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Abstract

We introduce the Read-Only Semi-External (ROSE) Model
for the design and analysis of algorithms on large graphs. As
in the well-studied semi-external model for graph algorithms,
we assume that the vertices but not the edges fit in a small
fast (shared) random-access memory, the edges reside in an
unbounded (shared) external memory, and transfers between
the two memories are done in blocks of size B. A key
difference in ROSE, however, is that the external memory
can be read from but not written to. This difference is
motivated by important practical considerations: because the
graph is not modified, a single instance of the graph can be
shared among parallel processors and even among unrelated
concurrent graph algorithms without synchronization, that
instance can be stored compressed without the need for
re-compression, the graph can be accessed without cache
coherence issues, and the wear-out problems of non-volatile
memory, such as Optane NVRAM, can be avoided.

Using ROSE, we analyze parallel algorithms (some
existing, some new) for 18 fundamental graph problems. We
show that these algorithms are work-efficient, highly parallel,
and read the external memory using only a block-friendly
(and compression-friendly) primitive: fetch all the edges for
a given vertex. Analyzing the maximum times this primitive
is called for any vertex yields an (often tight) bound on the
(low) I/O cost of our algorithms. We present new, specially-
designed ROSE algorithms for triangle counting, FRT trees,
and strongly connected components, devising new parallel
algorithm techniques for ROSE and beyond.

1 Introduction

Efficient use of the memory hierarchy is crucial to obtaining
good performance. For the design and analysis of algorithms,
it is often useful to consider simple models of computation
that capture the most salient aspects of the memory hierarchy.
The External Memory model (also known as the I/O or disk-
access model) [3], for example, models the memory hierarchy
as a bounded internal memory of size M and an unbounded

external memory, with transfers between the two done in
blocks of size B. The cost of an algorithm is the number of
such transfers, called its I/O complexity. The model captures
the fact that (i) real-world performance is often bottlenecked
by the number of transfers (I/Os) to/from the last (slowest,
largest) level of the hierarchy used, (ii) that level is used
because the second-to-last level is of limited size, and (iii)
transfers are done in large blocks (e.g., cache lines or pages).
Because of its simplicity and saliency, the External Memory
model has proven to be an effective model for algorithm
design and analysis [7, 14, 55, 72, 79].

The Semi-External model [1] is a well-studied special
case of the External Memory model suitable for graph
algorithms, in which the vertices of the graph, but not the
edges, fit in the internal memory. This model reflects the
reality that large real-world graphs tend to have at least an
order of magnitude more edges than vertices. Figure 1, for
example, shows that all the large graphs (at least 1 billion
edges) in the SNAP [60], LAW [31] and Azad et al. [9]
datasets have an average degree more than 10, and over half
have average degree at least 64. The assumptions in the Semi-
External model have proven to be effective in both theory and
practice [1, 45, 61, 64, 74, 80, 81].

However, the recent emergence of new nonvolatile
memory (NVRAM) technologies (e.g., Intel’s Optane DC
Persistent Memory) has added a new twist to memory
hierarchies: writes to NVRAM are much more costly than
reads in terms of energy, throughput, and wear-out [17, 34,
45, 54,71, 78]. Neither the External Memory model nor the
Semi-External model account for this read-write asymmetry.
To partially rectify this, Blelloch et al. [17] introduced the
Asymmetric External Memory model, a variant of the External
Memory model that charges o > 1 for writes to the external
memory (the NVRAM), while reads are still unit cost (see
also [56]). To our knowledge, the Semi-External setting with
asymmetric read-write costs has not been studied. Although
one could readily define such a model, graph algorithms
provide an opportunity to go beyond just penalizing writes,
by eliminating writes to the external memory altogether!
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Figure 1: (Adapted from [45]) Number of vertices (n, in log-scale)
vs. average degree (m/n, in log-scale) on 52 real-world graphs
with m > 10° edges from the SNAP [60], LAW [31] and Azad
et al. [9] datasets. All of the graphs have more than 10 times as
many edges as vertices (corresponding to the gray dashed line), and
52% of the graphs have at least 64 times as many edges as vertices
(corresponding to the green dashed line).

This paper presents the Read-Only Semi-External (ROSE)
model, for the design and analysis of algorithms on large
graphs. As in the Semi-External model, the ROSE model
assumes that the vertices but not the edges fit in a small
fast (shared) random-access memory, the edges reside in an
unbounded (shared) external memory, and transfers between
the two memories are done in blocks of size B (where B is
the number of edges that fit in a block). A key difference
in the ROSE model, however, is that the external memory
can be read from but not written to. The input graph is
stored in the read-only external memory, but the output
gets written to the read-write internal memory. Unlike
general algorithms such as sorting, whose output size is
O(input size), graph algorithms are amenable to a read-only
external memory setting because their output sizes are often
O(n) rather than ©(m), where n (m) is the number of vertices
(edges, respectively) in the graph.

The ROSE model is motivated by practical benefits

arising from two main consequences of the model:
No external memory writes: Because of NVRAM’s order(s)
of magnitude advantage in latency/throughput/wear-out over
traditional (NAND Flash) SSDs and in capacity/cost-per-byte
over traditional (DRAM) main memory, the emerging setting
for large graph algorithms is a hierarchy of DRAM internal
memory and NVRAM external memory [45, 50]. In such
settings, ROSE algorithms avoid the high performance cost
of NVRAM writes. Moreover, ROSE algorithm design is
independent of the actual costs of NVRAM writes, which vary
depending on access patterns, technologies, and whether the
metric of interest is latency, bandwidth, energy, etc. Finally,
avoiding writes means avoiding NVRAM wear-out and wear-
leveling overheads.

Table 1: Analysis of graph algorithms in ROSE, for a graph G
of n vertices and m edges, assuming m = Q(n). * denotes that
a bound holds in expectation and ¥ denotes that a bound holds
with high probability or whp (O(kf(n)) cost with probability at
least 1 — 1/n¥). T denotes the bound assumes the average degree
dgvg = m/n = O(log n); for larger dgyyg, one of the logs in the depth
should be replaced by dqvg. B, the block size, is the number of edges
that fit in a block. dg is the diameter of G. rg.. is the eccentricity
from the source vertex. A is the maximum degree. « is the arboricity
of G. L = min(y/m,A) + log? Alogn/loglogn. p is the peeling
complexity of G [44]. Wsp, Dsp, and Qsp are the work, depth, and
I/0O complexity of a single-source shortest path computation, which

depends on the metric used for the FRT trees.

Problem Work Depth 1/0 Complexity
Triangle Counting O(am)* O(alogn O(a(n + m/B))
+ log? n)*
FRT Trees O(Wsp log n)* |O(Dsp log n)* |0(Qsp log n)*
Strongly Connected Comp |O(mlogn)* |O(dg log® n)¥ |O((n + m/B)
log n)*
Breadth-First Search o(m) O(dglogn)t |O(n+ m/B)
Weighted BFS O(rsre + m)* |O(rgpc log n) | O(n + m/B)
Bellman-Ford O(dgm) O(dglogn)t |O(dg(n
+ m/B))
Single-Source Widest Path |O(dgm) O(rgrc log n)' |O(n + m/B)
Single-Source Betweenness| O(m) O(dglogn)t |O(n+ m/B)
O(k)-Spanner O(m) O(klogn)' |O(n + m/B)
LDD O(m) O(log? n)*f O(n + m/B)
Connectivity O(m)* O(log® n)*f O(n + m/B)*
Spanning Forest O(m)* O(log® n)*f O(n + m/B)*
Graph Coloring O(m) O(logn O(n + m/B)
+ Llog A)*f
Maximal Independent Set |O(m) O(log? n)*f O(n + m/B)
Biconnectivity O(m)* O(dg logn O(n + m/B)*
+ log® n)¥f
PageRank Iteration O(m) O(logn) O(m/B)
k-core o(m)* O(plogn)* |O(n+ m/B)
Apx. Densest Subgraph O(m) O(log® n) O(n + m/B)

A read-only input graph: Because the graph is not modified,
a single instance of the graph can be shared among parallel
processors and even unrelated concurrent graph algorithms
without synchronization. Because data from NVRAM, like
DRAM, is brought into CPU caches that are kept coherent
by hardware, read-only access means that these cache lines
will avoid the costly invalidation that arises with concurrent
readers and writers (or concurrent writers). Finally, graphs
are often stored in compressed format [44, 70], to reduce
their footprint and the memory bandwidth needed to access
them. Accessing the graph in a read-only manner still
requires runtime decoding, but avoids runtime re-encoding
overheads and allows for better (offline, encode-time heavy)
compression.

Another twist introduced by NVRAM is that, unlike
SSDs, read latency and throughput are only modestly worse
than DRAM [54, 77]. Thus, while the I/O complexity (num-
ber of external memory reads) remains a good measure, it
may no longer be the dominant cost in practice. Accord-
ingly, ROSE includes separate measures for computation
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work and depth, standard measures for analyzing parallel
algorithms [42, 57].

Algorithm design in the ROSE model. While the
benefits of restricting the external memory to be read-only are
clear, the question remains as to whether one can design fast
and efficient algorithms in the ROSE model. We show that
indeed such algorithms exist. Specifically, we analyze parallel
algorithms (some existing, some new) for 18 fundamental
graph problems. As shown in Table 1, most of the algorithms
are work-efficient and highly parallel (often O(polylog(n))
depth). Interestingly, all the algorithms read from the external
memory using only a single primitive, FETCHEDGES(v):
Fetch all of the incident edges for a given vertex v. Because
the ROSE model makes the reasonable assumption that the
edges for a given vertex are stored consecutively in external
memory (optionally compressed), this leads to good 1/O
complexity. Analyzing the maximum times FETCHEDGES
is called for any vertex yields an (often tight) bound on the
(low) I/O complexity of our algorithms. Although the bounds
(typically, O(n + m/B)) may not be optimal for low-degree
graphs, many real-world graphs have average degree at least
B, in which case the I/O complexity is optimal. In particular,
the block size in bytes of Optane DC Persistent Memory is
256. Assuming say 4 bytes per edge, this means 64 edges fit
in a block, i.e., B = 64 (recall that B is measured in edges not
bytes). Figure | shows that 52% of the graphs have average
degree at least 64.

Our new algorithms are specially-designed ROSE algo-
rithms for triangle counting, FRT trees, and strongly con-
nected components (SCC). Many interesting algorithmic tech-
niques are developed in these algorithms. For triangle count-
ing, our new algorithm requires integrating ideas from the
both the classic Chiba-Nishizeki triangle counting algorithm
and low out-degree orderings of the vertices to achieve work-
efficiency, low depth, and low I/O complexity. For FRT trees,
we propose a search-centric view of the algorithm, which is
different from all previous algorithms and requires careful
algorithm design and analysis. Finally, the ROSE SCC al-
gorithm avoids the edge removal process that is part of the
state-of-the-art parallel SCC algorithm [22], while achiev-
ing the same work bounds as this existing SCC algorithm.
Hence, we believe that the algorithmic insights in this paper
may be of interest even in a shared-memory setting without
considering NVRAM:s and the ROSE setting.

In summary, the two main contributions of this paper are:

e We introduce the Read-Only Semi-External (ROSE)
model for the design and analysis of large graph algo-
rithms, motivated by real-world systems considerations.

* We design efficient ROSE algorithms for triangle count-
ing, FRT trees, and SCC, using novel techniques. We
also show that 15 existing graph algorithms are efficient
in the ROSE model.

2 The ROSE Model

2.1 Model Definition Consider a graph G(V, E) with n =
|V| vertices and m = |E| edges. Depending on the graph
problem being studied, G is (i) undirected or directed, and
(i1) weighted or unweighted. We assume that G has neither
(undirected) self-edges nor duplicate edges. When reporting
bounds, we assume that m = Q(n) and indeed semi-external
models are relevant only when m > n. Let diam(G) be the
unweighted (hop) diameter of G, r,, be the eccentricity of v or
the longest shortest-path distance between v and any vertex u
reachable from v, and deg(v) be the degree of vertex v.

The Read-Only Semi-External (ROSE) model consists
of a read-write random-access internal memory of ©(n) words
and a read-only block-access external memory of unbounded
size. Words are ©(logn) bits. Transfers from the external
memory to the internal memory (i.e., external memory reads)
are done in blocks of size B, where B is measured as the
number of edges that fit in a block. The /O complexity Q of
an algorithm is the number of such transfers. The input graph
resides in the external memory and the program output gets
stored in the internal memory (thus, the model is restricted
to graph problems with O(n) output size). We assume the
following canonical form for the input graph layout: vertices
are numbered 1 to n and the graph is stored in standard
compressed sparse row (CSR) format as consecutive blocks in
the external memory. An adversary controls the numbering of
the vertices (and hence their ordering in the CSR format). We
assume any compression of the graph is done in a manner that
enables fast decompression of individual compressed blocks.

The work W of an algorithm is the total number of
instructions using only the internal memory (i.e., not counting
external memory reads, which are accounted for in the
I/O complexity). For parallel algorithms, we assume the
binary-forking model [8, 19, 29], which is widely used in
analyzing parallel algorithms [2, 4, 16, 20, 24, 44, 75]. In
this model, a running thread can spawn two child threads
using a fork instruction, and then it resumes only after
the children finish. This supports nested-parallelism. All
threads share both the internal and external memory. A
compare-and-swap (CAS) instruction is allowed on individual
words of the internal memory. Some of our algorithms also
make use of the fetch-and-add (FA) and priority-write (PW)
instructions, which are widely used in the design of parallel
algorithms [43, 44, 45, 68]. The depth D (also called the
span) of a computation is the length of the longest chain of
dependences for instructions. In addition to the O(n) shared-
memory accessible to all threads, we assume each thread
can allocate O(polylog(n)) memory in a stack fashion (i.e.,
the memory allocated after a fork needs to be freed before
the child finishes). A work-stealing scheduler can execute a
computation in W/p + O(D) time with high probability on p
processors and O(n + p polylog(n)) internal memory [12, 30].
In practice, since p < n, we can ignore the lower-order term
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O(p polylog(n)), and more discussions for memory allocation
and usage can be found in [51]. We seek parallel algorithms
that are work-efficient, i.e., their work asymptotically matches
the best sequential algorithm, and highly parallel, i.e., their
depth is polylog(n) or at most O(diam(G) - polylog(n)) (note
that most large real-world graphs have small diameter).

2.2 Related Work External Memory and Semi-External
models are block-based models, in that they transfer data
between the internal and external memory in blocks that
hold multiple data words. As noted in Section 1, prior
work on such models did not study the case of a read-only
external memory. Likewise, other sequential and parallel
block-based hierarchical memory models, e.g., the Ideal
Cache model used in cache-oblivious algorithm design [49],
the Multicore-Cache model [15], and the Parallel Memory
Hierarchy model [5], do not have read-only memory as part
of the model. Carson et al. [35] studied write-avoiding
algorithms, which seek to minimize the number of external
memory writes, but does not disallow them.

For non-block-based models, most prior work accounting
for asymmetric read-write costs in the external memory has
simply charged more for external memory writes [12, 13,
17, 18, 21, 23, 53]. An exception is our recent work on
Sage [45], which defines a cost model that charges w > 1
for external memory writes, but looks to design algorithms
that perform no external memory writes. Unlike the present
paper, that paper did not formalize a read-only model, did
not consider block transfers, allowed more than O(n) internal
memory in a key variant, and allowed the input graph to be
stored replicated on each socket of a multi-socket machine
(to avoid costly NUMA effects). We will show that a number
of the Sage algorithms are efficient in the ROSE model (see
Section 7).

In the Semi-Streaming model [48, 63], graph algorithms
can read or write to an internal memory of O(n - polylog(n))
bits and can only read the graph in a sequential streaming
order (with possibly multiple passes). This restrictive access
to the graph is block-transfer-efficient (m/B transfers per
pass), and so any semi-streaming algorithm with W work,
t passes, and only O(nlogn) memory bits is also a ROSE
algorithm with W work and tm/ B transfers. The ROSE model,
on the other hand, is not limited to sequential streaming order.

Classic definitions of space complexity assume that
the input is in a read-only memory and that the algorithm
uses S space if its read-write working space is S bits. Any
lower bounds for time in S = O(n log n) space (O(n) words)
immediately carry over to a lower bound for work in the
ROSE model. Some classic models allow for an append-
only output stream, to enable algorithms whose output size
is greater than S. In theory, the ROSE model could be
likewise extended. Such Limited Workspace models have
attracted considerable recent attention in the computational

geometry community [10], devising new computational
geometry algorithms whose running time is a function of
s, the working space in words (S = slogn bits), 1 < s < n.

To get around stringent lower bounds for read-only
models, recent work has studied relaxations that still seek
to minimize the additional working space beyond the input
graph. If K = O(mlogn) bits are used to store the input
graph, in-place algorithms [36] are allowed to use those K
bits and polylog(n) more space as the only read-write memory.
Gu et al. [51] study in-place graph algorithms in the parallel
setting, where sublinear additional space is allowed. Restore
algorithms [37] are in-place algorithms that must restore the
input graph to its original state at the end of the algorithm.
As discussed in Section 1, the ROSE model’s read-only input
graph provides additional benefits beyond just saving space.

Our work is the first hierarchical model to combine the
semi-external assumption (vertices fit in internal memory, but
edges do not) with a random-access read-only external mem-
ory with block transfers. Moreover, unlike most prior work
limiting read-write working space, we focus on (efficient)
parallel algorithms.

3 The FETCHEDGES Primitive

A key property of the algorithms analyzed in this paper is that
they all read the external memory using only a block-friendly
(and compression-friendly) primitive, FETCHEDGES(v), that
fetches all of the incident edges in the input graph for a vertex
v.

Because the edge list of a vertex is contiguous in the
external memory, for each block that contains part of that
list, at least one of the following must be true: (i) the block
contains the beginning of the edge list, (ii) the block contains
the end of the edge list, and/or (iii) the block consists entirely
of elements of the edge list. For a vertex v, there can be
at most one block each of the first and second types, and
deg(v)/B blocks of the third type. The call to FETCHEDGES
causes one transfer of each of these blocks and no other
transfers, resulting in the following lemma.

LEMMA 3.1. A call to fetchEdges(v) causes at most
[deg(v)/B] + 1 transfers from external memory.

Note that the special case of a parallel foreach (u,v) € E
loop to fetch all edges requires only m/B transfers, because it
can be implemented using FETCHEDGES on the vertices in
CSR order.

We define a k-read ROSE algorithm to have the follow-
ing properties: (1) It only reads data from the graph using
the FETCHEDGES primitive, and (2) k is an upper bound
on the number of times FETCHEDGES(v) is called for any
vertex v in the graph. Using Lemma 3.1, we can show that
the I/O complexity of a k-read ROSE algorithm is at most

k(Xoev([deg(v)/B] + 1)) = O(k(n + m/B)):
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Algorithm 1: The ROSE triangle-counting algorithm

Input: An undirected graph G = (V, E), and an ordering
over the vertices <r, described in the text below.
Output: The triangle count, T, of G

1 Define N*(v) = {(u,v) € E s.t. u >7 v}
2 Set TG «— 0
3 SetR«V
4 while R # 0 do
5 Let A « {ay,..
6 | LetR—R\A
7 Build parallel hash tables, H, representing
N*(a),Yae A

parallel foreach (u,v) € E do

ifu>rvandu € A then
10 Let T, < [N*(v) N N*(u)|, computed by
hashing N*(v) into H,,
11 Atomically increment T¢ by T,,,,
12 return Tg

. act SRs.t. YT IN*(a;)] < 2n

e e

THEOREM 3.1. The I/O complexity of a k-read ROSE algo-
rithm is at most O(k(n + m/B)).

For simplicity, we will only analyze the I/O complexity of
uncompressed graphs, but the analysis can be readily adapted
to the compressed graph case (with an updated Theorem 3.1).

In the remainder of this paper, we will frequently make
use of this theorem as a simple means to derive I/O complexity
bounds. As an example, consider the breadth-first search
(BFS) algorithm defined in Dhulipala et al. [45]. This
algorithm starts at the root and repeatedly expands the frontier
of the BFS tree one level at a time in parallel. Each vertex in
the frontier use FETCHEDGES to obtain a list of its neighbors,
and a conditional check ensures that vertices are not revisited.
To ensure that the number of simultaneously fetched edges is
O(n) (and not O(m)) in the worst case, the algorithm uses a
special EDGEMAPCHUNKED function which does not incur
additional external memory reads. Thus, the algorithm is a
1-read ROSE algorithm, with I/O complexity O(n + m/B).

4 Triangle Counting

In this section, we present a work-efficient ROSE triangle-
counting algorithm whose depth is parametrized in terms of
the arboricity of the input graph.

Overview. Our approach in this paper is to parallelize the
classic RAM-model triangle-counting algorithm due to Chiba
and Nishizeki [38] (the CN algorithm) that runs in O(am)
work where « is the arboricity of the input graph, i.e., the
minimum number of disjoint forests that the edges of the
graph can be decomposed into. The CN algorithm works
by intersecting the neighbors N(u) and N(v) for each edge
(u,v) € E by hashing the lower-degree endpoint’s neighbors

into the higher-degree endpoint’s neighbors. They then show
the following elegant fact:
4.1 Z min(deg(u), deg(v)) = O(am)

(u,v)€E

Because @« < +/m, the worst-case running time of this
algorithm on the RAM-model is O(m*?). However, for
sparser graphs with & < m'/? the work can be significantly
better. For example, planar graphs and constant genus graphs
have & = O(1), and so the algorithm runs in linear-time on
such graphs.

The challenge to overcome in the ROSE model is the fact
that the input graph is presented to us in the CSR format,
and not as a collection of per-vertex hash tables storing
the vertices’ neighborhoods. The main idea of our new
algorithm is to materialize as many hash tables as will fit
in the internal memory and perform partial triangle counting
using the materialized neighborhoods. We also make use of a
low out-degree ordering of the graph in our analysis, which
is a total ordering of the vertices such that for each vertex
the number of neighbors that come after it in the ordering is
O(a). By combining the properties of the CN algorithm and
low out-degree orderings with careful use of prefix sums, we
obtain the following result:

THEOREM 4.1. There is a ROSE algorithm for triangle
counting with O(am) expected work, O(a log n+log® n) depth
whp, and O(a(n + m/B)) I/O complexity.

Algorithm. We provide the pseudocode for our triangle
counting algorithm in Algorithm 1. The algorithm takes as
input an undirected graph, and an ordering over the vertices
<r. The provided ordering does not impact correctness; rather
we use it as a tool for analyzing the work and I/O costs of the
algorithm, as discussed later in the section. We define N*(v)
to be the neighbors of v ranked higher than v (according
to the ordering >7) (Line 1). Our algorithm first initializes
the set of vertices to be removed (R) to V (Line 3). Then,
while R is non-empty, it repeatedly removes a subset of active
vertices, A C R, from R. (Lines 5-6). The active vertex
subset is chosen such that the sum of |[N*(v)] for all vertices
v € Ais at most 2n, and hence fits in the internal memory.
Because |[N*(v)| < n for all v € V, we can always find such
a subset that sums to more than n, and at most 2n, with the
possible exception of the last loop iteration. A simple way to
implement the subset choice is to compute the prefix sum of
IN*(v)| over for all v € V at the beginning of the algorithm.
The algorithm can then keep the total value of [N*(v)]| that is
already removed and perform a binary search each round for
the vertex with the largest value with difference < 2n.

For each active subset, the algorithm builds parallel hash
tables, H,, storing the neighbors of the active vertices a € A
(Line 7). It then maps over all edges in the graph in parallel
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and for each edge checks whether the higher degree endpoint
of the edge is in A, and thus has its hash table materialized
(Line 9). If so, the algorithm computes the intersection size
using parallel hashing to hash the vertices in N*(v) (where v
is the lower degree endpoint) into the larger degree vertex’s
parallel hash table (Line 10). Computing the count can
be done using a reduction over the smaller degree vertex’s
neighborhood. Finally, the algorithm atomically updates the
overall triangle count (Line 11).

Although we describe this algorithm using atomics for
simplicity, this requirement can easily be removed. The idea
is to perform a parallel reduction over all edges in the graph,
and then for each edge where the higher-degree endpoint is
in A, perform a parallel reduction over the smaller degree’s
neighborhood to compute the count. Similarly, the set N*(v)
does not actually have to be materialized and can be filtered
as the algorithm is iterating through v’s neighborhood.

Correctness. We argue that each triangle is counted once.
Consider a triangle (u, v, w). Without loss of generality, let
w >7 v >1 u. Observe that this triangle will be found by
the (u, v) edge in the iteration of the while-loop where v is
an active vertex (v € A), because w € N*(u) and w € N*(v).
The triangle cannot be found by the (u, w) or (v, w) edge
because neither u nor v are present in N*(w).

Choice of ordering. Our analysis of the work, depth, and
I/0O complexity of our algorithm relies on a total ordering,
<r, of the vertices. We consider two types of orderings,
degree ordering and low-outdegree ordering. Degree ordering
is defined for any two vertices u,v € V as u >g, v iff
deg(u) > deg(v), or deg(u) = deg(v) and u > v. Low out-
degree ordering has the property that for each v € V, the
number of v’s neighbors that follow it in the ordering is at
most O(a). A recent paper by Shi et al. [66] studies a simple
parallel algorithm to compute a low out-degree ordering. This
algorithm works by removing a constant fraction of the lowest-
degree vertices in each round, and adding these vertices to an
ordering that is being incrementally constructed. Importantly,
each vertex processes its incident edges exactly once in the
round when it is peeled, making the algorithm O(1)-read.
Combining this with the work-depth analysis from Shi et al.,
we show that in the ROSE model a low-outdegree ordering
can be computed in O(m + n) expected work, O(log® n) depth
whp, and O(n + m/B) I/Os. We refer the interested reader to
Shi et al. [66] for more details.

Work and depth. To prove the work and depth bounds in
Theorem 4.1, we first bound the number of times the while
loop can be invoked. A well-known fact about graphs with
arboricity « is that they cannot have many edges: in particular,
an arboricity a graph can have at most O(na) edges. Because
each round of the loop (except possibly the last) removes more
than n edges, after O(na/n) = O(«) rounds, R will become
empty. On each of these rounds, we process all remaining

vertices, and all edges in the graph. The overall work of these
steps is thus O(na) and O(ma), respectively, in the worst case.

To bound the cost of materializing hash tables for vertices
when they are active, observe that each vertex constructs a
hash table of its incident edges exactly once. The hash table
construction can be done in O(deg(v)) expected work for
each vertex v, and O(log n) depth whp. This is done by using
the CAS primitive provided by the model to insert elements
into an open-addressed table via linear-probing. The overall
expected work of these operations is O(m) across all vertices.

Finally, consider the work of the intersections. Observe
that each edge (u, v) is processed in exactly one round, when
its higher-ranked endpoint (according to >7) is in A. We call
this round the active round for (u,v), and assume w.l.0.g. that
u >1 v. The work of processing this edge is O(1) in the
other rounds because we simply scan over it and do nothing.
What remains is to bound the work of processing the edge
in its active round. There are two cases based on the type of
ordering being used by the algorithm.

Degree Ordering. In the active round, we hash |[N*(v)| <
deg(v) times into H,,. Using Equation 4.1, we show that the
total work for processing each edge in its active round is at
most 2, »)cg min(deg(u), deg(v)) = O(am). Therefore the
total intersection work is O(am).

Low Out-degree Ordering. In this case, the work can
be bounded more directly, since the main property of the
low-outdegree ordering is that [N*(v)| < O(«). Therefore,
the total work for processing each edge in its active round is
Z(u,D)EE O(O{) = O(am)

Combining the overall work of each step results in a total
algorithmic work of O(a(m + n))(= O(am) since we assume
m € Q(n)). For a low out-degree ordering, the overall depth
of the algorithm is O(a log n +log? n), since there are & many
rounds that each run a O(log n) depth reduction over all edges,
and the depth of the low-outdegree orientation is O(log? n).
For a degree ordering, the depth is just O(« log n).

I/O complexity. We now argue that Algorithm | has low
I/0 complexity by showing that it is an O(«)-read algorithm.
First, note that each vertex performs one call to FETCHEDGES
in the active round where it materializes its hash table. The
algorithm also processes all edges of the graph O(«) times,
contributing another O(«) calls to FETCHEDGES per vertex.
The remaining calls for each vertex u come from edges (u, v)
where u <7 v. Specifically, we must bound the maximum
out-degree of each vertex in the ordering. For the degree-
ordering, unfortunately the maximum out-degree can be
up to O(y/m) in the worst case [71], leading to an O(y/m)-
read algorithm. On the other hand, for a low out-degree
ordering, the maximum out-degree is O(«). Combining
this with our previous observations, we see that the total
number of FETCHEDGES calls for each vertex is O(a),
leading to an O(«)-read algorithm, and an I/O complexity
of O(a(n + m/B)).
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5 Constructing FRT Trees

The FRT tree [47], proposed by Fakcharoenphol, Rao, and
Talwar in 2003, is an asymptotically optimal algorithm to
generate probabilistic tree embeddings [11], which embed a
finite metric (X, dx) into a distribution of tree metrics with a
minimum expected distance distortion. In particular, for every
pair of elements x, y € X, the tree distance is always no less
than Dx(x,y), and at most O(Dx(x, y) log n) in expectation.
FRT trees have been used in many applications, such as
(1) many practical algorithms with good approximation
bounds, such as the k-median problem, buy-at-bulk network
design [27]; and network congestion minimization [65];
(2) network algorithms including the generalized Steiner
forest problem, the minimum routing cost spanning tree
problem, and the k-source shortest paths problem [58];
(3) solving symmetric diagonally dominant (SDD) linear
systems [41]; (4) construction of approximate distance oracles
(ADOs) [25]; and (5) estimating the influence of vertices in a
network [40, 46].

In this paper, we consider the input as a graph metric
(G,dg), where G = (V,E) contains n vertices and m
edges, and dg is shortest-path distance. Recent work by
Blelloch et al. [22, 25] discussed algorithms for FRT tree
construction on a graph both sequentially and in parallel. Both
algorithms construct the least-element (LE) lists [39] as an
intermediate representation, and then construct the FRT tree
from the LE-lists using an algorithm by Blelloch, Gupta, and
Tangwongsan [27]. Unfortunately, we cannot directly apply
this approach here due to the space limitations of the ROSE
model—an LE-list require storing an expected 2n In n vertex
indices and distances which are generated from n single-
source shortest-paths (SSSP) searches. Thus, theoretically the
algorithm does not fit into the ROSE model, and in practice,
storing 2 In n numbers per vertex likely precludes storing all
LE lists in DRAM when the graph contains tens of billions of
vertices. Meanwhile, the FRT tree only has O(n) space that
fit in the ROSE model. Therefore, our goal in this paper is to
design a new algorithm for constructing FRT trees without
explicitly generating the LE-lists. Instead, in our approach
we generate the FRT trees by levels, directly based on the
distances from the SSSP searches. In the rest of this section,
we will first review the existing algorithms, and then present
our new approach.

A recent work by Andoni, Stein, and Zhong [6] shows
an O(m) work, polylogarithmic depth algorithm to construct
FRT trees, but it requires O(m) intermediate space and does
not fit into the ROSE model.

5.1 Definitions, Existing Algorithms, and Intuition We
first review the definitions for LE-lists, FRT trees, and existing
sequential and parallel algorithms for constructing FRT trees
from a graph [22, 25, 27].

LE-lists. Given an ordering of the vertices, the Least-Element
lists (LE-lists) for a graph (either unweighted or with non-
negative weights) are defined as follows.

DEFINITION 1. (LE-LIST [39]) Given a graph G = (V,E)
withV = {vy,...,v,}, the LE-lists are:

i-1
L(v;) = {(Uj»dG(Ui»Uj» |vj € V,dg(vi,v5) < Ijlzl_l? dG(Ui,Uk)}

sorted by dg(vi, v;), in decreasing order.

In plain language, a vertex v; is in vertex v;’s LE-list if
and only if there are no earlier vertices (v, k < j), that are
closer to v;. Often one stores with each vertex v; in L(v;)
the distance dg(v;, v;). Typically a random ordering of the
vertices is used, which ensures the all LE-lists have length
O(log n) whp.

Radix-trees. Given an alphabet %, and a set of strings S each
from X", a radix-tree’ of S is generated by taking the trie on
S and then removing vertices with one child by combining
the incident edges, typically by appending their characters.
All interior nodes in a radix-tree therefore have at least two
children, and hence the total number of nodes is O(|S]).

FRT trees and Compressed FRT Trees. The FRT algorithm
is based on a random permutation of the input points, and a
parameter f§ € [1,2) randomly selected from the probability
density function f,(x) = 1/(xIn2). We assume that the
weights are normalized so that 1 < dx(x,y) < A = 2°
for all x # y, where § is a positive integer. The original
algorithm [47] was described as a top-down clustering
algorithm, generating a laminar family of clusters. This
corresponds to a tree in which the edge weights start at A
at the root and at each level decrease by a factor of two going
down the tree. Such a tree, however, can have a number of
nodes that is at least quadratic in the input size. Therefore, in
this paper we build a compressed FRT tree [28], for which
nodes in the FRT tree with a single child are spliced out and
the incident edge weights combined. This transformation
preserves distances in the tree. The leaves correspond to the
input points, and since all internal nodes have at least two
children, the tree is of size O(n). The tree also has depth
O(log n) whp [28].

Compressed FRT Trees from LE-lists. The compressed
FRT tree can be generated from LE-lists directly [25, 28],
avoiding the large number of nodes in the full FRT tree. This
can be done in three steps:

1. Generate the LE-list for each point based on the random

permutation of the input. Each such list has size O(log n)
whp.

Also called PATRICIA trees or radix tries.
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2. Take all of the distances dg(v;, v;) in the LE-lists and
replace them with rounded log-distances | log, %J,
and then only keep the first entry among equal distances.

3. Treating each modified LE-list as a string, where each
character is a (vertex, log-distance) pair, build a radix
tree on all the lists. Weight the edges based on the top
“character” on the combined edge.’

Unfortunately, this algorithm will not suffice for our purposes
since our goal is to use only O(n) space, while the LE-lists
themselves require O(nlog n) space. As mentioned, we plan
to integrate the generation of LE-lists and generation of the
tree. This requires understanding and adapting the parallel
LE-list algorithm. Also the previous parallel algorithm using
this idea [28] requires O(nlog® n) work for the third step
since it requires a lexicographic sort. Our new algorithm also
improves this bound to O(nlogn) work, which might be of
independent interest to the ROSE model.

Generating LE-lists in Parallel. We start with the
BGSS parallel algorithm for constructing LE-lists (Algo-
rithm 2) [22]. The algorithm runs for log n rounds, where
each round doubles the number of vertices from which it
does SSSP searches “in paralle]’—i.e., on the r’th round it
runs SSSP searches from the next 277! vertices. The set S;
captures all vertices that are closer to the i’th vertex than
earlier vertices (the previous closest distance is stored in
4(-)). Line 4 computes S; using a single-source shortest
paths (SSSP) algorithm (e.g., Dijkstra’s algorithm or a dif-
ferent shortest path algorithm [26, 59, 73, 76]). Then the
d(-) values are updated based on the searches in this round.
This algorithm requires O(Wsp(n, m)logn) expected work
and O(Dgsp(n, m)log n) depth [22] whp, where Wsp(n, m) and
Dgsp(n, m) are the work and depth, respectively, to compute
SSSP for a graph with n vertices and m edges. We also care
about the IO-complexity Isp(n, m) to compute the SSSP. We
note that for unweighted graphs, we can use BFS giving O(m)
work, O(dglogn) depth, and O(n + m/B) 10-complexity,
where dg is the diameter of the graph. Otherwise we could
use a variety of solutions [26, 59, 73, 76], although they would
have to be analyzed on the ROSE model.

A key observation, for our purposes, is that after each
round the algorithm has generated a prefix of each LE-list.
In particular, after round r, for each vertex i € {1,...,n},
the LE-list for i will consist of its LE-list with all entries
for vertices with indices up to 2". Each round extends each
prefix by an expected constant number of additional elements.
We will use this observation to extend the FRT tree on each
round without keeping the full LE-lists. This will be done by
keeping a kind of “prefix” of the compressed FRT tree that is

2This could cause distances to differ from the original FRT tree by a

constant factor, but with more care the distances can be made identical.

Algorithm 2: The BGSS algorithm for constructing LE-
lists in parallel [22].
Input: A graph G = (V,E) with V = {vy, ...
Output: The LE-lists L(-) of G

,Un}

Set §(v) « +ooand L(v) «— @ forallv € V
for r < 1tolog, ndo
parallel foreach i ¢ {2"7,...,2" — 1} do
‘ LetS; ={u eV |d(v;,u) <du)}
parallel foreach u € | J; S; do
Let l(u) « {v; |u € S;}
Sort [(u) based on dg(v;, u) in descending order
and filter out v; that are not in ascending order
8 Append [(u) to the end of L(u)
9 O(u) « d(vj,u) | vj is the last element in [(u)
return L(-)

N N R W N

p—
>

updated on each round by adding appropriate descendants to
the tree from the previous round.

5.2 Our Algorithm We now describe a parallel work-
efficient algorithm that only requires O(n) temporary space,
and thus can be implemented in the ROSE model.

THEOREM 5.1. A compressed FRT tree can be built from a
metric based on a graph with n vertices and m edges using
O(Wsp(n, m)log n) expected work, O(Dsp(n, m)log® n) depth
whp, and O(Isp(n, m)logn) expected 10-complexity where
Wsp(n, m), Dsp(n, m), and Isp(n, m) are work, depth and 10-
complexity to compute SSSP, using O(n) auxiliary space.

There are two main algorithmic improvement in the
new ROSE algorithm, and we first overview the high-level
ideas and then go into details. The first insight is to avoid
constructing the entire LE-lists L(-). We note that the LE-lists
have O(nlogn) elements whp, and the outer loop for r in
line 2 in Algorithm 2 also runs for O(log n) iterations. In
expectation, each iteration will search out for O(n) vertices
to add to the LE-lists. Hence, if we can directly integrate the
search values of S; to the FRT tree, rather than wait until all
elements in LE-lists L(-) are computed, then we can bound the
memory usage to be linear (some care needs to be taken since
the O(n) is only in expectation). The second insight is that,
as mentioned above, the existing parallel algorithm [28] is
not work optimal due to sorting the LE-lists lexicographically.
We observe that the FRT tree does not need an order, either
for the leaf nodes or the interior nodes, since when querying
two vertices which correspond to two leaf nodes in the FRT
tree, the output is the tree-path distance, and the ordering of
the tree nodes does not matter.

An algorithmic overview. The pseudocode of the new ROSE
FRT algorithm is given in Algorithm 3. It runs for O(log n)
rounds (line 5), and in each round, we not only apply the
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Algorithm 3: The ROSE FRT algorithm

Input: A graph G = (V,E) with V = {vy, ..
Output: An FRT tree T g

.»Un}

1 Create a uniformly random permutation z : V. — V of the
vertices in G.

2 Pick § € [1, 2] using the probability density function
fa(x) = 1/(xIn2).

3 We will maintain the following across rounds:

1. A partial FRT tree (i.e., the top part), which we will build
from the root node into the full tree.

2. Foreach v € V, a pointer 7, to the leaf of the partial FRT
tree that will eventually contain v. All 7,, initially point
to the root.

3. For each v € V, the smallest distance to v from vertices
processed so far, §(v). All §(v) are initially set to +oco.

5 for r < 1tolog, ndo

6 parallel foreach i € {2"7!,...,2" — 1} do
7 | LetS; ={ueV|dviu) < u)}

8 parallel foreach u € V do

9

Let I(u) — {(vi, pi = Llogy 701} s 1< i <

n|luesS;}

10 Sort I(u) based on p; in descending order and filter out
v; that are not in ascending order

11 Now collect vertices together using (z,, (1)), and just keep

one of each equivalence class (duplicates removed), and
call the resulting set S (can be done with a semisort)

12 parallel foreach u € S do
13 Let l(’j)(u) —

{{ou, pug)s - - s <qu_1,Puj_1>v qu} [1<j< |l
@) = {Couys puy)s -+ (v puy)} 10 < j < 1)
14 Forall u € S, j < |l(u)|, using a semisort collect together
based on key (ry,, l(’].)(u)) along with value py,;, and count

the appearance of the keys (ry,, l('}.)(u)> and (1, l{;)(u))
(also using semisort)

15 parallel foreach key (r,, l{}.)(u)) after semisort do
16 Sort the value py; in increasing order
. : ’ 14

17 if 7, has children or [{z,, l(].)(u)>| < Ky, l(]._l)(u))|
then

18 | Create a tree node for the first entry

19 Create a tree node for every entry but the first one,
point the root of each node to the predecessor

20 parallel foreach u € | J; S; do

21 | Update 7, to the current corresponding node

SSSP searches (line 7), but also directly integrate the search
results in S; to the FRT tree and discard S; after the round. In
expectation, the SSSP search result in each round (i.e., ), |S;])
has size O(n), and later we will discuss how to deal the case
when it is w(n) in rare cases. When generating the FRT tree,
we only create the tree nodes that will eventually show up in
the final tree, and the final tree has no more than 2n — 1 tree
nodes. All other intermediate steps use space proportional

Round
log, n

' e

Figure 2: An illustration for the new algorithm to construct FRT
trees. We grow the tree a constant number of levels in expectation,
and repeat for log, n rounds.

Round Round Round

to the size of SSSP search (3 |S;|), so we can restrict the
auxiliary space to be O(n).

The conversion from the SSSP search results to an FRT
tree takes O(nlogn) expected work and O(log®n) depth,
which is interesting even without considering the ROSE
model. The depth can be further improved to O(logn) if
we first do all searches in O(logn) rounds (line 5), and
then run the rest of the algorithm (line 8—21) in one pass,
although it then requires O(nlogn) space. The algorithmic
insight is that previous algorithms either use a point-centric
view [22, 25, 27] (for a specific vertex v, we consider which
SSSP searches can reach v), or a level-based view [47]
(consider the partition with different search radii and refine
the partition). The new algorithm uses the search-centric view:
for a specific SSSP search from v;, we check the reach set
and see what tree node this search creates. More specifically,
the SSSP search from v; will reach the vertex set S;, and we
consider and process the FRT tree nodes incident to S;.

The key idea of the algorithm is to maintain on each
round a partial compressed FRT tree (the top part), and for
each vertex u that has not been added yet, we keep a pointer
7, to a tree node that u will eventually be descendant of. In
particular, if we have processed points up to i, the compressed
FRT tree will include all edges labeled with vertices up to i
(recall the edges are created from the LE-lists, and contain a
vertex and a distance to that vertex). For instance, in Figure 2,
after round 1, we generate the tree nodes incident to the search
from v;. Every other vertex v; is reached by the search from
vy, and diverges at level |log, %J. We create all nodes
at these levels (line 13), and distribute 7, for each v; to the
corresponding level. As shown in Figure 2, we repeat this
process for log, n rounds, and generate the FRT tree.

Another interpretation of this algorithm is that, on each
round the BGSS algorithm generates extensions to the LE-
lists using SSSP searches from a new set of points. We
apply the same strategy here, but now immediately insert the
elements into the partial FRT tree. Roughly speaking, this
is done by grouping the extensions for each vertex u by 7,
(the current node pointed to by u in the partial FRT tree), and
building the part of the tree that extends that leaf, and then
updating all vertices to point to their new z,,, which will be
a descendant of the old one. Note that to do this we need to
group by the pair consisting of 7,, and the contents of the the
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extensions of the LE-lists. This can be done with a semisort
since the ordering does not matter.

In the rest of this section, we first describe the algorithm
in more detail, prove the correctness, and analyze the cost
bounds. Then we discuss how to guarantee the space usage
to be O(n) so that it works in the ROSE model. Putting all
pieces together, we achieve the bounds in Theorem 5.1.

The search-centric conversion algorithm. We now present
our algorithm to convert from the SSSP search results to an
FRT tree in O(nlog n) expected work and O(log n) depth. The
algorithm uses the search-centric view and uses semisort as
the crucial building block. Recall that semisort takes the n
key-value pairs as input, and group all pairs with the same key
using linear expected work and O(log n) depth whp [19, 52].

To do so, we borrow the concepts of a partition se-
quence [27] to better illustrate our algorithm. Given a permu-
tation 7 and a parameter f3, the partition sequence of a vertex

u, denoted by crfr”)ﬂ,

veV,dg(u,v) < p-2°""} fori=0,...,6, ie. point v has
the highest priority among vertices up to level i. Then the
FRT tree is just a radix tree for the trie constructed based
on partition sequence for each vertex. We now explain how
the searches in each round modify the partition sequence and
therefore the FRT tree nodes.

is the sequence crfzu)ﬁ(i) = min{r(v) |

OBSERVATION 1. Vertex v; creates the node when there
exists two nodes v; and vy and the partition sequences of
v; and v diverges at v;.

More accurately, @) and ¢(¥%) have the same prefix, and
they diverge at level x + 1, i.e., 0@ (x) = 0@)(x) = v;,
and 0@ (x + 1) # o@)(x + 1) (More details are shown
in [27]). We now show Algorithm 3 creates all FRT tree
nodes correctly, and does not create more nodes (otherwise
the tree size can be larger than O(n) and does not fit in the
ROSE model). We first see what FRT tree nodes v; can create.

OBSERVATION 2. Vertex v; can only create nodes below the
nodes created by v; when j < i, because of the definition of
partition sequence.

Namely, the FRT tree can be generated incrementally, by
adding the leaf nodes created by vy,vs,...,v,. Recall
the case @) and ¢®%) diverge at level x + 1. There
are two reasons that a FRT tree node is generated: (1)
o@(x +1) = 6@)(x) # 0@)(x + 1) (or symmetric), and
(2) 0@)(x + 1) # 6@)(x) # ¢'¥)(x + 1). For the first case,
let v; = 0@ (x + 1) = 6@)(x) # 6@ (x + 1). Since o)
and o@x) diverge at level x + 1, we must have To; = Top
and they share a common prefix before the first appearance
of v;, and for v;’s search, they have different o;. Hence,
in the semisort in line 14, they share the same key (7;)
but have different values, so the tree node will be created
either in line 18 or line 19. For the second case, suppose

oW (x) = v,, 0@(x +1) = vp, and o) (x + 1) = v.
Based on Observation 2, we must have a < b and a < c¢. By
the time when the algorithm searches from v, and v,, the
parent node is already created by v, or v,’s ancestor. WLOG,
suppose that vj’s search occurs in an earlier round. Then in
vp’s search, v, will stay in the parent node, so the condition
[{zy, l(’j)(u))l < Ky, l(’Jf_l)(u))| in line 17 is always true and
the algorithm will generate a new node for v;. Then in v.’s
search, we know the parent node for v, has at least one child
already, so again the condition in line 17 is satisfied, and a
new node for v will be generated. If v;, and v, search in the
same round, then both will be the first case, and a new tree
node for each vertex will be constructed in line 18.

We have shown that all the tree nodes will be created.
We now show that no additional tree node is created. First,
each node other than the leaf nodes have at least two children
so there is no uncompressed nodes. This is because nodes
created in line 19 has one child already (other than the
last one which is a leaf), and at least another node will
be filled in line 18. For nodes created in line 18, they are
either not the first child of the parent node, or the condition
{7y, l(’].)(u))l < Kry, l’f_l)(u))l guarantees that at least a later
child node will be filled in later. Second, the nodes created
in line 18 and line 19 are due to either of the two cases
discussed in the previous paragraph, so every node created by
Algorithm 3 is necessary.

Fitting in the ROSE model. We have shown how to convert
the search results S; to FRT tree nodes. We know that
1 1Sil = O(nlogn) whp and there are log, n rounds in
the algorithm, and in expectation the overall search size is
O(n) [22]. It is easy to check that all steps in line 8 to line 21
use space proportional to ; |S;| in one round. If we have cn
regular memory size for a reasonable large constant c, it is
likely that the algorithm will just run well. However, it is
possible that }; |S;| is large (i.e., w(n)) in one round, and of
course our algorithm should deal with it rather than crashing.
The solution is to dynamically adjust the batch size in
line 6. We assume we have a budget for the regular memory
size that can hold cn elements for some constant ¢ > 1. Once
the SSSP searches in one round (line 7) exceed this size, we
stop and shrink the range by a half, and repeat if necessary.
This will lead to additional work when the resize is triggered,
but it will not affect the work asymptotically. This is because
in for v;’s search in round r, E[|S;|] = n/2""'. When each
resizing is triggered, we divide the range into two equal-size
halves and each side has O(n) SSSP search size in expectation.
Therefore, the failed SSSP searches that reach O(n) vertices
is asymptotically bounded.

6 Strongly Connected Components

In this section, we discuss the ROSE SCC algorithm that
can achieve the same asymptotic work and slightly larger
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Algorithm 4: The ROSE SCC algorithm
Input: A directed graph G = (V, E) with
V=A{vg,...,on}.
Output: The set of strongly connected components of G.
1 //REACHABILITY in line 7 and 8 for v; only searches
vertices v; such that M; = M;

2 M« {(0,2),(0,2),...,(0,2)}
3 Sscc’ Vscc — {}
4 forr — 1tolog,ndo
parallel foreach i € {2"7!,...,2" — 1} do
if v; € Vy.. then Break;
S} < FORWARD-REACHABILITY (v;)
S; < BACKWARD-REACHABILITY(v;)
Generate key-value pairs (v*, (v, +)) | v* € S
and (v7, (v;,—)) | v™ €]
10 Semisort all the pairs, and let L; be the set of values
for pairs with keys v;
11 parallel foreach i € {2"7!,...,2" - 1} do

R - B W]

12 if not ({(vj, +), (vj,—)} € L;), j < i then

13 Ssee & Sgec U {S:— N S,_}

14 Vsee <= Vsee U (S; N S;)

15 parallel foreach L; | v; € V\V;.,L; # {} do

16 Sort L; based on the label of the vertices in
increasing order

17 (v1,81) « Li(1)

18 for j «— 2to |L;| do

19 (Ve s¢) < Li(j)

20 if v, is reachable from v; in s; direction then

(v, 81) « (Vs Se)
21 M; « (v, 1)

22 return S,

depth as compared to the best existing parallel SCC algo-
rithm without the semi-external constraint. The best exist-
ing parallel SCC algorithm is referred to as the BGSS algo-
rithm [22], which takes O(Wg(n, m) log n) expected work and
has O(Dg(n, m)log® n) depth whp on an input graph with n
vertices and m edges. Wg(n, m) and Dg(n, m) are the work
and span, respectively, for a reachability algorithm from a sin-
gle vertex that visits n vertices, with m out-edges from those
vertices. However, this algorithm requires O(m) auxiliary
space since it explicitly removes edges during the execution
of the algorithm. The high-level idea in the ROSE algorithm
is to avoid this edge removal process.

Before we go into the details of the new ROSE SCC
algorithm, let’s first review the BGSS algorithm that the
new algorithm is based on. At the beginning, all vertices
are uniformly randomly permuted. BGSS runs in rounds,
and in round r, it applies 2"~! forward reachability queries
and 27! backward reachability queries for vertices with
indices 2771,...,2" — 1. These reachability searches find

the SCCs that these vertices belong to, and cuts edges to
partition vertices into disjoint subsets. In particular any edge
is removed if any of the reachability queries visited one of its
endpoints but not the other. All SCCs that the vertices belong
to are removed, and the remaining partitioned graph is left for
the next round. The algorithm iterates for log, n rounds and
finds all SCCs of a graph.

Since BGSS removes edges explicitly for deciding the
vertex subsets, it is not in the ROSE model. The idea in
the ROSE algorithm is to give each vertex a label, such
that vertices with the same label are in the same partition.
The algorithm is correct as long as the partitions defined
by the labels are equivalent to the partitions in the original
BGSS. For analyzing the partitions, we actually consider a
slight variant of the BGSS algorithm in which the vertices are
searched (forward and backwards with cutting) in sequential
order within a round. The partitions for such a variant at
the end of a round are actually those analyzed for the BGSS
algorithm [22], and the paper shows that the parallel variants
can only be more agressive at partitioning. We will label
every vertex with the last forward and last backward search in
the round that visited it if run sequentially. With this labeling,
edges are cut exactly when the labels for either direction differ
on the two end points. This is because different labels imply a
search visited one endpoint but not the other, and equal labels
implies the last search, and hence all previous searches on
either, visited both.

Assume that vertices x, y, and z that are in separate
SCCs. Let’s consider the following case in one parallel round:
x and y can reach z is the forward direction, and the search
order is first x then y within this round, and z in a future
round. In sequential BGSS, the search from y will reach z iff
y is reachable from x, otherwise x’s search will disconnect
(separate) y and z before y’s search. We will take advantage
of this property to generate our sequential labels even though
we run the searches in parallel. In particular we can look
at all searches that reach a vertex z in the parallel (batch)
version, scan through those in sequential order (there are only
a constant number in expectation and logarithmic whp), and
determine which would have been the last to visit x in the
sequential version.

The ROSE algorithm is described in Algorithm 4. The
labels are stored in the M array, and the algorithm runs the
rounds in parallel as in BGSS. For all rounds and for all
vertices reached in reachability searches in a round, we create
a visited-source pair (line 9) and semisort by visited (line 10).
More precisely, for each vertex v;, we collect L;, the indices
of all searches that have v;in their reached set. Now for
vertices in L;, we sort by source index (line 16), and set
the temporary label (v, s7) to the earliest (line 17). We now
iterate over the rest in increasing order for each search index
ve. If v, is reachable from v;’s search in s; direction, then
set the current label to (v, s¢) (line 20); otherwise leave it.
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Whenever we do not change the label, this corresponds to a
visit that happened in the parallel algorithm that would not
happen in the sequential one (v;’s search on s; direction would
have separated them). We note that v; can be reached by v;
in at most one direction. Otherwise, v; and v; are strongly
connected and v; is removed from V.. already in line 14.
Hence, there will be no duplicates with the save vertex in L;.
After generating the final label, we update M; (line 21).

THEOREM 6.1. The ROSE SCC algorithm requires
O(Wg(n, m)log n) expected work and has O(Dg(n, m)log® n)
depth whp, and uses O(I(n, m)log n) I/Os, where Wg(n, m),
Dg(n, m), and Izx(n, m) are work, span and I/O-complexity to
compute reachability, using O(n) auxiliary space.

Proof. Similar to the ROSE FRT algorithm, if the searches
for all rounds reach O(n) vertices, ROSE SCC does not
apply additional reachability searches as the sequential BGSS,
which gives to the work and I/O bounds. The additional steps
are on computing the vertex labels, with size O(n), so they
are in the internal memory. Semisorting in line 10 takes linear
expected work and logarithmic depth whp. Sorting the L;
lists has the same cost as sorting /(u) in ROSE FRT, which
also takes linear expected work and logarithmic depth whp.
Since whp all the reachability searches will touch O(n log n)
vertices in total [22], all the additional work in ROSE SCC
is hidden by the cost of reachability searches. Regarding
the small possibility that a search for a round in ROSE SCC
reaches w(n) vertices, we can trigger resizing similarly to
ROSE FRT, which will not affect work asymptotically, but
the depth of ROSE is increased by a logarithmic factor as
compared to BGGS SCC. 0

Using BFS for reachability the costs are O(mlogn)
expected work, O(dg log® n) span whp, and O((n+m/B) log n)
expected I/O-complexity, where dg is the diameter of the
graph. This is the bounds shown in Table 1.

7 Existing Algorithms in ROSE

In this paper, we also consider a set of 15 parallel graph algo-
rithms recently designed in our previous work on Sage [45].
We will show that each of these algorithms (other than
Bellman-Ford) is a O(1)-read ROSE algorithm (Section 3),
and thus by Theorem 3.1 has low I/O complexity (at worst
O(n + m/B)) on ROSE. The algorithms inherit the work and
depth bounds from [45]. Table | (below the mid-line) sum-
marizes the results. As shown in the table, nearly all the
algorithms achieve our goals of being work-efficient, highly
parallel, and low I/O complexity.

In what follows, we briefly summarize how to show that
these algorithms are O(1)-read ROSE algorithms. We refer
the interested reader to [44, 45] for more details on these
algorithms.

Shortest Path Problems We consider six shortest-path
problems: breadth-first search (BFS), integral-weight SSSP
(WBFS), general-weight SSSP (Bellman-Ford), single-source
betweenness centrality, single-source widest path, and O(k)-
spanner. First, we observe that BFS, wBFS, single-source
betweenness centrality, and O(k)-spanner all process each
vertex at most a constant number of times in their operations.
For example, for BFS and wBFS, a vertex v is processed at
most once, when the (weighted) breadth-first search frontier
contains it. Similarly, in single-source betweenness centrality,
a vertex is processed at most twice: once in the forward pass
which computes the number of shortest-paths to each vertex,
and once in the backwards pass which computes dependency
scores [32, 67]. Finally, O(k)-spanner works by computing an
LDD, which we discuss below, and mapping over the edges
incident to all vertices in parallel, and is thus also an O(1)-
read ROSE algorithm. For Bellman-Ford, note that in the
worst case the algorithm can process a vertex diam(G) many
times, and thus it is an O(diam(G))-read ROSE algorithm.
Single-source widest path can be implemented either using
an approach similar to wBFS, or Bellman-Ford; the bounds
shown in Table | show the bounds for the Bellman-Ford based
implementation. We note that the wBFS, Bellman-Ford, and
single-source widest path algorithms all use the PW primitive.

Connectivity Problems We consider four connectivity prob-
lems: low-diameter decomposition (LDD), connectivity, span-
ning forest, and biconnectivity. The LDD algorithm works
similarly to BFS, loading the edges incident to a vertex only in
the round where it is processed either as an LDD cluster cen-
ter, or as a vertex on the boundary of an LDD cluster [45, 62].
Since each vertex is processed exactly once, it is an O(1)-read
algorithm. We also consider several connectivity algorithms
that build on LDD, including the O(k)-spanner algorithm
described above. Our connectivity and spanning forest algo-
rithms are based on the algorithm by Shun et al. [69], and our
biconnectivity algorithm is from Dhulipala et al. [44]. All
three algorithms use the modifications described in Dhulipala
et al. [45] to run in O(n) space whp. We observe that all three
of these algorithms only process the edges incident to each
vertex in the original graph a constant number of times whp,
and are thus expected O(1)-read ROSE algorithms. We note
that the biconnectivity algorithm uses the FA primitive when
performing leaffix and rootfix scans, and the SCC algorithm
uses the PW primitive [44].

Covering Problems We consider two covering problems:
maximal independent set (MIS) and graph coloring. As shown
in Dhulipala et al. [45] both algorithms only use O(n) words of
memory. Here, we observe that both algorithms only process
the edges incident to each vertex once. For MIS, a vertex is
processed either when it is added to the MIS by the algorithm,
or in the round where it is removed by one of its neighbors
joining the MIS. Similarly, for coloring, a vertex is processed
only in the round where it is ready to be colored. Thus, both
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algorithms are O(1)-read ROSE algorithms. We note that the
MIS and graph coloring algorithms use the FA primitive.

Substructure Problems We consider two substructure-based
problems from prior work: k-core and approximate densest
subgraph. Dhulipala et al. [45] previously argued how both
algorithms can be implemented using only O(n) words of
internal memory. Here, we observe that their algorithms are
actually O(1)-read ROSE algorithms. Specifically, for both
algorithms, the algorithm processes the edges incident to a
vertex exactly once, in the round when the vertex is peeled.
We note that both algorithms use the FA primitive.

Eigenvector Problems Lastly, we consider the problem of
computing the PageRank vector of the graph. Our algorithm
is based on the classic PageRank algorithm [33], and is based
on the implementation by Dhulipala et al. [45]. Here, we
observe that this algorithm processes all of the edges in the
graph in every iteration, leading to O(m/B) I/O complexity
per-iteration.

8 Conclusion

We have introduced the Read-Only Semi-External (ROSE)
Model for graph algorithms. We have analyzed 18 parallel
algorithms in this model, and have shown that they are
work-efficient, highly parallel, and have strong I/O bounds.
Our algorithms make use of the FETCHEDGES primitive to
traverse neighbors of vertices, and by analyzing the number
of times this primitive is called, we are able to obtain strong
I/0 bounds for the algorithms in the ROSE model. Finally,
our algorithms for triangle counting, FRT trees, and strongly
connected components are specially designed for the ROSE
model, with novel techniques.
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