Blind Men and the Elephant: Piecing Together Hadoop for Diagnosis

Xinghao Pan, Jiaqgi Tan Soila Kalvulya, Rajeev Gandhi, Priya Narasimhan
DSO National Laboratories Electrical and Computer Engineering Department
Singapore Carnegie Mellon University
{pxinghao,tjiaqi}@dso.org.sg Pittsburgh, PA, U.S.A.

{spertet,rgandhi}@ece.cmu.edu, priya@cs.cmu.edu

Abstract—Google’s MapReduce framework enables dis- Web search queries; the cluster’'s raw disk is 5+ petabytes in
tributed, data-intensive, parallel applications by deconposinga sjze [3]. Hadoop can be certainly debugged by examining
massive job into smaller (Map and Reduce) tasks and a massive the local (node-specific) logs of its execution. These logs

data-set into smaller partitions, such that each task procsses a b helminalv | i | I
different partition in parallel. However, performance problems ~ ¢@1 D€ overwheimingly large o analyz€ manually, €.g., a

in a distributed MapReduce system can be hard to diagnose fairly simple Sort workload running for 850 seconds on a
and to localize to a specific node or a set of nodes. On the 5-node Hadoop cluster generates logs at each node, with a

other hand, the structure of large number of nodes performiry representative node’s log being 6.9MB in size and contginin
similar tasks naturally affords us opportunities for observing 42,487 lines of logged statements. Furthermore, to reason

the system from multiple viewpoints. bout t id d bl the | P
We present a “Blind Men and the Elephant” (Blimey) about system-wide, Ccross-node problems, the 10gs rom

framework in which we exploit this structure, and demonstrae distinct nodes_ must b? collectively and manua_lly analyzed.
how problems in a MapReduce system can be diagnosed by Hadoop provides a simple web-based user interface that

corroborating the multiple viewpoints. More specifically, we reveals key statistics about job execution. However, tfeg us
present algorithms within the Blimey framework based on interface can be cumbersome to navigate when debugging

OS-level performance counters, on white-box metrics extreted a performance problem in a larae MapReduce svstem. not
from logs, and on application-level heartbeats. We show tha P P 9 P Yy !

our Blimey algorithms are able to capture a variety of faults ~ t0 mention the fact that some kinds of problems might
including resource hogs and application hangs, and to locale =~ completely escape (i.e., not be visible in) this interface.

the fault to subsets of slave nodes in the MapReduce system. In this paper, we propose to perform problem diagnosis for
oo o by s s ooead Soplong H2000P Sstems by cortoboraing and syrhesaing il
of the Blimey approach.yWe present a sri)mple sﬁp?ervised dlstlnct_ V|_eWp0|nts of Hadoop’s behavllor. HaQoop, as a
learning technique which allows us to identify a fault if it ~ large distributed system, provides us with multiple sosrce
has been previously observed. (e.g. OS-level performance counters, tasks' durations as
inferred from application logs) and multiple locationsgth
master node and large number of slave nodes) at which
the instrumentation may be performed. We corroborate the
instrumentated data from the different locations, andhient

Problem diagnosis is the science of automatically discovsynthesize this corroboration to piece together a pictdire o
ering if, what, when, where, why and how problems occur inHadoop’s behavior for the purpose of problem diagnosis.
systems and programs. In general, however, answering these
questions may not be easy. At times, it is not entirely clear Il. PROBLEM STATEMENT
what constitues a problem or if one even exists. As systems In contrast to traditional web enterprise systems, MapRe-
today become increasingly large and complex, programmerduce systems are composed of large numbers of machines
and sysadmins have more trouble reasoning about theperforming similar (though not necessarily identical)kgs
systems. The vast amounts of data can also easily overwheltle seek to exploit this structure to diagnose performance
a human debugger. problems in the MapReduce system.

MapReduce (MR) [1] is a programming framework and There are two high-level goals in this paper. Firstly, we
implementation introduced by Google for data-intensiveseek to indict faulty slave nodes for a variety for faults.
cloud computing on commodity clusters. Hadoop [2], anHadoop offers multiple locations at which we can instrument
open-source Java implementation of MapReduce, is useahd observe the system. Corroborating the instrumentated
by Yahoo! and Facebook. Debugging the performance oflata in the Blimey framework will allow us to indict faulty
Hadoop programs is difficult because of their scale andlave nodes. We also show that by synthesizing the outcomes
distributed nature. For example, Yahoo! Search Webmap is af diagnostic algorithms, we can improve the localization
large production Hadoop application that runs on a 10,000-6f the fault, and furthermore identify the fault if it were
core Linux cluster and produces data that is used in Yahogpreviously seen.

Keywords-MapReduce, Hadoop, Failure Diagnosis

|. INTRODUCTION

Furthermore, in our diagnosis, we primarily target per-DataNodes to the NameNode). Each Hadoop daemon gen-
formance problems that result in a Hadoop job takingerates logs that record the local execution of the daemons
longer to complete than expected for a variety of reasonsas well as MapReduce application tasks and local accesses
including external/environmental factors on the node.(e.g to data.

a non-Hadoop process consuming system resources to the

detriment of the Hadoop job), reasons not specific to useB. Synopsis of Blimey’s Approach

MapReduce code (e.g., bugs in Hadoop), or int(_eractions be- There can be multiple perspectives of Hadoop's or a
tween user MapReduce code and the Hadoop mfrastructuq\(;1

. . apReduce application’s behavior, e.g., from the opegatin
_(e.g., _bugs in Hadoop that are triggered by user code). Wgystem’s viewpoint, from the application’s viewpoint, ffino
intentionally do not target faults due to bugs in user-writt

o) the network’s viewpoint, etc. In the mythological story of
MapReduce application code. We seek to have ourd|agn054§ne Blind Men and the Elephanteach blind man arrives

appr_o_ach work in prqductmn envwonment.s, requiring NO4; 5 ditferent conclusion based on his limited perspective o
qullflcanons to .eX|st|ng MapReduce-application code %lthe elephant. It is only by corroborating all the blind men'’s
existing Hadoop mfrastrupture. i) , _ perspectives that one can reconstruct a complete picture
However, we do not aim to have fine-grained diagnosisy e elephant. MapReduce, as a large distributed system,
that is, our diagnosis will not identify the root-cause, nor u¢64s ys many opportunities or instrumentation points to
pinpoint exactly the offending line of code at which the faul opserye the system's behavior. Each view can be thought to
originated. We also do not aim to have complete coverage Oéorrespond to a “blind man”, and the MapReduce system
either faults or all possible instrumentation sources. [&hi itself to the elephant. By mediating across and synthegizin
we keep these ultimate goals of pro_blem diagnosis in mind'the different views, our approach, Blimey, acts as the wise
they are not the primary focus of this paper. __ man and is able to diagnose problems in MapReduce. In
We make the assumption that MapReduce applicationgaiicylar, we apply the Blimey approach at two different

and infrastructure are the dominant sources of activity Ofjeyels: instrumentation points and diagnostic algorithms
every node. We also assume that a majority of the MapRe-

duce nodes are problem-free and homogeneous in hardware.* We present a number of diagnostic algorithms, each of

which corroborates the views from different instrumen-
tation sources at each node in the system.
. The diagnostic algorithms then provide a secondary
A. Background: MapReduce and Hadoop perspective into the MapReduce system. Treating the

Hadoop [2] is an open-source implementation of Google's ~ different diagnostic algorithms as the blind men, we
MapReduce [1] framework that enables distributed, data- Synthesize the algorithms’ outcomes to identify the
intensive, parallel applications by decomposing a massive fault.
job into smaller (Map and Reduce) tasks and a massive We produce two levels of diagnostic outcomes. First,
data-set into smaller partitions, such that each task psese a collection of diagnostic algorithms (Section IV-C) each
a different partition in parallel. A Hadoop job consists of identifies a set of slave nodes in the cluster that possibly
a group of Map and Reduce tasks performing some datancreased the runtime of the job. Second, the synthesisof th
intensive computation. Hadoop uses the Hadoop Distributedutputs of these algorithms (Section V), given prior |adetl
File System (HDFS) to share data amongst the distributetraining data, produces for each node, the most likely fault
tasks in the system. HDFS splits and stores files as fixed-siZeom a class of previously seen faults in the labelled traini
blocks (except for the last block). Hadoop uses a mastemdata (possibly no fault) present in the cluster, and whether
slave architecture with a Hadoop cluster having a uniquehat node suffers from the identifed fault.
master node and multiple slave nodes. [Blind Men #1] Views from instrumentation points. Large

The master node typically runs two daemons: (1) thedistributed systems have different instrumentation point
JobTracker that schedules and manages all of the taskeom which the behavior and properties of the system can
belonging to a running job; and (2) the NameNode thatbe simultaneously observed. Often, these instrumentation
manages the HDFS namespace by providing a filename-tgoints can serve as somewhat redudnant or corroborating
block mapping, and regulates access to files by clients (théalbeit distinct) views of the system. We exploit the paaiall
executing tasks). Each slave node runs two daemons: (Bistributed nature of MapReduce systems by applying the
the TaskTracker that launches tasks locally on its host, aBlimey framework to three distinct types of instrumentatio
directed by the JobTracker, and then tracks the progress ofews of the system: (white-box) heartbeat-related mgtric
each of these tasks; and (2) the DataNode that serves daatracted from the Hadoop logs; (white-box) executionesta
blocks (on its local disk) to HDFS clients. Hadoop providesmetrics, extracted from the Hadoop logs; and (black-box)
fault-tolerance by using periodic keep-alive heartbeaimf performance and resource-usage metrics, extracted frem th
slave daemons (from TaskTrackers to the JobTracker andperating system.

IIl. OVERVIEW

. "] . . Metric Description
[Bllnd Mep #2] Views from dlagnostlc algorlthms. Faults User % CPU fime in USer-space
in a distributed system can manifest on different sets of system % CPU time in Kernel-space
metrics in different ways. A given fault might manifest iowait % CPU time waiting for I/0
only on a specific subset of metrics or, alternatively, might | S Context switches per second

ifest in a system-wide correlated manner, i.e., the faul oz # processes waiting to 1un

manfies y _ 1€ Al [plist-sz Total # of processes and threads
originates on one node but also manifests on some metrics| Idavg-1 system load average for the last minute
on other (otherwise untainted) nodes, due to the inherent| bread Total bytes read from disk /s
communication/coupling across nodes. Thus, diagnosis al- |2V Total bytes written to disk /s

. . . eth-rxbyt Network bytes received /s
gorithms that focus on or analyze a selective set of metrics [~et-xbyt Network bytes transmitted /s
will likely miss faults or in the case of cascading fault- pgpgin KBytes paged in from disk /s
manifestations, wrongly indict nodes that exhibit any eerr pgpgout KBytes paged out to disk /s
lated ifestati f the fault. By furth thesizihe t fault Page faults (major+minor) /s
ated manifesta 'Or_1 0 e ault. _y ur e.r syn e_S|Z| g TCPAbortOnData| # of TCP connections aborted with data |n
outcomes of our diagnostic algorithms, Blimey gains greate queue
insight into the distributed nature of the fault, allowiriga rto-max Maximum TCP retransmission timeout
identify the kind of fault as well as the true culprit node. Table |

GATHERED BLACK-BOX METRICS (SADC-VECTOR).
IV. DIAGNOSTIC APPROACH

This section describes the internals of the Blimey diag-
notic approach, including the instrumentation sources and

the diagnosis algorithms that analyze the corroborating Finally, we apply a similar principle to the observations
instrumentation-based views of the system. on each slave node’s OS-level performance counters. Since

each slave node executes a subset of the global set of tasks,

A. High-Level Intuition and the OS-level performance counters are dependent on the

First, Hadoop uses heartbeats as a keep-alive mechslave node’s workload, its OS-IeveI performapcg counters
nism. The heartbeats are periodically sent from the slav&an be thought of as a sampling of a global distribution of
nodes (TaskTrackers and DataNodes) to the master nodaS-level performance counters too.
(JobTracker and NameNode). Upon receipt of the hear- .
beat, the master node sendsheartbeatRespons® the B. Instrumentation Sources
slave node, indicating that it has received the heartbeaBlack-box: OS-level performance metrics.On each node
Both the receipt of heartbeats at the JobTracker and ofi the Hadoop cluster, we gather and analyze black-box
the heartbeatResponses at the TaskTrackers are recorded(iie., OS-level) performance metrics, without requiriny a
the respective daemon’s logs, together with the heartbeatmodifications to Hadoop, the MapReduce applications or the
unigue id. We corroborate these log messages in one @S to collect these metrics. For black-box data collection,
our diagnosis algorithms. In addition, upon completion ofwe usesysst at’'s sadc program [4] and a custom script
tasks, the TaskTrackegmoactively send heartbeats to the that samples TCP-related aneét st at metrics to collect
JobTracker indicating the task completion. As such, the rat16 metrics (listed in Table I) fronproc, once every second.
at which a TaskTracker sends heartbeats is indicative of thé/e use the ternsadc-vector to denote a vector containing
workload it is experiencing. In another diagnosis alganith samples of these 16 metrics, all extracted at the same tnstan
we corroborate the rate of heartbeats across the slave.node$time. We then use thesadc-vectors as our (black-box)

Secondly, a job consists of multiple copies of Map andmetrics for diagnosis.
Reduce tasks, each running the same piece of code, albélthite-box: Execution-state metrics.We collect the system
operating on different portions of the dataset. We expeclogs generated by Hadoop’s own native logging code from
that the the Map tasks exhibit similar behavior with otherthe TaskTracker and DataNode daemons on each slave node.
Map tasks, and that Reduce tasks exhibit similar behaviowWe then use our Hadoop-log analysis tool (called SALSA
with other Reduce tasks. More abstractly, since each Mafb] and, its successor, Mochi [6]) to extract inferred state
task M; is an instance from the global set of all Map tasks,machine views of the execution of each daemon. The log-
any propertyP(M;) of the Map taskMV; can be treated as a analysis generates the durations of Map and Reduce tasks
single sample from a global distribution of the propety executed on every node in the cluster as part of its output.
over all Map tasks. The same is true for Reduce tasks. IWWe then examine the durations of these execution states as
particular, we are most interested in the completion timeghe metrics in our (white-box) diagnosis.
of Map and Reduce tasks. The local distribution of taskWhite-box: Heartbeat metrics. Heartbeat events are also
completion times on each node is an instrumentation sourceecorded in Hadoop's native logs, and we extract these from
and in the absence of faults, these times should corroboratee master-node (JobTracker, NameNode) and the slave-node
across all TaskTrackers. (TaskTracker, DataNode) logs. Although both are derived

from white-box instrumentation sources, these heartbeatode at a fixed time interval of 1 second. Each slave node
metrics are orthogonal to the previously described exenuti maintains a window of the 120 most recently collected
state metrics. sadc- vectors.

For each heartbeat event between the master node andA naive pair-wise comparison of each slave nodisic-
a given slave node, a log entry is recorded in both thevectors with every other slave nodessdc-vectors would
master-node’s log and that specific slave-node’s logs,galonrequireO(n?) comparisons. Instead, to maintain scalability,
with with a matching monotonically increasing heartbeatwe maintain, on each slave node, an approximation of the
sequence-number. Each (master node, slave node) pair halebal distribution of black-box metrics. This approximat
an independent, unique space of hearbeat sequence-numbe@lsbal distribution is constructed by collecting samplds o
Each message is timestamped with a millisecond-resolutioaadc-vectors from random peer slave nodes.
timestamp. The master-node’s log first records a message asThe sadc-vectors on each slave node are then corrob-
it receives the heartbeat from the slave node, and the slawarated against the approximate global distribution on that
node’s log then records a message as it receives the mastavde [7], resulting inO(n) total comparisons. Notice that
node’'s acknowledgment/response for the same heartbedhe diagnosis can be performed in a distributed fashion. The
Hadoop has an interesting implementation artefact wheraork done by each slave node scales at a con§iéhtwith
the master node logs the slave node’s heartbeat messagee number of slave nodes. An alarm is raised for a slave
and then performs additional processing within the samaode whenever theadc-vectors on that slave node differs
thread, before it acknowledges the slave. Analogously, thsignificantly from the approximated global distributionn A
acknowledgement/response is first processed by the slawarm is treated merely as a suspicion; repeated alarms
node before it is finally logged. This artefact is exploited,are needed for indicting a node. Thus, we maintain an
as we explain in the next section. exponentially weighted alarm-count for each slave node. Th
slave node is then indicted when its exponentially weighted
alarm- count exceeds a predefined value.

1) Black-box Diagnosis: 2) White-box Diagnosis:

Intuition: Each slave node in the MapReduce system Intuition: From our log-extracted state-machine views
executes a subset of the global set of Map and Reduce tasken each node, we consider the durations of maps and
We note that all MapReduce jobs follow the same temporateduces. For each of these states of interest, we can compute
ordering: Map tasks are assigned, and begin by reading inptite histogram of the durations of that state on the given
data from DataNodes; upon completion, the MapOutput dataode. As mentioned in Section IV-A, the durations for the
is Shuffled to the Reduce tasks; eventually the job terminatestate on a given node is a sample of the global distribution
after the Reduce tasks write their outputs to the DataNode®f the durations for that state across all nodes. The local
Since each slave node executes a subset of the global setdiftribution of durations is hence an estimate of the global
Map and Reduce tasks, this temporal ordering is reflectedistribution. According to our Blimey framework, the local
on the slave nodes as well. Hence, we expect that withimistribution is a limited view of the global distribution hich
reasonably large windows of time, slaves nodes encountés a property of the MapReduce system. We corroborate
similar workloads that are reflective of the global workloadeach local distribution against a global distribution,iatithg
of the MapReduce system. In the language of Blimey, eacimodes with local distributions that are dissimilar from the
slave node is a “blind-man” who has a limited view of the global distribution as being faulty. The intuition is thédy
entire system. a given job, the tasks on each node are multiple copies of

The workload on each slave node at every instant of time¢he same code, and hence should complete in comparable
is represented by the black-box metrics that we collect omurations.
the slave node. More abstractly, we can represent the global Algorithm: First, for a given state on each node,
workload of the MapReduce system as a global distributiorprobability density functions (PDFs) of the distributioof
of black-box metrics. The observed black-box metrics ondurations are estimated from their histograms using a kerne
each slave node is then a sampling of the global distributiomlensity estimation with a Gaussian kernel to smooth the dis-
at the time of collection. Our black-box diagnosis algarith crete boundaries in histograms. Then, an estimate of global
then corroborates the black-box views on slave nodes. Alistribution is built by summing across all local histogam
slave node whose black-box view differs significantly from Next, the difference between these distributions from the
the that of the other slave nodes indicted. We describe beloglobal distribution is computed as the pair-wise distance
how we perform the comparison in practice. between their estimated PDFs. We repeat this analysis over

Algorithm: Our black-box algorithm consists of three each window of time. As with the black-box algorithm , we
parts: collection, sampling and corroboration. Firstlye w raise an alarm for a node when its distance to the global
collect 14 metrics from/proc and 2 TCP-related metrics distribution exceeds a set threshold, and indict it when the
from net stat (Table I). This is done for every slave exponentially weighted alarm-count exceeds a predefined

C. Component Algorithms

[}
2 o E
E g ‘; 1000]
— = node 1
] (1] % 00|
o 27z tnhode 2
0 = 8 - Fnode 3
bt g =
a S % rnode 4
[0}
D Figr=3
= =0
ﬂ__

] 2m 00) a0 w0 10 M00 w0 10 i 500 1m0 1500 2000 250

time /s time/s
Figure 1. Heartbeat rates of 4 slave nodes throughout arrimerd with Figure 2. Residual heartbeat propagation delay of 4 slagesithroughout
no fault injected. an experiment with fault hang2051 injected at around 1000s.
value. time. In this particular experiment, we injected hang2051,
3) Heartbeat-based Diagnosis: a JobTracker hang (see Table Il). Before the fault was

Heartbeat-rate Corroboration:In a Hadoop cluster triggered, the residuals were mostly less than 100ms. After

each slave node sends heartbeats to the master node at {8 fault was triggered, the residuals increased to about
same periodic interval across the cluster (this interval ist1500ms.
adaptively increased across all TaskTracker nodes asclust
size increases). Hence, in the absence of faulty condjtions
the same heartbeat rate (number of heartbeat messageDifferent faults manifest differently on different metsic
logged per unit time) should be observed across all slaveesulting in different outcomes from our diagnostic algo-
nodes (see Section IV-A). The heartbeat-rate is computefithms. A particular fault may or may not manifest on a
by smoothing over the discrete event series of heartbeafsarticular metric, and the manifestation may be correlated
into a continuous time-series using a Gaussian kernelr&igu to varying degrees. Each of our diagnostic algorithms thus
1 shows the heartbeat rates of 4 slave nodes through agtts as a “blind-man” to give us a different perspective into
experiment with no fault injected. These heartbeat rateghe fault’s effect on the MapReduce system. By synthesizing
are then compared across slave nodes, by computing thRese perspectives, it is possible to identify the paricul
difference between the rates and the median rate. fault. More specifically, given a cluster, we would like to
Heartbeat Propogation DelayThe Heartbeat Propa- know, for each node, if it is faulty, and if so, which of the
gation Delay is the difference between the time at which greviously known faults it most closely resembles.
received heartbeat is logged at the JobTracker, and at which To this end, we represent each node by the diagnostic
the received acknowledgement is logged at the TaskTrackestatistics that are generated by the algorithms. The di&gno
for the same heartbeat. This delay includes both the networtatistics for both our black-box and white-box algorithms
propagation delay, and the delay caused by computation o@are the exponentially weighted alarm-counts, for the heart
curring in the same thread as that for handling the heartbedieat rate corroboration algorithm it is the difference lestw
at both the JobTracker and TaskTracker. This difference inhe node’s heartbeat rate and the median rate, and for
timestamps, however, is subject to clock synchronizatimh a the heartbeat propagation delay algorithm it is the sum of
clock drift. We account for these differences by performang residuals. For each node, we construct a vector consisting
local linear regression on the timestamp differences again of the diagnostic statistics for each algorithm, and also th
time. If the true propagation delay is almost constant, theaverage of the diagnostic statistics across all other nodes
residuals of our local linear regression would be almosin the cluster for each algorithm. The former captures the
zero. On the other hand, if a heartbeat has a large residuability of the diagnostic algorithms to indict the faulty
heartbeat propagation delay, then either the heartbeat rsode, whereas the latter captures the degrees to which each
anomalous compared to other heartbeats from the sanfault manifests in a correlated manner on the diagnostic
TaskTracker, or there is a large variation in the true hearttb algorithms.
propagation delay. Both cases are indicative of problems in Using this representation, we are able to build classifiers
the MapReduce system. Thus, we indict nodes for whickor the faults. We chose to use decision trees as our clas-
there is a large average residual heartbeat propagatiey.del sifiers, although it is also possible to use other types of
Figure 2 shows the residuals obtained from the local lineaclassifiers. While decision trees tend not to have the best
regression on timestamp difference against log messag&ediction errors, they have the added advantage of being

V. SYNTHESIZING VIEWS

easily understood, and reflect the natural manner in which Metric performance on 10 slaves cluster

human operators identify problems.

W cpuhog B hangl036 © hang2080 O pktloss5
m diskhog M hangl152 B pktloss50

1
|

VI. EVALUATION AND EXPERIMENTATION
A. Testbed and Workload

We analyzed system metrics from Hadoop 0.18.3 running
on 10- and 50-node clusters on Large instances on Amazon’s
EC2. Each node had the equivalent of 7.5 GB of RAM and
two dual-core CPUs, running amd64 Debian/GNU Linux
4.0. Each experiment consisted of one run of@eé dM x
workload, a well-accepted, multi-workload Hadoop bench-
mark. Gri dM x models the mixture of jobs seen on a
typical shared Hadoop cluster by generating random input
data and submitting MapReduce jobs in a manner that
mimics observed data-access patterns in actual user jobs
n enterprls_e deployments. Ther I. dM x workload has Figure 3. True positive and false positive rates for fautisstave nodes,
been used in the real-world to validate performance across, 10 slaves cluster.
different clusters and Hadoop versio®s.i dM x comprises
5 different job types, ranging from an interactive workload
that samples a large dataset, to a large sort of uncompressed
data that access an entire dataset. We scaled down the size
of the dataset to 2MB of compressed data for our 10-
node clusters and 200MB for our 50-node clusters to ensure
timely completion of experiments.

True Positive Rate
L L

False Positive Rate

08 06 04 02 0 02 04 06 08
I

1
L

WB_Reduce WB_Map HB_rate HB_propagation BlackBox

Metric performance on 50 slaves cluster

LA

m cpuhog B hangl036 @ hang2080 O pktloss5
m diskhog M hang1152 ® pktloss50

1
I I I |

True Positive Rate
02 04 06 08

B. Injected Faults

We injected one fault on one node in each cluster to
validate the ability of our algorithms at diagnosing each
fault. The faults cover various classes of representatiaé r
world Hadoop problems as reported by Hadoop users and
developers in: (i) the Hadoop issue tracker [8] from October
1, 2006 to December 1, 2007, and (ii) 40 postings from the
Hadoop users’ mailing list from September to November
2007. We describe our results for the injection of the seven

specific faults listed in Table II. Figure 4. True positive and false positive rates for fauttsstave nodes,
on 50 slaves cluster.

0
I I I

False Positive Rate

1 08 06 04 02

WB_Reduce ~ WB_Map HB_rate HB_propagation BlackBox

VIl. RESULTS
A. Diagnostic algorithms

1) Slave node faultsWe evaluated our diagnostic algo- The bars above the zero line represent the TP rates, and
rithms’ performance at detecting faults by using true pasit the bars below the zero line respresent the FP rates for
and false positive rates across all runs for each faultiegec €ach fault. Each group of 12 bars (6 above, 6 below
on a slave node, and for clusters of sizes of 10 and 50 slaero line) show the TP and FP rates for a particular
nodes. A slave node with an injected fault that is correctlylgorithm and instrumentation source. “WB_Reduce” and
indicted is a true positive, while a slave node without an"WB_Map” are the diagnostic algorithms that corroborate
injected fault that is incorrectly indicted is a false pvsit ~Reudce and Map tasks’ durations across the slave nodes,

Thus, the true positive (TP) and false positive (FP) rates ar'espectively. “HB_rate” and “HB_propagation” refer to the

computed as: two hearbeat-based diagnostic algorithms that corroborat
faulty nodes correctly indicted heartbeat rates across TaskTrackers, and heartbeat propa-
TP = T gation delay between TaskTrackers and JobTrackers. The
nodes with injected faults “BlackBox” algorithm, as previously described, corrobes
gp . [nodes without faults incorrectly indicted g jevel performance counters across physical slave nodes

nodes without injected faults From Fig 3 and 4, we observe that every fault is de-
Figures 3 and 4 show the TP and FP rates of the algotected (with TP> 0.65) by at least one algorithm. In the
rithms for a 10 and 50 slave node cluster respectivelycase of resource- related faults (cpuhog, diskhog, pl&loss

[Source] Reported Failure

[Fault Name] Fault Injected

[Hadoop users’ mailing list, Sep 13 2007] CPU bottleneckiites from
running master and slave daemons on same machine

[CPUHog] Emulate a CPU-intensive task that consumes 70% CPU

utilization

[Hadoop users’ mailing list, Sep 26 2007] Excessive messéugged
to file during startup

[DiskHog] Sequential disk workload wrote 20GB of data todylstem

[HADOOP-2956] Degraded network connectivity between Datdes
results in long block transfer times

[PacketLoss5/50] 59%60% packet losses by dropping all incoming/od
coming packets with probabilities of@L 0.05,0.5

[HANG-1036] Revert to older version and trigger bug by thiogv

[HADOOP-1036] Hang at TaskTracker due to an unhandled exzep
from a task terminating unexpectedly. The offending TaskKer sends
heartbeats although the task has terminated.

NullPointerException

[HADOOP-1152] Reduces at TaskTrackers hang due to a raahticon

getLength() on it.

[HANG-1152] Simulated the race by flagging a renamed file asgbs
when a file is deleted between a rename and an attempt to| cfillshed to disk and throwing exceptions in the filesystem code

[HADOOP-2080] Reduces at TaskTrackers hang due to a mida#d
checksum.

[HANG-2080] Simulated by miscomputing checksum to triggeang
at reducer

while processing completed tasks.

[HADOOP-2051] Hang at JobTracker due to an unhandled exeept [HANG-2051] Revert to older version and trigger bug by thiogv
NullPointerException

Table I

INJECTED FAULTS AND THE REPORTED FAILURES THAT THEY SIMULATE HADOOP XXXX REPRESENTS AHADOOP BUG DATABASE ENTRY

pktloss5), our black-box algorithm has high TP rates of at
least 0.83. BlackBox is also able to detect hang1036, but not
hang1152 and hang2080. As hang1036 occurs in the Map
task, an idle period results where the Reduce tasks block
on waiting for output from the Map tasks. On the other
hand, hang1152 and hang2080 occur in the Reduce tasks,
so the slave node is able to continue consuming resources
for execution of Map tasks, masking the hangs from the
black-box point of view. Not suprisingly, the white-box
algorithm WB_Map based on Map tasks’ durations capture
hang1036, and the algorithm WB_Reduce based on Reduce
tasks’ durations capture both hang1152 and hang 2080. The
algorithm HB_rate detects most faults, except pktlossH, an
the algorithm HB_propagation is most effective at detertin
resource-related faults. Since heartbeat rate is a refteofi
workload, we expect HB_rate to detect any fault that may ad-
versely affect workload. On the other hand, HB_propagation
targets a specific operation in the application: the sendfng

a heartbeat response from the JobTracker to the TaskTracker
The application hangs do not adversely affect this operatio
and are thus not detected, whereas the resource-related fau
affect almost all operations in the system and are thus
detected by HB_propagation.

We notice that pktloss5 is not sufficiently severe and can
be eventually overcome by TCP’s retransmissions. Thus,
it fails to be detected by almost all algorithms (except
BlackBox which explicitly tracks TCP-related metrics, and
HB_Propagation, which targets a network-dependent opera-
tion). On the other hand, pktloss50 is sufficient severeithat
affects the slave node’s abiltiy to communicate and operate
normally. All our algorithms detect, to varying TP rates,
pktloss50. The severeness of pktloss50 also affect otires sl

Alarm Rate

Figure 5.

Alarm Rate

nodes that block on reading or sending data to the faultygigyre 6.

slave node, explaining the generally higher FP rates for
pktloss50.

Metric performance on 10 slaves cluster

1.0

0.8
I

0.6

0.4

0.2
I

I .

m contol W diskhog @ pktloss50
W cpuhog W hang2051 B pktloss5

0.0

-0.2
L

WB_Reduce WB_Map HB_rate HB_propagation BlackBox

Alarm rates for faults on master nodes, on 10 slaleser.

Metric performance on 50 slaves cluster

s ﬂ.‘;.—.& ﬂ

m contol @ diskhog @ pktioss50
® cpuhog M hang2051 @ pktiosss

WB_Reduce WB_Map HB_rate HB_propagation BlackBox

Alarm rates for faults on master nodes, on 50 slaleser.

pktloss5:m

2) Master node faults:As our diagnostic algorithms cpuhogm

never explicitly indict the master node, it would be mean- ol
ingless to discuss TP and FP rates for master node failures. oo
Instead, we compute the alarm rate, that is, the proportion plloss50:5(+)
of slave nodes that were indicted by the algorithm: E::Z%EEEE(—)
alarm— # of indicted slave nodes :§112§fi
~ # of slave nodes :::31332533
Figure 5 and 6 show the alarm rates for the 10 slave cluster diskhog:s(-)
and the 50 slave cluster respectively. Note that the faol“c e
trol” is not actually a fault; it refers to control experinten o
where we didnot inject any faultinto the system. We also control:0

control:0
cpuhog :s(+)

used the control set to determine our thresholds. Spedtyfical
we set the thresholds for each algorithm such that the alarm
rates in the control sets would be 3% or less.

In the case of master node faults, the alarm rates onlyigure 8. Confusion matrix of fault classification. Each rogprsents
serve to give a notion of the effect of the master node faul@ class of faults, and each column represents the classificgiven.

. . Lighter shades indicate the actual fault was likely to beegia particular

on the slave nodes. An alarm rate significantly higher tharissification.
3% would indicate that the master node fault has a significant
effect on the slave nodes. Note, however, that the diagnosti) o
algorithms only indict slave nodes. As such, none of theSystem; and a suffix of m indicates the fault occurred at
algorithms localize the fault correctly, much less identif ~ the master node, s(+) indicates that the fault occurred on
We fix this problem using the decision tree classification, aghe slave node in concern, and s(-) indicates that the fault
shown in the following section. occurred on some slave node, but not on the node in concern.

Nevertheless, we observe that the alarm rates vary be- Using the decision tree to classify the fault on a node
tween algorithms and faults. In particular, the alarm ratevould involve traversing the tree from root to leaf, follmgi
for hang2051 for HB_propagation is 1.0 on the 10-slavehe left branch whenever the inequality at an interior node
cluster, and 0.73 on the 50-slave cluster. This is becaus®' the root) evaluates to true, and the right branch otreswi
hang2051 is a master node hang, and HB_propagation iEhe labels at the leaves indicate whether the node in concern
our only algorithm that explicitly accounts for the masterWas faulty, and the fault that was most likely, among the
node. All other algorithms corroborate views from multiple known faults, to have occurred in the system.
slave nodes. This demonstrates the usefulness of multiple /N @ddition to merely visualizing the decision tree, we also

pktloss5:m

types of corroboration. evaluated the ability of our classification technique bygsi
o]]] a N-fold cross- validation method. We randomly partitioned
B. Synthesizing outcomes of diagnostic algorithms our experiments intd\ subsets, and classified the data in

We generated a decision tree by usingttipar t package each subset using a decision tree trained on the remaining
of the statistical softwar® The decision tree generated is N — 1 subsets. We chos¢ = 296 for our evaluation, as we
shown in Fig 7. had 296 experiments.

The interior nodes (and the root) of the decision tree is Fig 8 shows a confusion matrix of our classification
labeled with an inequality of the fornX <t or X >=t, results. Each row reprsents an actual class of faults, atfd ea
whereX is a component of the representation (see Sectiogolumn represents the classification given by the decision
V) andt is a thresholdX is of the formalgorithm_location tree. A cell in rowi, column j would hold the proportion
wherealgorithmcan be any of BB, WB_Map, WB_Reduce, of nodes that were actually of clagsand were given the
HB_rate and HB_propagation (representing our black-boxlassificationj by the decision tree. Lighter (less red) shades
algorithm, white-box algorithm corroborating Map dura- correspond to higher values. A perfect confusion matrix
tions, white-box algorithm corroborating Reduce duragion would have a lightly shaded diagonal and dark shades at
heartbeat-based algorithm corroborating heartbeat, rates all other non-diagonal cells.
heartbeat-based algorithm corroborating heartbeat geepa Our confusion matrix shows that for most of the classes,
tion delays).location can be either self or other, with the we are able to achieve high classification accuracy. We
former representing the diagnostic statistic of the athari discuss the few exceptions in greater detail in [7].
for the node in concern, and the latter representing the mean
of the diagnostic statistics of other nodes that were iedict
by the algorithm. A. Data skew and unbalanced workload

Labels on the leaves have the formfatilt:suffix where Three of the algorithms presented in this paper assume
fault indicates the most likely fault that occurred in the that Map and Reduce tasks are sufficiently similar for

VIIl. DISCUSSIONS

BB_other < 0.8502

BB_self >= 0.1532 WB_Map_other >= 2.153

WB_Map_self WB_Reduce_self WB_Map_other BB_other
>24.965 <5.133 <5.958 <0.1224

WB_Map_self WB_Reduce_self WB_Reduce_other hang1036:s(-) HB_Propagation HB_rate_self
<42.71 >=5.77 HB_Propagation ~hang2080:s(+) <4.682 _other < 55.48 <1.640
_other >=1.925

hang1152:s(+) pktloss5:s(+)

WB_Map_self)
>=1351 nangl036is(+) WB_Reducé_other WB_Reduce_other
/\ >=1.464 <2218 - diskhog:m HB_rate_others
cpuhog:s(+) diskhog:s(+) N _—" "~ cpuhogis(:) diskhog:s(-) >=0.6332
HB_Propagation pktloss5:m control:0 hang2080:s(-)
_other < 32.73

T

BB others hang2051:m
<0.06525

HB_Propagation pktloss50:s(+)
3.529

HB_Propagation pktloss50:s(-) pktloss5:s(-) hang2051:m ~ "Coje =

_other >=2.396

pktloss50:m pktloss50:s(-)

cpuhog:m pktloss5:s(-)

Figure 7. Decision tree, classifies faults by the outcometh@fdiagnostic algorithms.

comparison. However, the tasks may execute the same codée sysadmin understand the fault pathology better; using
but on different input data. In the case of a data skewaw data might not.
or a heavily data-dependent load, the assumption may not
hold. We argue, though, that in such cases, the job can))
be optimized by spreading the load more evenly, assumin§- Diagnosing Failures and Performance Problems
homogeneous node capabilities. Thus, the alarms raised and[9] is the most similar to our work; Coheet al. build
indictments made by our algorithms do in fact indicate asignatures of the state of a running system by summa-
performance problem and a potential for optimizing therizing system metrics. These signatures are similar to our
distribution of load. characterization of known performance problems, however
our characterizations are based on the intermediate out-
puts of component diagnosis algorithms, and they serve to
Another of our assumptions is that the hardware is homosynthesize algorithms, while the signatures in [9] aretbuil
geneous in the MapReduce cluster. While this may appeafirectly on observed system metrics. [10], [11] use path-
overly restrictive, we argue that it is not unrealistic. Forpased techniques to diagnose failures; [10] detects anoma-
instance, clusters operated on virtualized services l€2 E |ously shaped paths (e.g. missing or additional elements)
can be easily configured to have the same (virtualizedjvhile [11] focused on accurately extracting causal paths.
hardware. Nodes in physical clusters are often upgradeBoth techniques were demonstrated with multi-tier Interne
and replaced in batch. Furthermore, we do not insist thagervice systems, where paths for different requests can tak
the entire MapReduce cluster be homogeneous. In the cas@ different shapes, so that path shape differences can
where subsets of nodes have homogeneous hardware, auighlight problems. However, shapes of processing paths in
algorithms can be trivially adapted to work with the islandsMapReduce are generally homogeneous. Thus, traditional
of homogeneous nodes. path-based techniques will not be effective at diagnosing
performance problems in MapReduce.

IX. RELATED WORK

B. Heterogenous hardware

C. Raw data versus secondary diagnostic outcomes

In generating the decision tree, we consumed the sed: Diagnosing MapReduce Systems
ondary diagnostic statistics generated by our algorithexs a Current techniques for diagnosing problems in MapRe-
the representation for the nodes. An alternative would be taluce systems have examined only individual sources of
simply use the raw data (black-box metrics, white-box staténstrumentation, while we have taken a holistic approach
durations, heartbeat rates and residual propagation gjelayto utilize multiple information sources. [12] examined de-
directly. This may not be feasible simply because of thetailed causal network trace data generated using custom
large volume and high-dimensionality of the raw data. Moreinstrumentation and identified simple faults such as a slow
importantly, it is often unclear what constitutes a fauttfr ~ disk by examining latencies along processing paths; these
the raw data alone. For instance, an idle period from theare similar to our white-box instrumentation, although our
black-box point-of-view may indicate a fault at a node if all approach does not require the invasive instrumentation tha
other slave nodes are experiencing heavy workload, but thE 2] used. [13] considered Hadoop’s logs as well, although
same idleness is legitimate behavior when the cluster is ndhey focused on only DataNode logs and only considered
processing any MapReduce jobs. Our diagnosis algorithmesrror events as opposed to the processing events which we
capture the notion of normal versus abnormal behaviorconsidered. Consequently, we have been able to diagnose a
The secondary diagnostic statistics are thus semanticallarger range of faults than either work. [5], [14] consg&tut
meaningful. The use of semantically meaningful data helpsur prior work.

C. Instrumentation Tools

Magpie [15] enables causal tracing of request flows with
attributed resource usage for each request, by using rﬁinima[g
programmer-specified program structure and insertedumstr
mentation. Unlike [15], our approach does not require any

modification to the target application, namely, HadoopoAls

[15] demonstrated anomaly detection by identifying previ- [4]

ously unobserved behaviors. However, this is not possible i

a MapReduce system which allows for arbitrary user code.
[12] discusses causal network request tracing via inserted®]

instrumentation into the various communications layérs, t

represents an additional data source which can be included

[2] T. A. S. Foundation, “Hadoop,” 2007, http://hadoop.eipa

org/core.

] Y. D. Network, “Yahoo! launches world’s largest hadoop

production application (hadoop and distributed computihg
yahoo!),” Feb 2008, http://developer.yahoo.net/blogdtop/
2008/02/yahoo-worlds-largest-production-hadoop.html

S. Godard, “SYSSTAT,” 2008, http://pagesperso-orafifje
sebastien.godard.

J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan,
“Salsa: Analyzing logs as state machines,”Workshop on
Analysis of System LogSan Diego, CA, Dec 2008.

in our Blimey framework to enhance the robustness and fault[s] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan,

coverage of our diagnosis.

X. CONCLUSIONS
A. Conclusion

We have presented the “Blind Men and Elephant” frame- [
work, and described how this approach is useful for fault
diagnosis in a large parallel, distributed system like MepR
duce. In particular, we have presented black-box, white-
box, and heartbeat-based diagnostic algorithms within the
Blimey framework, and demonstrated that by corroborating [9]
multiple instrumentation points of the system, one can-iden
tify suspect slave nodes. Further, in a repeated applitatio
of the Blimey approach, we show that the synthesis of the
diagnostic algorithms’ outcomes can aid the identify of thej10;
fault and localize the fault to the correct master or slave

node.

B. Future work

An ongoing research aims to move the techniques pr
sented in this paper online. This requires us to provide real
time tools to debug a live system, and this will be done using
the ASDF framework [16]. It also requires that we can run
our techniques in an incremental fashion. This can be easil
done for the diagnostic algorithms by using finite windows

or exponential weights.

To further increase the value of the tool to sysadmins, wg13]

need to present visualizations of the raw instrumentatéia d

as well as the output from our algorithms, which respectivel
represent the primary and secondary viewpoints of Hadoop’s

behavior. Oftentimes it is easier to understand a visutilera
than textual, representation.

We are also looking to increase our coverage of instru-
mentation sources. We would like to incorporate X-trace or

other path-based instrumentation. Corroboration of déffie
instrumentation sources could possibly lead to other hrtsig
and algorithms in the Blimey framework.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified datd 16l

processing on large clusters,” WSENIX Symposium on Op-
erating Systems Design and ImplementatiSan Francisco,
CA, Dec 2004, pp. 137-150.

“Mochi: Visual Log-Analysis Based Tools for Debugging
Hadoop,” in First Workshop on Hot Topics in Cloud Com-
puting May 2009.

1 X. Pan, “Blind men and the elephant: Piecing togethemload

for diagnosis,” Master’s thesis, Carnegie Mellon Univetsi
2009.

[8] T. A. S. Foundation, “Apache’s JIRA issue tracker,” 2006

https://issues.apache.org/jira.

I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly,
and A. Fox, “Capturing, indexing, clustering, and retrigyi
system history,” inACM Symposium on Operating Systems
Principles Brighton, U.K., Oct 2005, pp. 105-118.

E. Kiciman and A. Fox, “Detecting application-leveliltaes

in component-based internet servicdEEE Trans. on Neural
Networks: Special Issue on Adaptive Learning Systems in
Communication Networksvsol. 16, no. 5, pp. 1027— 1041,
Sep 2005.

M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,dan
A. Muthitacharoen, “Performance debugging for distriloute
system of black boxes,” iMCM Symposium on Operating
Systems PrincipleOct 2003, pp. 74-89.

A. Konwinski, M. Zaharia, R. Katz, and I. Stoica, “X-triag
Hadoop,”Hadoop SummjtMar 2008.

W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Min
ing console logs for large-scale system problem detettion,
in Workshop on Tackling Systems Problems using Machine
Learning Dec 2008.

X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan,
“Ganesha: Black-Box Diagnosis of MapReduce Systems,”
in Second Workshop on Hot Topics in Measurement and
Modeling of Computer System§ep. 2008.

P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Usin
Magpie for request extraction and workload modelling,” in
USENIX Symposium on Operating Systems Design and Im-
plementation San Francisco, CA, Dec 2004.

K. Bare, M. Kasick, S. Kavulya, E. Marinelli, X. Pan, Jar,

R. Gandhi, and P. Narasimhan, “ASDF: Automated online
fingerpointing for Hadoop,” Carnegie Mellon University PDL
Tech. Rep. CMU-PDL-08-104, May 2008.

