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Abstract—Recognition and perception based mobile appli-
cations, such as image recognition, are on the rise. These
applications recognize the user’s surroundings and augment it
with information and/or media. These applications are latency-
sensitive. They have a soft-realtime nature - late results are
potentially meaningless. On the one hand, given the compute-
intensive nature of the tasks performed by such applications,
execution is typically offloaded to the cloud. On the other hand,
offloading such applications to the cloud incurs network latency,
which can increase the user-perceived latency. Consequently, edge
computing has been proposed to let devices offload intensive tasks
to edge servers instead of the cloud, to reduce latency. In this
paper, we propose a different model for using edge servers. We
propose to use the edge as a specialized cache for recognition
applications and formulate the expected latency for such a cache.
We show that using an edge server like a typical web cache, for
recognition applications, can lead to higher latencies. We propose
Cachier, a system that uses the caching model along with novel
optimizations to minimize latency by adaptively balancing load
between the edge and the cloud, by leveraging spatiotemporal
locality of requests, using offline analysis of applications, and
online estimates of network conditions. We evaluate Cachier for
image-recognition applications and show that our techniques
yield 3x speedup in responsiveness, and perform accurately over
a range of operating conditions. To the best of our knowledge,
this is the first work that models edge servers as caches for
compute-intensive recognition applications, and Cachier is the
first system that uses this model to minimize latency for these
applications.

I. INTRODUCTION

Mobile devices have become ubiquitous. Just as their num-
bers have increased, so have their features - high-definition
cameras, microphones and other sensors, multi-core CPUs
etc. This has led to people using these devices not only for
communication but also to augment their understanding of
their surroundings [25]. Recognition and perception algorithms
have been a key enabler for such applications [12]. Vision
based applications help users augment their understanding of
the physical world by querying it through the camera(s) on
their mobile devices. Applications such as face recognition,
augmented reality, place recognition [11], object recognition,
vision based indoor localization, all fall under this category.
There are a number of mobile applications available which do
one or more of these [4], [2], [8]. Audio based applications
such as speech recognition [1], song identification [9], speaker
identification [5] are widely utilized by users. In fact, one
only has to “look” at things, through wearable devices such as
Google’s Glass [3] and Microsoft’s Hololens [6], to augment
their vision of their surroundings.

The ultimate goal of such applications is to be able to
point your device towards anything, recognize it, and retrieve

information (or media) to augment the user’s awareness (or
experience), all within a matter of milliseconds. This also
implies that these applications have a soft-realtime nature - if
the results arrive late, the user might be looking at something
else, listening to someone else etc., and the results can be
rendered meaningless. Hence, minimizing response time is
of primary importance. This is at odds with the fact that
these applications are compute-intensive. Moreover, they need
access to “big data” to be accurate. If these applications are
executed entirely on users’ devices, the high computation
time would lead to an unusable application. Instead, they rely
on offloading intensive tasks to the cloud. Cloud computing
has enabled mobile devices to have access to vast amounts
of compute resources and data. The devices simply send
captured data (audio, images, depth maps, video etc.) to the
cloud and receive computed responses. However, the added
communication latency still deters seamless interaction, which
is vital for such applications.

One suggested approach towards meeting this challenge
has been to place more compute resources at the edge of
the network, e.g. fog computing [14] and cloudlets [35],
both propose placing and utilizing compute resources at the
edge, near the user, alongside last-mile network elements. It
is proposed that computation can be offloaded from users’
devices to these edge resources. This will potentially reduce
the expected end-to-end latency for applications.

We propose an alternative to this offloading model. We
propose to use an edge server as a “cache with compute
resources”. Using a caching model gives us an established
framework and parameters to reason about the performance
of the system. This model makes the edge server transparent
to the client, and self-managed - administrators do not need to
place content on it manually. An edge server serves a limited
physical area, dictated by the network element it is attached
to, and thus receives requests from users within that physical
area. It can potentially accelerate applications transparently
by leveraging this spatiotemporal locality of the requests. It
has already been established that document retrieval systems
over the Internet, i.e. the World Wide Web (WWW), can reap
extensive benefits with caches at the edge [15]. Recognition
applications are in fact similar to such retrieval systems.
However, unlike requests in the WWW, which use identifiers
that deterministically map to specific content being requested,
e.g. Uniform Resource Identifier (URI), requests in recognition
applications are not deterministic. These applications first rec-
ognize the object in the request and use the object’s identifier
to map to the related content. This is a compute-intensive task.



This property has direct implications on how an edge cache
for recognition is designed.

In this paper we first present a model for expected la-
tency in such a cloud-backed, recognition-cache system. We
then design a recognition cache, Cachier, that utilizes this
model, and show how Cachier efficiently minimizes overall
latency for mobile recognition applications. Specifically, we
focus on image-recognition applications. Cachier leverages the
spatiotemporal locality of requests to store appropriate items
locally, that is at the edge, near the user, thus reducing the
number of requests that reach the cloud. To the best of our
knowledge, this is the first work that models edge servers
as caches for compute-intensive recognition applications, and
Cachier is the first system that uses this model to minimize
latency for these applications. We evaluate Cachier on public
datasets under various conditions, and show that it can adapt
and lower response time in various operating conditions,
without hurting accuracy. We do not propose new computer
vision or image-recognition algorithms. Instead we show how
we can take existing algorithms and applications, and use edge
resources effectively to reduce their user-perceived latency.
Also, our approach does not involve the users’ mobile devices.
Instead we address the interaction between edge resources and
backend servers.

In summary, we make the following contributions:

• Model the edge ↔ cloud interaction as a caching system
for recognition applications

• Show how such a recognition cache is different from
typical web caches

• Develop Cachier, a cache that minimizes overall latency
of image-recognition requests

• Evaluate Cachier on public datasets and a broad range of
operating conditions

In the next section we provide background on mobile image-
recognition and edge computing. In Section III we model the
edge server as an image-recognition cache. We then discuss
our approach and optimizations to minimize overall latency in
Section IV. Evaluation is presented in Section V, followed by
a short discussion in Section VI. Section VII presents related
work, and we conclude in Section VIII.

II. BACKGROUND

Fig. 1: Typical architecture for mobile image-recognition ap-
plications

A. Mobile Image Recognition
Essentially, recognition applications are a kind of informa-

tion retrieval system, similar to document retrieval systems
like the WWW. The system needs to recognize the object in
the request for which the user wants information/content, and
then use the object’s identifier to retrieve the related content.

As shown in Figure 1, within the cloud, the algorithm works
in a pipeline manner. A basic overview is as follows.
Extract features. A set of features are extracted from the
input image. Features are numerical vectors that describe the
image. The class of features that are typically used are called
local features - they are extracted from “interesting” points in
the image, like corners and edges. They describe the region
around these points. A number of such features are extracted
from the image to describe it. Collectively, they form a good
representation of the image and are effective for recognition
purposes. Some notable local features are SIFT [28], SURF
[13] and ORB [34].
Classify and match features. Next these extracted features
are classified using a trained model. This model is constructed
offline, using previously-extracted features from training im-
ages of all possible objects that can be queried. The more
objects one wants to recognize, the bigger this model will
be. Many different types of models have been suggested
in image recognition literature, such as brute force nearest-
neighbor matching, approximate approaches such as Locality
Sensitive Hashing [20] and kd-trees [36], and machine learning
approaches such as Support Vector Machines [33].
Choose best match. Once the closest features are found, the
object that has the most feature-matches with the request im-
age is chosen as the recognized object. To maintain precision,
a threshold of minimum number of matches is set. This can
be followed by geometric verification for confirmation that the
features in the request image are correctly arranged in space.
This also helps in locating the object in the request image.
Applications such as augmented reality applications, can use
the location information to overlay information or media.

This overall procedure, of extraction, matching with model
and verification, is common across vision based recognition
algorithms [37].

For mobile image-recognition applications, these stages are
typically carried out in the cloud. As shown in Figure 1, the
image is captured by the mobile device and uploaded over
wireless networks and sent across the Internet to the cloud. The
image-recognition procedures are then carried out in the cloud,
and the response is returned to the device. These responses
are typically in some form of information or content, e.g.
annotation strings describing what the user is seeing (e.g.
painting recognition), or media to overlay on top of recognized
products (e.g. augmented reality).

In such an architecture, overall latency can be broken down
into two main factors, (1) Network latency, and (2) Compute
time.

1) Network latency: Applications incur this latency since
they need to upload significant amounts of data to the cloud,
over the Internet, for each recognition request. This latency



can be reduced if the “distance” between the computing entity,
currently the cloud, and the mobile device is reduced.

2) Compute time: Image recognition algorithms are com-
pute intensive. The main contributor to latency is the clas-
sification of request-image features using the trained model.
Moreover, the size of this model, that is the number of trained
objects, has a direct impact on the latency. For a large number
of objects, the computation time can lead to high latency and
hence a poor user experience.

B. Web Caching

Web caching is an established technique of reducing user-
perceived latency experienced when retrieving information
from across the World Wide Web [38]. Caching information
in servers at the edge of the network reduces the time it takes
for it to be delivered to users. The same idea is leveraged
by content delivery networks [30]. Typically, these caches are
not compute intensive - users’ requests contain the specific
identifier for the content they want to view and if the cache
contains the content tied to the identifier, it is returned to the
user, else the request is forwarded to the backend servers.
In such systems, the cache has to maximize the amount of
relevant content it can serve directly, and minimize the number
of requests forwarded to the backend. This is how it can
minimize the expected latency for users, reduce network load
and backend load.

C. Edge Computing

Edge computing has been recently proposed in multiple
incarnations [35], [14]. With the ever-increasing number of
Internet-connected devices, it is not feasible for all devices
to constantly communicate with a cloud based backend [14].
Edge computing proposes that if more compute resources
are placed at the edge of the network, devices can offload
compute-intensive tasks to these edge servers and avoid going
to the cloud1. Instead of just placing content and data near the
user, edge computing also provides compute resources at the
edge.

In this paper, we show how we can take the idea of caching
at the edge, leverage the compute resources now available at
the edge, and create an image-recognition (IR) cache.

III. EDGE-CACHE FOR IMAGE RECOGNITION

We propose to use principles from caching systems to model
edge resources and their interaction with the cloud, instead of
the computation-offloading model proposed in literature. We
introduced the idea in [21] and review it here.

A. Why use a Cache?

Nearby users’ recognition requests from applications will
likely be for similar objects, that is the requests will exhibit
spatiotemporal locality across nearby users. For example, in a
museum, multiple nearby visitors will seek information about
the same paintings in the area they are in, while shoppers in
a grocery store will likely seek nutritional information about

1In the rest of the paper we use “backend” and “cloud” inter-changeably.

(a) Cache hit

(b) Cache miss

Fig. 2: Request lookup in a web cache and in an IR cache.

packaged foods. The objects for which the users are seeking
information will have little overlap, if at all, across such
locations. Hence requests from these areas can be recognized
using smaller parts of the trained model that are relevant to the
respective locations. We propose to cache these relevant parts
of the trained models in edge servers. An edge server serves
a small physical region, dictated by the network element it
is co-located with. This implies that the requests arriving at
the edge server are from users in the same physical region,
e.g. at the same museum or the same grocery store. Hence
it provides the ideal location to leverage the spatiotemporal
locality in requests.

Moreover, a caching model comes with the benefits of
a framework for reasoning about and analyzing the system,
along with known knobs that can be tuned to optimize for
different metrics. It provides an inherent hierarchical structure
that is well suited for the edge cache and cloud interaction, and
is also extendable - more caches can be added in the hierarchy.

B. Expected Latency

The primary metric for mobile image recognition is the
user-perceived latency. This end-to-end latency is the duration
between capture of image and the presentation of results to
the user. This time comprises of the time taken to upload
the image over the wireless network and the wired Internet-
backbone, processing in the cloud and the time taken for the
response to make its way back to the user. In this paper we
are concerned with the latency incurred once a request reaches
the edge cache. The latency from the edge cache’s perspective
is the duration between the reception of a request at the cache
and the transmission of the response from the cache. Hence, it
does not comprise of the latency due to the wireless network.
High-level operation. The high-level operation of an IR
cache is illustrated in Figure 2, alongside a web cache. In
a typical web cache, the incoming request has a specific
identifier, e.g. Universal Resource Identifier (URI), to identify
the content that is being requested. Typically, a consistent
hashing scheme can be used to lookup the content using the
identifier. This lookup is computationally trivial. On the other



Fig. 3: Location of an edge cache, backed by the cloud.

hand, for an image-recognition application, the request is an
image captured by the user. Mapping the image to the content
or information being requested is not trivial. This is where
the model is used to identify the object within the image,
then use the object’s identifier to lookup the related content.
Hence, the lookup process, which includes object recognition,
is computationally intensive. These processes are depicted in
Figure 2(a). Given this difference in the internal operation of
the two types of caches, the way a miss is handled is also
different. On a miss (Figure 2(b)), the web cache forwards the
request to the backend, receives the response, stores it locally
and sends the response to the user. For the IR cache, along
with the response, the cloud also sends the relevant parts of the
trained model needed to recognize this request in the future.
The cache updates its local model with this. This leads to
an increase in the size of the model (number of recognizable
objects) in the cache, which is synonymous with the cache
size.

To understand how this difference impacts latency, we
can model the expected latency for an edge cache (web or
recognition), by extending the Average Memory Access Time
(AMAT) formula: H +m ∗M , where H = Hit latency, M =
Miss latency and m = Miss ratio. For an edge cache, this is
given by:

E[L] = LCache +m ∗ (LNet + LCloud) (1)

Where LCache = cache lookup latency, i.e. time taken by the
cache to match a request to the related response, LNet = edge-
server-to-cloud network latency, i.e. time taken for a request
to reach the cloud after being issued from the edge server,
LCloud = cloud lookup latency, i.e. time taken by the cloud
to match a request to the related response, and m = Miss
ratio. This is depicted in Figure 3.

Lookup is trivial in web caches, e.g. similar to a hashtable
lookup [30]. Lookup latency (LCache) is small. The size of the
cache has negligible impact on the lookup time. This is not
the case in an IR cache. Recognizing objects in the request
image is compute-intensive, and lookup time is significant.
Moreover, when an object is added to the cache, the model
size increases, which directly impacts the lookup time [32],
[31]. Thus, for an IR cache, LCache = f(k), f(k) = function
of cache size, k. Replacing in Equation (1),

E[L] = f(k) +m ∗ (LNet + LCloud) (2)

To investigate this further, let us evaluate an IR edge cache
with a Least Frequently Used (LFU) cache-eviction policy,

for different cache sizes, deployed as shown in Figure 32.
Figure 4 shows the results for that experiment. We see that
initially, with a low cache size, the cache reduces overall
latency. However, as the cache size (k) increases, even though
the hit ratio increases, that is the cache serves more items
locally and avoids sending requests to the cloud, the latency
increases, and is eventually greater than the latency without a
cache.
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Fig. 4: Overall latency and hit ratio for LFU based IR edge
cache, over different cache sizes.

There are two compounding factors that contribute towards
this. First, as the size increases, f(k) increases and dominates
and increases overall latency. Second, since the computational
resources of the edge server are far lesser than the cloud,
this rise is stepper still. Note that LCloud is fixed and low
given the resources of the cloud. Unless the network latency
is extremely high, for large enough k, f(k) can cause the
overall latency to increase. The point at which the inflection
occurs is affected by the cache size (k), f(k), cache policy and
request distribution. The inflection point is also determined by
the network and cloud conditions (LNet and LCloud). Thus the
expected latency formulation needs to incorporate all of these
factors.

C. Deconstructing Expected Latency for IR Cache

In the formulation in Equation (2), there are two key
parameters, (1) the effect of cache size on latency, f(k), and
(2) miss ratio, m. In this section we elaborate on the effects
of these parameters for a more explicit formulation of the
expected latency.

1) Effect of cache size on lookup latency: As mentioned
before, the size of the cache, that is number of objects
represented in the trained, local feature set in the edge server,
has a direct impact on the lookup latency. This relationship is
captured by f(k). This relationship depends on the feature
types, the number of features extracted per object image
and the recognition/search algorithm utilized to classify the
input features. For recognition algorithms, typically, f(k) is a
monotonically increasing function.

2) Miss ratio: For a typical web cache the miss ratio, m,
depends on the cache size, the cache replacement policy and
the underlying request distribution. A miss in such a cache
happens only when the item being requested is not in the

2More details can be found in [21].



cache. However, there is another kind of miss in an IR cache,
a “recognition” miss. Given the nature of the lookup in an IR
cache, misses can happen even when the item being requested
is in the cache. This can happen when the request image
contains an object that is not recognized by the cache, even
though the model in the cache is trained to recognize that
object. The cache cannot distinguish between a “genuine”
miss (object’s features not present in cached model) and a
recognition miss. The request needs to be sent to the cloud in
both cases. We believe that such cache misses are bound to
happen and need to be incorporated in the formulation of the
expected latency.

We first simplify m to get a better understanding of the
miss ratio. We can write m = 1 − P (hit), where P (hit) =
P (recognized ∩ cached) is the probability of a cache hit,
that is a query being recognized successfully when the corre-
sponding object is in the cache. P (recognized ∩ cached) =
P (recognized|cached)∗P (cached), where P (cached) is the
probability that a randomly chosen object is in the cache,
and P (recognized|cached) is the probability of correctly
recognizing the corresponding object of a request given that
the object is in the cache. Let us deal with these two entities
separately.
P (cached) is essentially the hit ratio for a typical web cache

and as mentioned earlier, depends on the cache size, the cache
replacement policy and the underlying request distribution.
P (recognized|cached) is the probability that a randomly

selected query will be recognized given that the queried object
is in the cache, that is given that the model in the cache is
trained to recognize this object. This is also known as recall. It
is the fraction of correct responses out of all positive queries,
that is queries whose corresponding object the model is trained
to recognize. This incorporates the accuracy of the matching
algorithm into the miss ratio. It depends on the algorithm used
and on the size of the model being queried (the cache size in
the edge cache’s case). As the number of objects in the cache
increases, the accuracy tends to drop, that is it is more difficult
to precisely recognize the correct match when there are many
options to choose from. Given this dependence, we denote this
as recall(k).

Putting the formulation of miss ratio back in Equation (2),

E[L] = f(k)+(1−recall(k)∗P (cached))∗(LNet+LCloud)
(3)

Equation (3) formulation presents a detailed model of the
expected latency in a cloud backed IR cache. We started with
the high-level AMAT formula and extended it by adding the
details for each term in the formula, to represent how they
manifest in an edge cache for image recognition. This model
presents an alternative perspective to look at edge servers,
along with the computation-offloading model.

IV. CACHIER’S APPROACH

In the detailed model presented above, we see the cache
size (k) as an effective knob that we can tune to minimize

Fig. 5: Internal architecture of Cachier in the edge server. The
green modules encapsulate our main contributions.

the latency of requests in recognition applications. We can
now design a system that leverages this formulation to predict
expected latency for different k by measuring and estimating
the different unknowns in Equation (3). Figure 5 shows
the architecture of this system, Cachier. It contains different
modules that work in concert to dynamically estimate latencies
for different cache sizes and choose the one that minimizes
latency. We first explain our intuition about how Cachier will
provide a boost to recognition applications and then describe
our estimation, profiling and optimization techniques.

A. Leveraging Locality

As mentioned earlier in Section III-A, recognition appli-
cations will likely exhibit spatiotemporal locality that can be
leveraged through caching in edge servers. Instead of a fixed
cache size in the edge server, Cachier can dynamically adjust
the cache size to store a model for only the most probable
requests and reject others even though there is memory/disk
space to store a larger model. By keeping the cache size
small and relevant, Cachier can cut down on compute time
on edge servers. To decide what is the best cache size,
Cachier compares the estimated cost of local processing versus
the measured cost offloading to the cloud, by using the
expected latency formulation, Equation (3).

B. Estimating Effects of Cache Size

As we see in Equation (3), there are three unknown enti-
ties that are affected by the cache size, (1) P (cached), the
probability that a randomly chosen object is in the cache, (2)
recall(k), the probability that a request is correctly recognized
given the corresponding object is in the cache, and (3) f(k),
the compute time of matching a request to a known cached
object. If Cachier changes the cache size to control the latency,
it will need to account for changes due to these entities. We
look at each in the above order and show how we can estimate
these.

C. Estimating P (cached)

As we mentioned earlier, P (cached) is essentially the hit
ratio for a typical web cache and as mentioned earlier, depends
on the cache size, the cache replacement policy and the
underlying request distribution. Given the high likelihood of
spatiotemporal locality, we start with the Least Frequently
Used (LFU) policy and modify it to be dynamically adaptive.
LFU eviction policy evicts the least frequently used item in the



cache when the cache is full. Conversely, this policy keeps the
most frequently occurring requests in the cache. Now suppose
that k = 1, then the cache only has the most popular object,
and hence the probability of a cache hit is the probability of a
request being for the most popular object. Let us now extend
this notion. Let j denote the rank of popularity of an object,
j = 1, 2, ..., N , 1 being the most popular. Let requestj denote
a request for an object with popularity rank j. We can then
say:

If k = 1, then P (cached) = P (request1)
If k = 2, then P (cached) = P (request1) + P (request2)
If k = n, then P (cached) =

∑j=n
j=1 P (requestj)

Essentially, under this policy, the probability of a hit in a
cache of size k is the probability that the request is for one of
the k most popular objects. Thus, to estimate P (cached) the
request distribution needs to be dynamically estimated, since
that is not available beforehand. The request distribution also
captures the spatiotemporal locality of the requests.
Estimating request distribution. The request distribu-
tion is modeled as a multinomial probability distribution,
P (requesti) = pi, i = 1, 2, ...N , and

∑
pi = 1, where N

is the total number of objects that can be requested.
Such a distribution can be estimated using MAP (maximum

a posteriori) estimation. This requires the system to track
the number of times each object i is requested, which is
represented by Mi. Using this, the estimate is given by
p̂i = Mi+αi

ΣMi+Σαi
. αi is the Dirichlet prior, which is used to

provide a prior to avoid overfitting to incoming data, especially
when enough data has not been collected. This is generally
set to 1, to convey that all objects are uniformly distributed.
However, Cachier also uses αi to insert different priors if it
needs to, and we discuss this issue in Section IV-G.

The computation to estimate the request distribution and
hence P (cached) is carried out by the Distribution Estimator
shown in Figure 5. On receiving a request, the object in the
request is first recognized, either by the Recognizer, using the
local model, or, on a miss, by the cloud. Once the request
is matched to a known object, the Estimator updates the
respective object’s counter. When a P (cached) estimate is
needed for optimization, it calculates the probabilities using
the counters and MAP estimation.

D. Offline Estimation of f(k) and recall(k)

The effect that changing the cache size would have on the
latency and accuracy of the recognition algorithms at runtime
needs to be estimated. The compute time and accuracy of the
recognition algorithms depend on the choice of the algorithm,
the kind of objects they are supposed to identify and the size of
the trained model, that is the number of objects the algorithm
is trained to recognize. Changing the cache size effectively
changes the size of the trained model. Hence, essentially, the
f(k) (latency) and recall(k) (accuracy) need to be estimated
under different model sizes.

Given a classification algorithm and a dataset, an estimate
for f(k) and recall(k) can be found through offline analysis.
We present our detailed evaluation of two algorithms, on

two public datasets. The estimates generated from the offline
analysis can then be used at runtime to predict the recognition
algorithm’s contribution to overall latency under different
cache sizes.

1) Setup: We estimate f(k) and recall(k) for two algo-
rithms, the basic brute force algorithm (BF) and multi-probe
Locality Sensitive Hashing (LSH) [29]. The trained models
created by these algorithms are quite different.
BF’s model. This simply stores a list of extracted features for
each training object, and at runtime finds the nearest neighbor
of each request image’s feature in this list.
LSH’s model. This is an approximate nearest neighbor search
algorithm. It creates hash tables using hash functions such that
two similar features will most likely be hashed into the same
bucket. The training features are hashed and stored in these
hash tables, and at runtime the same procedure is applied to
request images’ features to find which trained features they
are closest to.

The binary ORB [34] features are extracted and used for
the recognition.

We estimate the f(k) and recall(k) for these algorithms
on two datasets, which we call Stanford [16] and UMiss
[39], each consisting of 400 objects like paintings, CD covers,
book covers, movie posters, magazines, and food packaging.
Each dataset has one perfect training image for each object
and multiple test images taken from mobile devices. Some
examples of training and test images are shown in Figure 6.
The models based on features from the training images are the
ones that are first stored in the cloud and then in the caches,
while the test images are used as the request images sent from
the mobile device.

2) Procedure: We use the datasets to profile the two
algorithms for increasing number of objects in a pre-populated
cache. Along with the perfect image for each object, a request
image is added to the training set for better recall. The compute
time, recall and precision for looking up request images is
measured. The image requests consist of 100 test images of
objects that are known to be in the cache (relevant requests)
and 10 test images of objects that are known not to be in
the cache (noisy requests). The mean and standard deviation
of the measurements using two algorithms on two datasets are
recorded for each cache size in Figure 7. The estimation of the
polynomials presented in Table I and Table II is done through

Fig. 6: Top: Training images from the dataset. Bottom: Cor-
responding query images in dataset, taken by mobile devices.
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Fig. 7: Offline Analysis of two datasets, using two algorithms. Note that high precision is important to maintain accuracy.

LSH BF
Stanford 0.90− 0.00014k 0.66− 0.00013k
UMiss 0.88− 0.00013k 0.78− 0.00021k

TABLE I: Estimated recall(k)

LSH BF
Stanford 51.14 + 1.87k 60.52 + 10.42k
UMiss 6.18 + 2.21k 21.88 + 11.77k

TABLE II: Estimated f(k)

regression analysis. The presented estimates are linear because
higher order terms are insignificant, which is apparent from
the measurements in Figure 7 as well.

3) Recall and precision: Although both high recall and high
precision is desirable, high precision is especially important,
that is we want all the definite answers from the cache to
be correct, since we do not want the presence of a cache to
negatively affect the accuracy. An “unknown” answer from
the cache is treated as a cache miss and is forwarded to
the cloud. We can see in Figure 7(b) that the recall dips
slightly with increase in cache size and the trend is similar
across the datasets. On the other hand, precision is constantly
high (>90%) across cache sizes. The estimated polynomial for
recall(k) for the different algorithms and datasets are listed
in Table I.

4) Analyzing f(k): We see that LSH is certainly much
faster than brute force. The trend is very similar for both
datasets (Figure 7(a)), as the cache size (k), that is the number
of trained objects in the model, increases, f(k) increases.
LSH is the default algorithm used in Cachier. The estimated
polynomial for f(k) for the different algorithms and datasets
are listed in Table II.

These estimates are fed into the online optimizer module of
Cachier, which uses it to predict the effects on overall latency
for different cache sizes.

E. Cloud and Network Profiler

The only remaining component in Equation (3) is the
latency penalty on a miss, namely LNet+LCloud. The Profiler
module in Cachier tracks this online and keeps a moving
average filter to even out noise. For every miss in the cache,
the Profiler measures the time between issuing the request
to the cloud and receiving a response from it. This is useful
because if the cloud is overloaded with requests and is taking

longer to compute responses then this gets incorporated in the
measurements and allows Cachier to adapt dynamically.

F. An Adaptive Cache-inclusion Policy

Now we have a way to estimate the effects of changing the
cache size on each of the components in the Equation (3). The
Optimizer module brings these techniques together to find a
cache size that minimizes the expected latency. It realizes the
formulation by using the estimated f(k) and recall(k) poly-
nomials, the estimated request distribution to find P (cached),
and the measured miss penalty. This formulation then becomes
a function of only k. Given the simplicity of the function, it
is not expensive to compute the expected latency for a given
k and it takes less than 1ms.

Periodically, Cachier searches for a cache size that mini-
mizes the formulation given in Equation (3) using gradient
descent. It essentially is a dynamic, adaptive, cache-inclusion
policy - it decides dynamically how many of the most fre-
quently occurring requests should be included in the cache.
Once it finds the right cache size k, it places the top k items
in the cache, that is the model in the cache can now recognize
those top k objects. The Recognizer then uses this updated
model to execute future recognition requests.

G. Optimizations

We now discuss some system-level optimizations that we
use to design a more efficient system.

1) Learning from previous operations: If Cachier is pow-
ered up for the first time, it has no historical data and starts
from scratch, with uniform Dirichlet priors for the request dis-
tribution. However, once operation starts, Cachier periodically
logs the request distribution to disk, and the next time it boots
up, it can use this history as the priors for the estimation. The
priors are inserted as the α when finding the MAP estimates
of the request distribution (Section IV-C). This lets it predict
the stable cache size right after startup, without waiting to
collect data from requests. This does assume that the request
distribution does not change significantly. We discuss this
assumption further in Section VI.

2) Lazy feature-fetching: Figure 2(b) depicts that on each
cache miss, the request is forwarded to the backend in the
cloud and the reply contains both the response for the user
and the relevant features for the model in the IR cache. An IR
cache miss occurs if the cache doesn’t recognize the object in



System Features Extracted Recognition Algorithm Verification Cache Parameters
Cachier ORB Multi-probe LSH Geometric f(k), recall(k) estimated polynomials

LFU Cache ORB Multi-probe LSH Geometric Cache Size = 400
No Cache (Cloud only) ORB Multi-probe LSH Geometric N/A

TABLE III: System configurations

the request, but it still might have the relevant features in the
set. If features are fetched from the cloud in such cases, com-
munication bandwidth will be used needlessly. To optimize
this interaction in Cachier, the backend only returns the object
identifier and the response to Cachier. Cachier checks if the
identifier is present in its local set. Only if it is not, it requests
the features of the object using the identifier returned by the
backend. This eliminates the unnecessary traffic between the
edge and the backend.

Additionally, Cachier also uses a holdback queue for feature
requests sent to the cloud. When a feature request is sent to
the cloud for a missing object, the request is also inserted into
the holdback queue. Before sending any feature requests, the
holdback queue is checked, and if a request for the features of
the same object is found, the newer request is dropped, since
it is redundant. This is useful when successive request images
contain the same object but that object is not in the cache.
It may happen that the requests come in quick succession,
and the features of the missed object have not yet made it to
the cache from the cloud. Then the second request will also
miss in the cache, which will generate a request for the same
features. However, the holdback queue will prevent the second
request from actually being sent to the cloud, thus reducing
bandwidth consumption.

V. EVALUATION

The primary focus for evaluating Cachier is to measure
the reduction in latency achieved under different operating
conditions and its impact on accuracy, if any. We evaluate two
other systems alongside Cachier, an LFU based edge cache and
another system without an edge server at all, so all requests
go straight to the cloud. For each of our experiments we show
how Cachier compares to them.

The evaluation is based on visual search/augmented real-
ity application scenarios, where users use their devices to
seek more information about objects by capturing images.
For example, in a museum, visitors may seek information
about the paintings, or shoppers in a grocery store may seek
nutritional/allergen information about packaged foods. The
evaluation setup and procedure are designed to emulate such
an application.
Setup. The experimental setup is modeled after the edge server
deployment shown in Figure 3. Only the edge server and cloud
are part of the experimental setup since no analysis is required
for the device-to-edge-server segment for the scope of this
paper.

A powerful PC functions as the edge server (4 cores, 8
Hyper-Threads, 8GB RAM), same as the one used in offline
estimation in Section IV-D, and is directly connected to a
server which serves as the cloud (12 cores, 24 Hyper-Threads,

32GB RAM). netem [7] and tc [10] are used to control
the bandwidth and round-trip times (RTT) between the two
machines.

The image recognition and system configuration parameters
for each evaluated system are listed in Table III. Note, the
cache size for LFU Cache is set to 400, that is the total number
of objects it can possibly see. Typically, this is the best case
scenario for a web cache.

The UMiss dataset is used for the object dataset and
requests. It has a total of 400 objects in it. We use 2 images per
object, and 1600 features per image, which leads to a grand
total of ∼1.2 million features. The training model in the cloud
is trained with all of these features.

The Zipf distribution is used to model request distribution
for such an application. Web caching systems have shown
that this distribution accurately models request distribution
from users across the Internet [15]. Although this does not
necessarily apply for image recognition applications, with the
lack of real-world traces of image recognition requests, a Zipf
distribution for the requests provides the best approximation.
Procedure. For each experiment, we run 4 iterations. In each
iteration, 5000 queries from the dataset are issued to the
system. Metrics measured for each request are, (1) the request-
response latency, (2) cache hit or miss, (3) correct response or
not and (4) the effective cache size, which records the number
of items the cache serves by the end of the experiment. In
each experiment we report the mean and standard deviation
across the iterations.

A. Effect of Network Bandwidth and Latency

The primary reason of deploying computing at the edge
is to minimize end-to-end latency experienced by users. This
is directly affected by network conditions between the edge
and the cloud. To evaluate its effect we run an experiment
with different network settings. Each setting is defined by
the network bandwidth and round-trip time. The experimental
settings have been setup to mimic measurements presented in
[22]. The results are presented in Figure 8.
Reduction in latency. We see in Figure 8(a) that including
Cachier in the system reduces latency by almost half when
network is slow (1Mbps and 100ms RTT). The LFU cache,
also reduces latency in this setting, but not as much as
Cachier. The LFU Cache does not benefit from faster network
conditions. On the other hand, Cachier adapts to the network
conditions and leverages it. It reduces the latency even in
fast networks. We can see how it adapts and leverages the
fast network by looking at the hit ratio (Figure 8(b)) and
effective cache size (Figure 8(c)). We see that as the network
performance increases, the hit ratio and effective cache size
for Cachier decrease. It reacts to the fast network and decides
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Fig. 8: Evaluation of Cachier and comparison with a typical LFU Cache and a cloud-only system, for different network
conditions. The α for the Zipf distribution governing the requests was fixed to 1.0.
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Fig. 9: Evaluation of Cachier and comparison with a typical LFU Cache and a cloud-only system, for different request
distributions. The network conditions are fixed at 5 Mpbs and 40ms RTT.

that it is better to incur misses and offload to the cloud, than
to increase the cache size and increase computation time at
the edge server.
No change in accuracy. As we can see in Figure 8(d), the
recall of the application is not affected by the inclusion of
an edge cache, and tracks the recall of the cloud-only system
(labelled as No Cache in Figure 8 and Figure 9) . The precision
also remains the same and has not been included in the figures
due to space constraints.

Thus we can conclude that Cachier’s network awareness
helps it to decide when to do more at the edge and when to
let the cloud handle the bulk of the computation. This helps
it reduce the latency across a variety of network conditions,
without sacrificing accuracy.

B. Effect of Request Distribution

Request distribution plays a key role in determining the
reduction in latency that the cache is able to achieve. To
evaluate Cachier’s adaptability, we run an experiment with
different request distributions using the Zipf distribution, with
different α. A low α leads to a more uniform distribution,
which represents scenarios where the requests have little
locality. A high α leads to a skewed distribution, which
represents higher locality in requests - there are some objects
which are much more popular than others. The results of the
experiments can be seen in Figure 9.
Reduction in latency. Figure 9(a) shows us that LFU Cache
requires considerably high locality in requests to outperform
the cloud-only system. Cachier adaptively leverages the lo-
cality, and this can be understood through Figure 9(b) and
Figure 9(c). When the locality is low, cache size is low, hit
ratio drops, that is the cloud does most of the processing.
When the locality rises, we see that Cachier counter-intuitively
decreases cache size. It estimates that it can serve a large

number of the requests with a low cache size, and thus keeps
the compute time low. This allows it to speed up the response
by 3x compared to the cloud-only system.
No change in accuracy. Again, we see, in Figure 9(d), that
the recall of the application is not affected by the inclusion
of an edge cache, even though they answer a majority of the
requests when locality is high.

We see that over multiple different operating conditions,
Cachier always outdoes the LFU Cache and the cloud-only
system. However, we must note that, as with any caching
system, the performance gain can increase manyfold under
right conditions, e.g. if there is even higher locality along with
poor network conditions, Cachier can take both aspects into
account and provide a boost greater than 3x. The gain might
also decrease under other conditions, but Cachier’s design will
always ensure that it is faster than or equal to going straight
to the cloud.

VI. DISCUSSION AND FUTURE WORK

More than image recognition. We believe that the idea of
leveraging spatiotemporal context to accelerate recognition of
users’ common surroundings through efficient caching at the
edge can be effective in other forms of sensed data as well.
For example, to translate a speech that an audience is listening,
to recognize a song playing in a cafe, or for accurate, indoor
localization through depth images. In the future, we plan to
generalize our approach to include all such applications.
Limitations. One of the current limitations of Cachier is that
it performs best for a static underlying request distribution. If
the underlying distribution changes rapidly, Cachier might not
be able to catch up since it MAP estimates evolve slowly. In
the future, we intend to use an exponential moving average to
adapt to changes in the underlying request distribution.



VII. RELATED WORK

Edge computing. The issue of cloud computing hurting
latency-sensitive perception and recognition applications has
been highlighted multiple times in literature [12], [35], [14].
[22] showcases how offloading such tasks to the cloud in-
creases latency. Compared to the cloud, a “cloudlet”, a server
one wireless-hop away from the mobile user, provides sig-
nificant speedup. It makes the case for moving compute
resources close to the user to avoid network latency. [14]
presents a more extensive computing paradigm called fog
computing. Fog computing proposes to extend the idea of
cloud computing all across the network between the cloud
and the user, thus bringing computational resources closer to
the user and making the network smarter.

We have built on the concept of “more computing at the
edge” proposed by these authors, and proposed how to take
the next step once there are computational resources available
at the edge, for mobile recognition applications.
Computer vision. There have been advances in the field of
computer vision and image recognition algorithms to enable
efficient processing locally on mobile devices. Feature ex-
tractors and descriptors such as SURF [13] and especially
ORB [34] have certainly made it possible to do recognition
on the devices. However, as reported in [24], [17], doing it
locally does not scale beyond tens of images, and we want
to achieve recognition of thousands of objects. Deep learning
and neural networks have also made it possible to achieve high
recognition accuracy [27], and it has been achieved on mobile
devices as well [26], but again the device alone cannot achieve
the diverse recognition that is needed [23].

Given that mobile devices alone cannot support recogni-
tion across more than a few categories, they still need to
offload these tasks to a backend server, typically in the cloud.
Cachier is a system that accelerates such applications using
edge servers as a recognition cache.
Mobile-cloud computing. There are several systems that have
been proposed to offload computing from mobile devices
onto backend servers or the cloud to enable more efficient
applications. These systems divide the application at different
granularities to offload parts of it to the cloud, optimizing for
different objectives. [19] offloads specific functions from an
application to the cloud and optimizes for energy consumption.
[18] on the other hand offloads threads of execution to the
cloud to minimize latency.

As we can see, the model used to decrease latency is
orthogonal to the model Cachier uses. Instead of deciding
which part of computing to offload, which requires changing
the application itself, Cachier uses edge servers as recognition
caches in-between the devices and the cloud. This does not
require any changes in the application on the device, and still
accelerates the application.
Mobile-cloud image recognition. Techniques have also been
proposed, in the mobile-cloud paradigm, to optimize recogni-
tion related applications. Glimpse [17] proposes using a video-
frame cache locally on the device that hides the latency of

the cloud based pipeline and also tracks objects locally on
the device to select frames that actually get offloaded. We
believe that Cachier can be transparently used in this system
and will drive latencies down further. OverLay [24] creates
an inter-object distance map and uses it to shrink the search
space. This is similar to our work in that it uses the context
to reduce the search space. However, it would be difficult for
this system to predict correctly in a dynamic environment.
Additionally it needs much more sensed data (accelerometer,
compass, gyroscope) apart from the camera itself. Our method
of leveraging context and estimating popularity does not make
these assumptions.
Web caching. Cachier has certainly drawn inspiration from
web caching and CDN systems. These systems place content
at the edge of the network and serve users from it to avoid
high latencies and overloading a centralized server. [15] shows
exactly why this works - requests have spatiotemporal locality.
People tend to query for similar web pages and this popu-
larity has a Zipf-like distribution. We claim that recognition
based applications present even higher spatial and temporal
localities, and caching can drastically reduce their latency.
However, the approach to minimize latency is different. CDN
systems try to optimize for different objectives, such as byte-
hit-rate [30], that is they maximize the hit rate and the number
of bytes served per hit. By maximizing this, they minimize
latency by going to the remote central server less often.
Cachier minimizes latency too but it takes into account the
added compute time due to the recognition algorithms and
modulates cache size accordingly.

VIII. CONCLUSION

Users are getting used to querying their environment
through recognition applications on their mobile devices and
expect seamless operation. To live up to these expectations,
applications choose to offload intensive tasks to the cloud.
However, this adds network latency and reduces overall re-
sponsiveness. Edge computing proposes to meet this challenge
by placing compute resources at the edge of the network to
avoid going to the cloud for all tasks, thus reducing latency.
The state of the art model to use edge resources is similar to
how applications use the cloud, that is offload intensive tasks
to the edge servers. In this paper, we propose an alternative
model to use edge resources. We propose to use them as
recognition caches, backed by the cloud. A caching model
provides a framework to reason about the performance of the
system and also makes the edge transparent to the application
itself. We develop a model for expected latency in an image-
recognition cache and show how to incorporate the effects of
compute-intensive recognition algorithms. We design Cachier,
an edge cache that uses this formulation to minimize expected
latency by dynamically adjusting its cache size. We show that
Cachier can increase responsiveness by 3 times or more. We
believe that this is the first work that models edge servers as
image-recognition caches, provides a formulation for expected
latency, and presents a system that uses this model to minimize
latency of image-recognition applications.
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