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To keep pace with Moore’s law, chip designers have focused on increasing the number of cores per chip rather

than single core performance. In turn, modern jobs are often designed to run on any number of cores. However,

to effectively leverage these multi-core chips, one must address the question of how many cores to assign

to each job. Given that jobs receive sublinear speedups from additional cores, there is an obvious tradeoff:

allocating more cores to an individual job reduces the job’s runtime, but in turn decreases the efficiency of the

overall system. We ask how the system should schedule jobs across cores so as to minimize the mean response

time over a stream of incoming jobs.

To answer this question, we develop an analytical model of jobs running on a multi-core machine. We

prove that EQUI, a policy which continuously divides cores evenly across jobs, is optimal when all jobs follow

a single speedup curve and have exponentially distributed sizes. EQUI requires jobs to change their level of

parallelization while they run. Since this is not possible for all workloads, we consider a class of “fixed-width”

policies, which choose a single level of parallelization, k , to use for all jobs. We prove that, surprisingly, it is

possible to achieve EQUI’s performance without requiring jobs to change their levels of parallelization by

using the optimal fixed level of parallelization, k∗. We also show how to analytically derive the optimal k∗ as a
function of the system load, the speedup curve, and the job size distribution.

In the case where jobs may follow different speedup curves, finding a good scheduling policy is even more

challenging. In particular, we find that policies like EQUI which performed well in the case of a single speedup

function now perform poorly. We propose a very simple policy, GREEDY
∗
, which performs near-optimally

when compared to the numerically-derived optimal policy.
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1 INTRODUCTION
The Parallelization Tradeoff
Modern multicore chips afford the opportunity to reduce job response time by parallelizing a job

across several cores. To exploit this opportunity, modern parallel jobs are often designed to have

the ability to run on any number of cores [13, 30]. However, effectively exploiting parallelism

is non-trivial. Specifically, for each arriving job one must decide its level of parallelization – the

number of cores on which the job is run. We consider the setting where jobs arrive over time and

ask how to minimize the mean response time across jobs.

In choosing the optimal levels of parallelization, we must consider the following tradeoff. Par-
allelizing an individual job across multiple cores reduces the response time of that individual
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job. In practice, however, a job’s speedup is sublinear and concave in its level of parallelization,

leading to an inefficient use of resources and additional system load. Hence, while a higher level

of parallelization may decrease an individual job’s response time, it may have a deleterious effect

on overall mean response time across jobs. Thus, while traditionally the programmer chooses the

level of parallelization for their jobs, we propose making this a system level decision, minimizing

mean response time across all jobs.
Access to additional cores can reduce a job’s service requirement in a variety of ways. If a

job is composed of many independent computations, as is the case for jobs composed largely of

matrix operations, having additional cores can significantly reduce response time. However, even

memory-bound jobs can benefit from more cores since additional cores often provide the job with

additional memory throughput. The effect of parallelization can, however, be limited by several

factors: jobs may require mostly sequential computation, and jobs may incur overhead due to

checkpointing and communication between threads. As the number of cores in the system increases,

[6] has shown that all the benefits and limitations of parallelization can be encapsulated in a job’s

speedup function, s(k), which specifies the ratio of a job’s runtime on k cores to its runtime on a

single core.

In general, it is conceivable that every job will have a different speedup function. However, there

are also many workloads [6] where all jobs have the same speedup function, for example when

one is running multiple instances of the same program. It turns out that even scheduling jobs with

a single speedup function is non-trivial. Hence, for the majority of the paper we will focus on a

single speedup function before turning our attention to multiple speedup functions.

The question of how to choose the correct level of parallelization for jobs is commonly referred

to as the choice between fine grained parallelism, where every job is parallelized across a large

number of cores, and coarse grained parallelism, where the level of parallelization is small. This

same tradeoff arises in many systems beyond multicore chips. For example, in a server farm, jobs

could be run across multiple servers. Running on more servers allows an individual job to complete

more quickly, but leads to an inefficient use of resources which could increase the response times of

subsequent jobs. Additionally, an operating system might choose how to partition memory (cache

space) between multiple applications. Likewise, a system designer may have to choose between

fewer wider bus lanes for memory access, or several narrower bus lanes. In all cases, one must

balance the effect on an individual job’s response time with the effect on overall mean response

time. Throughout this paper, we will use the terminology of parallelizing jobs across cores, however
all of our remarks can be applied equally to any setting where limited resources must be shared

amongst concurrently running processes.

Prior Work
Prior work on exploiting parallelism has traditionally been split between several disparate com-

munities. The SIGMETRICS/Performance community frequently considers scheduling a stream

of incoming jobs for execution across several servers with the goal of minimizing mean response

time, e.g., [15, 17, 24, 26, 31]. Job sizes are assumed to be random variables drawn from some

general distribution, and arrivals are assumed to occur according to some stochastic arrival process.

Typically, it is assumed that each individual job is run on just one server : jobs are not parallelizable.
An exception is the work on Fork-Join queues. Here it is assumed that every job is parallelized

across all servers [21]; the question of finding the optimal level of parallelization is not addressed.

This community has also considered systems where the service rate that a job receives can be

adjusted over time, but this work has focused on balancing a tradeoff between response time and

some other variable such as power consumption [14] or Goodness of Service [9].
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By contrast, the SPAA/STOC/FOCS community extensively studies the effect of parallelism,

however it largely focuses on a single job. More recently, this community has considered the effect

of parallelization on the mean response time of a stream of jobs. However, this has been through

the lens of competitive analysis, which assumes the job sizes (service times), arrival times, and even

speedup curves are adversarially chosen, e.g. [2, 11, 12]. Competitive analysis also does not yield

closed form expressions for mean response time. We seek to analyze this problem using a more

typical queueing theoretic model. Our workloads are drawn from distributions and our analysis

yields closed-form expressions for mean response time as well as expressions for the optimal level

of parallelization.

The advent of moldable jobs which can run on any number of cores has pushed the high

performance computing (HPC) systems community to consider how to effectively allocate cores to

jobs [4, 10, 19, 30]. These studies tend to be empirical rather than analytical, each looking at specific

workloads and architectures, often leading to conflicting results between studies. By contrast, our

paper attacks this problem from a stochastic, analytical point of view, deriving optimal scheduling

algorithms in a more general model.

Our Model
We assume that jobs arrive into an n-core machine according to a Poisson Process with rate Λ
jobs/second where

Λ := λn

for some λ. The random variable X denotes the size of a job. We think of X as the inherent work

associated with a job. Any job can be run on any subset of cores. If a job of size X is parallelized

across k cores, its service requirement becomes Xk , where

Xk =
X

s(k)
(1)

and s(k) ≤ k is called the speedup factor. The function s : R+ → R+ is assumed to be non-decreasing
and concave, in agreement with functions described in [18]. Additionally, we will focus on instances

where jobs receive an imperfect speedup and thus s(k) is assumed to be sublinear : s(k) < k for all

k > 1 and there exists some constant c > 0 such that s(k) < c for all k ≥ 0. Importantly, we assume

that a job is split perfectly so that its service requirement on each of the k cores is the same. While

this assumption ignores the straggler problem, in which some pieces of a job may take longer to

complete than others, it is worth noting that extensive work has been done on mitigating these

effects in practice [3, 28].

The optimality proofs in the paper will require assuming that X is exponentially distributed.

However, all of the performance analysis presented admits general job size distributions.

An example of a well-known speedup function is Amdahl’s law [25], which models every job as

having a fraction of work, p, which is parallelizable. The speedup factor s(k) is then a function of

the parameter p as follows:

s(k) =
1

p
k + 1 − p

.

Figure 1(a) shows Amdahl’s law under various values of p. Although Amdahl’s law ignores aspects

of job behavior, we see in 1(b) that several workloads from the PARSEC-3 benchmark [33] follow

speedup curves which can be accurately modeled by Amdahl’s law. Hence, although our analysis

will not rely on the specifics of the speedup function, we will use Amdahl’s law in numerical

examples.

We mostly assume that jobs are homogeneous with respect to s – all jobs receive the same

speedup due to parallelization – although we will also consider multiple speedup functions.
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(a) (b)

Fig. 1. Various speedup curves under (a) Amdahl’s law and (b) the PARSEC-3 Benchmark. We see that the
PARSEC-3 speedup curves are accurately approximated by Amdahl’s law; these approximations are shown in
(b) in light blue.

As jobs arrive, each job is initially dispatched to some subset of the cores. A scheduling policy
defines, at every moment in time, which particular cores each job runs on. Cores are assumed to be

homogeneous, and thus any job is capable of running on any core.

At any moment in time, there may be several jobs (job pieces) running on a particular core.

We assume each core time-shares between its jobs (i.e. Processor Sharing), which is typical for

processors in multicore machines. For example, suppose there are only 2 jobs in the system, each

of size x , and each runs on the same 5 cores. Each job receives a speedup of s(5) since it runs on 5

cores, but its runtime is 2 · x
s(5) because each job only gets half of each core.

The Problem. The fact that modern parallel jobs are capable of running on any number of cores

begs the question of how many cores should be used for each job. Let T denote the response time
of a job (the time between when the job arrives and when all of its pieces have completed). Our

goal is to find and analyze scheduling policies that aim to minimize the mean response time, E[T ],
across all jobs. Clearly, E[T ] depends on the scheduling policy, the speedup function, s , the arrival
rate of jobs into the system, Λ, the mean job size, E[X ], and the number of cores, n. We define the

average system load, ρ, to be

ρ :=
ΛE[X ]

n
.

This is equivalently the fraction of time a core is busy when each job is run on a single core. Thus,
ρ < 1 is a necessary condition for stability, regardless of the scheduling policy used. We assume

both ρ and s are constant over time.

Contributions
Contribution 1: Optimal Parallel Scheduling Under a Single Speedup Function. We provide a proof

that EQUI is the optimal parallel scheduling policy (assuming exponentially distributed jobs sizes).

EQUI is a policy which first appeared in [11]. Under EQUI, at all times, the n cores are equally

divided among the jobs in the system. Specifically, whenever there are ℓ jobs in the system, then

each job is parallelized across n/ℓ cores. EQUI is an idealized policy in that (i) EQUI assumes that

when a job runs on n/ℓ cores its runtime will be distributed as
X

s(n/ℓ) , even if n/ℓ is not an integer,

and (ii) EQUI requires jobs to be malleable – every job can change its level of parallelization while

it runs.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 40. Publication date: December 2017.



Towards Optimality in Parallel Job Scheduling 40:5

Contribution 2: Fixed-Width Parallel Scheduling. In practice, jobs are not malleable but are often

moldable – a job can run on any number of cores, k , but it must run on the same k cores for the

duration of its lifetime. In theory, a scheduling policy could choose a different number of cores on

which to run each incoming job. We define an extremely simple class of scheduling policies, called

fixed-width policies, whereby every job is run on the same fixed number of cores.
We take this a step further and impose the constraint that the n cores of the machine are

partitioned into static-sized “chunks”, each with k cores, where k divides n. For example, Figure 2

shows some potential chunkings of a 16-core machine. Every arriving job is dispatched to a single

chunk and runs across all the cores in that chunk.

We introduce a policy called JSQ-Chunk which uses a fixed width, k , and assigns jobs to chunks

according to the Join-Shortest-Queue dispatching policy. We provide an approximate response time

analysis for JSQ-Chunk, and, more significantly, we show how to choose the optimal fixed-width,
k∗, for JSQ-Chunk as a function of the system load, ρ.

(a) k = 8 (b) k = 2 (c) k = 1

Fig. 2. A machine with n = 16 cores under various chunk sizes, k . Each job is dispatched to a single chunk.

Contribution 3: Near-Optimality of Fixed-Width
Scheduling. Fixed-width scheduling policies seem heavily restricted in their ability to effectively

exploit parallelism. We prove, however, that certain fixed-width policies, like JSQ-Chunk, can

achieve mean response time converging to that of EQUI as the number of cores, n, becomes large.

We provide a preview of contributions 2 and 3 in Figure 3. Here we see the mean response times

under JSQ-Chunk, as a function of system load ρ, for various choices of k . For a given ρ, this figure
shows how to choose the optimal k∗. The figure shows a separate curve for mean response time

under each possible choice of k when using JSQ-Chunk. As expected, increasing k can reduce mean

response time, but also reduces the system’s stability region. The shaded regions under these curves

denote the values of ρ for which a particular choice of k is optimal. For example, when x8 ≤ ρ ≤ x4,
k∗ = 4. Surprisingly, the performance of JSQ-Chunk, when using the optimal chunk size k∗, is not
far from that of EQUI– we will prove that this difference vanishes in systems with many cores.

Contribution 4: Multiple Speedup Functions. Thus far we have assumed that all jobs follow the

same speedup function s . We show that, when jobs are permitted to have different speedup functions,

EQUI is no longer optimal. We also show how to numerically compute the optimal policy, OPT, for

multiple speedup functions (assuming exponentially distributed job sizes). Since finding OPT is

computationally intensive we introduce a simple class of policies, called GREEDY, that performs

well by maximizing the departure rate. We prove that one policy in this class, GREEDY
∗
, dominates

by both maximizing the overall departure rate and deferring parallelizable work. We also compare

OPT to simple fixed-width policies.
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Fig. 3. Mean response times under JSQ-Chunk (thin line) and EQUI (thick line) when n = 64. We assume a
speedup curve of Amdahl’s law with parameter p = 0.5 and a shifted Pareto job size distribution with α = 2

and mean E[X ] = 1.

2 EQUI: AN OPTIMAL POLICY
In order to effectively parallelize jobs, one imagines that using a dynamic level of parallelization
might greatly improve mean response time. Specifically, it makes sense to consider policies where

the level of parallelization of an incoming job is determined based on the state of the system at the

time when the job arrives. In addition, if jobs are malleable, active jobs could change their levels of

parallelization during their lifetimes as the state of the system changes.

EQUI [11] is a generalization of Processor Sharing to systems with multiple cores. Under EQUI,

whenever there are ℓ jobs in the system, each job runs on n/ℓ of the cores. We define µ = 1/E[X ]

to be the rate at which jobs complete when run on a single core. EQUI is an idealized policy in

that it assumes that when a job runs on n/ℓ cores its runtime will be distributed as
X

s(n/ℓ) , even

if n/ℓ is not an integer. This corresponds to a service rate of s(n/ℓ)µ for each job when jobs are

exponentially distributed. Additionally, we assume that s(k) = k when k ≤ 1 to account for the

effects of Processor Sharing. Hence, when there are ℓ jobs in the system, the total rate at which

jobs complete is ℓµs(n/ℓ) which is equal to nµ when ℓ ≥ n. Importantly, EQUI always processes

every job in the system at the same rate, even when there are more than n jobs in the system.

Figure 4 shows the Markov chain for EQUI. This Markov chain assumes that job sizes are expo-

nentially distributed. However, Lemma 2.1 proves that EQUI’s performance is actually insensitive

to the job size distribution.

In Theorem 2.3 we prove that EQUI is optimal with respect to mean response time when all jobs

follow the same speedup function and are exponentially distributed.

Fig. 4. Markov chain representing the total number of jobs under EQUI.

2.1 Insensitivity of EQUI
Lemma 2.1. Mean response time under EQUI is insensitive to the job size distribution.

Proof. A system is considered to practice processor sharing if, regardless of how many jobs

are in the system, each job receives the same service rate. Note that under EQUI, whenm jobs

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 40. Publication date: December 2017.



Towards Optimality in Parallel Job Scheduling 40:7

are in the system, each job receives the same service rate by running on n/m of the cores. Hence,

EQUI fits the definition of a processor sharing system, albeit one with state dependent service rates

because the total rate of departures depends on the number of jobs in the system. It is known from

[5, 7] that the mean response time in processor sharing systems with state dependent service rates

is insensitive to the job size distribution, thus our performance analysis of EQUI holds for the case

where job sizes follow a general distribution. □

2.2 Proving that EQUI is Optimal
Theorem 2.3 relies on Lemma 2.2.

Lemma 2.2. For any concave, sublinear function, s , the function i · s
( n
i

)
is increasing in i for all i

for all i < n, and is non-decreasing in i for all i ≥ n.

Proof. See Appendix 7.1 □

Theorem 2.3. Within our model, assuming jobs are malleable, have exponentially distributed sizes,
and all follow the same speedup function, s , E[T ]EQUI ≤ E[T ]P for any scheduling policy P .

Proof. Let P be a scheduling policy which processes malleable jobs and currently has i active
jobs (the system is in state i). In every state, i , P must decide (i) how many jobs, j, to run and (ii)

how to allocate the n cores amongst the j jobs. Hence, for some
®θ , the rate of departures from state

i under P is at most

µ

j∑
k=1

s(nθk ) (2)

where 0 < j ≤ min(i,n), θk > 0 for all 1 ≤ k ≤ j, and
∑j

k=1 θk = 1. Note that (2) is an upper bound

on P ’s departure rate, since it assumes that the j jobs run on disjoint partitions of cores; given that

s is concave the total rate of departures will not increase when a single core (or fraction of a core)

is allocated to more than one job.

We also know that

1

j

j∑
k=1

s (nθk ) ≤ s

(
n

j

)
again, by the concavity of s . Hence,

j∑
k=1

s(nθk ) ≤ j · s

(
n

j

)
∀ 0 < j ≤ i, ∀ ®θ ∈ (0, 1]j

and thus an upper bound on P ’s total rate of departures from any state is of the form

j · s

(
n

j

)
µ .

By Lemma 2.2, j · s
(
n
j

)
is non-decreasing in j. Thus, an upper bound on P ’s rate of departures

from any state i is

i · s
(n
i

)
µ . (3)

Furthermore, we can see that EQUI achieves this departure rate in every state, i . Hence, (3) is the
maximal rate of departures from any state, i .
We can now compare the Markov chain corresponding to P with the Markov chain for EQUI

(Figure 4) and relate the number of jobs in the system, N , under both policies. Both chains have the
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same arrival rates, but the rate of departures under EQUI is greater than or equal to the rate of

departures under P in any state, i , since the departure rate chosen by EQUI is maximal. Thus,

E[N ]EQUI ≤ E[N ]P

and, by Little’s Law,

E[T ]EQUI ≤ E[T ]P.

□

2.3 EQUI with General Size Distributions
Theorem 2.3 requires exponentially distributed job sizes. One might think that EQUI’s insensitivity

(Lemma 2.1) might imply that EQUI is optimal under all job size distributions. However, this is

false. Consider for example the case where jobs follow a Pareto distribution with decreasing hazard

rate. Independent of the speedup function, the optimal policy should devote more cores to jobs

which have lower ages, and are thus more likely to finish in the immediate future. This differs from

EQUI’s equal division of resources.

In general, optimal scheduling of jobs with general job size distributions is an extremely difficult

problem. Even optimally scheduling generally distributed jobs on a single core requires using a

policy derived from the Gittins index [29]. In our case, where the optimal scheduling policy must

allocate many cores, finding the optimal policy is at least as difficult. In fact, it is not known how to

even numerically compute the optimal policy in this case. We therefore defer this work to a future

paper.

3 FIXED-WIDTH POLICIES
While EQUI performs very well, it requires jobs to change their levels of parallelization while

running. Fixed-width policies require that jobs be moldable, but not necessarily malleable, which is

more realistic for certain workloads. In general, a fixed-width policy is any policy which chooses

a fixed level of parallelization, k , to use for each arriving job. Every arrival is parallelized across

k cores, and is run on the same k cores for its entire lifetime. In this section, we consider several

natural fixed-width policies.

We begin by defining the Random dispatching policy, which parallelizes each arriving job across

k cores chosen uniformly at random. It turns out (see Theorem 3.3) that Random is dominated

by the Random-Chunk policy; hence we devote Section 3.1 to Random-Chunk. In Section 3.2, we

consider an improved fixed-width policy called JSQ-Chunk, which dispatches arrivals to the chunk

with the shortest queues.

Like EQUI, Random-Chunk and JSQ-Chunk are insensitive to the job size distribution. Thus, our

analysis of these policies admits general job size distributions, X .

3.1 Random-Chunk
The motivation behind the Random-Chunk policy is that we would like to use random assignment

while ensuring that the different pieces of a single job complete at the same time. For a level of

parallelization, k , we begin by partitioning the cores into c = n/k chunks of size k . We will only

consider values of k which divide n, creating a uniform partition of the cores. When a job arrives, a

chunk is selected uniformly at random, and the job is parallelized across all k cores in this chunk.

It is easy to see that under Random-Chunk each piece of a job will at all times experience the

same state, and hence each of the k job pieces will complete at the same time. Consequently, the

response time for a job is equal to the response time of any of its k pieces, which in turn is simply

the mean response time at a single core. This allows us to easily derive an expression for the overall

mean response time under Random-Chunk with a level of parallelization k in Theorem 3.1 below.
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Theorem 3.1. The mean response time under Random-Chunk with a level of parallelization, k , is
given by

E[T ]Rand-Chunk =
E[X ]

s(k) − kρ
.

Proof. Recall that cores follow the PS scheduling discipline. We know from [20] that the mean

response time in a single M/G/1/PS queue with arrival rate Λ, mean job size E[X ] and load

ρ = ΛE[X ]

n is given by

E[T ] =
E[X ]

1 − ρ
.

It will suffice to analyze the response time of one core in our system. Under a level of paralleliza-

tion of k , the arrivals into a single core follow a Poisson process with rate

Λk :=
Λ

c

and the mean service requirement of job pieces is E[Xk ] (see (1)). Thus, we can define the load on a

single core in this system to be

ρk := ΛkE[Xk ].

This allows us to express E[T ]Rand-Chunk under a level of parallelization of k as:

E[T ]Rand-Chunk =
E[Xk ]

1 − ρk
=
E[Xk ]

1 − ρ k
s(k )

=
E[X ]

s(k) − kρ
.

□

Corollary 3.2. The optimal Random-Chunk policy uses chunk size k∗, where

k∗ = argmin

k

E[X ]

s(k) − kρ
.

If we define the vector kkk = (k1,k2, . . .km) to be the factors of n in increasing order, this implies:

k∗ =


km 0 ≤ ρ ≤

s(km )−s(kj−1)
E[X ]

ki
s(ki+1)−s(ki )
E[X ]

< ρ ≤
s(ki )−s(ki−1)
E[X ]

, 1 < i < m

k1
s(k2)−s(k1)
E[X ]

< ρ.

The results of this analysis are shown in Figure 5. This figure shows the mean response time

under various choices of k , and the shaded regions below the curves denote the values of ρ for which
each choice of k is optimal. Under high load, we see that the system is unable to tolerate wasting

resources by parallelizing jobs, and thus each job is run on a single core (k∗ = 1). Conversely, under

light load it is beneficial to pay this cost of parallelization in order to reduce the service requirement

of individual jobs.

Random-Chunk vs. Random
As we have seen, Random-Chunk yields much easier analysis than Random. Fortunately, Theorem

3.3 tells us that Random-Chunk results in lower mean response times than Random, rendering the

analysis of Random irrelevant.

Theorem 3.3. The mean response time under Random-Chunk with a fixed level of parallelization,
k , is less than under Random with the same k .
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Fig. 5. Results from analysis. Mean response times under Random-Chunk dispatching, a system with n = 16

cores, various choices of the level of parallelization k , and a hyperexponential job size distribution with
E[X ] = 1 and C2 = 10. The speedup curve used is Amdahl’s law with parameter p = 0.8.

Proof. Regardless of whether we are using Random or Random-Chunk dispatching, the arrival

process into a given core is Poisson with rate Λk and the service requirement of job pieces is

distributed as Xk . Thus, the response time for the ith job piece is distributed as some random

variable Ti , and the response times of all pieces are identically distributed in both cases.

Under Random-Chunk, the response times of a job’s pieces are identical. Hence, under Random-

Chunk, the response time of a job is simply the response time of one of its pieces. Under Random,

the response time of a job is the maximum of the k response times of its k pieces. Thus, for a single

job, the response time under Random-Chunk has distribution T1 while under Random the response

time of a single job has distribution

max(T1,T2, . . . ,Tk )

where Ti ∼ T . Since T ≤st max(T1,T2, . . . ,Tk ), we see that, for a given level of parallelization,

Random-Chunk’s mean response time is less than that of Random. □

Mixed-Random-Chunk
Until now, we have studied Random-Chunk policies where each chunk consists of k cores. It is

conceivable, however, that allowing for type 1 chunks of size k1 and type 2 chunks of size k2 could
improve mean response time.

Having two chunk sizes introduces more dispatching parameters. One must decide how many

cores, a, to devote to type 1 chunks. One also must decide what fraction, p, of arrivals to assign to

type 1 chunks. Finding the optimal Mixed-Random-Chunk policy then requires simultaneously

optimizing over not just k1 and k2, but additionally a and p.
We find that while some instances do exist where a Mixed-Random-Chunk policy is better than

Random-Chunk, these instances occur very sparsely throughout the parameter space (k1,k2,a,p),
and the advantage gained is very slight at best. In fact, if we limit ourselves to cases where the arrival

rate into each chunk is proportional to the chunk’s size, we can prove that Mixed-Random-Chunk
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is never advantageous in terms of mean response time or variance of response time (see Appendix

7.2).

3.2 JSQ-Chunk
The Random-Chunk policy can be greatly improved by considering the state of the system when

dispatching jobs. Under JSQ-Chunk with a level of parallelization, k , we again partition the system

into chunks of size k . When a job arrives to the system, it is parallelized across the k cores in the

chunk that is currently serving the fewest jobs. We expect that JSQ-Chunk will have much lower

mean response times than Random-Chunk and will admit higher values of k∗. To determine the

correct k∗ for JSQ-Chunk, it is important that we can accurately analyze mean response time under

JSQ-Chunk.

JSQ-Chunk is based on JSQ, an old and well-studied dispatching policy in the traditional queueing

literature which assumes no parallelization. Under JSQ, the system consists of c queues and every

incoming arrival is immediately dispatched to the queue with the smallest number of jobs. While

analyzing response times in a traditional (non-parallel) system with JSQ dispatching is notoriously

hard, [26] provides a good closed-form approximation of mean response time. The approximation

in [26] assumes FCFS queues with exponentially distributed job sizes. However, as shown in [15],

the case of PS queues with generally distributed job sizes has nearly the same mean response

time as the case of FCFS queues with exponentially distributed service requirements. Thus, the

approximation in [26] still applies to our model of PS queues and generally distributed job sizes.

This approximation states:

E[T ]JSQ(Λ, c,E[X ]) ≈WM/M/c (ρ)S(ρ)R(ρ) + E[X ],

where Λ is the arrival rate, c is the number of queues, X is a random variable representing the size

of a job, and ρ = ΛE[X ]/c .WM/M/c is the mean time in queue in anM/M/c queueing system, and

S(ρ) and R(ρ) are experimentally derived correction factors, given in Appendix 7.3.

Observation 1. Our parallel system with JSQ-Chunk dispatching with level of parallelization k , n
cores, c = n/k chunks, total arrival rate Λ, and job size distribution X has the same mean response

time as a traditional JSQ queueing system with, c queues, a total arrival rate of Λ, and job size

distribution Xk =
X
s(k ) .

Observation 1 follows from the fact that, under JSQ-Chunk, all the cores within a chunk have the

same queue state and receive the same arrivals. This allows us to directly apply the approximation

in [26] to analyze JSQ-Chunk as follows:

E[T ]JSQ-Chunk(Λ,n,E[X ],k) = E[T ]JSQ(Λ,n/k,E[Xk ]). (4)

4 JSQ-CHUNK CONVERGES TO EQUI
4.1 The Performance of JSQ-Chunk
Figure 6 shows the mean response time under JSQ-Chunk (left graph) as a function of system load

ρ, as computed using the approximation in (4). In addition, we also show results from simulation

which lie almost on top of the approximation results. Fortunately, we see that the approximation

for JSQ-Chunk suffices to accurately derive k∗ values. Analogous results of the analysis of Random-

Chunk are shown in the right graph. We find that, for a given load ρ, k∗ is generally lower under

Random-Chunk dispatching as compared with JSQ-Chunk due to JSQ-Chunk’s superior load

balancing. Furthermore, we see that the performance of JSQ-Chunk is much closer to that of EQUI

than Random-Chunk. While the response time of Random-Chunk does not depend on the total
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(a) JSQ-Chunk n = 16 (b) Random-Chunk n = 16

Fig. 6. Response times under (a) JSQ-Chunk dispatching and (b) Random-Chunk dispatching. In (a), results
are show from both analysis and simulation (the jagged lines), which largely overlap. Both graphs also show
the results of analysis of EQUI. We assume a speedup curve of Amdahl’s law with a parameter of p = 0.5 and
exponentially distributed job sizes with mean E[X ] = 1.

number of cores, it is not clear how JSQ-Chunk will behave as the number of cores becomes large.

We will now see that mean response time under JSQ-Chunk approaches that of EQUI as the system

scales.

Fig. 7. Analysis of mean response time under JSQ-Chunk dispatching and EQUI with a large number of cores
(n = 512). We assume a speedup curve of Amdahl’s law with a parameter of p = 0.5 mean job size E[X ] = 1.
Increasing the number of cores narrows the gap between JSQ-Chunk and EQUI, especially at the labeled
critical load points.

4.2 Why JSQ-Chunk is Close to EQUI
As we saw in Figure 6, the mean response time under JSQ-Chunk (with optimal k∗) is close to that

under EQUI. Figure 7 shows that, as we increase the number of cores ton = 512, JSQ-Chunk becomes

even closer to EQUI. This is surprising because JSQ-Chunk uses a fixed level of parallelization, while
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EQUI continuously changes its level of parallelization based on the system state. This phenomenon

can be viewed as EQUI choosing an effective level of parallelization of k∗. Figure 7 also illustrates the
critical load points, xk∗ for values of k∗, at which JSQ-Chunk is indifferent between two choices of

k∗. As n increases, these critical load points converge to the instability points for the corresponding

choices of k∗, as the curves become more L-shaped. In looking at Figure 7, we see that it is just

below these critical load points that JSQ-Chunk’s performance is closest to the performance of

EQUI. The rest of this section is devoted to formally stating and proving this observation (see

Theorem 4.2 below).

We first note that, given a fixed value of λ, a fixed mean job size E[X ], and a speedup function

s , the choice of the optimal level of parallelization under JSQ-Chunk, k∗, depends only on n, the
number of cores in the system. Let k∗(n) denote this optimal level of parallelization given some

values of these other system parameters. In particular, note that Λ = λn will increase with n, and
thus the system load, ρ, remains fixed for all values of n. When n is small, changes in n will have a

significant impact on the values of k∗(n), but for sufficiently large values of n, k∗(n) will become

constant in n. This is summarized in the following lemma regarding the performance of JSQ-Chunk.

Lemma 4.1. Given a fixed value of λ, a fixed value of µ = 1

E[X ]
, and some speedup function s , let k∗(n)

denote the optimal level of parallelization under JSQ-Chunk in a system of size n. Let E[T ]JSQ-Chunk

be the mean response time under JSQ-Chunk with level of parallelization k∗(n). There exists some
constant k∗, not dependent on n, such that

lim

n→∞
k∗(n) = k∗

and

lim

n→∞
E[T ]JSQ-Chunk =

1

s(k∗)µ
.

Proof. We can observe that, in this case, the system load ρ = λ
µ is constant (does not depend on

n). We know from [16] that for a fixed system load ρ, the probability of queuing under JSQ (and

hence also JSQ-Chunk) vanishes as the number of cores becomes large. Thus, the mean response

time under JSQ-Chunk with any level of parallelization, k , such that the system is stable, will

converge to
1

s(k )µ where µ = 1

E[X ]
. Since load is fixed, there exists some level of parallelization, k∗,

which is the highest value of k for which the JSQ-Chunk system is stable. We know that the mean

response time under JSQ-Chunk with level of parallelization k∗ converges to 1

s(k∗)µ . For any k > k∗,

the system is unstable. For any k < k∗, the mean response time under JSQ-Chunk with level of

parallelization k converges to
1

s(k )µ ≥ 1

s(k∗)µ since the speedup function is non-decreasing. Thus,

lim

n→∞
E[T ]JSQ-Chunk =

1

s(k∗)µ

as desired. □

We will refer to limn→∞ k∗(n) as k∗ for the remainder of the section.

We now want to show that as n → ∞, E[T ]EQUI → 1

s(k∗)µ also. That is, EQUI is behaving as if it
was using a fixed level of parallelization of k∗.
To relate the performance of EQUI to k∗, it will be helpful to examine the behavior of EQUI at

the critical load points. Recall that we can define

Λk∗ =
Λ

c
=

λn

c
,
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where c = n
k∗ is the number of chunks and

ρk∗ = Λk∗E[Xk∗ ]

is the load observed by a chunk of size k∗. We can see from Lemma 4.1 that the critical load points

move towards the instability points as n increases. Thus, we define a critical load point under a

level of parallelization of k∗ to be the point where ρk∗ = 1. Observe that

ρk∗ = 1 ⇐⇒ Λ = cs(k∗)µ .

We now evaluate EQUI at critical load points where Λ = cs(k∗)µ. Note that when k∗ = 1, the mean

response time under both EQUI and JSQ-Chunk will tend towards infinity. Thus, we only consider

cases where k∗ > 1.

Theorem 4.2. Given any fixed k∗ > 1, let E[T ]EQUIρk∗=1
be the mean response time under EQUI when

ρk∗ = 1. Then,

lim

n→∞
E[T ]

EQUI
ρk∗=1

=
1

s(k∗)µ
= lim

ρk∗→1
−
lim

n→∞
E[T ]JSQ-Chunk. (5)

Proof. In this proof we limit our discussion to exponentially distributed job sizes. However,

because EQUI and JSQ-Chunk are insensitive to the job size distribution (see Section 2.1 and Section

3.2), our proof generalizes to the case where jobs are generally distributed. We can see that the

right hand side of this claim follows directly from Lemma 4.1, and we thus proceed to analyzing

the mean response time under EQUI.

It will be helpful to start by examining a threshold chain as shown in Figure 8. Observe that the

service rate below the threshold state is µlow and the service rate above the threshold state is µhiдh .
We define

ρlow :=
Λ

µlow
, ρhiдh :=

Λ

µhiдh
.

We can solve for the mean response time, T , in such a threshold chain, and find that

E[T ]thresh =
1

Λ
·

(
t +

ρlow
1 − ρlow

+
1

1 − ρhiдh
+

1 + t − tρhiдh

ρhiдh − 1 + ρtlow (ρlow − ρhiдh)

)
. (6)

Constructing an Upper Bound. We now construct a threshold chain which gives an upper bound

(UB) on the mean response time under EQUI with arrival rate Λ = cs(k∗)µ (and thus ρk∗ = 1)

and service rate µ per core. To do this, we set t = ⌈c(1 + ϵ)⌉, µlow = s(n)µ and µhiдh = ⌈c(1 +

ϵ)⌉s
(

n
⌈c(1+ϵ )⌉

)
µ for any ϵ > 0. Note that all departure rates in the UB chain are lower than those of

EQUI (see Figure 4), and thus this chain provides an upper bound on the mean response time under

EQUI. Our UB chain has:

ρlow =
Λ

s(n)µ
=
cs(k∗)µ

s(n)µ

Fig. 8. A threshold chain with threshold state t and arrival rate Λ. For all states i ≤ t , the service rate is µlow
and for all states i > t , the service rate is µhiдh .
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and

ρhiдh =
Λ

⌈c(1 + ϵ)⌉s
(

n
⌈c(1+ϵ )⌉

)
µ
=

cs(k∗)µ

⌈c(1 + ϵ)⌉s
(

n
⌈c(1+ϵ )⌉

)
µ
.

First note that by Lemma 2.2,

s(n) < cs(k∗) < ⌈c(1 + ϵ)⌉s

(
n

⌈c(1 + ϵ)⌉

)
.

Thus ρhiдh < 1 < ρlow . We now apply (6) to see that

lim

n→∞
E[T ]UB = lim

n→∞

1

Λ
·

(
⌈c(1 + ϵ)⌉ +

ρlow
1 − ρlow

+
1

1 − ρhiдh

+
1 + ⌈c(1 + ϵ)⌉(1 − ρhiдh)

ρhiдh − 1 + ρ ⌈c(1+ϵ )⌉
low (ρlow − ρhiдh)

)
.

We can see that

lim

n→∞

1

Λ
·

ρlow
1 − ρlow

= lim

n→∞

1

Λ
·

1/µlow
1/Λ − 1/µlow

= 0,

since s(n) is bounded and µlow therefore converges to a positive constant. Furthermore, since ρhiдh
converges to a constant less than 1,

lim

n→∞

1

Λ
·

1

1 − ρhiдh
= 0.

Finally, we see that

lim

n→∞

1 + ⌈c(1 + ϵ)⌉(1 − ρhiдh)

Λ
(
ρhiдh − 1 + ρ ⌈c(1+ϵ )⌉

low (ρlow − ρhiдh)
) = 0,

since the numerator grows linearly in n and the denominator grows exponentially in n. Thus,

lim

n→∞
E[T ]UB = lim

n→∞

1

Λ
· ⌈c(1 + ϵ)⌉

= lim

n→∞

1

Λ
· (c(1 + ϵ) + o(n))

= (1 + ϵ)
1

s(k∗)µ
.

Constructing a Lower Bound. Our argument for constructing a lower bound (LB) is largely

the same. We again assume Λ = cs(k∗)µ (and thus ρk∗ = 1) and we set t = ⌊c(1 − ϵ)⌋, µlow =

⌊c(1 − ϵ)⌋s
(

n
⌊c(1−ϵ )⌋

)
, and µhiдh = nµ. Note that all departure rates in the LB chain are higher than

those of EQUI, and thus this chain provides a lower bound on the mean response time under EQUI.

We now have

ρlow =
Λ

⌊c(1 − ϵ)⌋s
(

n
⌊c(1−ϵ )⌋

)
µ
=

cs(k∗)µ

⌊c(1 − ϵ)⌋s
(

n
⌊c(1−ϵ )⌋

)
µ

and

ρhiдh =
Λ

nµ
=
cs(k∗)µ

nµ
=
s(k∗)µ

k∗µ
.

By Lemma 2.2 we again see that ρhiдh < 1 < ρlow . We apply (6) to see that

lim

n→∞
E[T ]LB =

1

Λ
·

(
lim

n→∞
⌊c(1 − ϵ)⌋ +

ρlow
1 − ρlow

+
1

1 − ρhiдh
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+
1 + ⌊c(1 − ϵ)⌋(1 + ρhiдh)

ρhiдh − 1 + ρ ⌊c(1−ϵ )⌋
low (ρlow − ρhiдh)

)
.

Since ρlow converges to a constant greater than 1 and ρhiдh is a constant,

lim

n→∞

1

Λ
·

ρlow
1 − ρlow

= 0 and lim

n→∞

1

Λ
·

1

1 − ρhiдh
= 0.

Finally, we see that

lim

n→∞

1 + ⌊c(1 − ϵ)⌋(1 + ρhiдh)

Λ
(
ρhiдh − 1 + ρ ⌊c(1−ϵ )⌋

low (ρlow − ρhiдh)
) = 0,

since the numerator grows linearly in n and the denominator grows exponentially in n. Thus,

lim

n→∞
E[T ]UB = lim

n→∞

1

Λ
· ⌊c(1 − ϵ)⌋

= lim

n→∞

1

Λ
· (c(1 − ϵ) − o(n))

= (1 − ϵ)
1

s(k∗)µ
.

We have therefore shown that

(1 − ϵ)
1

s(k∗)µ
≤ lim

n→∞
E[T ]

EQUI

ρk∗=1
≤ (1 + ϵ)

1

s(k∗)µ

for any 0 < ϵ ≤ 1 and we have thus shown (5) as desired. □

5 MULTIPLE SPEEDUP FUNCTIONS

(a) EQUI vs. OPT (b) GREEDY
∗
vs. OPT

Fig. 9. Heat maps showing the percentage difference in the mean response time in the system, E[T ], between
(a) EQUI and OPT and between (b) GREEDY∗ and OPT, in the case of two speedup functions where s1 and s2
are Amdahl’s law with parameters p1 and p2 respectively. Here E[X1] = E[X2] =

1

2
and Λ1 = Λ2 = 5. The

axes represent different values of p for each class. GREEDY∗, EQUI, and OPT were evaluated numerically
using the MDP formulation given in Section 5.5. These heat maps look similar under various values of Λ1 and
Λ2.

Thus far, we have assumed that jobs are homogeneous with respect to speedup. In this section,

we consider the case where jobs may have different speedup functions. To facilitate dealing with
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multiple speedup functions, we will assume throughout this section that job sizes are exponentially

distributed (see Section 2.3 for a discussion of why general job size distributions are outside the

scope of this paper when dealing with optimality).

We will see in Section 5.2 that, in the case of multiple speedup functions, EQUI is no longer the

optimal policy. In Section 5.3, we propose a class of policies called GREEDY which maximize the

departure rate in every state. We then describe the optimal GREEDY policy, GREEDY
∗
in Section

5.4. While GREEDY
∗
is not optimal in general (see Section 5.6), we show that GREEDY

∗
performs

near-optimally in a wide range of settings (Sections 5.5 and 5.6). Finally in Section 5.7, we return

to fixed-width policies and explain why they are insufficient when there are multiple speedup

functions.

5.1 Why Multiple Speedup Functions
There are situations in which it would be reasonable to expect all jobs to follow a single speedup

function, such as when all jobs are instances of a single application. The PARSEC-3 benchmark

provides many examples of workloads for which this is the case [33]. In practice, however, it may

be the case that there are 2 or more classes of jobs, each with a unique speedup function reflecting

the amount of sequential work, number of IO operations, and communication overhead that its

jobs will experience when run across multiple cores.

We consider the case where jobs may belong to one of two classes, each of which has its own

speedup function, si (the classes may also have arrival rates, Λi , but we assume all job sizes to be

exponentially distributed with rate µ = 1/E[X ]). Without loss of generality, we assume that class 1

jobs are less parallelizable than class 2 jobs: s1(k) < s2(k) for k > 1. For example, class 1 jobs could

follow Amdahl’s law with p = .5 while class 2 jobs follow Amdahl’s law with p = .75 (see Figure
1(a)). As usual, our goal is to describe and analyze scheduling policies which minimize overall mean

response time across all jobs. We will assume that a scheduling policy can differentiate between

job classes when making scheduling decisions.

5.2 EQUI is No Longer Optimal
We have already seen that EQUI is optimal when jobs are homogeneous with respect to speedup.

One might assume that, since EQUI bases its decisions on the number of jobs in the system rather

than the jobs’ speedup functions, EQUI could continue to perform well when there are multiple

speedup functions. However, it turns out that EQUI’s performance is suboptimal even when there

are just two speedup functions (see Figure 9(a)). While EQUI’s performance is actually close to

optimal in the cases where s1 and s2 are similar, we see that EQUI’s performance relative to the

optimal policy becomes worse as the difference between the speedup functions increases.

To see why EQUI is suboptimal in this case, recall that EQUI’s optimality stems from the fact that

it maximizes the rate of departures in every state when jobs follow a single speedup function (see

proof of Theorem 2.3). When jobs are permitted to have different speedup functions, maximizing

the rate of departures will require allocating more cores to class 2 jobs and fewer cores to class 1

jobs.

5.3 A GREEDY Class of Policies
We have seen that EQUI fails to maximize the rate of departures when there are multiple speedup

functions. Would a policy that maximizes the total rate of departures be optimal in this case? We

define the GREEDY class of policies to be the policies which achieve the maximal total rate of

departures in every state.

To describe the policies in GREEDY, we again consider the case where jobs belong to one of two

job classes. For any state (x1,x2) where there are x1 class 1 jobs and x2 class 2 jobs, attaining the
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maximal rate of departures can be thought of as a two step process. First, a policy must decide how

many cores, a1, to allocate to the x1 class 1 jobs. The remaining a2 = n − a1 cores will be allocated
to class 2 jobs. Second, the policy must decide how to divide the a1 cores among the class 1 jobs

and the a2 cores among the class 2 jobs. We have seen that, when dividing cores among a set of

jobs with a single speedup function, EQUI maximizes the total rate of departures of this set of jobs.

For a given choice of a1, the a1 cores should thus be evenly divided among the class 1 jobs and the

a2 cores should be evenly divided among the class 2 jobs in order to maximize the total rate of

departures. Thus, only the first decision remains.

To find an allocation of cores which maximizes the rate of departures, we first define β(x1,x2),
the maximum rate of departures from the state (x1,x2):

β(x1,x2) = max

α ∈[0,n]
x1s1

(
α

x1

)
µ + x2s2

(
n − α

x2

)
µ . (7)

We must then choose a1 such that

a1 ∈

{
α : x1s1

(
α

x1

)
µ + x2s2

(
n − α

x2

)
µ = β(x1,x2)

}
. (8)

This same two-step process will generalize to the case when jobs follow more than 2 speedup

functions.

Crucially, note that GREEDY is truly a class of policies, since, in a given state, there may be

multiple choices of a1 which satisfy (8). That is, there could be multiple allocations which achieve

the maximal total rate of departures. For example, consider a system with 4 cores where both jobs

classes have the same service rate µ = 1

E[X ]
. If there are 4 class 1 jobs and 4 class 2 jobs, any choice

of a1 ∈ [0, 4] results in the maximal rate of departures, nµ. This begs the question of which policy

from the GREEDY class achieves the best performance.

5.4 The Best GREEDY Policy: GREEDY∗

We now define GREEDY
∗
, a policy which dominates all other GREEDY policies with respect to

mean response time. Consider two GREEDY policies, P1 and P2. In any state (x1,x2), both policies

achieve the same maximal rate of departures. However, P1 might achieve this rate by having a

higher departure rate for class 1 jobs and a lower departure rate for class 2 jobs as compared to P2.
If class 1 jobs are less parallelizable than class 2 jobs, we say that P1 “defers parallelizable work” in
this state, which is a strategy that could benefit P1 in the future.

The GREEDY
∗
policy is the GREEDY policy which in all states opts to defer parallelizable work

when possible. Specifically, in the case of two job classes: GREEDY
∗
allocates a∗

1
cores to class 1

jobs (the less parallelizable class), where a∗
1
is the maximum value of a1 satisfying (8). That is,

a∗
1
= max

{
α : x1s1

(
α

x1

)
µ + x2s2

(
n − α

x2

)
µ = β(x1,x2)

}
.

In otherwords,a∗
1
allowsGREEDY

∗
to attain themaximal rate of departures while alsomaximizing

the rate at which class 1 jobs are completed. Theorem 5.1 shows that GREEDY
∗
dominates all other

GREEDY policies.

Theorem 5.1. For any GREEDY policy, P ,

E[T ]GREEDY
∗

≤ E[T ]P .

Proof. Consider the performance of GREEDY
∗
and P on the state space S = {(x1,x2) : x1,x2 ∈

N}. We will use the technique of precedence relations (see, e.g., [1, 8]) to compare the mean number

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 40. Publication date: December 2017.



Towards Optimality in Parallel Job Scheduling 40:19

of customers, E[N ], under GREEDY∗ to that under P . This requires that we define a value function
for P , V P (x1,x2), and a cost function, c(x1,x2). We define the cost of being in state (x1,x2) to be

c(x1,x2) = x1 + x2

so that the average cost of performing policy P is equal to the mean number of customers, E[N ].

We then define V P (x1,x2) to be the asymptotic total difference in the accrued cost under P when

starting in state (x1,x2) as opposed to some designated reference state (see Appendix 7.4 for details).

We require the following lemma which establishes a useful property of V P
.

Lemma 5.2. For any GREEDY policy, P , and any (x1,x2) ∈ S,

V P (x1 + 1,x2) > V
P (x1,x2 + 1).

Proof. See Appendix 7.4 for the proof of Lemma 5.2. □

We now prove Theorem 5.1 by contradiction. We begin by assuming that there exists a GREEDY

policy P , GREEDY
∗
which is optimal in terms of E[N ] and thus E[N ]P ≤ E[N ]P

′

for any GREEDY

policy P ′
. Since P , GREEDY

∗
, there exists some state, (x1,x2) ∈ S where P and GREEDY

∗
take

different actions. Note that both x1 and x2 must be non-zero in this state, because otherwise there

is only one action which will achieve the maximal rate of departures, and P and GREEDY
∗
must

therefore take the same action.

We now consider a policy P ′
which takes the same action as GREEDY

∗
in state (x1,x2), and

the same action as P in every other state. We can apply the technique of precedence relations

described in [1, 8] to show that E[N ]P
′

< E[N ]P . We start by defining γ
Q
i (x1,x2) to be the rate of

departures of class i jobs from the state (x1,x2) under policy Q . P ′
can now be obtained from P

by taking γ P
2
(x1,x2) − γG

∗

2
(x1,x2) away from the total completion rate of class 2 jobs and adding

γG
∗

1
(x1,x2) − γ P

1
(x1,x2) to the total completion rate of class 1 jobs, where G∗

denotes GREEDY
∗
.

Theorem 3.1 in [8] tells us that E[N ]P
′

< E[N ]P if:(
γG

∗

1
(x1,x2) − γ P

1
(x1,x2)

)
V P (x1 − 1,x2) <

(
γ P
2
(x1,x2) − γG

∗

2
(x1,x2)

)
V P (x1,x2 − 1).

To see that this property holds, first note that(
γG

∗

1
(x1,x2) − γ P

1
(x ′

1
,x ′

2
)

)
−

(
γ P
2
(x1,x2) − γG

∗

2
(x1,x2)

)
=
(
γG

∗

1
(x1,x2) + γ

G∗

2
(x1,x2)

)
−

(
γ P
1
(x1,x2) + γ

P
2
(x1,x2)

)
= 0

since GREEDY
∗
and P have the same (maximal) total rate of departures in every state. Thus,

γG
∗

1
(x1,x2) − γ P

1
(x1,x2) = γ

P
2
(x1,x2) − γG

∗

2
(x1,x2).

By Lemma 5.2, we know that

V P (x1 − 1,x2) < V
P (x1,x2 − 1).

This implies that E[N ]P
′

< E[N ]P which contradicts our assumption that P is optimal in terms of

E[N ]. By Little’s Law, we can reformulate this in terms of E[T ]. □

While GREEDY
∗
is the best GREEDY policy, it will turn out that it is not optimal (see Section

5.6). Hence, we now turn our attention to computing the optimal policy.
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5.5 Computing the Optimal Policy
The optimal policy, OPT, must not only consider the current state of the system when choosing

how to determine the best partition (a1,a2), but must also consider the probabilities of transitioning

to future states as well. To find a policy which balances this tradeoff between performance in the

current state and future states, we formulate the problem as a Markov Decision Process (MDP).

We will consider an MDP with state space S = {(x1,x2) : x1,x2 ∈ N}, where xi repre-

sents the number of class i jobs in the system. The action space in any state is given by A =

{(a1,a2) : a1 + a2 = n}. Let the arrival rate of class i jobs be given by Λi . Recall that, given an

allocation of ai cores to xi type i jobs, it is optimal to run the xi jobs on these cores using EQUI.

Thus, given a state (x1,x2) and an action (a1,a2), the total departure rate of class i jobs from the

system is given by

µi (ai ,xi ) := min{ai ,xi }µs

(
max

{
1,
ai
xi

})
.

We choose the cost function

c(x1,x2) = x1 + x2

such that the average cost per period equals the average number of jobs in the system, E[N ].

We uniformize the system at rate 1 (always achievable by scaling time) and find that Bellman’s

optimality equations [27] for this MDP are given by

E
[
NOPT ] +VOPT (x1,x2) = AOPT (x1,x2) + H

OPT (x1,x2),

where

AOPT (x1,x2) = c(x1,x2) + Λ1

(
VOPT (x1 + 1,x2) −VOPT (x1,x2)

)
+ Λ2

(
VOPT (x1,x2 + 1) −VOPT (x1,x2)

)
, (9)

HOPT (x1,x2) = V
OPT (x1,x2) + min

(a1,a2)∈A

{
µ1(a1,x1)

(
VOPT (

(x1 − 1)+,x2
)
−VOPT (x1,x2)

)
+µ2(a2,x2)

(
VOPT (

x1, (x2 − 1)+
)
−VOPT (x1,x2)

)}
. (10)

Here, the value function VOPT (x1,x2) denotes the asymptotic total difference in accrued costs

when using the optimal policy and starting the system in state (x1,x2) instead of some reference

state. While these equations are hard to solve analytically, the optimal actions can be obtained

numerically by defining

VOPT
n+1 (x1,x2) = AOPT

n (x1,x2) + H
OPT
n (x1,x2)

with VOPT
0

(·, ·) = 0. Here, AOPT
n and HOPT

n are defined as in (9) and (10), but in terms of VOPT
n . We

can then perform value iteration to extract the optimal policy [23]. We use the results of this value

iteration to compare the performance of OPT to several other policies in Figure 9 and Figure 10.

Note that using the same MDP formulation when there exists only one speedup function results

in a much simpler expression for VOPT
which clearly yields EQUI.
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Fig. 10. Heat map showing the percentage difference in the mean response time, E[T ], between JSQ-Chunk
with the optimal k∗ and OPT , in the case of two speedup functions where s1 and s2 are Amdahl’s law with
parameters p1 and p2 respectively. Here E[X1] = E[X2] = 1 and Λ1 = Λ2 = 2. The axes represent the value of
pi for each class. OPT was evaluated numerically using the MDP formulation given in Section 5.5 and the
results for JSQ-Chunk come from analysis.

5.6 GREEDY∗ is Near-Optimal
Surprisingly, even GREEDY

∗
is not optimal for minimizing mean response time as shown in Figure

9(b) (although it is always within 1% of OPT in the figure). The same intuition that led us to believe

that GREEDY
∗
is the best GREEDY policy can be used to explain why GREEDY

∗
is not optimal. We

have already seen that deferring parallelizable work is advantageous to GREEDY
∗
. However, we

were only comparing GREEDY
∗
to policies with maximal overall departure rate. It turns out that

the advantage of deferring parallelizable work can be so great that a policy stands to benefit from

achieving a submaximal overall rate of departures in order to defer parallelizable work.

5.7 Does Fixed-Width Scheduling Work?
We saw that, when jobs follow a single speedup function, the JSQ-Chunk policy with the optimal

chunk size k∗ will often achieve near-optimal performance (see Section 4.2). Is this still true when

jobs are permitted to have different speedup curves? Figure 10 compares JSQ-Chunk with OPT for

the case of two speedup functions. We see two trends:

Trend 1: Along the thick arrow in Figure 10, JSQ-Chunk becomes further from OPT as
p1 + p2 increases.

Trend 1 makes intuitive sense since, when jobs are more parallelizable, OPT will be able to more

effectively exploit this parallelism while JSQ-Chunk will be limited by being restricted to use a

single k∗ for each job. Nonetheless, trend 1 becomes irrelevant as the number of cores, n, increases,
since JSQ-Chunk converges to OPT when p1 equals p2 (single speedup function). Thus, we are more

interested in trend 2.

Trend 2: Along any thin diagonal in Figure 10 (p1 + p2 = constant), JSQ-Chunk becomes
further from OPT as we move outward on the diagonal.

Trend 2 follows from two observations. First, Theorem 5.3 proves that JSQ-Chunk’s performance

is fixed along these diagonals. Second, we have reason to believe that the mean response time

under OPT should decrease as we move further outward along these diagonals (see Observation 2).
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Together, these observations explain trend 2. The rest of this section discusses Theorem 5.3 and

Observation 2.

Theorem 5.3. Given two speedup functions, s1 and s2, where s1 follows Amdahl’s law with parameter
p1 and s2 follows Amdahl’s law with parameter p2, and Λ1 = Λ2, the mean response time under JSQ-
Chunk with the optimal k∗ is constant for any (p1,p2) such that p1 + p2 = c , where c is a constant.

Proof. In the case of two speedup functions, under JSQ-Chunk with level of parallelization, k ,
Xk from (1) becomes:

Xk =

{
X

s1(k )
w.p.

Λ1

Λ1+Λ2

X
s2(k )

w.p.
Λ2

Λ1+Λ2

.

We now prove that, for any given k , E[Xk ] is constant whenever p1 +p2 = c . By definition, when

Λ1 = Λ2,

E[Xk ] =
1

2

·
E[X ]

s1(k)
+
1

2

·
E[X ]

s2(k)
. (11)

Since s1 and s2 are both instances of Amdahl’s law, we can use a property of Amdahl’s law that

states

1

2

·
1

s1(k)
+
1

2

·
1

s2(k)
=

1

s3(k)
, (12)

where s3(k) is the speedup function for Amdahl’s law with parameter p3 =
p1+p2

2
. Combining (11)

and (12) we have

E[Xk ] =
E[X ]

s3(k)
,

which is a constant, provided that p1 + p2 = c .
As stated in Section 3.2, the performance of JSQ-Chunk depends only on E[Xk ]. Hence, along

any diagonal where p1 + p2 = c , the mean response time under JSQ-Chunk with chunk size k
remains constant. Since any choice of k leads to constant performance along the diagonal, setting k
to k∗ will also keep JSQ-Chunk constant along this diagonal. Hence, the mean response time under

JSQ-Chunk with the optimal k∗ is constant when p1 + p2 = c . □

Observation 2. Along any diagonal where p1 + p2 = c , where c is a constant and Λ1 = Λ2, we

expect the mean response time under OPT to decrease as | p1 − p2 | increases.

Although the mean job size is constant along this diagonal, when | p1 −p2 | is higher, the optimal

policy has additional information about which jobs will take longer to run. In effect, this allows OPT

to favor jobs which benefit more from parallelization and leads to a lower overall mean response

time. A similar effect was observed in [32], where assigning jobs different service rates lowered

optimal mean response time.

Remark 1. Although Theorem 5.3 and Observation 2 assume that Λ1 = Λ2, they are easily

generalized to cases where the arrival rates are not equal. In these cases, the diagonals along which

E[Xk ] will be constant will have a different slope. Nonetheless, trend 2 will still occur along these

diagonals.

Unlike trend 1, which disappears as the number of cores, n, increases, we do not expect trend 2

to vanish. This is supported by our evaluation of OPT under higher values of n (not shown). We

thus conclude that JSQ-Chunk does not perform near-optimally when jobs follow multiple speedup

functions.
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6 CONCLUSION AND FUTUREWORK
Summary: This paper introduces the question of how to allocate cores to jobs in a stochastic model

of a multi-core machine where jobs have sublinear speedup functions. While it is typical for the user
to specify the desired level of parallelization for her jobs, this paper instead proposes that allowing

the system to schedule jobs can benefit overall mean response time. In the case where all jobs are

malleable and follow the same speedup function, we prove that the well-known EQUI policy is

optimal when job sizes are exponentially distributed. In the more practical setting where jobs are

moldable rather than malleable, we prove that, surprisingly, one can still achieve near-optimal

performance by using the optimal fixed level of parallelization, k∗. We show how to analytically

determine k∗ as a function of system load, the speedup curve, the job size distribution, the number

of cores, and the dispatching policy.

When jobs are permitted to have multiple speedup functions, the question of optimal scheduling

becomes even harder. We show that EQUI is no longer optimal for scheduling malleable jobs when

jobs follow multiple speedup functions. We find that the optimal policy (OPT) must balance the

tradeoff between maximizing the total rate of departures in every state and deferring parallelizable

work to minimize wasting cores in the future. We provide an MDP based formulation of OPT. As

an alternative, we introduce a very simple policy, GREEDY
∗
, which can be easily implemented and

performs near-optimally in practice. In the more practical setting where jobs are moldable but not

malleable, we again consider fixed-width scheduling but find that it is too inflexible to balance the

tradeoff considered by the optimal policy.

Limitations and FutureWork:We see this paper as opening up a new line of research within the

field of parallel scheduling. One limitation of our work is that handling multiple speedup functions

leads to a complex optimization problem. It may be easier to consider a continuous regime where

jobs draw their speedup functions from a distribution. A second limitation of our model is that

we assume a stream of jobs where jobs have no internal dependency structure. In reality, as the

SPAA community has pointed out, a single job usually consists of multiple interdependent tasks.

The problem of how to schedule a stream of jobs which have these dependency structures is open,

even in the case of a single processor [29]. Hence, scheduling these jobs on multiple cores presents

an exciting direction for future work. Finally, while we are the first to provide optimality proofs

for policies like EQUI, our optimality results rely on job sizes being exponentially distributed.

As explained, moving to general job size distributions makes scheduling much more complex by

forcing policies to consider the distribution of residual job lifetimes. Although this paper does not

model all of these aspects, we hope to provide a starting point for further research in this area.
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7 APPENDIX
7.1 Proof of Lemma 2.2
LEMMA 2.2 For any concave, sublinear function, s , the function i · s

( n
i

)
is increasing in i for all i < n,

and is non-decreasing in i for all i ≥ n.

Proof. To see that i ·s
( n
i

)
is increasing in i when i < n, we can consider the following difference

for any δ > 0:

i · (1 + δ )s

(
n

i · (1 + δ )

)
− i · s

(n
i

)
= i

(
(1 + δ )s

(
n

i · (1 + δ )

)
− s

(n
i

))
.

Since
n
i > 1, s increases sublinearly, and (1 + δ )s

(
n

i ·(1+δ )

)
> s

( n
i

)
. Thus

i · (1 + δ )s

(
n

i · (1 + δ )

)
− i · s

(n
i

)
> 0

and i · s
( n
i

)
is increasing in i .

For any i ≥ n, we have assumed s
( n
i

)
= n

i . Thus,

i · s
(n
i

)
= n ∀i ≥ n,

which is non-decreasing in i . □

7.2 Mixed-Random-Chunk
In this section, we explore Mixed-Random-Chunk (MRC), which uses two chunk sizes: k1 and k2.
We will also restrict ourselves to consider policies which balance load between chunks according

to the size of a chunk. That is, given that jobs are dispatched to an average of k cores, the average

per-core arrival rate should be Λk/n.
Under Mixed-Random-Chunk, we group a1 of the n cores into chunks of size k1. We call these

chunks size-k1 chunks. The remaining a2 := n − a1 cores are grouped into size-k2 chunks. Like
before, we assume that k1 divides a1, and k2 divides a2.

Fig. 11. A system with n = 16 under a Mixed-Random-Chunk policy. Here, a1 = 8 of the cores are grouped
into chunks of size k1 = 4, and a2 = 8 of the cores are grouped into chunks of size k2 = 2.

When a job arrives, we choose a core uniformly at random (with probability
1

n ). The job is then

parallelized across all cores in the chosen core’s chunk. We can see via Poisson splitting that the

arrivals to a size-ki chunk form a Poisson process with rate
Λki
n . Under this policy, the level of

parallelization is defined to be k = (a1k1 + a2k2)/n. Hence, the average per-core arrival rate is

Λk =
a1
n

·
Λk1
n
+
a2
n

·
Λk2
n
=

Λk

n
,
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and Mixed-Random-Chunk obeys the load balancing property outlined above.

Mean Response Time. To derive the mean response time E [T ] under Mixed-Random-Chunk,

we must condition on the type of chunk to which an arrival is sent. We denote by Ei the event
that the arrival is sent to a size ki chunk. Recall that the arrival rate to a core in a size-ki chunk is

Λki = Λki/n and the size of a job piece at this core is distributed as Xki = X/s(ki ). This information

suffices to calculate the mean response time of a job sent to a size-ki chunk, E [T | Ei ] (see Theorem
3.1 and its proof). Next, note that a job will be sent to a size-ki chunk with probability ai/n. Hence,
we can find the mean response time for the entire system by conditioning:

E [T ]MRC =
a1
n
E [T | E1] +

a2
n
E [T | E2] . (13)

Optimizing a1 and a2. In (13) observe that a1 and a2 are decision variables that can be chosen to

minimize mean response time. Surprisingly, we find in Theorem 7.1 that the optimal choice is to

have only one chunk size.

Theorem 7.1. The mean response time under Mixed-Random-Chunk is minimized when the number
of size-k1 chunks, a1, is either 0 or n.

Proof. Since a2 = n − a1, (13) can be rewritten as

E [T ] =
a1
n

(E [T | E1] − E [T | E2]) + E [T | E2] .

This expression is of the form E [T ] = a1x + y, and thus the mean response time is linear in a1. We

can also see that x andy are independent of a1 and a2. This follows since, for any core belonging to a
chunk of size ki , neither the service requirement, Xki = Xki /s(ki ), nor the arrival rate Λki = Λki/n
depend on ai . Thus, our linear expression is either increasing or decreasing in a1, and will thus be

minimized at a boundary where a1 = 0 or a1 = n. □

Variance of Response Time. Not only is mean response time not improved by having multiple

chunk sizes, but neither is the variance of response time, as shown in Theorem 7.2.

Theorem 7.2. The variance of the response time, Var(T ), under Mixed-Random-Chunk is minimized
when the number of size-k1 chunks, a1, is either 0 or n.

Proof. By conditioning we have that the variance of the response time is given by

Var(T ) =E [T − E [T ]]2 = E
[
T 2

]
− E [T ]2

=
a1
n
E
[
T 2 | E1

]
+
a2
n
E
[
T 2 | E2

]
−

(a1
n
E [T | E1] +

a2
n
E [T | E2]

)
2

.

Again, the substitution of a2 = n − a1 and subsequent algebraic manipulation leads to

Var(T ) = − a2
1

(
E [T | E1] + E [T | E2]

n

)
2

+
a1
n

(
E
[
T 2 | E1

]
− E

[
T 2 | E2

]
− 2E [T | E1]E [T | E2] + 2E [T | E2]

2

)
+ E

[
T 2 | E2

]
− E [T | E2]

2 .
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Note that this expression is of the form Var(T ) = −a2
1
x + a1y + z, and thus the variance of the

response time is quadratic in a1. Furthermore, it is clear from the expression that x is positive,

since mean response times must be positive. The variance of the response time, then, is a concave

quadratic in a1. Since the number of cores, a1, assigned to size-k1 chunks takes an integer value

between 0 and n, this means that the variance of the response time is minimized on a boundary,

when a1 = 0 or a1 = n. □

Why Multiple Chunk Types Do Not Help. The issue is that the benefit of having larger chunks
available is usually outweighed by a reduction in the stability region of the system. We have

therefore chosen to omit the bulk of our analysis of these policies.

7.3 The Nelson-Philips Approximation
Here we state the approximation of mean response time under JSQ as given in [26].

LetM/M/c/JSQ denote a c core system with total arrival rate Λ and service rate µ = 1/E[X ] at

each core. Let

ρ :=
Λ

cµ
.

We then define the following terms:

a(ρ) = 1 −
cρ

c + 4

b(ρ) =
cρ

(c + 4)(c − 1)

ξ (ρ) =
ρ(1 − cρc−1 + (c − 1)ρc )

(1 − ρ)(1 − ρc )

q(ρ) = a(ρ) + b(ρ)ξ (ρ)

S(ρ) =
c(1 − ρ)

1 − ρc
{ρc + q(1 − ρc )}

α1 =0.0455,α2 = 0.7678,γ1 = 0.0216,γ2 = 0.0045

rc = γ1 log2(c) + γ2

ic = −1/log
2
{α1 log2(c) + α2}

R(ρ) =
1

1 − 4rcρic (1 − ρic )

A(ρ) =

[
c−1∑
n=0

(cρ)n/n!

]
+ (cρ)c/(c!(1 − ρ))

Pc (ρ) = (cρ)c/(c!(1 − ρ)A(ρ))

WM/M/c (ρ) =
1

µ

Pc (ρ)

c(1 − ρ)

The termWM/M/c (ρ) is the mean waiting time in anM/M/c system. The term S(ρ) is an approxima-

tion of the mean length of the shortest queue in theM/M/c/JSQ system. R(ρ) is an experimentally

derived error correction term. The mean response time in theM/M/c/JSQ system given in [26] is:

E[T ]JSQ ≈WM/M/c (ρ)S(ρ)R(ρ) +
1

µ
.
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7.4 Proof of Lemma 5.2
LEMMA 5.2. Given any GREEDY policy, P , for any (x1,x2) ∈ S,

V P (x1 + 1,x2) > V
P (x1,x2 + 1).

Proof. We begin by defining V P
n as follows:

V P
n+1(x1,x2) = AP

n (x1,x2) + I
P
n (x1,x2)

where

AP
n (x1,x2) =c(x1,x2) + Λ1

(
V P
n (x1 + 1,x2) −V P

n (x1,x2)
)

+ Λ2

(
V P
n (x1,x2 + 1) −V P

n (x1,x2)
)

and

IPn =γ
P
1
(x1,x2)

(
V P
n ((x1 − 1)+,x2) −V P

n (x1,x2)
)

+ γ P
2
(x1,x2)

(
V P
n (x1, (x2 − 1)+) −V P

n (x1,x2)
)

and V P
0
(x1,x2) = x1 + x2 +

x1
x1+x2+1

for all (x1,x2) ∈ S.

Recall that γ Pi (x1,x2) denotes the departure rate of class i jobs from state (x1,x2) under policy P ,
Λi denotes the arrival rate of class i jobs, and c(x1,x2) = x1 + x2. From [27] we know that

lim

n→∞
V P
n (x1,x2) −V P

n (y1,y2) = V
P (x1,x2) −V P (y1,y2).

Thus, if we can prove that our claim holds for V P
n (x1,x2) for all n ≥ 0, then it must hold for

V P (x1,x2) as well (see, for example, [22]).Wewill now prove that all three of the following properties

of V P
n hold for all n ≥ 0 by induction:

(1) V P
n (x1 + 1,x2) > V

P
n (x1,x2)

(2) V P
n (x1,x2 + 1) > V

P
n (x1,x2)

(3) V P
n (x1 + 1,x2) > V

P
n (x1,x2 + 1)

Note that the first two properties will be necessary for our proof of the third property, and the

lemma follows directly from the third property.

We can easily verify that all three properties hold when n = 0 due to our choice of V P
0
. We now

wish to show that if these properties hold for V P
n , they must hold for V P

n+1.

To prove property 1, we wish to show that

V P
n+1(x1 + 1,x2) −V P

n+1(x1,x2)

= AP
n (x1 + 1,x2) −AP

n (x1,x2)

+ IPn (x1 + 1,x2) − IPn (x1,x2)

> 0.

We can easily see thatAP
n (x1+1,x2)−A

P
n (x1,x2) > 0, since the cost function c(x1,x2) is increasing

in x1 and V
P
n (x1,x2) is increasing in x1 by the property 1 of the inductive hypothesis. To see that

IPn (x1 + 1,x2) − IPn (x1,x2) > 0, we can expand the terms as follows:

IPn (x1 + 1,x2) − IPn (x1,x2)

= γ P
1
(x1,x2)

(
V P
n (x1,x2) −V P

n ((x1 − 1)+,x2)
)
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+ γ P
2
(x1,x2)

(
V P
n (x1,x2) −V P

n (x1, (x2 − 1)+)

)
+ γ P

2
(x1 + 1,x2)

(
V P
n (x1 + 1, (x2 − 1)+) −V P

n (x1,x2)
)

+
(
1 − γ P

1
(x1 + 1,x2) − γ P

2
(x1 + 1,x2)

) (
V P
n (x1 + 1,x2) −V P

n (x1,x2)
)
.

Each line here is positive by the inductive hypothesis and the fact that(
1 − γ P

1
(x1 + 1,x2) − γ P

2
(x1 + 1,x2)

)
≥ 0

since the system was uniformized to one. Thus property 1 holds. The proof of property 2 follows a

very similar argument.

To show property 3 we wish to show that

V P
n+1(x1 + 1,x2) −V P

n+1(x1,x2 + 1)

= AP
n (x1 + 1,x2) −AP

n (x1,x2 + 1)

+ IPn (x1 + 1,x2) − IPn (x1,x2 + 1)

> 0.

We can easily see that AP
n (x1 + 1,x2) −AP

n (x1,x2 + 1) > 0 by the inductive hypothesis. To see that

IPn (x1 + 1,x2) − IPn (x1,x2 + 1) > 0, we can expand the terms as follows:

IPn (x1 + 1,x2) − IPn (x1,x2 + 1)

= γ P
1
(x1,x2 + 1)

(
V P
n (x1,x2) −V P

n ((x1 − 1)+,x2 + 1)
)

+ γ P
2
(x1 + 1,x2)

(
V P
n (x1 + 1, (x2 − 1)+) −V P

n (x1,x2)
)

+
(
γ P
1
(x1,x2 + 1) + γ

P
2
(x1,x2 + 1) − γ P

1
(x1 + 1,x2) − γ P

2
(x1 + 1,x2)

)
×

(
V P
n (x1 + 1,x2) −V P

n (x1,x2)
)

+
(
1 − γ P

1
(x1,x2 + 1) − γ P

2
(x1,x2 + 1)

)
×

(
V P
n (x1 + 1,x2) −V P

n (x1,x2 + 1)
)
.

We know, by assumption, that s1(k) < s2(k) for k > 1, and thus the coefficient γ P
1
(x1,x2 + 1) +

γ P
2
(x1,x2 + 1) − γ P

1
(x1 + 1,x2) − γ P

2
(x1 + 1,x2) is non-negative. Therefore, all terms in this sum are

positive by the inductive hypothesis, and property 3 holds.

All three properties therefore hold by induction, andV P (x1+1,x2) > V
P (x1,x2+1) as desired. □

ACKNOWLEDGEMENTS
The first and third authors were supported by: NSF-CMMI-1538204, NSF-XPS-1629444, by a Google

Faculty Research Award, and by a Facebook Faculty Research Award. Parts of the second author’s

work were carried out while visiting the Carnegie Mellon University and while affiliated with

Leiden University. In addition, the second author’s research was in part funded by NWOGravitation

project NETWORKS, grant number 024.002.003.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 40. Publication date: December 2017.



Towards Optimality in Parallel Job Scheduling 40:29

REFERENCES
[1] I. Adan, G. J. J. A. N. van Houtum, and J. van der Wal. 1994. Upper and lower bounds for the waiting time in the

symmetric shortest queue system. Annals of Operations Research 48 (1994), 197–217.

[2] K. Agrawal, J. Li, K. Lu, and B. Moseley. 2016. Scheduling Parallelizable Jobs Online to Minimize the Maximum Flow

Time. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’16). ACM, New

York, NY, USA, 195–205. https://doi.org/10.1145/2935764.2935782

[3] G. Ananthanarayanan, M. C. Hung, X. Ren, I. Stoica, A. Wierman, and M. Yu. 2014. Grass: Trimming stragglers in

approximation analytics. (2014).

[4] S. V. Anastasiadis and K. C. Sevcik. 1997. Parallel Application Scheduling on Networks of Workstations. J. Parallel and
Distrib. Comput. 43 (1997), 109 – 124.

[5] F. Baskett, K. M. Chandy, R. Muntz, and F. G. Palacios. 1975. Open, Closed, and Mixed Networks of Queues with

Different Classes of Customers. J. ACM 22 (1975).

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSEC Benchmark Suite: Characterization and Architectural

Implications. In Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques
(PACT ’08). ACM, New York, NY, USA, 72–81. https://doi.org/10.1145/1454115.1454128

[7] T. Bonald and A. Proutière. 2002. Insensitivity in processor-sharing networks. Performance Evaluation 49 (2002),

193–209.

[8] A. Bušić, I. Vliegen, and A. Scheller-Wolf. 2012. Comparing Markov chains: aggregation and precedence relations

applied to sets of states, with applications to assemble-to-order systems. Mathematics of Operations Research 37 (2012),

259–287.

[9] S. Chaitanya, B. Urgaonkar, and A. Sivasubramaniam. 2008. Qdsl: a queuing model for systems with differential service

levels. ACM SIGMETRICS Performance Evaluation Review 36, 1 (2008), 289–300.

[10] W. Cirne and F. Berman. 2002. Using Moldability to Improve the Performance of Supercomputer Jobs. J. Parallel and
Distrib. Comput. 62 (2002), 1571–1601.

[11] J. Edmonds. 1999. Scheduling in the dark. Theoretical Computer Science 235 (1999), 109–141.
[12] J. Edmonds and K. Pruhs. 2009. Scalably scheduling processes with arbitrary speedup curves. In Proceedings of the

Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’09). ACM, New York, NY, USA, 685–692.

[13] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong. 1997. Theory and Practice in Parallel Job

Scheduling. In Proceedings of the International Workshop on Job Scheduling Strategies for Parallel Processing (IPPS ’97).
Springer-Verlag, London, UK, 1–34. http://dl.acm.org/citation.cfm?id=646378.689517

[14] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. 2009. Optimal power allocation in server farms. In ACM
SIGMETRICS Performance Evaluation Review, Vol. 37. ACM, 157–168.

[15] V. Gupta, M. Harchol-Balter, K. Sigman, and W. Whitt. 2007. Analysis of join-the-shortest-queue routing for web

server farms. Performance Evaluation 64 (2007), 1062–1081.

[16] M. Harchol-Balter. 2013. Performance Modeling and Design of Computer Systems: Queueing Theory in Action. Cambridge

University Press.

[17] M. Harchol-Balter, A. Scheller-Wolf, and A. R. Young. 2009. Surprising results on task assignment in server farms with

high-variability workloads. ACM SIGMETRICS Performance Evaluation Review 37 (2009), 287–298.

[18] M. D. Hill and M. R. Marty. 2008. Amdahl’s Law in the Multicore Era. Computer 41 (2008), 33–38.
[19] K.-C. Huang, T.-C. Huang, Y.-H. Tung, and P.-Z. Shih. 2013. Effective Processor Allocation for Moldable Jobs with

Application Speedup Model. In Advances in Intelligent Systems and Applications - Volume 2. Springer, 563–572.
[20] L. Kleinrock. 1976. Queueing Systems, Volume II: Computer Applications. Wiley, New York.

[21] S.-S. Ko and R. F. Serfozo. 2004. Response times in M/M/s fork-join networks. Advances in Applied Probability 36

(2004), 854–871.

[22] G. M. Koole. 2006. Monotonicity in Markov reward and decision chains: Theory and applications. Foundations and
Trends in Stochastic Systems 1 (2006), 1–76.

[23] S. A. Lippman. 1973. Semi-Markov decision processes with unbounded rewards. Management Science 19 (1973),

717–731.

[24] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg. 2011. Join-Idle-Queue: A novel load balancing algorithm

for dynamically scalable web services. Performance Evaluation 68 (2011), 1056–1071.

[25] J. McCool, M. Robison, and A. Reinders. 2012. Structured Parallel Programming: Patterns for Efficient Computation.
Elsevier.

[26] R. D. Nelson and T. K. Philips. 1993. An Approximation for the Mean Response Time for Shortest Queue Routing with

General Interarrival and Service Times. Performance Evaluation 17 (1993), 123–139.

[27] M. L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons,

Chichester.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 40. Publication date: December 2017.

https://doi.org/10.1145/2935764.2935782
https://doi.org/10.1145/1454115.1454128
http://dl.acm.org/citation.cfm?id=646378.689517


40:30 B. Berg et al.

[28] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu. 2015. Hopper: Decentralized speculation-aware cluster

scheduling at scale. ACM SIGCOMM Computer Communication Review 45, 4 (2015), 379–392.

[29] Z. Scully, G. Blelloch, M. Harchol-Balter, and A. Scheller-Wolf. 2017. Optimally Scheduling Jobs with Multiple Tasks.

In Proceedings of the ACM Workshop on Mathematical Performance Modeling and Analysis.
[30] S. Srinivasan, S. Krishnamoorthy, and P. Sadayappan. 2003. A Robust Scheduling Strategy for Moldable Scheduling of

Parallel Jobs. In Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER ’03). 92–99.
[31] J. N. Tsitsiklis and K. Xu. 2011. On the power of (even a little) centralization in distributed processing. ACM SIGMETRICS

Performance Evaluation Review 39 (2011), 121–132.

[32] Y. Xu, A. Scheller-Wolf, and K. P. Sycara. 2015. The Benefit of Introducing Variability in Single-Server Queues with

Application to Quality-Based Service Domains. Operations Research 63 (2015), 233–246.

[33] X. Zhan, Y. Bao, C. Bienia, and K. Li. 2017. PARSEC3.0: A Multicore Benchmark Suite with Network Stacks and

SPLASH-2X. ACM SIGARCH Computer Architecture News 44 (2017), 1–16.

Received July 2017; accepted September 2017

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 40. Publication date: December 2017.


	Abstract
	1 Introduction
	2 EQUI: An Optimal Policy
	2.1 Insensitivity of EQUI
	2.2 Proving that EQUI is Optimal
	2.3 EQUI with General Size Distributions

	3 Fixed-Width Policies
	3.1 Random-Chunk
	3.2 JSQ-Chunk

	4 JSQ-Chunk Converges to EQUI
	4.1 The Performance of JSQ-Chunk
	4.2 Why JSQ-Chunk is Close to EQUI

	5 Multiple Speedup Functions
	5.1 Why Multiple Speedup Functions
	5.2 EQUI is No Longer Optimal
	5.3 A GREEDY Class of Policies
	5.4 The Best GREEDY Policy: GREEDY*
	5.5 Computing the Optimal Policy
	5.6 GREEDY* is Near-Optimal
	5.7 Does Fixed-Width Scheduling Work?

	6 Conclusion and Future Work
	7 Appendix
	7.1 Proof of Lemma 2.2
	7.2 Mixed-Random-Chunk
	7.3 The Nelson-Philips Approximation
	7.4 Proof of Lemma 5.2

	References

