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Abstract

Graphics Processing Units (GPUs) employ large register files to ac-

commodate all active threads and accelerate context switching. Un-

fortunately, register files are a scalability bottleneck for future GPUs

due to long access latency, high power consumption, and large sili-

con area provisioning. Prior work proposes hierarchical register file,

to reduce the register file power consumption by caching registers

in a smaller register file cache. Unfortunately, this approach does

not improve register access latency due to the low hit rate in the

register file cache.

In this paper, we propose the Latency-Tolerant Register File

(LTRF) architecture to achieve low latency in a two-level hierarchi-

cal structure while keeping power consumption low. We observe

that compile-time interval analysis enables us to divide GPU pro-

gram execution into intervals with an accurate estimate of a warp’s

aggregate register working-set within each interval. The key idea

of LTRF is to prefetch the estimated register working-set from the

main register file to the register file cache under software control,

at the beginning of each interval, and overlap the prefetch latency

with the execution of other warps. Our experimental results show

that LTRF enables high-capacity yet long-latency main GPU regis-

ter files, paving the way for various optimizations. As an example

optimization, we implement the main register file with emerging

high-density high-latency memory technologies, enabling 8× larger

capacity and improving overall GPU performance by 31% while

reducing register file power consumption by 46%.
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1 Introduction

Graphics Processing Units (GPUs) are commonly-used accelerators,

optimizing silicon organization with dense arithmetic for data-

parallel workloads. Modern GPU microarchitecture relies on man-

aging execution resources for a large number of Single-Instruction-

Multiple-Data (SIMD) threads to exploit this arithmetic density and

overlap the long memory access latency with computation [55].

Unfortunately, the maximum parallelism in GPUs is fundamentally

limited by the register file capacity as the register file must accom-

modate all simultaneously running threads [3, 19, 20, 21, 39, 48, 80].

GPU register files face the difficult challenge of optimizing la-

tency, bandwidth, and power consumption, while having maximal

capacity. Prior work proposes increasing the register file capacity

in various ways: compression [39], virtualization [25, 78], or silicon

technologies for high-density memory cells [27, 28, 43, 45, 46, 48,

80]. While such proposals increase capacity without sacrificing

power consumption, they typically result in higher register access

latencies.

Register file caching [19, 20] is a promising approach to en-

hancing capacity while lowering power consumption and effective

access latency. Unfortunately, existing proposals for register file

caching do not achieve high enough hit rates in the register cache

due to three key problems. First, the high degree of thread-level

parallelism (TLP) in GPUs causes threads to displace each other’s

registers in the cache. Second, registers house temporary values

that are often renamed, which reduces temporal locality in the

cache. Third, because register names are not spatially correlated,

there is no spatial locality in a register cache. Due to these reasons,

register file caching is ineffective at hiding latency in GPUs (§ 6).

Our goal is to improve the effectiveness of register file caching

in GPUs. To this end, we observe that registers can be effectively

prefetched into the register cache using compile-time interval anal-

ysis to hide the long access latency of the main register file. An

Interval is a subgraph in a program’s control-flow graph that has

a single entry point. Intervals have been widely used by optimiz-

ing compilers to identify loops [22]. We use interval analysis and

software prefetching to fetch the entire set of required registers of

an interval into the register cache and thus avoid the main register

file access latency during the execution of the interval.

We propose the Latency-Tolerant Register File (LTRF), a two-level

hierarchical register file that employs a low-latency/low-power first-

level register-file cache backed up by a high-latency/high-capacity

second-level main register file. LTRF uses a compiler-driven soft-

ware mechanism to prefetch a warp’s register working-set into the

register cache at the start of an interval. By fetching all registers in

the working-set together and overlapping the prefetch latency of

one warp with the execution of another, LTRF hides a substantial



fraction of the access latency of the main register file during the

execution of the interval.

By using LTRF, we enable high-capacity yet long-latency main

register files, paving the way for various optimizations. As an ex-

ample optimization, we implement the main register file with high-

density emerging memory technologies, e.g., domain wall mem-

ory [4, 5, 48, 59, 69, 76], enabling 8× larger capacity and improving

overall GPU performance by 31% while reducing register file power

consumption by 46%. In contrast, the state-of-the-art register file

caching schemes reduce GPU performance by 14%, on average, if

the register file is enlarged by 8×, as prior designs do not focus on

tolerating the latency of the main register file.

This paper makes the following contributions

• We show that prior proposals for register file caching do not

achieve high enough hit rates to effectively hide the long

latencies of large main register files (§ 6).

• We introduce LTRF, a latency-tolerant hierarchical register

file design, which enables high-capacity yet long-latency

main register files. The key idea is to 1) estimate the register

working set of a program’s execution during an interval,

using compile-time interval analysis, 2) prefetch the esti-

mated register working-set from the main register file to the

register-file cache under software control, at the beginning

of each interval, and overlap the prefetch latency with the

execution of other warps.

• Our evaluations show that an optimized version of LTRF,

when implemented with an 8× larger yet 6.3× slower main

register file, improves overall GPU throughput by 31%, on av-

erage (up to 86%). LTRF performance is within 5% of an ideal

8×-capacity main register file that has no latency overhead.

2 Background and Motivation

Figure 1 illustrates a conventional GPU register file architecture [44]

in a streaming multiprocessor (SM). To accommodate a large num-

ber of active threads, a GPU employs a register file of megabytes in

size. For example, GP100 (NVIDIA Pascal) has has a register file of

14.3 megabytes in total [57]. The register file is heavily banked (16

banks) and it allows concurrent accesses from many threads (up to

512 threads). Each bank stores registers from multiple warps. When

the GPU issues an instruction, an operand collector concurrently

accesses and gathers data associated with each thread in the issued

warp’s instruction through an arbiter and a large and wide crossbar,

as shown in Figure 1. The warp scheduler arbitrates among ready

warps (i.e., a warp whose operands are collected) and issues the

warp’s instruction to the SIMD units.

In this section, we demonstrate the increasing demand for larger

register file capacity, analyze shortcomings of prior register caching

mechanisms for GPUs, and motivate the case for a design that pro-

vides high capacity without significantly increasing power con-

sumption, on-chip die area, or access latency exposed to the GPU

core.

2.1 Factors that Limit GPU Performance

When a warp encounters a long-latency memory instruction, the

GPU selects another ready warp to be scheduled for execution, in

order to prevent the GPU core from stalling. While the applications

with high TLP are more likely to contain more ready warps and are

able to hide long-latency stalls more effectively, these applications
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Figure 1. Conventional GPU register file architecture.

with high TLP demand a large register file in order to realize their

maximum TLP. To illustrate the impact of the register file size

on an application’s TLP, we recompile 35 workloads in CUDA

SDK [10], Rodinia [14], and Parboil [72] benchmark suites with the

maxregcount attribute (i.e., the attribute that enables the use of the

maximum number of registers for each GPU function, i.e., 64 and

256 for Fermi and Maxwell respectively) enabled in the NVIDIA

GPU compiler, nvcc. Doing so enables us to measure the number of

registers applications would require if there were no register file

size constraints.

Table 1 reports the average and maximum register file capacity

needed for our benchmarks to achieve the maximum TLP provided

by the two GPU products. This experiment shows that a larger reg-

ister file would directly translate into a larger number of executing

threads, thereby increasing TLP, on average. The table corroborates

our intuition that TLP is indeed limited by the number of registers

and many applications benefit from compiler optimization when

given a larger register file [47, 52, 84]. The results also show that

the recent version of the CUDA compiler used for Maxwell em-

ploys more aggressive compiler optimization techniques (e.g., loop

unrolling) and as such enhances register usage and TLP compared

to Fermi.

GPU Average required Maximum required

(baseline register file size) register file size register file size

Fermi (128KB) 184KB (1.4×) 324KB (2.5×)

Maxwell (256KB) 588KB (2.3×) 1504KB (5.9×)

Table 1. The average and maximum register file capacity required

to maximize TLP for 35 workloads in CUDA SDK [10], Rodinia [14],

and Parboil [72] benchmark suites in the NVIDIA Fermi and

Maxwell architectures.

2.2 Register File Scalability

While modern GPUs integrate more execution resources with in-

creases in silicon density and memory bandwidth in each chip

generation, the register file accounts for an increasingly larger

fraction of on-chip storage, as shown in Figure 2. For NVIDIA Pas-

cal [57], more than 60% of the on-chip storage area, amounting to

14.3 MB is dedicated to the register file. GPU register files face the

difficult challenge of optimizing latency, bandwidth, and power con-

sumption, while having maximal capacity [2, 19, 20, 23, 25, 27, 28,

39, 43, 45, 46, 48, 65, 66, 78, 79, 80]. Larger register files are slower,

take up more silicon area and consume more power. Increasing

concurrency by adding more banks exacerbates complexity and

power consumption with the addition of a larger crossbar. Prior
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Figure 2. Capacity of on-chip memory components across genera-

tions of NVIDIA GPUs from 2010–2016.

work attempts to reduce the power consumption of the register file

while keeping the register access latency almost unchanged. As a

result, the reduction in the power consumption is limited by the

access latency of the register file. In this section, we measure the

impact of various register file design parameters and configurations

on register file access latency and overall GPU throughput.

Table 2 illustrates register file designs with varying parameters,

including cell technology, number of banks, bank size, and network

topology, relative to a baseline high performance SRAM-based de-

sign shown in Configuration #1. The table also presents results for

emerging memory cell technologies that enable a larger trade-off

space between area, power and latency. We use high-performance

(HP) CMOS, low-standby-power (LSTP) CMOS, tunnel-field-effect

transistors (TFET), and domain-wall memory (DWM) for the cell

technology [4, 5, 12, 17, 18, 41, 43, 48, 50, 51, 59, 60, 69, 71, 74,

76, 77, 81]. To obtain these results, we first use CACTI [51] (the

non-pipelined register file bank models) and NVSim [17] to ex-

tract timing, area and power, and then feed them as parameters

to GPGPU-Sim [10] to measure the average register file access la-

tencies. The results include queuing delays incurred due to bank

conflicts (Our system configuration is presented in § 5). Note that

we use the flattened butterfly topology [35] to reduce the overhead

of the crossbar network when we increase the number of banks by

8× in our implementations. We make two key observations from

Table 2. First, register file designs (such as design #7) that mini-

mize area and power consumption while optimizing for capacity

(i.e., bits/area) exhibit higher access latency. Second, while some

alternative cell technologies (e.g., DWM [48, 76]) can dramatically

improve capacity and power consumption, they incur prohibitively

long access latencies (e.g., as long as 6.3× compared to the baseline

register file).

To illustrate the potential benefit of using a large register file,

Figure 3 plots performance (in IPC) for a high-capacity register file

implemented using TFET-SRAM and an "Ideal TFET-SRAM", which

has the same capacity as TFET-SRAM, but also the same latency

as the baseline register file, normalized to the baseline register

file from Table2.1 We categorize our workloads into two groups:

register-insensitive and register-sensitive. Register-insensitive work-

loads are the ones where the register file size is not the bottleneck

for higher TLP; i.e., increasing the register file size does not improve

TLP. We make two key observations. First, we find that the Ideal

TFET-SRAM, which increases the register file size from 256KB to

2MB without increasing the register file access latency, improves

IPC throughput by 10%-95% (37%, on average) for register-sensitive

1We choose a 2MB TFET-SRAM register file as it consumes a similar amount of power
as our baseline 256KB register file (see Table 2).

workloads. We find that the IPC improvements are due to both

more registers per thread and more warps executing in parallel.

Second, when real latencies are modeled, much of the gain from

higher capacity and TLP is offset by higher latency, and overall

performance reduces despite the higher register file capacity. We

conclude that register file access latency is important for perfor-

mance and should be kept in check while increasing register file

capacity.
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Figure 3. Performance effect of increasing the register file size by

8× using ideal TFET-SRAM and real TFET-SRAM designs, normal-

ized to the IPC of the baseline architecture with a 256KB register

file.

2.3 Register File Caching

One method to increase the size of the register file while keeping

access latency low is to cache registers in a smaller structure, i.e.,

register file caching. Although there is significant previous work

on register file caches for CPUs [11, 15, 16, 31, 54, 58, 70, 73, 86, 87],

and vector processors [13, 32, 63], register file caching has not been

thoroughly investigated in GPU designs. Gebhart et al. [19] are

the first to introduce register file caches for GPUs to filter some of

the accesses to the main register file and thus reduce the dynamic

access energy of the main register file. The authors’ design works

almost the same way as a conventional cache structure and exploits

temporal locality. However, as Figure 4 shows, for a 16KB register

cache, the register cache hit rate is low: between 8% and 30%.
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Figure 4. Hit rate in hardware [19] and software [20] register file

caches.

We find that the hardware register cache hit rate is low due to

the following reasons:

1. Different warps can displace each other’s registers in the

cache due to the high warp switching rate in GPUs. This

thrashing effect is also observed in SMs’ local data caches [6,

7, 8, 9, 19, 24, 29, 30, 33, 34, 38, 42, 49, 62, 64, 67, 68, 75, 82, 83].

2. We find that many registers are used to only communicate

results between a few instructions. As a result, these registers

do not have good temporal locality.

3. There is no notion of "spatial locality" in register accesses

(i.e., there is no logical order among different registers).



Config. Cell Technology #Banks Bank Size Network Cap. Area Power Cap./Area Cap./Power Latency

#1 HP SRAM 1× 1× Crossbar 1× 1× 1× 1× 1× 1×

#2 HP SRAM 1× 8× Crossbar 8× 8× 8× 1× 1× 1.25×

#3 HP SRAM 8× 1× F. Butterfly 8× 8× 8× 1× 1× 1.5×

#4 LSTP SRAM 1× 8× Crossbar 8× 8× 3.2× 1× 2.5× 1.6×

#5 LSTP SRAM 8× 1× F. Butterfly 8× 8× 3.2× 1× 2.5× 2.8×

#6 TFET SRAM 8× 1× F. Butterfly 8× 8× 1.05× 1× 7.6× 5.3×

#7 DWM 8× 1× F. Butterfly 8× 0.25× 0.65× 32× 12× 6.3×

Table 2. Various register file designs with different configurations; all the numbers including number of banks (1× = 16), bank size

(1× = 16KB), capacity, area, power consumption, capacity per area, capacity per power, and access latency are normalized to the baseline

GPU register file with 256KB size and 16 banks.

Follow-up work [20] proposes a software-managed hierarchical

register file (SHRF) that aims to reduce data movement between

the main register file and the register cache. However, as the main

objective is to reduce dynamic energy consumption of the base-

line large monolithic register file, the authors [20] aim to reduce

the total number of accesses to the main register file, regardless

of whether or not those accesses occur during the execution of a

warp. In particular, SHRF reduces the extra register file accesses

caused by register file cache write-back/reloads, by adding special-

ized instructions, aided by a new register allocation mechanism, to

manage register movement. However, Figure 4 shows that the soft-

ware approach does not significantly improve the hit rate compared

to a baseline hardware register cache [19] as it mostly focuses on

reducing the number of background (i.e., write-back/reload) reg-

ister accesses, rather than accesses that are needed by program

instructions.

2.4 Summary and Goals

In this work, we leverage two observations we have provided in

this section. First, the register file is one of the limiting factors in

the scalability of GPUs in terms of TLP. Second, making the register

file considerably larger is very difficult without sacrificing either

latency or power consumption. Register caching can reduce the reg-

ister access latency and thus enable aggressive power optimization

techniques without degrading GPU performance. However, register

caching has not been thoroughly studied in the context of GPUs

and the existing schemes mainly aim to reduce power consumption,

rather than completely hide the main register file access latency.

Therefore, these designs are inefficient as they do not offer high

register cache hit rates. In fact, they hurt performance if used with

considerably slow main register files (see § 6).

In this paper, we aim to architect a latency-tolerant hierarchical

register file for GPUs that can have very high capacity. Our goal is

to 1) enable very high-capacity yet also high-latency main register

files, while improving performance, and thus 2) open the design

space for many power/area optimization techniques in the main

register file that likely increase the register access latency (and thus

would otherwise be unacceptable).

3 LTRF

To make the register file very high capacity and at the same time

latency-tolerant, we propose a new register file caching mechanism

that aims to 1) bring the warps’ registers into the register file cache

before they are accessed by the warps (i.e., register prefetching) and

2) service all register accesses from the register file cache. As a result,

the warps see the latency of a fast register cache and not the slow

main register file. We find that a near-perfect register prefetching

mechanism can be implemented based on two key observations.

First, the register working-set is known at compile-time as there is

no indirection or aliasing in register accesses. Second, long register

access latency can be hidden by the execution of other active warps.

LTRF takes advantage of these two observations that enable a

new register prefetching scheme. § 3.1 provides an overview of our

register prefetching scheme. § 3.2 and § 3.3 provide an overview of

the architectural and compiler support required for our software-

driven prefetching scheme, respectively.

3.1 Register Prefetching Scheme

We define a PREFETCH operation to specify which registers should

be prefetched from the main register file. A PREFETCH operation

brings the register working-set of a subgraph of the application

control flow graph (CFG) into the register cache. The working-set

is composed of the registers that, depending on the dynamic con-

trol flow, might be accessed between two PREFETCH operations.

We call subgraphs of the CFG created by PREFETCH operations

(bounded by PREFETCH operations) prefetch subgraphs. Finding

an optimal placement of PREFETCH operations is not only impos-

sible in polynomial time, but also requires information available

only during runtime because of dynamic warp interleavings. We

propose a heuristic algorithm that employs the concept of inter-

vals [22], subgraphs of the CFG with a single entry point, which

offers compile-time analysis within a reasonable amount of time.

We modify the classic interval analysis algorithm, used to find the

subgraphs of the CFG with a single entry point, and introduce

the concept of register-intervals as suitable prefetch subgraphs for

prefetching registers. A register-interval is a subgraph of the CFG

that 1) has a single control flow entry point and 2) requires, at most,

a given number of registers.

Our scheme brings the register working-set into the cache at the

beginning of each register-interval and guarantees that all register

accesses made inside that register-interval will be serviced from

the register file cache.

3.2 Architectural Support

To reduce the register file cache size, we limit the number of active

warps that run concurrently and maintain a pool of inactive warps;

the inactive warps remain dormant and are not allocated space in

the register file cache. Furthermore, we partition our register file

cache and allocate each partition to an active warp, thus preventing

active warps from contending for register file cache space, and



thus from evicting each other’s registers. We size the dedicated

caching space for each warp according to the maximum number of

registers the warp can access throughout the execution of a prefetch

subgraph. This parameter also sets an upper bound for the size of

a prefetch subgraph working-set. By ensuring no register cache

evictions occur during the execution of a prefetch subgraph, we

guarantee that register movement happens only with PREFETCH

operations or when a warp becomes active/inactive.

We deploy a two-level warp scheduler, similar to the one used in

[19, 53], to schedule execution of active warps. The scheduler issues

instructions from active warps in a fair manner (e.g., round-robin).

Whenever a warp encounters a long latency operation, such as a

data cache miss, it becomes inactive and gets replaced by another

one from the active pool. The two-level scheduler enables the use

of a smaller register file cache that needs to accommodate only the

working-sets of the active warps, and a warp’s register working-set

is swapped in and out of the register file cache as warp becomes

active/inactive.

Reducing the number of active warps provides two positive

benefits: it 1) does not limit TLP since inactive warps still maintain

live state in themain register file, and thus can be quickly activated,

2) can potentially improve performance by reducing the L1 data

cache thrashing effect and by preventing all warps from stalling

at the same time [33, 34, 53, 62, 68]. In LTRF, warp activations

are not cost-free as the register working-set of the inactive warp

needs to be prefetched before the warp becomes active. Hence, if

we cannot hide the warp activation latency, we might negatively

affect performance. In § 6.3, we quantitatively show that this is not

the case. LTRF requires a small number of active warps to hide the

warp activation latency, allowing a GPU to tolerate higher latency

accesses to the main register file (We discuss the design of the main

register file and the register cache in detail in § 4.1).

PREFETCH operations use bit-vectors to identify the registers

that should be cached for each prefetch subgraph, enabling support

for various cache sizes. The PREFETCH bit-vector size is equal to

the maximum number of registers the CUDA compiler can allocate

to a thread. For example, in the latest CUDA versions, the compiler

can allocate up to 256 registers to each thread, requiring a 256-bit

vector for each PREFETCH operation. The instruction fetch unit

needs to know in advance when it is going to process a PREFETCH

bit-vector. We consider two approaches. The first embeds an extra

bit in each instruction to indicate whether a PREFETCH bit-vector

follows that instruction. Prior work [20] has similar requirements

and the authors show that, in general, the cost of embedding the

extra bit is negligible. The second approach is to add an explicit

instruction that is always followed by the bit-vector. We show in

§4.3 that code-size and performance overheads are negligible with

either of the approaches.

When a warp becomes inactive, we must keep track of which

registers should be written back and refetched once the warp be-

comes active again. In LTRF, we simply write back and refetch the

entire register working-set of the active prefetch subgraph.

In order to improve the efficiency of the basic LTRF design, we

devise operand-liveness aware LTRF (called LTRF+), which con-

siders the liveness of the registers to save register file cache space.

The key idea of LTRF+ is to avoid writing-back/re-fetching dead

registers. To this end, each read operand has to be extended with an

additional bit, called the dead operand bit as defined in [19], which

indicates whether the corresponding operand will be dead after

the execution of the corresponding instruction. This information

can be conservatively known at compile-time, using static liveness

analysis. These bits are used to update the liveness bit vector. The

liveness bit vector keeps track of the liveness status of all registers

at the current point of execution. A register becomes live when

it is written to and dead when an instruction indicates it is dead

via the dead operand bit. When a warp becomes inactive, LTRF+

writes back only the live registers to the main register file. When a

warp becomes active, LTRF+ fetches only the live registers from

the main register file. LTRF+ does not read the dead registers from

the main register file since their first access, if any, will be a write,

and LTRF+ needs to only allocate space for them in the register file

cache.

3.3 Compiler Support

When a warp reaches the beginning of a prefetch subgraph, it is

paused until all of its working-set registers are loaded into the

register cache. Therefore, PREFETCH operations may have long

latencies that can potentially impose large performance overheads,

and hence, they should happen infrequently. In order to address this

issue, we introduce register-intervals as effective prefetch subgraphs

and partition the CFG into register-intervals. A register-interval

is a subgraph of the CFG with only two constraints. First, it needs

to have only one control flow entry point. Second, the number of

registers used in a register-interval should not exceed the size of

a partition in the register cache.2 The primary difference between

register-intervals and other similar concepts, such as strands [20], is

that complex control flow structures (e.g., backward branches) are

allowed inside a register-interval and they do not cause the termina-

tion of the register-interval. By relaxing such constraints, register-

intervals provide two main benefits. First, register-intervals can

have more static instructions and thus the number of PREFETCH

operations can be minimized. Second, our mechanism aims to fit

a loop within a single register-interval in order to increase the

dynamic length of the register-intervals.

We employ classic interval analysis methods [22] to form

register-intervals. The original interval concept [22], used in clas-

sic compiler algorithms, partitions the CFG into smaller disjoint

subgraphs, each with exactly one entry point. These intervals are

typically used to identify loops and determine if the CFG is re-

ducible. We constrain the formation algorithm to guarantee that

the register working-set of each interval can fit into a register file

cache partition. As a result, the register-intervals constructed by

our algorithm might be smaller than the intervals formed by the

original algorithm and may terminate at arbitrary points. Thus, we

modified the original algorithm to construct intervals at arbitrary

starting points.

Our register-interval formation algorithm is a multi-pass algo-

rithm. Algorithm 1 shows the first pass. The algorithm tries to

compose register-intervals with as many basic blocks as possible.

Therefore, it initializes the first register-interval with the entry ba-

sic block (line 8) and iteratively attempts to add subsequent blocks

to it (lines 9-25). A candidate block must satisfy two conditions to

be successfully added: 1) it must be entered only from the current

register-interval, 2) the register file cache space allocated for a warp

must be enough to house both the active registers already in the

2We provide dedicated space for each active warp in the register file cache.



Algorithm 1 Register-Interval Formation: Pass 1.

Input: Application Control Flow Graph (CFG)
Output: Register-Interval CFG

1: Initialize:
2: for each basic block : BB do
3: BB.input_list ← empty() // List of all register in the register cache at

the begining of BB
4: BB.register-interval← Unknown
5: end for
6: Working-Set← empty()
7: entry_block.register-interval ← new register-interval() // Each CFG

has an entry basic block
8: Working-Set.insert(entry_block)

9: while (!Working-Set.empty()) do
10: BB ← a basic block from Working-Set
11: TRAVERSE(BB)
12: i ← BB.register-interval
13: while (∃ basic block h for which h.register-interval==Unknown

& all of h predecessors belong to i & union(output_list of all S
predecessors).size()≤N) // N is the maximum number of registers al-
lowed in the register-interval (i.e., size of a partition in the register file
cache) do

14: h.register-interval← i
15: h.input_list← union(output_list of all h predecessors)
16: TRAVERSE(h)
17: end while
18: for each S ∈ i.successors() do
19: if (S.register-interval==Unknown) then
20: S.register-interval← new register-interval()
21: S.input_list← empty()
22: Working-Set.insert(S)
23: end if
24: end for
25: end while

26: procedure traverse(BB)
27: register_list ← BB.input_list
28: for each instruction in BB do
29: update register_list
30: if (register_list.size()>N) then
31: cut BB and introduce a new basic block : BB1
32: BB1.register-interval← new register-interval()
33: BB1.input_list← empty()
34: Working-Set.insert(BB1)
35: BB.output_list← register_list // List of all registers in the regis-

ter file cache at the end of BB
36: exit
37: end if
38: end for
39: end procedure

register-interval and the ones added by the new block. The algo-

rithm stops when it cannot find any basic blocks that meet these

conditions (line 13). After it finishes the first register-interval, it cre-

ates new register-intervals out of all the basic blocks with incoming

edges from that register-interval (lines 18-24). When a register-

interval is completely formed, all of the basic blocks that have

incoming edges from that register-interval become new register-

intervals’ headers. If a single basic block’s active registers do not fit

into the remaining register file cache space for that register-interval,

the basic block is split across two or more register-intervals (lines

30-37). We also split the basic blocks at function calls (each function

call becomes a separate register-interval). The first pass ends when

all basic blocks are assigned to register-intervals. After the first

pass, the CFG is transformed into a Register-Interval CFG where

the nodes represent the register-intervals rather than basic blocks.

Algorithm 2 shows the second pass of our register-interval for-

mation algorithm. This pass reduces the Register-Interval CFG into

Algorithm 2 Register-Interval Formation: Pass 2.

Input: Register-Interval CFG
Output: Reduced Register-Interval CFG

1: Initialize:
2: for each register-interval : i do
3: i.register-interval ← Unknown
4: end for
5: Working-Set ← empty()
6: entry_register-interval.next_level_register-interval ← new

next_level_register-interval()
7: Working-Set.insert(entry_register-interval)

8: while (!Working-Set.empty()) do
9: i ← a register-interval from Working-Set
10: ii ← i.next_level_register-interval
11: ii.register_list ← i.register_list
12: while (∃ register-interval h for which h.next_level_register-

interval==Unknown & all of h predecessors belong to ii &
union(register_list of all h predecessors).size()≤N) // N is the maxi-
mum number of registers allowed in the register-interval (i.e., size of a
partition in the register file cache) do

13: h.next_level_register-interval← ii
14: ii.register_list← union(ii.register_list & h.register_list)
15: end while
16: for each S ∈ ii.successors() do
17: if (S.next_level_register-interval==Unknown) then
18: S.next_level_register-interval ← new next_level_register-

interval()
19: Working-Set.insert(S)
20: end if
21: end for
22: end while

a smaller number of register-intervals. It works similarly to the

first pass, with the difference that it never splits register-intervals.

Instead, it merges two register-intervals if 1) one of them can be

reached only from the other and 2) the union of their register

working-sets still fits into the allocated register file cache space

(lines 12-15). The second pass is repeated until the CFG can not be

reduced anymore.

The only control flow constraint imposed by intervals is that a

node can only join an interval when all of the incoming edges to

the node come from that interval. As a result, backward edges and

thus loop headers always create new intervals.3 This key feature of

intervals makes them ideal subgraphs for our purpose. By starting

a new register-interval for each loop, Algorithm 2 maximizes the

probability that an entire loop can fit into the register-interval,

thereby minimizing the number of PREFETCH operations to one

for the entire loop.

The primary role of the second pass is to prevent the mentioned

control flow constraint from splitting large register-intervals into

multiple smaller ones. As an example, consider the two nested

loops in Figure 6. Assuming the entire register working-set of the

graph fits in the register file cache, in the first pass, basic block "A"

forms register-interval 1. Basic block "B" cannot be merged with

register-interval 1 as it has another incoming edge from basic block

"C". Therefore, basic block "B" forms a new register-interval, named

register-interval 2. Basic block "C" can be merged into register-

interval 2 as basic block "C" has only one incoming edge from

3This is true only for reducible CFGs with natural loops where the loop has only
one entry point [22]. However, this is usually the case as standard languages can
usually only represent natural loops (except in some cases with irregular control
flow structures, such as GOTO) and compiler infrastructures only produce reducible
CFGs [37].
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Figure 6. Register-interval formation for a simple nested loop ex-

ample. A,B,C represent basic blocks.

register-interval 2. As a result, the innermost loop becomes a sepa-

rate register-interval but it cannot be merged into the outermost

loop. In the second pass, register-interval 1 can be merged into

register-interval 2 as register-interval 1 has only one incoming

edge from register-interval 2. Thus, the whole outermost loop can

be reduced to a single register-interval. Each repetition of the sec-

ond pass of the algorithm reduces the depth of a nested loop by

one if the resulting register working-set is small enough to fit in

the register file cache.

We open source the C implementation of Algorithms 1 and 2

in [1].

4 Hardware Implementation

In this section, we discuss the hardware implementation of LTRF

in detail.

4.1 Register File Microarchitecture

Register File Cache. Figure 5 illustrates an example LTRF archi-

tecture. We show our added components to the baseline register file

architecture in orange color. The register file cache is composed of

#Reдisters_per_Interval banks (e.g., 16 banks in the figure) where

each bank hosts #Active_Warps registers (e.g., 8 1024-bit registers
in the figure). LTRF interleaves registers belonging to a single warp

across the cache banks, and hence, each register bank houses no

more than one register of a warp. Register file cache banks are

connected to the operand collectors via a crossbar.

Warp Control Block. A key structure in LTRF design is theWarp

Control Block (WCB), shown in Figure 7. The purpose of the WCB

is to maintain metadata for each warp required for controlling

the register prefetching process and finding the position of the

architectural registers in the register cache. To this end, WCB is

composed of the register cache address table, the working-set bit-

vector, and the liveness bit-vector. The register cache address table

is a 256-entry table per warp that keeps the register file cache

bank number for each warp’s architectural registers. The register

cache address table has as many entries as the maximum number

of architectural registers allocated to a warp. All cached registers

of a warp have the same offset in all register file cache banks.

Thus, for each register, the table only needs to keep track of the

�log2 #Reдisters_per_Interval�-bit (e.g., 4-bit in Figure 7) index of

the register file cache bank number where that register is located.

WCB also contains one �log2 #Active_Warps�-bit (e.g., 3-bit in Fig-

ure 7) entry to track the offset of that warp’s registers inside the

banks (called warp-offset address). The working-set bit-vector holds

a valid bit for each register to indicate whether it has already been

prefetched during the PREFETCH phase. Since most of the instruc-

tions have two read operands, we provide two read ports for each

register cache address table. Any instruction that operates on more

than two operands must fetch the register file cache addresses of

all operands over multiple cycles.
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each architectural register in the WCB, as depicted in Figure 7. This

vector is initially cleared (i.e., all registers are marked as dead) when

the warp starts execution, and it is updated as the warp executes

(§ 3.2).

Operand Collector Modifications. We augment each operand

collector (Figure 5, right) with �log2 #Reдisters_per_Interval�-bit
(e.g., 4 bits in the figure) bank number and �log2 #Active_Warps�-
bit (e.g., 3 bits in the figure) warp-offset address to determine the

location of each architectural register in the register file cache.

Register File Cache Access. As multiple warps may still try to

access the same bank at any given cycle, we use an arbiter, as

in conventional GPU register files, to arbitrate between accesses

to register file cache banks and to resolve bank conflicts. When

an operand collector is allocated to a warp, it probes the register

cache address table in the corresponding WCB to get the locations

of registers inside the register cache. After reading the registers’

locations, the operand collector participates in the arbitration phase

to 1) resolve bank conflicts and 2) access the register file cache to

read the operands.

4.2 Software-Triggered Prefetch Mechanism

Executing PREFETCH Operations. When a warp reaches a

PREFETCH operation, the GPU must load the warp’s registers into

the register file cache as indicated by the PREFETCH bit-vector.

Initially, the PREFETCH bit-vector is decoded into a list of indices

(IDs) of registers that need to be loaded. Once the register indices

are identified, they must be allocated space in the register file cache,

and the warp’s register cache address table in the WCB must be

properly filled. After allocating register file cache space, the regis-

ters can be read from the main register file to fill the register cache.

When a register is prefetched completely, the corresponding valid

bit in the WCB is set. After all registers indicated by the PREFETCH

bit-vector are prefetched, the warp becomes ready to execute, and

all subsequent register accesses of that warp are served from the reg-

ister file cache. In LTRF+, whenever a warp performs a PREFETCH

operation, it queries the liveness bit-vector and prefetches only the

registers that are marked as live. For dead registers, it is sufficient

to allocate the register file cache space, without fetching data.

Register File Cache Space Allocation. Every cached register in

a register-interval must be assigned a place in the register file cache.

In our design, this mechanism is equivalent to allocating one reg-

ister file cache bank for each cached register as we interleave the

registers of a single warp across banks to minimize register file

cache bank conflicts. We employ the Address Allocation Unit, de-

picted in Figure 8, for each warp to implement this mechanism. The

Address Allocation Unit is composed of two queues: the unused

queue keeps track of free banks, while the occupied queue keeps

track of allocated banks. Initially, the unused queue is full, and the

occupied queue is empty. On an allocation, we allocate the head

of the unused queue to the new register and move that entry to

the occupied queue. On a deallocation, we move the deallocated

register entry back to the unused queue. The same mechanism is

used to allocate warp-offset addresses to warps. There, we use a

global Address Allocation Unit that is shared by all warps.

Interconnect. We use an #Active_Warps-bit arbiter (e.g., 8-bit
arbiter in Figure 5, left) to arbitrate among warps to fill the register

file cache. Registers are loaded into the register file cache from

the main register file via a crossbar network. In order to design

this crossbar, we calculate the number of accesses to the main
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register file in LTRF and the baseline architecture. Our experimental

results show that LTRF reduces the number of accesses to the main

register file by 4×-6× (as most of the accesses are serviced through

the register file cache) and the bandwidth of the 1024-bit crossbar

in the baseline architecture without register caching [10, 40] is

utilized by up to 85%. As a result, we can reduce the bandwidth of

the main register file crossbar by 4× without hurting performance.

On the downside, the narrower crossbar would exhibit a traversal

latency 4× larger (from 1 cycle to 4 cycles) than a wide crossbar

in typical scenarios, and far larger latency when the crossbar is

saturated and queuing effects become dominant. However, due to

the latency-tolerant nature of our design and the fact that register

file access latencies are dominated by bank access times rather than

crossbar traversals, we find that the longer traversal latency of a

narrower crossbar is not a significant performance issue. Because

warp registers are interleaved across the register cache banks, LTRF

improves the parallelism of accesses in the interconnect.

Warp Stall. A warp that is stalled becomes inactive and loses its

slots in the register file cache. In that case, it must perform three

steps. First, it writes back its live registers to the main register file.

Second, it releases its register file cache slots. Third, it clears all the

valid bits in the register cache address table of the WCB. Whenever

a warp goes from being inactive to active, and it finds itself in

the middle of a register-interval, it must refetch all its specified

registers in its working-set bit-vector that are still live from the

main register file. This is done using the warp’s working-set and

liveness bit-vectors in WCB.

4.3 Overheads

Code Size. LTRF increases the average code size by 7% if only

PREFETCH bit-vectors are inserted into the code and 9% if the

bit-vectors are accompanied by prefetch instructions. Note that,

in order to be able to only insert the bit-vectors into the code, the

ISA has to be redesigned and an extra bit has to be embedded into

all instructions, as explained in §3.2. To measure the effect of the

increased code size on the GPU performance, we execute the origi-

nal and the modified programs on the baseline architecture using

GPGPU-Sim [10]. Our experimental results show that the larger

code size results in 0.2% average (up to 1%) performance degrada-

tion, which is negligible.



Storage Cost. LTRF requires a WCB for every warp, shown in

Figure 7. Each WCB contains one 5-bit entry per architectural regis-

ter, 3-bit for the warp-offset address, and working-set and liveness

bit-vectors, each with one bit per register. The total storage over-

head of the WCB for each SM in an example modern architecture,

which supports 64 warps with 256 registers per warp, is 114880 bits

(64× (256× 5+ 3+ 256+ 256)), around 5% of the area consumed by

the 256KB baseline register file.

Latency Overhead. According to our analysis with CACTI [51],

the WCB can be accessed within one extra clock cycle. Hence, it

adds negligible performance overhead in accessing the registers.

Area/Power Cost. In order to measure the area and power over-

heads of LTRF, we functionally model all the added components

(i.e., WCB, the additional crossbar, address allocation units, the

arbiter, additional entries in the operand collectors, and register

file cache) in GPU-Wattch [40]. In total, LTRF occupies 16% more

area than our baseline GPU register file (i.e., Configuration #1 in

Table 2) using the same main register file size and technology. In

terms of power consumption, despite the added structures, LTRF

consumes 23% less power compared to the baseline register file.

LTRF’s improvement in power consumption is due to reducing the

number of accesses to the main register file by 4×-6×.

5 Methodology

Simulation. We evaluate our techniques using the GPGPU-Sim

V3.2.2 [10] cycle-level simulator for GPUs. Table 3 provides the

details of our baseline GPU configuration. We model our baseline

after an NVIDIA Maxwell-like architecture [56]. We modify the

microarchitecture of the conventional register file in GPGPU-Sim

to implement the LTRF microarchitecture depicted in Figure 5.

Number of SMs 24

Core clock 1137 MHz

Scheduler Two-level [19, 53]

Number of warps per SM 64

Register file size 256KB per SM (65536 registers)

Register file cache size 16KB per SM (4096 registers)

Shared memory size 64KB per SM

L1D Cache 4-way, 16KB, 128B line

L1I Cache 4-way, 2KB, 128B line

LLC 8-way, 2MB, 128B line

Memory Model 8 GDDR5 MCs,

FR-FCFS [61, 88], 2700 MHz

GDDR5 Timing tCL=12, tRP=12, tRC=40,

(in nanoseconds) tRAS=28, tRCD=12, tRRD=6

Number of active warps 8 per SM

Number of registers 16

in a register-interval

Table 3. Simulated system configuration.

We use the compiler in GPGPU-Sim to implement our soft-

ware prefetching mechanism for registers. To this end, we process

the CFG of the register-allocated PTX code to form the register-

intervals, using Algorithms 1 and 2, and insert PREFETCH bit-

vectors at the start of each register-interval.

Benchmarks.We run 35 benchmarks from CUDA SDK [10], Ro-

dinia [14], and Parboil [72] benchmark suites and classify them

into two groups, register-sensitive and register-insensitive, based

on whether or not the register file limits the achievable TLP. We

randomly select nine workloads from the register-sensitive group,

and five workloads from the register-insensitive one.

Comparison Points. We evaluate (1) a baseline (BL) architecture

that models a GPU with a conventional non-cached register file.

To provide a fair comparison of this baseline to other register file

cache based designs, we add the amount of space dedicated for the

register file cache in LTRF (16KB) to the main register file capac-

ity in the BL architecture, (2) a design with a 16KB register file

cache (RFC) without any prefetching mechanisms, similar to the

architecture proposed in [19]. (3) LTRF, with a 16KB register file

cache. (4) LTRF+, an enhanced version of LTRF which also consid-

ers operand-liveness information (§ 3.2). (5) an Ideal register file

architecture that allows us to increase the register file capacity to

any size (i.e., 8× in our evaluations) with no latency overhead.

Design Points. We increase the register file size from 256KB to

2MB by using the register file configurations #6 and #7 from Ta-

ble 2. Configuration #6 allows us to increase the register file size

by 8× while keeping the power consumption almost unchanged.

Configuration #7, on the other hand, results in less power/area

consumption compared to the baseline SRAM-based 256KB register

file. We use these design points as realistic baselines for our perfor-

mance analysis.

Performance Metrics.We use IPC as the performance metric to

evaluate different register file designs. We evaluate our compiler al-

gorithms by measuring the size of the generated register-intervals.

6 Evaluation

We present the effectiveness of five different mechanisms: BL, RFC,

LTRF, LTRF+, and Ideal. § 6.1 shows the overall effect of LTRF on

GPU performance. § 6.2 evaluates the register file power consump-

tion. § 6.3 analyzes the effectiveness of LTRF at tolerating the la-

tency of the main register file. § 6.4 provides sensitivity analysis

on the size of the register file cache. § 6.5 analyzes the number of

instructions in register-intervals. § 6.6 provides a comparison be-

tween LTRF and other software-managed register caching schemes.

6.1 Overall Effect on GPU Performance

To evaluate the effect of larger register files on GPU performance,

we increase the register file size from 256KB to 2MB by using the

register file configurations #6 and #7 from Table 2. Figure 9 com-

pares the normalized IPC of BL, RFC, LTRF, and LTRF+ designs

when used on top of these two configurations. In this figure, we

normalize the IPC results to the IPC results of the baseline architec-

ture of configuration #1 in Table 2, without any register caching,

with one modification: we add the register file cache capacity (i.e.,

16KB) used in the other mechanisms to the 256KB register file size

of configuration #1. Ideal bars show the IPC of an idealized version

of configuration #1 with 8× the register file capacity but no increase

in latency (i.e., access latency remains constant after increasing

register file size by 8×). We make three major observations. First,

LTRF provides almost the same IPC performance as the Ideal design

when we employ configuration #6. LTRF improves IPC by 32%, on

average. The IPC improvement of LTRF is due to two main reasons.

1) The larger register file enables both more registers per thread and

more warps executing in parallel. 2) LTRF effectively tolerates the

higher access latency of configuration #6. Second, for the register-

insensitive workloads that do not benefit from a larger register file
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baseline architecture of configuration #1 with 16KB additional register file capacity.

(e.g., btree and kmeans), the performance overhead of increasing

the register file size is minimal if we use LTRF and LTRF+ as op-

posed to RFC. Third, LTRF and LTRF+ effectively enable the use of

configuration #7, which reduces the register file area by 75%.4 For

this configuration, LTRF and LTRF+ improve performance by 28%

and 31% over the baseline, on average, respectively. We conclude

that LTRF enables a high-capacity and high-latency main register

file while providing high performance.

6.2 Register File Power Consumption

To evaluate the effect of each design on register file power con-

sumption, we measure the register file power consumption using

configuration #7 in Table 2. Figure 10 compares the normalized

register file power consumption of RFC, LTRF, and LTRF+ designs

when used on top of configuration #7. We normalize the power

consumption results to the power consumption of the baseline ar-

chitecture of configuration #1 from Table 2, without any register

caching.

Wemake twomajor observations. First, compared to the baseline,

LTRF+ consumes the least amount of power. On average, LTRF+

4This extra die area is freed up due to the use of LTRF and LTRF+, and it can naturally
be used for other on-chip components such as the L1 and the L2 data caches (although
we do not evaluate this use of the extra area).

reduces the register file power consumption by 46.1% while RFC

and LTRF reduce the register file power consumption by 35.1%

and 35.4%, respectively. Second, the register file of LTRF consumes

almost the same amount of power of that of RFC because the ex-

tra storage components (e.g., WCB) offset the power saving from

LTRF’s lower number of main register file accesses.

6.3 Effect of LTRF on Register File Access Latency

To show the effectiveness of LTRF at tolerating register file access

latency, we define a new metric: the maximum tolerable register file

access latency. This is the relative latency5 of the main register file

that leads to at most 5% performance (IPC) loss for each workload

we examine. Note that this metric is different for each design, de-

pending on the latency tolerance of the design. We increase the

main register file access latency while keeping the main register file

size constant. Figure 11 compares the maximum tolerable register

file access latency of different designs for various benchmarks.

We make three major observations. First, the maximum tolerable

register file access latency for LTRF is 5.3×, on average. This result

indicates that LTRF can 1) effectively bring the registers to the

register file cache before they are accessed and 2) hide the latency of

the register access to the main register file by executing other active

5Relative to the baseline of configuration #1 with 16KB additional register file capacity
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Figure 11. Maximum tolerable register file access latency of different designs.

warps. Second, the maximum tolerable register file access latency

for LTRF+, which is aware of operand liveness information, is 6.2×,

on average, indicating that using liveness information to manage

register caching and prefetching improves latency tolerance. Third,

the maximum tolerable register file access latency for RFC is 2.1×,

on average, which shows that the register file cache hit rate in the

RFC design is not large enough to hide main register file access

latencies that are greater than 2.1×.

We also evaluate the maximum tolerable register file access

latency for different designs by allowing 1% and 10% performance

loss instead of 5% performance loss.With 1% allowable performance

loss, the maximum tolerable register file access latencies for RFC,

LTRF, and LTRF+ are 1.4×, 2.8× and 3.5× higher than the baseline,

respectively. With 10% allowable performance loss, the maximum

tolerable register file access latencies for RFC, LTRF, and LTRF+

are 2.9×, 6.5× and 7.9× higher than the baseline, respectively.

We conclude that LTRF and LTRF+ are able to tolerate long

main register file access latencies. Thus, they can enable aggressive

optimizations that increase register file capacity in exchange for

higher access latency.

6.4 Sensitivity to Register File Cache Size

We explore the effect of the register file cache size on performance

in two ways: (1) varying the number of registers allowed in each

register-interval (default is 16), (2) varying the number of active

warps that are allocated storage space in the register cache. Fig-

ure 12 reports the average IPCwhenwe vary the number of registers

allowed in each register-interval. We make two observations. First,

when the number of registers allowed in each register-interval is

8, the effectiveness of LTRF degrades significantly, as the main

register file access latency increases, This is mainly because a small

number of registers results in a small register-interval size. Hence,

PREFETCH operations become more frequent, and hiding their la-

tency becomes more difficult, especially for slow main register files.

Second, increasing the number of registers allowed in each register-

interval does not necessarily translate to better performance for

LTRF. This is mainly because more registers result in more main

register file bank conflicts during the PREFETCH operation, in-

creasing prefetch latency. Therefore, larger register-interval sizes

may not always be enough to hide larger prefetch latencies.

Figure 13 illustrates LTRF performance sensitivity to the num-

ber of warps that have dedicated register file cache space, while

keeping the dedicated space per warp constant. We make two ob-

servations. First, as the number of active warps increases from 4 to

8, IPC improves by 36.9% for the slowest main register file. Second,

increasing the number of active warps by more than 8 does not
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Figure 12. Normalized IPC using LTRF with various main register

file access latencies and number of allowed registers in each register-

interval.

have a significant impact on LTRF performance. We conclude that

8 active warps, which is the default configuration in LTRF, seems

enough. Hence, LTRF does not impose significant performance cost

by limiting the number of active warps.
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Figure 13. Normalized IPC using LTRF with various main register

file access latencies and number of active warps.

We conclude that, by making the performance impact of a slower

register file more tolerable, LTRF enables a large design space to

architects, where tradeoffs between power, area, and latency of the

register file can be explored more freely to optimize system-level

goals.

6.5 Register-Interval Length

As explained in § 3, register-intervals should be as long as possible to

minimize the number of PREFETCH operations. We measured both

the real and the optimal register-interval lengths. The real register-

interval length is the number of dynamic instructions within each

register-interval. The optimal register-interval length is the number

of consecutive dynamic instructions in a kernel’s execution trace

that consume at most the maximum number of allowed registers

in the register cache. In other words, the optimal length exposes



the limitations caused by the control-flow constraints imposed

on register-intervals. Table 4 reports the average, minimum, and

maximum lengths of the real and optimal register-intervals. We

make two observations. First, the real register-interval length is

89% of the optimal register-interval length, on average. Second, the

minimum and maximum lengths of real register-intervals are 78%

and 85% of the ones in optimal register-intervals, respectively. We

conclude that the control flow constraints in creating the register-

intervals do not greatly limit the register-interval length.

Register-Interval Length Average Minimum Maximum

Real 31.2 7 45

Optimal 34.7 9 53

Table 4. The average, minimum, and maximum lengths of real and

optimal register-intervals, in terms of dynamic instructions, for

35 workloads in CUDA SDK [10], Rodinia [14], and Parboil [72]

benchmark suites.

6.6 LTRF vs. SW-Managed Hierarchical Register Files

To distinguish the benefits of our key ideas from other software-

based approaches, we evaluate the maximum tolerable register file

access latency of two additional designs: 1) a software-managed

hierarchical register file (SHRF) similar to [20] and 2) a version of

LTRF that performs PREFETCHoperations at the end of strands [20],

rather than register-intervals. SHRF [20] aims to reduce the number

of background register swap operations between the main register

file and the register file cache to provide energy efficiency and

uses traditional register allocation/spilling techniques. SHRF uses

strands, which are more constrained CFG subgraphs than register-

intervals, since long/variable-latency operations (e.g., cache misses)

and backward branches are disallowed within a strand to guaran-

tee that the warp does not get descheduled until the end of the

strand [20].

Figure 14 reports the normalized IPC, averaged across our work-

loads (see § 5), as the main register file access latency increases.
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LTRF (register-interval) with various register file access latencies.

We make two observations. First, SHRF performs similarly to

RFC and can tolerate latencies by up to 2× the baseline latency. Sec-

ond, LTRF can tolerate only 3× higher register file latency if it uses

strands instead of register-intervals, as opposed to the 5.3× higher

main register file latency tolerated by our LTRF design that uses

register-intervals. LTRF performs better using register-intervals be-

cause strands’ CFG subgraphs are more constrained, and typically

much smaller than the CFG subgraphs of register-intervals, in-

creasing the number of PREFETCH operations, register writebacks,

and register re-fetches. In particular, while the length of a register-

interval is usually limited by the size of the register working-set,

a strand is typically terminated due to unrelated control flow con-

straints, and as a result, the strand’s register working-set is often

smaller than the available register file cache space. We conclude

that using register-intervals to place the PREFETCH operations is

essential for LTRF performance.

7 Related Work

To our knowledge, this paper is the first to design a latency-tolerant

register file architecture for GPUs by (1) prefetching the entire reg-

ister working set of a warp from the main register file to the register

file cache using the notion of register-intervals, and (2) overlap-

ping the prefetch latency with the execution of other active warps.

LTRF opens a window for many optimizations in the main register

file that greatly increase the effective capacity at the expense of

higher access latency. We have already compared LTRF extensively

to various hardware and software register caching proposals for

GPUs [19, 20] in § 6. In this section, we describe other related work

in register file caching and register file scalability.

Register File Caching. Few works have explored hardware- and

software-managed hierarchical register files for GPUs [19, 20].

These works focus on other objectives, such as energy efficiency,

rather than latency-tolerance, and expose the higher latencies of

slow register files to the execution. Regless [36] is a concurrent

work that slices the computation graph into regions and allocates

operand storage for the regions to replace the register file with a

small operand staging unit. However, Regless targets power reduc-

tion rather than latency tolerance as the main objective.

Register file caching and hierarchical register files have been

widely investigated for CPU architectures. Most of those works fo-

cus on superscalar or VLIW processors [11, 13, 16, 54, 58, 70, 86, 87].

Such architectures are often able to hide the larger access latency

of the slower register file levels via instruction level parallelism. As

a result, the main focus of this line of work has been on efficient

ways of integrating hierarchical register files into deep out-of-order

pipelines and orchestrating the interactions between rename/issue

mechanisms and register movements among different levels [11, 58].

However, these techniques are usually not applicable to GPUs as

GPUs have limited support for instruction-level parallelism. An-

other line of work focuses on software-managed hierarchical files

with different ISA-visible register banks that have different sizes

and speeds [15, 31, 32, 73] where the compiler orchestrates register

placement and movement. The CRAY-1 system [63] is an example

architecture that implements a compiler-controlled hierarchical reg-

ister file where software instructions explicitly manage the register

movement between the two levels. Such techniques are suitable

mainly for VLIW/vector processors and are not effective when used

with GPUs where dynamic thread interleavings are unknown at

compile-time as the GPU compiler is not able to schedule register

movements to overlap them with the execution of other threads.

Register File Scalability.There aremany techniques that improve

the scalability or efficiency of the register files. These techniques

employ dimming and power-gating [2, 23], compression [39], new

memory technologies [3, 26, 27, 28, 43, 45, 46, 48, 80, 85], and virtu-

alization [25, 78]. All these techniques likely cause an increase in

register file access latency. LTRF can be synergistically combined

with these techniques and can enable them to tolerate the long reg-

ister file access latencies. Hence, we believe LTRF is a substrate that



enables optimizations in GPU register files, which might otherwise

not always be desirable, efficient, or high performance.

8 Conclusion

We propose LTRF, a new latency-tolerant hierarchical register file

design for GPUs. The key mechanism of LTRF is a near-perfect

register prefetching scheme that divides the application control

flow graph into register-intervals and brings the entire register

working set of a warp from the main register file to the register

cache at the beginning of each register-interval. As a result, a warp

experiences the fast register cache access latency, rather than the

long access latency of the large main register file. An example

evaluation result shows that LTRF enables us to implement the

main register file with emerging high-density high-latency memory

technologies, enabling 8× larger register file capacity and improving

overall GPU performance by 31% while reducing register file power

consumption by 46%. We believe that LTRF paves the way for

many power/area optimization techniques in the main register file

that likely increase the register access latency. We conclude that,

by making the performance impact of a slower register file more

tolerable, LTRF enables a large design space to architects, where

tradeoffs between power, area, and latency of the register file can

be explored more freely to optimize system-level goals.

Acknowledgements

We thank the anonymous reviewers, and members of HPCAN-

Sharif, PARSA-EPFL, SAFARI-ETH, and SAFARI-CMU, in particular

Juan Gómez-Luna, Ali Hajiabadi, and Mark Johnathon Sutherland,

for their feedback. We acknowledge the support of our industrial

partners, especially Google, Intel, Microsoft, NVIDIA, and VMware.

References
[1] “LTRF Register-Interval-Algorithm,” https://github.com/CMU-SAFARI/

Register-Interval.
[2] M. Abdel-Majeed and M. Annavaram, “Warped register file: A power efficient

register file for GPGPUs,” in HPCA, 2013.
[3] M. Abdel-Majeed, A. Shafaei, H. Jeon, M. Pedram, and M. Annavaram, “Pilot

Register File: Energy efficient partitioned register file for GPUs,” in HPCA, 2017.
[4] A. Annunziata, M. Gaidis, L. Thomas, C. Chien, C. Hung, P. Chevalier,

E. O’Sullivan, J. Hummel, E. Joseph, Y. Zhu et al., “Racetrack memory cell array
with integrated magnetic tunnel junction readout,” in IEDM, 2011.

[5] C. Augustine, A. Raychowdhury, B. Behin-Aein, S. Srinivasan, J. Tschanz, V. K. De,
and K. Roy, “Numerical analysis of domain wall propagation for dense memory
arrays,” in IEDM, 2011.

[6] R. Ausavarungnirun, S. Ghose, O. Kayiran, G. H. Loh, C. R. Das, M. T. Kan-
demir, and O. Mutlu, “Exploiting inter-warp heterogeneity to improve gpgpu
performance,” in PACT, 2015.

[7] A. Bakhoda, J. Kim, and T. M. Aamodt, “On-chip network design considerations
for compute accelerators,” in PACT, 2010.

[8] A. Bakhoda, J. Kim, and T. M. Aamodt, “Throughput-effective on-chip networks
for manycore accelerators,” in MICRO, 2010.

[9] A. Bakhoda, J. Kim, and T. M. Aamodt, “Designing on-chip networks for through-
put accelerators,” in ACM TACO, 2013.

[10] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt, “Analyzing
CUDA workloads using a detailed GPU simulator,” in ISPASS, 2009.

[11] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi, “Reducing the complexity
of the register file in dynamic superscalar processors,” in MICRO, 2001.

[12] K. K. Bhuwalka, S. Sedlmaier, A. K. Ludsteck, C. Tolksdorf, J. Schulze, and I. Eisele,
“Vertical tunnel field-effect transistor,” in IEEE TED, 2004.

[13] E. Borch, E. Tune, S. Manne, and J. Emer, “Loose loops sink chips,” in HPCA, 2002.
[14] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,

“Rodinia: A benchmark suite for heterogeneous computing,” in IISWC, 2009.
[15] K. D. Cooper and T. J. Harvey, “Compiler-controlled memory,” in ASPLOS, 1998.
[16] J. L. Cruz, A. Gonzalez, M. Valero, and N. P. Topham, “Multiple-banked register

file architectures,” in ISCA, 2000.
[17] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level performance,

energy, and area model for emerging nonvolatile memory,” in IEEE TCAD, 2012.

[18] S. Fukami, T. Suzuki, K. Nagahara, N. Ohshima, Y. Ozaki, S. Saito, R. Nebashi,
N. Sakimura, H. Honjo, K. Mori et al., “Low-current perpendicular domain wall
motion cell for scalable high-speed mram,” in VLSIT, 2009.

[19] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally, E. Lindholm,
and K. Skadron, “Energy-efficient mechanisms for managing thread context in
throughput processors,” in ISCA, 2011.

[20] M. Gebhart, S. W. Keckler, and W. J. Dally, “A compile-time managed multi-level
register file hierarchy,” in MICRO, 2011.

[21] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J. Dally, “Unifying
primary cache, scratch, and register file memories in a throughput processor,” in
MICRO, 2012.

[22] M. S. Hecht, Flow analysis of computer programs. Elsevier Science Inc., 1977.
[23] C.-C. Hsiao, S.-L. Chu, and C.-C. Hsieh, “An adaptive thread scheduling mecha-

nism with low-power register file for mobile GPUs,” in IEEE TMM, 2014.
[24] H. Jang, J. Kim, P. Gratz, K. H. Yum, and E. J. Kim, “Bandwidth-efficient on-chip

interconnect designs for GPGPUs,” in DAC, 2015.
[25] H. Jeon, G. S. Ravi, N. S. Kim, andM. Annavaram, “GPU register file virtualization,”

in MICRO, 2015.
[26] N. Jing, L. Jiang, T. Zhang, C. Li, F. Fan, and X. Liang, “Energy-Efficient eDRAM-

Based On-Chip Storage Architecture for GPGPUs,” in IEEE TC, 2016.
[27] N. Jing, H. Liu, Y. Lu, and X. Liang, “Compiler assisted dynamic register file in

GPGPU,” in ISLPED, 2013.
[28] N. Jing, Y. Shen, Y. Lu, S. Ganapathy, Z. Mao, M. Guo, R. Canal Corretger, and

X. Liang, “An energy-efficient and scalable eDRAM-based register file architecture
for GPGPU,” in ISCA, 2013.

[29] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T. Kandemir,
O. Mutlu, R. Iyer, and C. R. Das, “OWL: cooperative thread array aware scheduling
techniques for improving GPGPU performance,” in ASPLOS, 2013.

[30] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das,
“Orchestrated scheduling and prefetching for GPGPUs,” in ISCA, 2013.

[31] T. M. Jones, M. F. P. O’Boyle, J. Abella, A. González, and O. Ergin, “Energy-efficient
register caching with compiler assistance,” in ACM TACO, 2009.

[32] U. J. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, and B. Khailany, “The imagine
stream processor,” in ICCD, 2002.

[33] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither more nor less: opti-
mizing thread-level parallelism for GPGPUs,” in PACT, 2013.

[34] O. Kayiran, N. C. Nachiappan, A. Jog, R. Ausavarungnirun, M. T. Kandemir, G. H.
Loh, O. Mutlu, and C. R. Das, “Managing GPU concurrency in heterogeneous
architectures,” in MICRO, 2014.

[35] J. Kim, J. Balfour, and W. Dally, “Flattened butterfly topology for on-chip net-
works,” in MICRO, 2007.

[36] J. Kloosterman, J. Beaumont, D. A. Jamshidi, J. Bailey, T. Mudge, and S. Mahlke,
“Regless: Just-in-time operand staging for GPUs,” in MICRO, 2017.

[37] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program
analysis & transformation,” in CGO, 2004.

[38] J. Lee, N. B. Lakshminarayana, H. Kim, and R. Vuduc, “Many-thread aware
prefetching mechanisms for GPGPU applications,” in MICRO, 2010.

[39] S. Lee, K. Kim, G. Koo, H. Jeon, W. W. Ro, and M. Annavaram, “Warped-
Compression: Enabling power efficient GPUs through register compression,”
in ISCA, 2015.

[40] J. Leng, T. Hetherington, A. Eltantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and
V. J. Reddi, “GPUWattch: Enabling energy optimizations in GPGPUs,” in ISCA,
2013.

[41] E. Lewis, D. Petit, L. O’Brien, A. Fernandez-Pacheco, J. Sampaio, A. Jausovec,
H. Zeng, D. Read, and R. Cowburn, “Fast domain wall motion in magnetic comb
structures,” in Nature Materials, 2010.

[42] C. Li, S. L. Song, H. Dai, A. Sidelnik, S. K. S. Hari, and H. Zhou, “Locality-driven
dynamic GPU cache bypassing,” in ICS, 2015.

[43] Z. Li, J. Tan, and X. Fu, “Hybrid CMOS-TFET based register files for energy-
efficient GPGPUs,” in ISQED, 2013.

[44] J. E. Lindholm, M. Y. Siu, S. S. Moy, S. Liu, and J. R. Nickolls, “Simulating multi-
ported memories using lower port count memories,” 2008, US Patent 7,339,592.

[45] X. Liu, Y. Li, Y. Zhang, A. K. Jones, and Y. Chen, “STD-TLB: A STT-RAM-based
dynamically-configurable translation lookaside buffer for GPU architectures,” in
ASP-DAC, 2014.

[46] X. Liu, M. Mao, X. Bi, H. Li, and Y. Chen, “An efficient STT-RAM-based register
file in GPU architectures,” in ASP-DAC, 2015.

[47] A. Magni, C. Dubach, and M. F. P. O’Boyle, “A large-scale cross-architecture
evaluation of thread-coarsening,” in SC, 2013.

[48] M. Mao, W. Wen, Y. Zhang, Y. Chen, and H. Li, “Exploration of GPGPU register
file architecture using domain-wall-shift-write based racetrack memory,” in DAC,
2014.

[49] A. Mirhosseini, M. Sadrosadati, B. Soltani, H. Sarbazi-Azad, and T. F. Wenisch,
“BiNoCHS: Bimodal network-on-chip for CPU-GPU heterogeneous systems,” in
NOCS, 2017.

[50] S. Mookerjea and S. Datta, “Comparative study of si, ge and inas based steep
subthreshold slope tunnel transistors for 0.25 v supply voltage logic applications,”
in Device Research Conference, 2008.

[51] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0: A tool to
model large caches,” HP Laboratories, Tech. Rep., 2009.



[52] G. S. Murthy, M. Ravishankar, M. M. Baskaran, and P. Sadayappan, “Optimal loop
unrolling for GPGPU programs,” in IPDPS, 2010.

[53] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt,
“Improving GPU performance via large warps and two-level warp scheduling,” in
MICRO, 2011.

[54] P. R. Nuth and W. J. Dally, “The named-state register file: Implementation and
performance,” in HPCA, 1995.

[55] Nvidia, “C programming guide V6. 5. 2014,” San Jose California: Nvidia.
[56] Nvidia, “White paper: NVIDIA GeForce GTX 980,” Nvidia, Tech. Rep.
[57] Nvidia, “White paper: NVIDIA Tesla P100,” Nvidia, Tech. Rep.
[58] D. W. Oehmke, N. L. Binkert, T. Mudge, and S. K. Reinhardt, “How to fake 1000

registers,” in MICRO, 2005.
[59] S. S. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack mem-

ory,” in Science, 2008.
[60] W. M. Reddick and G. A. Amaratunga, “Silicon surface tunnel transistor,” Applied

Physics Letters, 1995.
[61] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory access

scheduling,” in ISCA, 2000.
[62] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-conscious wavefront

scheduling,” in MICRO, 2012.
[63] R. M. Russell, “The CRAY-1 computer system,” Commun. ACM, 1978.
[64] M. Sadrosadati, A. Mirhosseini, S. Roozkhosh, H. Bakhishi, and H. Sarbazi-Azad,

“Effective cache bank placement for GPUs,” in DATE.
[65] M. H. Samavatian, H. Abbasitabar, M. Arjomand, and H. Sarbazi-Azad, “An

efficient STT-RAM last level cache architecture for GPUs,” in DAC, 2014.
[66] M. H. Samavatian, M. Arjomand, R. Bashizade, and H. Sarbazi-Azad, “Architecting

the last-level cache for GPUs using STT-RAM technology,” in ACM TODAES,
2015.

[67] A. Sethia, G. Dasika, M. Samadi, and S. Mahlke, “APOGEE: Adaptive prefetching
on GPUs for energy efficiency,” in PACT, 2013.

[68] A. Sethia and S. Mahlke, “Equalizer: Dynamic tuning of gpu resources for efficient
execution,” in MICRO, 2014.

[69] M. Sharad, R. Venkatesan, A. Raghunathan, and K. Roy, “Multi-level magnetic
RAMusing domain wall shift for energy-efficient, high-density caches,” in ISLPED,
2013.

[70] R. Shioya, K. Horio, M. Goshima, and S. Sakai, “Register cache system not for
latency reduction purpose,” in MICRO, 2010.

[71] J. Singh, K. Ramakrishnan, S. Mookerjea, S. Datta, N. Vijaykrishnan, and D. Prad-
han, “A novel si-tunnel FET based SRAM design for ultra low-power 0.3V VDD
applications,” in ASP-DAC, 2010.

[72] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G. D.
Liu, and W.-m. W. Hwu, “Parboil: A revised benchmark suite for scientific and

commercial throughput computing,” Center for Reliable and High-Performance
Computing, UIUC, Tech. Rep., 2012.

[73] J. A. Swensen and Y. N. Patt, “Hierarchical registers for scientific computers,” in
ICS, 1988.

[74] L. Thomas, R. Moriya, C. Rettner, and S. S. Parkin, “Dynamics of magnetic domain
walls under their own inertia,” in Science, 2010.

[75] Y. Tian, S. Puthoor, J. L. Greathouse, B.M. Beckmann, andD. A. Jiménez, “Adaptive
GPU Cache Bypassing,” in GPGPU, 2015.

[76] R. Venkatesan, S. G. Ramasubramanian, S. Venkataramani, K. Roy, and A. Raghu-
nathan, “Stag: Spintronic-tape architecture for GPGPU cache hierarchies,” in
ISCA, 2014.

[77] R. Venkatesan, M. Sharad, K. Roy, and A. Raghunathan, “Dwm-tapestri-an energy
efficient all-spin cache using domain wall shift based writes,” in DATE, 2013.

[78] N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. Khan, A. Shrestha, S. Ghose, A. Jog,
P. B. Gibbons, and O. Mutlu, “Zorua: A holistic approach to resource virtualization
in GPUs,” in MICRO, 2016.

[79] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarungnirun, C. Das,
M. Kandemir, T. C. Mowry, and O. Mutlu, “A case for core-assisted bottleneck
acceleration in GPUs: enabling flexible data compression with assist warps,” in
ISCA, 2015.

[80] J. Wang and Y. Xie, “A write-aware STTRAM-based register file architecture for
GPGPU,” in ACM JETC, 2015.

[81] P.-F. Wang, “Complementary tunneling-FETs (CTFET) in CMOS technology,”
Ph.D. dissertation, Technische Universität München, Universitätsbibliothek, 2003.

[82] X. Xie, Y. Liang, X. Li, Y. Wu, G. Sun, T. Wang, and D. Fan, “Enabling coordinated
register allocation and thread-level parallelism optimization for GPUs,” inMICRO,
2015.

[83] X. Xie, Y. Liang, G. Sun, and D. Chen, “An efficient compiler framework for cache
bypassing on GPUs,” in ICCAD, 2013.

[84] Y. Yang, P. Xiang, J. Kong, M.Mantor, and H. Zhou, “A unified optimizing compiler
framework for different GPGPU architectures,” in ACM TACO, 2012.

[85] W.-k. S. Yu, R. Huang, S. Q. Xu, S.-E. Wang, E. Kan, and G. E. Suh, “SRAM-
DRAM hybrid memory with applications to efficient register files in fine-grained
multi-threading,” in ISCA, 2011.

[86] R. Yung and N. C. Wilhelm, “Caching processor general registers,” in ICCD, 1995.
[87] H. Zeng and K. Ghose, “Register file caching for energy efficiency,” in ISLPED,

2006.
[88] W. K. Zuravleff and T. Robinson, “Controller for a synchronous DRAM that

maximizes throughput by allowing memory requests and commands to be issued
out of order,” 1997, US Patent 5,630,096.


