4) = C ·

(
λ2∑5
i=1 µi

)
·

(
λ3∑5
i=1 µi

)
·

(
λ6∑5
i=1 µi

)
·

(
λ2∑5
i=1 µi

)

·
(

λ5

µ1 + µ3 + µ4 + µ5

)
·
(

λ1

µ1 + µ4

)
·
(
λ4

µ4

)
.

Though the limiting probability is expressed as a product of terms, it is not a classical product-form result

in that it is the product of neither per-class nor per-server terms. In our model, the terms are based on the

position of jobs in the queue.

Unfortunately, knowing an explicit expression for the limiting distribution of our state space does not

immediately yield results for the distribution of response time for each class; [7] only finds per-class response

time distributions for a few small systems. The problem is that the state space is very detailed, and it is

not obvious how to aggregate the states to find the per-class distribution of the number of jobs in system,

from which we can find the distribution of response time via Distributional Little’s Law. This aggregation

is performed in [8] for a system called the Redundancy-d system, in which each job replicates itself to d

randomly chosen servers, but nested structures do not fit this model.

In this section, we derive the distribution of response time for each job class in any nested redundancy

structure. The nested structure enables us to perform a state aggregation, thereby allowing us to express

the limiting probabilities in terms of the limiting probabilities in the left and right subsystems. Our new

aggregated states are still sufficiently detailed for us to determine the steady-state response time distribution

for each job class.

Let class-R denote the most redundant job class in the system (i.e., class-R jobs replicate to all k servers).

We define the aggregated state
(
nR, R; (A)

(B)

)
to be the state in which subsystems A and B have states (A)

and (B) respectively (including only those jobs that are ahead of the first class-R job in the queue), the R

denotes the first class-R job in the system, and nR is the number of jobs in the queue behind the first class-R

job (note that these jobs may be of any class). If there are no class-R jobs in the system, we set nR = ‘− ’,

so the state is
(
−, R; (A)

(B)

)
. If the system is empty the state is defined to be ∅ (the notation ∅ is also used to

denote an empty subsystem).

Our new state aggregates over two things. First, we aggregate over all possible interleavings of the jobs

in subsystems A and B. Second, we track only the number of jobs in the queue behind the first class-R job

rather than the specific classes of each of these jobs. We can recursively apply our aggregation so that in

states (A) and (B) we only track the number of jobs behind the first job that is fully redundant in subsystems

A and B respectively, if any.

9

Example 2. We rewrite the state in Figure 1 as (n3 = 1, 3; (6,5,4)
(2,1)), where here (A) = (6, 5, 4) and (B) =

(2, 1). Note that substates (A) and (B) only include the jobs that appear in the queue ahead of the first

class-3 job, which is fully redundant. We then recursively aggregate substates (A) and (B) to get the staten3 = 1, 3;

(
n5=1,5;

(n4=0,4)
(n6=−,6)

)
(
n2=0,2;

(n1=0,1)
(∅)

)
 .

In this new aggregated state, we know that there is a class-3 job in the system with one job in the queue

behind it, but we do not know the class of this job (it could be any class). Similarly, we know that there is a

class-5 job in the system with one job in the queue behind it but in front of the class-3 job. This job in the

queue could be class-4, 5, or 6.

Effectively, aggregating states in this manner defers the point at which we determine a job’s class. In

our system description in Section 3, we assign each job’s class upon arrival. However, because job classes

are assigned independently according to fixed probabilities, there is no need to realize a job’s class until a

server becomes available and we need to know whether the server is capable of working on the job. We can

interpret our aggregated states as being the state of an alternative (but equivalent) system in which we only

discover information about a job’s class at the moment when we must determine whether the job will enter

service on an idle server. This state description also aggregates states that are indistinguishable in terms

of arrival order. For example, all of the states listed in Table 1 are included in the aggregated state in the

above example.

Let Ij denote the subsystem in which class-j is fully redundant. That is, the classes in subsystem Ij are

all classes i such that Si ⊆ Sj , and the servers in subsystem Ij are the servers in Sj . In our example, A = I5

and B = I2. For any subsystem I, we use µI =
∑
s∈I µs to denote the total service rate of all servers in I,

and λI =
∑
i∈I λI to denote the total arrival rate of all job classes in I.

Lemma 3. The limiting probability of being in state
(
nR, R; (A)

(B)

)
, for nR 6= −, is

π
(
nR, R; (A)

(B)

)
= C · P

(
nR, R; (A)

(B)

)
, (2)

where C is a normalizing constant and P satisfies

P
(
nR, R; (A)

(B)

)
=

(
λIR
µIR

)nR
(
λR
µIR

)
· P (A) · P (B) (3)

and P (∅) = 1. The limiting probability of being in state
(
−, R; (A)

(B)

)
is

π
(
−, R; (A)

(B)

)
= C · P

(
−, R; (A)

(B)

)
,

where P
(
−, R; (A)

(B)

)
satisfies

P
(
−, R; (A)

(B)

)
= P (A) · P (B).

10

Proof. We defer the detailed proof to Appendix A and here give a proof sketch for an example of the W

model. Consider state (A,R,B,A). From (1) we know that the limiting probability of being in this state is

π(A,R,B,A) = C
(

λA
µ1 + µ2

· λR
µ1 + µ2

· λB
µ1 + µ2

· λA
µ1

)
,

where C is a normalizing constant. Note that, following (1), as soon as we see a class-R job the denominator

for all subsequent jobs in the system is µIR = µ1 + µ2.

We first aggregate over the different arrival orders that are indistinguishable from looking at a snapshot

of the system. In particular, we cannot distinguish between states (A,R,B,A) and (A,R,A,B). We have:

π (A,R, AB) = π (A,R,B,A) + π (A,R,A,B)

= C
(

λA
µ1 + µ2

· λR
µ1 + µ2

· λB
µ1 + µ2

· λA
µ1

+
λA

µ1 + µ2
· λR
µ1 + µ2

· λA
µ1 + µ2

· λB
µ2

)
= C

(
λA

µ1 + µ2
· λR
µ1 + µ2

· λA
µ1
· λB
µ2

)
.

We then aggregate over all job classes that could appear in the queue after the first class-R job. That is, we

aggregate states (A,R, AB), (B,R, AB), and (R,R, AB):

π (nR = 1, R; AB) = π (A,R, AB) + π (B,R, AB) + π (R,R, AB)

= C
(

λA
µ1 + µ2

· λR
µ1 + µ2

· λA
µ1
· λB
µ2

+
λB

µ1 + µ2
· λR
µ1 + µ2

· λA
µ1
· λB
µ2

+

λR
µ1 + µ2

· λR
µ1 + µ2

· λA
µ1
· λB
µ2

)
= C

(
λ

µ1 + µ2
· λR
µ1 + µ2

· λA
µ1
· λB
µ2

)
,

which is the form given in 3. The full proof, given in Appendix A, is a generalization of this example. �

Note that Lemma 3 can be applied recursively to the subsystems A and B. Intuitively, Lemma 3 tells us

that two systems that share no servers and no job classes are independent.

Let ρi = λi

µIi−λIi+λi
. We can interpret µIi − λIi + λi as being the service capacity in subsystem Ii that

is available for class-i after capacity is allocated to the remaining classes in subsystem Ii. Then ρi is the

fraction of time that this available capacity is used to process class-i jobs. We will show later that ρi is also

the probability that there is at least one class-i job in the system.

Lemma 4. In a nested redundancy system with ` job classes, the normalizing constant C is

C =
∏̀
i=1

(1− ρi) (4)

Proof. Deferred to Appendix B. �

Example 3. In the system shown in Figure 1, the normalizing constant is

C =

6∏
i=1

(1− ρi)

11

=

(
1− λ1

µ1

)
·
(

1− λ2

µ1 + µ2 − λ1

)
·

(
1− λ3∑6

s=1 µs −
∑5
i=1 λi + λ3

)

·
(

1− λ4

µ4

)
·
(

1− λ5

µ3 + µ4 + µ5 − λ4 − λ6

)
·
(

1− λ6

µ6

)
Theorem 1. In a nested redundancy system with ` job classes, the response time for class i, Ti, can be

expressed as

Ti = T (λIi , µIi) +
∑

j:Si⊂Sj

TQ(λj , µIj − λIj + λj),

where T (λ, µ) and TQ(λ, µ) are independent random variables distributed as the response time (the time from

when a job arrives to the system until it completes service) and queueing time (the time from when a job

arrives to the system until it enters service) respectively in an M/M/1 with arrival rate λ and service rate

µ. That is, the Laplace transform of response time for class i is

T̃ (i)(s) =

(
µIi − λIi

µIi − λIi + s

)
·
∏

j:Si⊂Sj

(
µIj − λIj

µIj − λIj + s

)(
µIj − λIj + λj + s

µIj − λIj + λj

)
(5)

To interpret the form of the Laplace transform of response time given in (5), observe that the Laplace

transform of time in queue in an M/M/1 with arrival rate λ and service rate µ is

T̃
M/M/1
Q =

(
µ− λ

µ− λ+ s

)
·
(
µ+ s

µ

)
.

Hence we can interpret the class-i response time as the queueing time in multiple successive M/M/1’s,

followed by the response time in a final M/M/1. Consider the example shown in Figure 1(a) for class

i = 4. We imagine that when a class-4 job arrives to the system it behaves like a fully redundant class-3

job and joins the queue at all five servers. Now suppose that our class-4 job reaches the head of the queue

at server 2, which cannot serve class-4 jobs. At this point the class-4 job has experienced the queueing

time of a class-3 job, but it cannot yet enter service. We now imagine the class-4 job remaining in only the

queues in subsystem A, and repeat the above reasoning to see that the class-4 job will now experience the

queueing time of a class-5 job (which is fully redundant in subsystem A). Hence we can view class-i jobs as

moving through an M/M/1 queue for each successive nested subsystem, until they are finally served in the

“innermost” subsystem Ii!

We now turn to the formal proof of Theorem 1.

Proof. Consider Ii, the subsystem consisting only of those servers in Si and the job classes r such that

Sr ⊆ Si. From Lemma 3 we know that the state of subsystem Ii can be written in the form
(
ni, i;

(Ai)
(Bi)

)
,

where (Ai) and (Bi) represent the substates of the smaller subsystems into which subsystem Ii decomposes,

as in Lemma 2. Note that we exclude all jobs that appear in the queue behind the first job of class j such

that Sj ⊃ Si.

Let class i′ be the least-redundant class such that Si′ ⊃ Si. Now consider some class j such that Sj ⊇ Si′ .

We can write the state of subsystem Ij in the form
(
j, nj ,

(Aj)
(Bj)

)
, where (Aj) and (Bj) represent the states

12

of the smaller subsystems into which subsystem Ij decomposes. It must be the case that either Ii ⊆ Aj or

Ii ⊆ Bj ; without loss of generality assume that Ii ⊆ Aj .

When deriving the distribution of the number of class-i jobs in the system, we can immediately ag-

gregate over all possible (B) states because none of the B subsystems contain any class-i jobs. Hence

the overall system states we care about are of the form
(
nR, R; (AR)

(∗)

)
. Expanding all (A) substates until

we reach subsystem Ii and dropping the (∗) substates from our notation, we obtain states of the form(
nx, Cx;nx−1, Cx−1; . . . , ni′ , i

′;ni, i;
(Ai)
(Bi)

)
, where job classes Ci+1=i′ , . . . , Cx = R are all the job classes j

with Sj ⊃ Si. Note that due to the nested structure, there is only one order in which these classes can

appear in this description of the system state. In our state, if there is no class-j job in the system we set

nj = ‘ − ’; otherwise nj is the number of jobs behind the first class-j job in the queue and in front of the

first class-(j + 1) job. In the example shown in Figure 1, we can write the system state for class i = 4 as(
n3 = 1, 3;n5 = 2, 5;n4 = 1, 4; (−)

(−)

)
.

From Lemma 3, the limiting probability of being in state
(
nx, Cx;nx−1, Cx−1; . . . ;ni, i;

(∗)
(∗)

)
is

π
(
nx, Cx;nx−1, Cx−1; . . . ;ni, i;

(∗)
(∗)

)
=

x∏
j=i
nj 6=−

(
λj
µIj

)
·
(
λIj
µIj

)nj

·
x∏
j=i

(1− ρj) . (6)

Now we are ready to find the z-transform of the number of class-i jobs in the system. We will do this by

conditioning on there being a class-a job in the system and before the first job of class-(a+ 1), . . . , x, where

Sa ⊃ Si. Aggregating over all possible values of nj (including nj = −) for all j 6= a, we find

Pr
{

at least one class-a job in system
and before first job of class−(a+1),...,x

}
=

λa
µIa − λIa + λa

= ρa.

Conditioned on there being a class-a job in the system and before the first job of class-(a+ 1), . . . , x, we

have:

π
(
nx, Cx;nx−1, Cx−1; . . . ;ni, i;

(∗)
(∗)

)
|(na 6= −) =

(
λIa
µIa

)na

·
(

1− λIa
µIa

)
·

x∏
j=i
j 6=a
nj 6=−

(
λj
µIj

)
·
(
λIj
µIj

)nj

·
x∏
j=i
j 6=a

(1− ρj) .

Observe that the number of jobs in the queue behind the class-a job (but in front of the first class-

(a+ 1), . . . , x job), N (a), is geometrically distributed with parameter 1− λIa
µIa

. Each of these jobs is a class-i

job with probability λi

λIa
. Let Ni|a be the number of class-i jobs among the N (a) jobs. Conditioning on the

value of N (a), we find that the z-transform of Ni|a is

N̂i|a(z) =

∞∑
m=0

(
λIa
µIa

)m(
1− λIa

µIa

) m∑
n=0

(
m

n

)
zn
(
λi
λIa

)n(
1− λi

λIa

)(m−n)

=

∞∑
m=0

(
λIa
µIa

)m(
1− λIa

µIa

)(
1− λi

λIa
(1− z)

)m

=
1− λIa

µIa

1− λIa
µIa

(
1− λi

λIa
(1− z)

)
13

=
µIa − λIa

µIa − λIa + λi − λiz

=

µIa−λIa
µIa−λIa+λi

1− λi

µIa−λIa+λi
z
.

Note that this is the transform of a geometric random variable with parameter

pi|a = 1− λi
µIa − λIa + λi

.

We now condition on whether there is a class-a job in the system and before the first job of class-

(a+ 1), . . . , x to find N̂i,a(z), the z-transform of the number of class-i jobs in the queue immediately behind

the class-a job (if there is one):

N̂i,a(z) = Pr{at least one class-a job}N̂i|a(z) + Pr{no class-a job}z0

= ρa ·
(

µIa − λIa
µIa − λIa + λi − λiz

)
+ (1− ρa)

=

(
µIa − λIa

µIa − λIa + λa

)
·
(

1 +
λa

µIa − λIa + λi − λiz

)
=

(
µIa − λIa

µIa − λIa + λa

)
·
(
µIa − λIa + λi + λa − λiz
µIa − λIa + λi − λiz

)
.

Because we can view the queue as x − i independent pieces (see equation (6)), each with a geometrically

distributed number of class-i jobs, we can write the z-transform of the number of class-i jobs in the system

as:

N̂i(z) =

(
µIi − λIi

µIi − λIi + λi

)
·
(

µIi − λIi + λi
µIi − λIi + λi − λiz

)
·

x∏
a=i+1

(
µIa − λIa

µIa − λIa + λa

)
·
(
µIa − λIa + λi + λa − λiz
µIa − λIa + λi − λiz

)
,

where the first term is different because if ni 6= − we have one additional class-i job in the system.

Finally, to find the Laplace transform of response time for class-i jobs, note that class-i jobs depart the

system in the order in which they arrived, so we can apply Distributional Little’s Law. Let z = λi−s
λi

. Then

we have

T̃ (i)(s) =

(
µIi − λIi

µIi − λIi + s

)
·
∏

j:Si⊂Sj

(
µIj − λIj

µIj − λIj + s

)(
µIj − λIj + λj + s

µIj − λIj + λj

)

as desired. �

4.2. Performance

Recall that our two goals are (1) to achieve low overall system mean response time, and (2) to preserve

fairness across job classes, meaning that no class of jobs should have a higher mean response time in the

redundancy system than in the original system with no redundancy. In this section we evaluate the extent to

which FCFS-R meets these goals. We look specifically at the W model; Figure 3(a) shows the non-redundant

14

(a) non-redundant FCFS (b) FCFS-R (c) LRF (d) PF

Figure 3: The W model with four different scheduling policies: (a) FCFS in a system with no redundancy, (b) FCFS in a system
where class-R jobs are redundant (FCFS-R, Section 4), (c) Least Redundant First (Section 5), and (d) Primaries First, where
P and S denote a job’s primary and secondary copies respectively (Section 6).

system, and Figure 3(b) shows the redundancy system with FCFS scheduling. For our performance analysis,

we assume the service rate is the same at both servers (µ1 = µ2 = 1). Figures 3(c) and (d) show the

scheduling policies that we study in Section 5 and 6.

As described in Section 3, we consider two different settings. In the first setting, we start with an

asymmetric system in which pA = 0.7 and pB = 0.3; we then look at the effect of having some jobs switch

from being class-A to class-R by decreasing pA while increasing pR (Figure 2(b)). In the second setting, we

start with a symmetric system (i.e., pA = pB = 0.5) and look at the effect of having some become redundant

while the system remains symmetric. That is, we hold λA = λB while increasing pR (Figure 2(c)).

4.2.1. Objective 1: Low Overall Mean Response Time

We first evaluate the response time benefit achieved by the overall system from using redundancy. In

the asymmetric case (pA + pR = 0.7, pB = 0.3), allowing some class-A jobs to become redundant (i.e.,

increasing pR and decreasing pA) dramatically reduces mean response time for the overall system, and can

even increase the system’s stability region. For example, if pA = 0.7 server 1 becomes unstable when

λ = 1.43 (λpA = 0.7λ = 1), but if pA is reduced to 0.6, so pR = 0.1, server 1 remains stable for λ up to

1.67 (λpA = 0.6λ = 1). The improvement is larger as the fraction of jobs that are redundant increases (see

Figure 4(a),(b)). When the system initially is symmetric (pA = pB = 0.5), mean response time can be as

much as 30% lower under FCFS-R than under non-redundant FCFS, but the advantage is not as great as in

the asymmetric case (see Figure 4(c),(d)).

The difference in the magnitude of improvement in the two system configurations occurs because one of

the primary benefits of redundancy is that it helps with load balancing. In the asymmetric system, allowing

some class-A jobs to become redundant shifts some of the class-A load away from server 1 and onto server

2, which helps alleviate long queueing times experienced by the jobs that are served at server 1. In contrast,

the symmetric system does not have an initial load imbalance, so there is not as much room for improvement

in queueing time. While waiting in both queues can help the redundant jobs to experience shorter queueing

15

A
sy

m
m

et
ri

c
ca

se

λ

0 0.5 1 1.5 2

E
[T

]

0

2

4

6

8
FCFS
FCFS-R

λ

0 0.5 1 1.5 2

E
[T

]

0

2

4

6

8
FCFS
FCFS-R

(a) pA = 0.6,
pB = 0.3,
pR = 0.1

(b) pA = 0.2,
pB = 0.3,
pR = 0.5

S
y
m

m
et

ri
c

ca
se

λ

0 0.5 1 1.5 2

E
[T

]

0

2

4

6

8
FCFS
FCFS-R

λ

0 0.5 1 1.5 2
E
[T

]
0

2

4

6

8
FCFS
FCFS-R

(c) pA = 0.45,
pB = 0.45,
pR = 0.1

(d) pA = 0.25,
pB = 0.25,
pR = 0.5

Figure 4: Comparing mean response time for the overall system under FCFS-R (dashed blue line) and under non-redundant
FCFS (solid black line) in the asymmetric (top row) and symmetric (bottom row) cases.

times, in the symmetric case the service time reduction becomes a more significant component of the benefit

offered by redundancy. When both class-A and class-B jobs become redundant and the system remains

symmetric as pR increases, an increasing number of jobs end up in service on both servers simultaneously

and thus get to experience the minimum service time across the two servers.

While FCFS-R offers substantial response time gains over a system with no redundancy, we will see in

the next section that FCFS-R is not the best we can do.

4.2.2. Objective 2: Fairness Across Classes

Here we consider the per-class mean response times; our goal is for each class to perform at least as well

in the redundancy system as under the initial non-redundant FCFS.

We begin by considering the asymmetric case, in which in the nonredundant system pA = 0.7 and

pB = 0.3, and in the redundant system some of the class-A jobs become redundant. It is easy to see by a

sample-path argument that jobs that switch from class-A to class-R will benefit from the switch (Figures 5

and 6). Under FCFS-R, each class-R job retains the spot in first-come first-served order in the queue at

server 1 that it held before it became redundant, while adding an opportunity to complete earlier on server

16

pA = 0.6, pB = 0.3, pR = 0.1 pA = 0.2, pB = 0.3, pR = 0.5
C

la
ss
A

λ

0 0.5 1 1.5 2

E
[T

A
]

0

2

4

6

8
FCFS
FCFS-R

λ

0 0.5 1 1.5 2

E
[T

A
]

0

2

4

6

8
FCFS
FCFS-R

C
la

ss
B

λ

0 0.5 1 1.5 2

E
[T

B
]

0

2

4

6

8
FCFS
FCFS-R

λ

0 0.5 1 1.5 2

E
[T

B
]

0

2

4

6

8
FCFS
FCFS-R

C
la

ss
R

λ

0 0.5 1 1.5 2

E
[T

R
]

0

2

4

6

8
FCFS
FCFS-R

λ

0 0.5 1 1.5 2

E
[T

R
]

0

2

4

6

8
FCFS
FCFS-R

Figure 5: Comparing mean response time under FCFS-R (dashed blue line) and FCFS (solid black line) in the asymmetric case
for class-A (top row), class-B (middle row), and class-R (bottom row) jobs. Note the kink at λ = 1.67 for class-B and class-R
jobs when pA = 0.6; this occurs because at λ = 1.67 the class-A jobs become unstable.

2. Note that there is a kink in the curve for class-R and class-B jobs under FCFS-R at λ = 1.67. This is

because at λ = 1.67, the class-A jobs become overloaded (λ · pA = 1 = µ), so none of the class-R jobs end

up in service on server 1. Instead, all class-R jobs effectively only get to join the queue at server 2, which

becomes an M/M/1 with arrival rate λB + λR and service rate µ. Thus at λ = 1.67 the mean response time

for class-R jobs shifts from 1
2µ−λA−λB−λR

to 1
µ−λB−λR

. Similarly, the mean response time for class-B jobs

also exhibits a kink here, reflecting the fact that for λ > 1.67 all of the class-R jobs compete with the class-B

jobs on server 2.

Class-A jobs also benefit from allowing some jobs to become redundant class-R jobs because the class-R

jobs may leave the queue at server 1 without ever entering service. Unfortunately, the story is the opposite

for the class-B jobs. The class-B jobs can be hurt by redundancy because the redundant jobs, which initially

17

pA = 0.45, pB = 0.45, pR = 0.1 pA = 0.25, pB = 0.25, pR = 0.5
C

la
ss
A
≡

C
la

ss
B

λ

0 0.5 1 1.5 2

E
[T

A
]
=

E
[T

B
]

0

2

4

6

8
FCFS
FCFS-R

λ

0 0.5 1 1.5 2

E
[T

A
]
=

E
[T

B
]

0

2

4

6

8
FCFS
FCFS-R

C
la

ss
R

λ

0 0.5 1 1.5 2

E
[T

R
]

0

2

4

6

8
FCFS
FCFS-R

λ

0 0.5 1 1.5 2

E
[T

R
]

0

2

4

6

8
FCFS
FCFS-R

Figure 6: Comparing mean response time under FCFS-R (dashed blue line) and FCFS (solid black line) in the symmetric case
for class-A and class-B (top row, classes A and B experience the same performance in the symmetric case), and class-R (bottom
row).

were class-A jobs, now join the queue at server 2 and take away some capacity from the class-B jobs. For

example, when pR = 0.5 and λ = 1.4 mean response time for the class-B jobs is 32% higher under FCFS-R

than under non-redundant FCFS.

In the symmetric case, in which in the nonredundant system pA = pB = 0.5, and in the redundant system

both class-A jobs and class-B jobs become redundant, the effects of redundancy are much less pronounced

(see Figure 6). Here all three classes experience lower mean response time under FCFS-R than under non-

redundant FCFS. But for the class-A and class-R jobs, the improvement is far greater in the asymmetric

case. Unlike in the asymmetric case, the class-B jobs are not hurt by redundancy in the symmetric case

because here some class-B jobs get to become redundant, thereby benefiting from waiting in both queues

and potentially running on both servers.

We see, from the pain experienced by the class-B customers in the asymmetric case, that, in general,

FCFS-R fails to achieve our second objective of ensuring that all classes perform at least as well in the

redundant system as in the non-redundant system.

5. Least Redundant First (LRF)

Our study of the FCFS-R policy reveals that using redundancy can lead to significant response time

reductions relative to a system in which no jobs are redundant. In this section, we ask what is the most

18

benefit we can achieve with respect to efficiency, i.e., reduction in overall system response time. Is FCFS-R

the best we can do? Or is there some other policy that allows us to achieve even lower response times?

Intuitively, one important reason why redundancy helps is that it reduces the likelihood that servers are

idle while there is still work in the system. While FCFS-R helps with load balancing, it is possible for all of

the redundant jobs to complete service, leaving behind a potentially unbalanced number of non-redundant

jobs at each server. If this imbalance is large enough, one server can idle while others still have many jobs

in the queue. We can alleviate this problem by preemptively prioritizing less-redundant jobs so that we

preserve redundancy to prevent idling in the future. We call this idea the Least Redundant First (LRF)

scheduling policy. We will show that LRF minimizes overall response time for any general exogenous arrival

process.

5.1. Policy and Optimality

Under LRF, at all times each server works on the job in its queue that is redundant at the fewest queues.

Formally, for an arbitrary server s, let Js = {i : s ∈ Si} be the set of job classes that replicate to server s, as

defined in Section 3. Under LRF, server s gives priority to jobs of class i over jobs of class j 6= i if i, j ∈ Js
and |Si| < |Sj |. Note that this policy is well defined and provides a unique ordering among all job classes

due to the nested structure: it is not possible to have i, j ∈ Js and |Si| = |Sj | unless i = j. Furthermore,

it is easy to implement LRF with minimal overhead by having each job store a small amount of metadata

indicating its degree of redundancy. Each server then determines the appropriate priority ordering among

the jobs in its queue, without needing to know any information about the position of a job in other servers’

queues. The only time communication is required between servers is when a job completes service and the

remaining copies must be cancelled; this communication is required under any redundancy policy.

Intuitively, from the overall system’s perspective LRF achieves low mean response time by preserving

redundant jobs as long as possible (without idling) to maximize system efficiency. Under LRF, a redundant

job only enters service at a particular server if there are no less-redundant jobs in the queue at that server,

meaning that the jobs that stay in the system the longest are those that have the most options. This makes

it much less likely under LRF than under non-redundant FCFS or even under FCFS-R that servers will idle

while there is still work in the system. Indeed, we prove that LRF is optimal with respect to overall mean

response time among all preemptive policies (Theorem 2).

Our proof relies on tracking the number of jobs of each class in the system at all times t for a given sample

path. We show that for all job classes i and at all times t, if we count up the number of jobs that are class i

or that share servers with but are less redundant than class i, this number is smaller under LRF than under

any other policy. This tells us that LRF stochastically maximizes the number of departures from the system

by time t, for all t, and so also minimizes mean response time (Corollary 1). (A random variable X is said

to be stochastically greater than a random variable Y if Pr{X > t} > Pr{Y > t} for all t.) Let Ni(t) be the

number of class-i jobs in the system at time t, and let N i(t) =
∑
j:Sj⊆Si

Nj(t) be the total number of class-i

jobs plus those jobs that have priority over class-i jobs at any server (i.e., the jobs that are less redundant

19

than class-i jobs and share a server with class-i jobs). Finally, let ~N(t) = (N1(t), N2(t), . . . , N `(t)), where

` is the number of job classes. Unlike our analysis of FCFS-R, the proof of optimality for LRF does not

require Poisson arrivals; we simply assume that arrivals are an arbitrary exogenous process.

Theorem 2. The preemptive non-idling LRF policy stochastically minimizes { ~N(t)}∞t=0, among all pre-

emptive, possibly idling, policies when service times are exponential, the arrivals form a general exogenous

process, and the redundancy structure is nested.

Proof. We consider two coupled systems I and II that share a common arrival sequence and, at each server,

a common Poisson stream of potential completion times. In System I, the scheduling policy is some arbitrary

policy π. In System II we will construct an alternative policy π′ in which all departures occur no later than

under π with probability 1. Repeatedly improving the policy by constructing better ones will yield a policy

that is equivalent to LRF.

We first show that idling is non-optimal. Suppose that our arbitrary scheduling policy π idles server s at

time 0 when there is a job of class i in the system such that s ∈ S(i). Let our alternative scheduling policy

π′ serve the job of class i on server s and otherwise agree with π at time 0. Let δ > 0 be the first time an

event (arrival, service completion, or preemption) occurs in System I (under π), and let Y ∼ Exp (µs) be

the next completion time on server s in System II (under π′), at which time our class-i job will depart.

Case 1: Y > δ. At time δ, our class-i job has not yet departed in System II, so the two systems still

contain the same set of jobs. Beginning at time δ we can let π′ agree with π for all scheduling decisions by

preempting the class-i job on server s in System II. Then { ~N ′(t)}∞t=0 = { ~N(t)}∞t=0 almost surely.

Case 2: Y = δ. At time Y , our class-i job departs in System II. From time Y on, whenever any server

serves our class-i job in System I (under π), let the corresponding server idle in System II (under π′), and

let π′ otherwise agree with π. Then our class-i job completes earlier under π′ than under π, while all other

jobs complete at the same time, so { ~N ′(t)}∞t=0 ≤ { ~N(t)}∞t=0 almost surely.

We can repeat this argument at each service completion time.

We next show that LRF is optimal among all non-idling policies. Suppose that in System I, scheduling

policy π serves a class-j job on server s at time 0 when there is a class-i job in the system such that

s ∈ S(i) ⊂ S(j). In System II, let an alternative scheduling policy π′ serve the class-i job on server s and

otherwise agree with π at time 0. As before, let δ be the first time an event occurs in System I (under π),

and let Y be the next completion time on server s in both systems (note that under π this completion is of

a class-j job, whereas under π′ it is a class-i job).

Case 1: Y > δ. As above, beginning at time δ let π′ agree with π for all scheduling decisions. Then

{ ~N ′(t)}∞t=0 = { ~N(t)}∞t=0 almost surely.

Case 2: Y = δ. From time Y on, whenever any server serves our class-i job in System I (under π)

(note that this job has departed under π′), let the corresponding server in System II serve our class-j job

under π′ (which is possible because S(i) ⊂ S(j)), and let π′ otherwise agree with π. Then N ′i(Y) < N i(Y)

20

and N ′j(Y) = N j(Y). More generally, repeating the argument at each time at which a server serves a

more-redundant job instead of a less-redundant job that it could serve, we find that { ~N ′(t)}∞t=0 ≤ { ~N(t)}∞t=0

almost surely, and hence it is optimal for each server to always serve the least redundant job among those it

can serve. This policy is exactly LRF. �

Corollary 1. LRF stochastically maximizes the number of departures (job completions) by time t, for all t,

among all preemptive, possibly idling, policies, and therefore also minimizes mean response time.

While our focus is on nested systems, it is worth noting that our optimality proof for LRF holds for

any nested substructure, even in general, non-nested systems. For example, non-redundant jobs are always

nested relative to all other job classes, so they should be given highest priority.

Corollary 2. For any redundancy system (not just nested systems), there exists a scheduling policy that

minimizes mean response time that gives highest preemptive priority to job classes i with |Si| = 1, i.e.,

non-redundant job classes.

5.2. Response Time Bounds and Analysis

In general, analyzing per-class and overall system response time under LRF seems to be intractable.

For non-redundant classes, analysis is possible because these classes are isolated from all other jobs in the

system; we provide exact expressions for the response time distribution for all non-redundant classes under

LRF scheduling, assuming the non-redundant classes have Poisson arrival processes.

Lemma 5. Under LRF, any non-redundant class i that has a Poisson arrival process with rate λi and that

runs only on server j has response time Ti ∼ Exp (µj − λi).

Proof. The non-redundant class-i jobs have highest preemptive priority among all jobs that share server

j. Hence these jobs see an M/M/1 with arrival rate λi and service rate µj . �

Redundant classes and the overall system are more difficult to analyze exactly because a redundant job’s

response time is the minimum of the time it would experience across multiple queues, and these queues are

not independent. Instead, in the case where all job classes have Poisson arrival processes, we derive bounds

on mean response time for redundant jobs and the overall system.

Theorem 3. Under LRF scheduling in a nested system, the overall system mean response time, E
[
TLRF

]
,

is bounded by:

max

{
1

µ− λ
,

1

λ

∑̀
i=1

λi
µIi − λIi

}
≤ E

[
TLRF

]
≤ E

[
TFCFS−R

]
,

where µ =
∑k
s=1 µs and λ =

∑`
i=1 λi.

21

Proof. Mean response time is minimized when all jobs are fully redundant (see, e.g., [10], Theorem 3.2).

If all jobs are fully redundant, the system is equivalent to a single M/M/1 with arrival rate λ and service

rate µ. This gives us the first term in our lower bound. The second term results from individual per-class

bounds: the response time for class-i must be at least that in an M/M/1 with arrival rate λIi and service

rate µIi =
∑
s∈Si

µs.

The upper bound is the overall system mean response time under FCFS-R (derived in Theorem 1); that

it is an upper bound follows from the optimality of LRF (Theorem 2). �

Combining Lemma 5 and Theorem 3 gives us Theorem 4, which provides bounds on the class-R mean

response time under LRF.

Theorem 4. Under LRF in the W model, the mean response time for class-R, E
[
TLRF
R

]
, is bounded by

1

µ− λ
≤ E

[
TLRF
R

]
≤ 1

λR

(
λ

µ− λ
− λA + λB
µ− λA − λB

)
.

Proof. We know that

E
[
TLRF

]
=
λA
λ

E
[
TLRF
A

]
+
λB
λ

E
[
TLRF
B

]
+
λR
λ

E
[
TLRF
R

]
.

Combining this with the exact forms for E
[
TLRF
A

]
and E

[
TLRF
B

]
given in Lemma 5 and the upper bound

for E
[
TLRF

]
given in Theorem 3 immediately yields the upper bound on E

[
TLRF
R

]
. The lower bound is the

response time for class-R jobs under FCFS-R, and it is clear that giving class-R jobs lowest priority can only

increase their response time. �

Figure 7 shows the quality of the bounds on E
[
TLRF
R

]
in both the asymmetric and symmetric cases

described in Section 3. The upper bound becomes increasingly tight as a larger fraction of jobs become

redundant.

5.3. Performance

To evaluate the performance of LRF, we again turn to the W model. As before, we consider two system

configurations: the asymmetric system where only class-A jobs become redundant, and the symmetric system

where both class-A and class-B jobs become redundant.

5.3.1. Objective 1: Low Overall Mean Response Time

Given that LRF is optimal with respect to overall mean response time (Theorem 2), it is unsurprising

that Figure 8(d) shows that LRF outperforms both non-redundant FCFS and FCFS-R. What is surprising

is that the gap is so small between FCFS-R and LRF for all of the system configurations.

To understand why, we turn to the bounds on mean response time under LRF (Theorem 3). Figure 9

shows that for nearly all parameter settings, the upper bound (which is equivalent to FCFS-R) is extremely

close to the lower bound. We see very little difference in overall mean response time from using different

redundancy-based scheduling policies because redundancy itself is extremely powerful. The benefit of sim-

ply allowing some jobs to be redundant, thereby preventing servers from idling, is much greater than any

additional benefit that can be achieved via sophisticated scheduling policies.

22

A
sy

m
m

et
ri

c
ca

se

λ

0 0.5 1 1.5 2

E
[T

R
]

0

2

4

6

8
LRF
Upper Bound
Lower Bound

λ

0 0.5 1 1.5 2

E
[T

R
]

0

2

4

6

8
LRF
Upper Bound
Lower Bound

(a) pA = 0.6,
pB = 0.3,
pR = 0.1

(b) pA = 0.2,
pB = 0.3,
pR = 0.5

S
y
m

m
et

ri
c

ca
se

λ

0 0.5 1 1.5 2

E
[T

R
]

0

2

4

6

8
LRF
Upper Bound
Lower Bound

λ

0 0.5 1 1.5 2
E
[T

R
]

0

2

4

6

8
LRF
Upper Bound
Lower Bound

(c) pA = 0.45,
pB = 0.45,
pR = 0.1

(d) pA = 0.25,
pB = 0.25,
pR = 0.5

Figure 7: Bounds on class-R mean response time under LRF in the asymmetric (top row) and symmetric (bottom row) cases.
As the fraction of class-R jobs increases, the upper bound becomes increasingly tight.

5.3.2. Objective 2: Fairness Across Classes

Under LRF, in the asymmetric case all three classes of jobs are better off than they were under FCFS-R

(see Figure 10). The class-A jobs see a much more pronounced improvement relative to the non-redundant

system under LRF than under FCFS-R, particularly as the fraction of class-R jobs increases. Under FCFS-R

the class-A jobs approach instability as λ approaches 2, whereas the class-A mean response time remains

very low under LRF even as λ gets high because class-A jobs have preemptive priority over class-R jobs.

Similarly, under LRF the class-B jobs are not hurt by the class-R jobs. Class-B jobs experience exactly the

same mean response time under LRF as under non-redundant FCFS because under both policies, there are

no class-R jobs competing with the class-B jobs, which have preemptive priority over class-R jobs.

The class-R jobs, too, benefit significantly from getting to wait in both queues. Even though the class-R

jobs have lowest priority in both queues, they are likely to be preempted by fewer class-B jobs at server 2

than class-A jobs at server 1. When λB is sufficiently low, the class-R jobs are better off having low priority

behind the class-B (and class-A) jobs than they would have been waiting in FCFS order among the class-A

jobs. Note that, as was the case for FCFS-R, there is a kink in the curve for class-R jobs at λ = 1.67. Again,

23

A
sy

m
m

et
ri

c
ca

se

λ

0 0.5 1 1.5 2

E
[T

]

0

2

4

6

8
FCFS
FCFS-R
LRF

λ

0 0.5 1 1.5 2

E
[T

]

0

2

4

6

8
FCFS
FCFS-R
LRF

(a) pA = 0.6,
pB = 0.3,
pR = 0.1

(b) pA = 0.2,
pB = 0.3,
pR = 0.5

S
y
m

m
et

ri
c

ca
se

λ

0 0.5 1 1.5 2

E
[T

]

0

2

4

6

8
FCFS
FCFS-R
LRF

λ

0 0.5 1 1.5 2
E
[T

]
0

2

4

6

8
FCFS
FCFS-R
LRF

(c) pA = 0.45,
pB = 0.45,
pR = 0.1

(d) pA = 0.25,
pB = 0.25,
pR = 0.5

Figure 8: Comparing mean response time for the overall system under LRF (dot-dashed red line) to that under FCFS-R (dashed
blue line) and non-redundant FCFS (solid black line) in the asymmetric (top row) and symmetric (bottom row) cases.

this is because at λ = 1.67 the class-A jobs become unstable, so the class-R jobs effectively only join the

queue at server 2. Server 2 then behaves like a priority queue in which class-B jobs have preemptive priority

over class-R jobs. Mean response time for the low-priority class-R jobs in this system is

E [TR] =
1

µ2 − λB
+

λB + λR
(µ2 − λB)(µ2 − λB − λR)

.

Unfortunately, the symmetric case reveals LRF’s inability to satisfy our fairness objective in general (see

Figure 11). LRF is able to achieve optimal overall mean response time and avoid hurting the non-redundant

jobs by forcing the redundant jobs to have lowest preemptive priority. This means that redundant jobs only

receive service when there are no non-redundant jobs at the server. When the system load is sufficiently

high, both the class-A and class-B busy periods can be very long. Hence the redundant jobs can be starved

and experience higher mean response times than they would have if they had remained class-A jobs under

non-redundant FCFS. For example, in the symmetric case, when pR = 0.1 and λ = 1.6, mean response time

for the class-R jobs is 36% higher under LRF than under non-redundant FCFS. Thus like FCFS-R, LRF is

unable to achieve our goal of fairness across job classes for all parameter values.

24

A
sy

m
m

et
ri

c
ca

se

λ

0 0.5 1 1.5 2

E
[T

]

0

2

4

6

8
LRF
Upper Bound
Lower Bound 1
Lower Bound 2

λ

0 0.5 1 1.5 2

E
[T

]

0

2

4

6

8
LRF
Upper Bound
Lower Bound 1
Lower Bound 2

(a) pA = 0.6,
pB = 0.3,
pR = 0.1

(b) pA = 0.2,
pB = 0.3,
pR = 0.5

S
y
m

m
et

ri
c

ca
se

λ

0 0.5 1 1.5 2

E
[T

]

0

2

4

6

8
LRF
Upper Bound
Lower Bound 1
Lower Bound 2

λ

0 0.5 1 1.5 2
E
[T

]
0

2

4

6

8
LRF
Upper Bound
Lower Bound 1
Lower Bound 2

(c) pA = 0.45,
pB = 0.45,
pR = 0.1

(d) pA = 0.25,
pB = 0.25,
pR = 0.5

Figure 9: Upper and lower bounds for overall system mean response time under LRF in the asymmetric (top row) and symmetric
(bottom row) cases. Here we show both terms in the lower bound given in Theorem 4.

6. Primaries First (PF)

In Sections 4 and 5, we saw that although both FCFS-R and LRF achieve near-optimal and optimal

performance with respect to overall mean response time, they both fail to achieve our second objective of

maintaining fairness across classes. Specifically, FCFS-R may penalize the class-B jobs by forcing them to

wait behind the class-R jobs that become redundant. LRF tries to compensate for this by prioritizing the

non-redundant jobs. However, this can cause the class-R jobs to experience higher mean response times than

if they were not redundant.

The Primaries First (PF) policy is designed to balance the strengths of both LRF and FCFS. Under

PF, each arriving job designates a single primary copy, and any additional replicas are designated secondary

copies. At each server, primaries have preemptive priority over secondaries, regardless of job class. Within

the primaries (respectively, secondaries) jobs are served in FCFS order. We note that like LRF, PF is

easy to implement with only a small amount of metadata: each copy of a job must store a bit indicating

whether it is a primary or secondary copy, and each server then can prioritize the jobs in its queue accord-

ingly. Communication between servers is required only when a job completes service and its copies must be

25

pA = 0.6, pB = 0.3, pR = 0.1 pA = 0.2, pB = 0.3, pR = 0.5
C

la
ss
A

λ

0 0.5 1 1.5 2

E
[T

A
]

0

2

4

6

8
FCFS
FCFS-R
LRF

λ

0 0.5 1 1.5 2

E
[T

A
]

0

2

4

6

8
FCFS
FCFS-R
LRF

C
la

ss
B

λ

0 0.5 1 1.5 2

E
[T

B
]

0

2

4

6

8
FCFS
FCFS-R
LRF

λ

0 0.5 1 1.5 2

E
[T

B
]

0

2

4

6

8
FCFS
FCFS-R
LRF

C
la

ss
R

λ

0 0.5 1 1.5 2

E
[T

R
]

0

2

4

6

8
FCFS
FCFS-R
LRF

λ

0 0.5 1 1.5 2

E
[T

R
]

0

2

4

6

8
FCFS
FCFS-R
LRF

Figure 10: Comparing mean response time under LRF (dot-dashed red line) to that under FCFS-R (dashed blue line) and
FCFS (solid black line) in the asymmetric case for class-A (top row), class-B (middle row), and class-R (bottom row) jobs.
Note that there is a kink at λ = 1.67 for the class-R jobs when pA = 0.6 because at this point the class-A jobs become unstable.

cancelled.

When comparing PF with a system in which no jobs are redundant, we assume that jobs that become

redundant designate their primary to be the copy that joins the queue at the server that the job would have

gone to in the corresponding non-redundant system (e.g., in the asymmetric W model, class-R jobs have

their primary copy on server 1). Alternative definitions of PF in which jobs designate their primary copy

probabilistically or according to some other policy are possible, but lack the theoretical guarantees we prove

under our policy definition.

Intuitively, PF is successful at balancing the dual goals of achieving good overall performance and pre-

serving fairness among classes because PF represents a compromise between LRF, which achieves optimal

overall performance at the expense of the redundant jobs, and FCFS-R, which tries to be fair to the redun-

26

pA = 0.45, pB = 0.45, pR = 0.1 pA = 0.25, pB = 0.25, pR = 0.5
C

la
ss
A
≡

C
la

ss
B

λ

0 0.5 1 1.5 2

E
[T

A
]
=

E
[T

B
]

0

2

4

6

8
FCFS
FCFS-R
LRF

λ

0 0.5 1 1.5 2

E
[T

A
]
=

E
[T

B
]

0

2

4

6

8
FCFS
FCFS-R
LRF

C
la

ss
R

λ

0 0.5 1 1.5 2

E
[T

R
]

0

2

4

6

8
FCFS
FCFS-R
LRF

λ

0 0.5 1 1.5 2

E
[T

R
]

0

2

4

6

8
FCFS
FCFS-R
LRF

Figure 11: Comparing mean response time under LRF (dot-dashed red line) to that under FCFS-R (dashed blue line) and FCFS
(solid black line) in the symmetric case for class-A and class-B (top row, classes A and B experience the same performance in
the symmetric case), and class-R (bottom row).

dant jobs but consequently can hurt the non-redundant jobs and the overall system. Like LRF, PF only

allows extra copies to run when there is spare server capacity. This prevents PF from hurting non-redundant

jobs. Like FCFS, PF allows one copy of each redundant job to hold its place in the system-wide FCFS or-

dering. This prevents PF from hurting redundant jobs. In Theorem 5 we formalize this intuition by proving

that under PF, every job class has response time at least as low as its response time under (non-redundant)

FCFS. Unlike our results for FCFS-R and LRF, the proof of Theorem 5 is quite general: service times can

be generally distributed, service times for the same job can be correlated across servers, the arrival process

can be any exogenous process, and the redundancy structure need not be nested.

Theorem 5. For all job classes i, {N (i)(t)PF}∞t=0 ≤st {N (i)(t)FCFS}∞t=0 for any general service times and

any exogenous arrival process. Therefore, T
(i)
PF ≤st T

(i)
FCFS.

Proof. On any sample path, if PF never schedules any secondaries, then all jobs complete at the same

time under PF as in the system with no redundancy. Suppose a secondary copy of job i is scheduled at

some time under PF, say on server s. This means that server s is empty of primaries. If a different copy of

job i completes on a different server before completing on server s, then job i and all other jobs continue to

have the same completion times under PF as in the system with no redundancy. If job i completes on server

s, then all of its copies disappear immediately from the system (including, in particular, its primary copy,

which we will say disappeared from server s′). Then server s′ now has one fewer job under PF than under

27

A
sy

m
m

et
ri

c
ca

se

λ

0 0.5 1 1.5 2

E
[T

]

0

2

4

6

8
FCFS
FCFS-R
LRF
PF

λ

0 0.5 1 1.5 2

E
[T

]

0

2

4

6

8
FCFS
FCFS-R
LRF
PF

(a) pA = 0.6,
pB = 0.3,
pR = 0.1

(b) pA = 0.2,
pB = 0.3,
pR = 0.5

S
y
m

m
et

ri
c

ca
se

λ

0 0.5 1 1.5 2

E
[T

]

0

2

4

6

8
FCFS
FCFS-R
LRF
PF

λ

0 0.5 1 1.5 2
E
[T

]
0

2

4

6

8
FCFS
FCFS-R
LRF
PF

(c) pA = 0.45,
pB = 0.45,
pR = 0.1

(d) pA = 0.25,
pB = 0.25,
pR = 0.5

Figure 12: Comparing mean response time for the overall system under PF (dotted green line) to that under LRF (dot-dashed
red line), FCFS-R (dashed blue line) and FCFS (solid black line) for both the asymmetric (top row) and symmetric (bottom
row) cases.

non-redundant FCFS, while all other queues are the same length under both policies (ignoring all other jobs’

secondaries). Hence the jobs at server s′ will all complete earlier under PF than under non-redundant FCFS.

The result follows from repeating this argument each time PF schedules a secondary copy. �

6.1. Performance

We again consider the W model, shown in Figure 3(d) with redundancy and PF scheduling.

6.1.1. Objective 1: Low Overall Mean Response Time

PF successfully meets our first objective of achieving low overall mean response time (Figure 12): like

FCFS-R and LRF, PF always outperforms non-redundant FCFS. One might think that because PF uses

FCFS for primary copies, yet gives secondary copies lowest priority as in LRF, its mean response time should

lie between that under FCFS-R and LRF. Unfortunately, this is not the case, particularly when load is high

and the fraction of redundant jobs is relatively small (see Figure 12(c)). PF load balances by dispatching

each job to a single server, and then adding extra low-priority secondary copies of the redundant jobs at

other servers. When the arrival rate is high, it is fairly unlikely that the secondary copies get to run, so most

28

pA = 0.6, pB = 0.3, pR = 0.1 pA = 0.2, pB = 0.3, pR = 0.5
C

la
ss
A

λ

0 0.5 1 1.5 2

E
[T

A
]

0

2

4

6

8
FCFS
FCFS-R
LRF
PF

λ

0 0.5 1 1.5 2

E
[T

A
]

0

2

4

6

8
FCFS
FCFS-R
LRF
PF

C
la

ss
B

λ

0 0.5 1 1.5 2

E
[T

B
]

0

2

4

6

8
FCFS
FCFS-R
LRF
PF

λ

0 0.5 1 1.5 2

E
[T

B
]

0

2

4

6

8
FCFS
FCFS-R
LRF
PF

C
la

ss
R

λ

0 0.5 1 1.5 2

E
[T

R
]

0

2

4

6

8
FCFS
FCFS-R
LRF
PF

λ

0 0.5 1 1.5 2

E
[T

R
]

0

2

4

6

8
FCFS
FCFS-R
LRF
PF

Figure 13: Comparing mean response time under PF (dotted green line) to that under LRF (dot-dashed red line), FCFS-R
(dashed blue line) and FCFS (solid black line) in the asymmetric case for class-A (top row), class-B (middle row), and class-R
(bottom row) jobs.

redundant jobs experience the same performance as they did as class-A jobs in the original non-redundant

system. In contrast, under FCFS-R a redundant job enters service at whichever server has less work in the

queue when the job arrives, which reduces queueing time relative to the original system. As we increase the

proportion of redundant jobs or decrease load, we increase the likelihood that the secondary copies actually

enter service under PF, and then PF starts doing better than FCFS-R.

We observe empirically that mean response time under PF is quite similar to that under the optimal

LRF policy. Again, this is because redundancy inherently is so powerful at keeping servers from idling that

the particular scheduling policy does not play a significant role in further reducing mean response time.

29

pA = 0.45, pB = 0.45, pR = 0.1 pA = 0.25, pB = 0.25, pR = 0.5
C

la
ss
A
≡

C
la

ss
B

λ

0 0.5 1 1.5 2

E
[T

A
]
=

E
[T

B
]

0

2

4

6

8
FCFS
FCFS-R
LRF
PF

λ

0 0.5 1 1.5 2

E
[T

A
]
=

E
[T

B
]

0

2

4

6

8
FCFS
FCFS-R
LRF
PF

C
la

ss
R

λ

0 0.5 1 1.5 2

E
[T

R
]

0

2

4

6

8
FCFS
FCFS-R
LRF
PF

λ

0 0.5 1 1.5 2

E
[T

R
]

0

2

4

6

8
FCFS
FCFS-R
LRF
PF

Figure 14: Comparing mean response time under PF (dotted green line) to that under LRF (dot-dashed red line), FCFS-R
(dashed blue line) and FCFS (solid black line) in the symmetric case for class-A and class-B (top row, classes A and B experience
the same performance in the symmetric case), and class-R (bottom row).

6.1.2. Objective 2: Fairness Across Classes

PF successfully meets our second objective of preserving fairness across job classes in both the asymmetric

case (Figure 13) and the symmetric case (Figure 14): as we saw in Theorem 5, all classes experience mean

response times that are no worse than that under non-redundant FCFS.

7. Conclusions

In this paper we study scheduling policies in systems with redundant requests. We consider class-based

systems, in which each job has a class that determines the set of servers to which the job replicates itself. Our

goal is to design policies that simultaneously satisfy the two objectives of (1) efficiency, i.e., low overall mean

response time and (2) fairness across classes, i.e., each job class should perform at least as well under our

redundancy-based scheduling policies as in a system in which no jobs are redundant. The second objective

is motivated by systems such as organ transplant waitlists, in which a job’s ability to become redundant

correlates with the job’s socioeconomic status; here it is important to ensure that we do not improve response

time for the system as a whole at the expense of jobs that cannot become redundant. Our first scheduling

policy is First-Come, First-Served with redundancy (FCFS-R). We derive exact, closed-form expressions

for the per-class distribution of response time, which we use to show that FCFS-R is highly effective at

reducing the overall system mean response time. But it is possible to do even better: we introduce the

30

Least Redundant First (LRF) policy, which we prove is optimal with respect to minimizing overall mean

response time. LRF prevents servers from idling while there is still work in the system, thereby maximizing

the system efficiency. But surprisingly, FCFS-R achieves nearly the optimal overall mean response time.

This suggests that the benefits offered by redundancy itself are so substantial that there is limited room for

the particular scheduling policy to greatly affect mean response time.

On the other hand, scheduling plays a crucial role in achieving our second objective of fairness across

classes. Under FCFS-R non-redundant jobs can be hurt when some jobs become redundant due to the extra

load added by the redundant jobs. LRF prevents the non-redundant jobs from being hurt by giving them

full preemptive priority, but this can cause the redundant jobs to suffer. To overcome these weaknesses, we

introduce the Primaries First (PF) policy, under which each job designates one copy as its primary and all

other copies as secondaries; primaries have preemptive priority over secondaries on all servers. We prove

that PF successfully maintains fairness across all job classes. Furthermore, PF accomplishes this while still

providing low overall mean response time, thereby achieving our first goal as well.

Our analyses of FCFS-R and LRF rely on several assumptions, including that service times are expo-

nentially distributed and independent across servers, and that the system has a nested structure; these

assumptions may not hold in practice. Additionally, we assume that jobs are preemptible. When jobs are

non-preemptible, it is no longer even clear that idling servers is non-optimal: it may be beneficial to allow

a server to be idle rather than run a redundant copy of a job in case there is a non-redundant arrival to

that server in the near future. We leave further investigation of optimal and fair scheduling policies in

the non-preemptive setting, as well as incorporating features such as general service times and correlated

service times, and designing optimal policies in non-nested systems, for future work. Despite our model’s

assumptions, we believe the results presented here represent an important step towards understanding the

role scheduling plays in systems with redundancy. Importantly, our fairness results under PF do not require

many simplifying assumptions. PF continues to satisfy our desired fairness property when service times are

generally distributed and correlated across servers, when the arrival process is non-Poisson, and when the

system is not nested.

8. Acknowledgments

This work was supported by the NSF under grants NSF-XPS-1629444, NSF-CMMI-1538204, and NSF-

CMMI-1334194; by a Google Faculty Research Award; by a Facebook Faculty Gift; by a Google Anita Borg

Memorial Scholarship; by the Siebel Scholars Program; and by the Academy of Finland for the FQ4BD

project (grant no. 296206). We would like to thank the referees for their detailed feedback.

References

[1] Ivo Adan and Gideon Weiss. A skill based parallel service system under FCFS-ALIS - steady state,

overloads, and abandonments. Stochastic Systems, 4(1):250–299, 2014.

31

[2] Ganesh Ananthanarayanan, Srikanth Kandula, Albert G Greenberg, Ion Stoica, Yi Lu, Bikas Saha,

and Edward Harris. Reining in the outliers in map-reduce clusters using mantri. In OSDI, volume 10,

page 24, 2010.

[3] Thomas Bonald and Céline Comte. Networks of multi-server queues with parallel processing. arXiv

preprint arXiv:1604.06763, April 2016.

[4] Jeffrey Dean and Luis Andre Barroso. The tail at scale. Communications of the ACM, 56(2):74–80,

February 2013.

[5] Eric J Friedman and Shane G Henderson. Fairness and efficiency in web server protocols. In ACM

SIGMETRICS Performance Evaluation Review, volume 31, pages 229–237. ACM, 2003.

[6] Kristen Gardner, Mor Harchol-Balter, Alan Scheller-Wolf, Mark Velednitsky, and Samuel Zbarsky.

Redundancy-d: The power of d choices for redundancy. Operations Research, 2016, To appear.

[7] Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor Harchol-Balter, Esa Hyytiä, and Alan Scheller-

Wolf. Reducing latency via redundant requests: Exact analysis. In SIGMETRICS, June 2015.

[8] Kristen Gardner, Samuel Zbarsky, Mor Harchol-Balter, and Alan Scheller-Wolf. Analyzing response

time in the redundancy-d system. Technical report, Technical Report CMU-CS-15-141, 2015.

[9] Gauri Joshi, Yanpei Liu, and Emina Soljanin. Coding for fast content download. In Allerton Confer-

ence’12, pages 326–333, 2012.

[10] Ger Koole and Rhonda Righter. Resource allocation in grid computing. Journal of Scheduling, 11:163–

173, 2009.

[11] Nihar B Shah, Kangwook Lee, and Kannan Ramchandran. When do redundant requests reduce latency?

IEEE Transactions on Communications, 64(2):715–722, 2016.

[12] William Stallings and Goutam Kumar Paul. Operating systems: internals and design principles, vol-

ume 3. prentice hall Upper Saddle River, NJ, 1998.

[13] Yin Sun, Zizhan Zheng, C Emre Koksal, Kyu-Han Kim, and Ness B Shroff. Provably delay efficient data

retrieving in storage clouds. In 2015 IEEE Conference on Computer Communications (INFOCOM),

pages 585–593. IEEE, 2015.

[14] Andrew S Tanenbaum and Albert S Woodhull. Operating systems: design and implementation, volume 2.

Prentice-Hall Englewood Cliffs, NJ, 1987.

[15] Jeremy Visschers, Ivo Adan, and Gideon Weiss. A product form solution to a system with multi-type

jobs and multi-type servers. Queueing Systems, 70:269–298, 2012.

32

[16] Da Wang, Gauri Joshi, and Gregory Wornell. Efficient task replication for fast response times in parallel

computation. Technical Report arXiv:1404.1328, April 2014.

A. Proof of Lemma 3

Proof. Our proof is by induction on the number of jobs in subsystems A and B. As our base case when

nR 6= −, assume there is one job in each subsystem, and call these jobs a1 and b1. Then there are two

possible ways to interleave jobs a1 and b1, so we have

P (nR, R; (a1)
(b1)) =

∑
c1,...,cnR

(P (cnR
, . . . , c1, R, a1, b1) + P (cnR

, . . . , c1, R, b1, a1))

=
∑

c1,...,cnR

[(
λc1
µIR

)
· · ·
(
λcnR

µIR

)
·
(
λR
µIR

)
·

(
λa1

µIa1
+ µIb1

)
·

(
λb1
µIb1

)

+

(
λc1
µIR

)
· · ·
(
λcnR

µIR

)
·
(
λR
µIR

)
·

(
λb1

µIa1
+ µIb1

)
·

(
λa1
µIa1

)]

=

(
λ

µIR

)nR

·
(
λR
µIR

)
·
λa1λb1(µIa1

+ µIb1)

(µIa1
+ µIb1)µIa1

µIb1

=

(
λ

µIR

)nR

·
(
λR
µIR

)
·

(
λa1
µIa1

)
·

(
λb1
µIb1

)

=

(
λ

µIR

)nR

·
(
λR
µIR

)
· P (A) · P (B),

where P (A) =
λa1

µIa1

(respectively, P (B) =
λb1

µIb1
) gives the (unnormalized) limiting probability of being in

state (a1) (respectively, (b1)) in a system consisting of only the job classes and servers in subsystem Ia1
(respectively, Ib1).

Now suppose inductively that (3) holds for all i ≤ `A, j ≤ `B jobs in subsystems A and B. Then with

`A + 1 jobs in subsystem A, we have:

P
(
nR, R;

(a`A ,...,a1)

(b`B ,...,b1)

)
=

∑
c1,...,cnR

[
P
(
cnR

, . . . , c1, R, a`A+1,
(a`A ,...,a1)

(b`B ,...,b1)

)
+ P

(
cnR

, . . . , c1, R, b`B , a`A+1,
(a`A ,...,a1)

(b`B−1,...,b1)

)
+ · · ·+ P

(
cnR

, . . . , c1, R, b`B , b`B−1, . . . , b1, a`A+1,
(a`A ,...,a1)

(−)

)]
=

(
λ

µIR

)nR

·
(
λR
µIR

) `B∑
y=0

(
λa`A+1

µ⋃`A+1

i=1 Iai

+ µ⋃`B−y

i=1 Ibi

) `B∏
j=`B−y+1

λbj
µ⋃`A+1

i=1 Iai

+ µ⋃j
i=1 Ibi

·

`B−y∏
j=1

λbj
µ⋃j

i=1 Ibi

 `A∏
j=1

λaj
µ⋃j

i=1 Iai

=

(
λ

µIR

)nR

·
(
λR
µIR

)
·

`A+1∏
j=1

λaj
µ⋃j

i=1 Iai

 ·
 `B∏
j=1

λbj
µ⋃j

i=1 Ibi

 .

33

In the first equality, the first two terms result from summing over all possible job classes for cnR
, . . . , c1 and

using the form of the limiting probabilities of the detailed state space given in (1). The remaining terms

result from applying the inductive hypothesis. The second equality results from combining the summed

terms using a common denominator, and then simplifying. We thus have exactly the form given in (3).

A similar argument follows for the case when nR = −. �

B. Proof of Lemma 4

Proof. We find the normalizing constant via induction on the number of job classes. Our base case is the

W model, which has three classes and two servers (note that we can obtain systems with two or one classes

by simply setting the arrival rates for unwanted classes to be 0). From [7], we know that the normalizing

constant in the W model is

CW = (1− ρA) (1− ρB) (1− ρR) .

Now assume that the normalizing constant follows the form given in (4) for all systems with at most m

job classes. Consider a system with m + 1 job classes, and let class R be the most redundant class (i.e.,

class-R jobs replicate to all servers). By Lemma 3, we know that the limiting probability of being in state(
nR, R; (A)

(B)

)
is

π
(
nR, R; (A)

(B)

)
= C ·

(
λ

µA + µB

)nR
(

λR
µA + µB

)
· πA · πB,

where C is the normalizing constant, and where there are i ≤ m job classes in the left subsystem and m− i

job classes in the right subsystem.

Aggregating over all possible states for the left and the right subsystems, we find, for a constant ξ to be

determined below,

π
(
nR, R; (∗)

(∗)

)
= ξ

(
λ

µA + µB

)nR
(

λR
µA + µB

)
,

where, letting A1, . . . , Ai and B1, . . . , Bn−i denote the job classes in subsystems A and B respectively,

CA =

i∏
y=1

(1− ρAy
)

and

CB =

m−i∏
y=1

(1− ρBy
)

follow from the inductive hypothesis, and C = ξ · CA · CB.

Finally, we sum over all values of n, as well as the state in which there are no class-R jobs in the system;

this sum must be equal to 1:

1 = π(
R,−,(∗)

(∗)

) +

∞∑
n=0

π(
R,nR,

(∗)
(∗)

)

1 = ξ +

∞∑
n=0

ξ

(
λ

µA + µB

)nR
(

λR
µA + µB

)

34

1 = ξ

(
1 +

(
λR

µA + µB

)(
1

1− λ
µA+µB

))

1 = ξ

(
µA + µB − λ+ λR
µA + µB − λ

)
,

so we have

ξ = π
(
−, R; (∗)

(∗)

)
=

µA + µB − λ
µA + µB − λ+ λR

= 1− ρR

and hence

C = ξ · CA · CB

=
∏̀
i=1

(1− ρi)

as desired.

35

