AUSPICE: Automatic Safety Property
Verification for Unmodified Executables

Jiaqgi Tan, Hui Jun Tay, Rajeev Gandhi, and Priya Narasimhan

Department of Electrical & Computer Engineering, Carnegie Mellon University
tanjiaqi@cmu.edu,htay@andrew.cmu.edu,rgandhi@ece.cmu.edu,priya@cs.cmu.edu

Abstract. Verification of machine-code programs using program logic
has focused on functional correctness, and proofs have required manually-
provided program specifications. Fortunately, the verification of shallow
safety properties such as memory and control-flow safety can be easier to
automate, but past techniques for automatically verifying machine-code
safety have required post-compilation transformations, which can change
program behavior. In this work, we automatically verify safety properties
for unmodified machine-code programs without requiring user-supplied
specifications. We present our novel logic framework, AUSPICE, for au-
tomatic safety property verification for unmodified executables, which
extends an existing trustworthy Hoare logic for local reasoning, and pro-
vides a novel proof tactic for selective composition. We demonstrate our
fully automated proof technique on synthetic and realistic programs, and
our verification completes in 6 hours for a realistic 533-instruction string
search algorithm, demonstrating the feasibility of our approach.

1 Introduction

Interactive theorem proving using program logics is a promising technique for
reasoning about executable (i.e. machine-code) programs, as it provides a suc-
cinct specification of the program. However, formally reasoning about machine-
code is challenging as accounting for low-level details and writing proofs inter-
actively can be tedious. Program logics have been developed to formally reason
about the low-level state (e.g. registers, main memory) in machine-code pro-
grams: Myreen et al. developed a Hoare logic for realistically modeled machine-
code [12]. These logics are designed to verify the correctness of programs, and
hence must capture the complete execution state of the program, which requires
manually supplied specifications e.g. loop invariants, function pre- and post-
conditions. Hence, techniques for reasoning about program correctness ease the
job of the proof author [13], but do not fully automate proof generation. Fortu-
nately, verifying shallow safety properties can be easier, as we are only concerned
with the parts of program state which affect our desired safety properties. Thus,
there are more opportunities for proof automation. Zhao et al. [22] proposed a
program logic for automatically verifying safety properties in executables, but
programs must be compiled with a modified compiler and safety checks must

be added post-compilation [23], thus developers cannot observe how the safety
checks added to their programs may change them.

In this paper, we present a novel logic framework, AUSPICE, for automat-
ically verifying safety properties for unmodified machine-code programs: pro-
grams generated by an unmodified compiler, without any post-compilation trans-
formations (e.g. binary rewriting) applied to them. Thus, any safety checks must
be added as source-code statements. This enables developers to gain assurance
of their program’s behavior and safety from observing the added safety checks.
Our contributions are: (i) a novel logic framework, AUSPICE, for automatically
verifying safety properties in unmodified machine-code programs, (ii) a program
logic, L, which enables local reasoning to ensure that safety properties are
asserted and checked for every instruction in a machine-code program, (iii) a
proof tactic for selective composition which enables the automatic verification
of safety properties without manual inputs, and (iv) an empirical evaluation of
AUSPICE on verifying real-world machine-code. To the best of our knowledge,
AUSPICE is the first logic framework which enables the fully automated proving
of safety properties for unmodified ARM machine-code programs, avoiding the
post-compilation transformations required by [22,23]. We verify safety proper-
ties for ARM machine-code programs, although our technique can be applied to
other architectures. This paper discusses details of AUSPICE as used in [3] to
automatically verify safety properties formally for a novel software fault isolation
[19] technique, while [3] focuses on the technique for software fault isolation.
Intuition. Our safety property verification uses Hoare logic to reason about
machine-code. Hoare logic was designed to reason about program correctness,
hence, typical Hoare logic proofs must reason about the “global” effects of pro-
grams, i.e. capture all possible values of program state. Our first intuition is that
our safety properties at each instruction are affected only by the program state
immediately before the instruction runs. This enables us to consider only a subset
of program state and perform “local” reasoning (§3), and avoid requiring manu-
ally supplied specifications. Second, previous efforts to automate safety property
verification [23] relied on binary rewriting to insert safety checks. In unmodi-
fied machine-code, safety checks must be implemented entirely in source-code.
Our second intuition is that, when verifying safety properties for unmodified
machine-code, safety checks inserted in program source can span a larger part of
a program than our “local” scope of reasoning described above. Hence, we de-
velop a novel proof tactic, selective composition (§4), which uses the Hoare logic
Compose rule (§2.4) to help us reason about safety properties using additional
contextual information not available in purely local reasoning.

1.1 Problem Statement

Goals. The main objective of our logic framework is to automatically prove
safety properties for machine-code programs which have been compiled using
an unmodified compiler, with no post-compilation modifications (e.g. binary
rewriting). The goals of our logic framework are: (i) to use an independently
developed, trustworthy logic so that our approach is trustworthy; (ii) to fully

automate our proof by not requiring manual inputs from the user, and (iii) to
formalize the notion of safety for the execution of a machine-code program.
Non-Goals. We do not intend to prove the correctness of machine-code pro-
grams. We are not concerned with the security and privacy of applications im-
plemented by the machine-code. In this paper, we present our logic framework
for automatic safety property verification for executables; we address how these
safety properties are achieved in unmodified executables in [3].

Scope. We choose to verify safety properties for the machine-code of programs
rather than their source-code so that (i) we do not need to trust the compiler
used, thus minimizing our Trusted Computing Base (TCB), and (ii) our verifi-
cation does not need access to the source-code of the program. We require no
modifications to the compiler used to generate the executables which we verify.
Our logic framework currently targets ARM machine-code programs, although
our techniques can be applied to machine-code for other architectures by (i) pa-
rameterizing the Hoare logic [12] with a different instruction semantics, and (ii)
defining execution safety for the target architecture. We verify safety properties
for user programs running on a commodity operating system (currently Linux).
Assumptions. Our logic framework uses the trustworthy formalization of the
ARM Instruction Set Architecture (ISA) developed by Myreen et al. [11] at
Cambridge University (the “Cambridge ARM model”). Thus, our verification
inherits the assumptions and limitations of this model. We assume that the be-
havior of the program being verified is not affected by exceptions, interrupts, and
page table operations, as these are not modeled in the model. We are also unable
to verify safety properties in the presence of system calls, as the model does not
capture the effects of specific system calls on user programs (we intend to explore
verifying programs with system calls in future). We assume that the compiler
and program obey the ARM-THUMB Procedure Call Standard (ATPCS) [1],
which specifies the behavior for function calls/returns, and that the OS correctly
isolates concurrently executing user programs. We also assume that the target
program being verified was compiled with a well-known, unmodified compiler
with well-known function prologues and epilogues, and that the machine-code
contains function boundaries. We also require programs to be statically compiled
so that all code to be executed is present, and that programs are not recursive.

2 Background

2.1 ARM Architecture

First, we review aspects of the ARM architecture pertinent to defining execution
safety for ARM machine-code programs. ARM is an RISC, load/store architec-
ture, and data instructions operate only on register contents but not memory [2].
There are 6 processor modes, and we focus on the user mode, which an operating
system (OS) runs applications in. The remaining modes handle various types of
exceptions, including system calls. Each ARM processor mode has a different
set of visible registers, and we focus on only the registers visible in user mode:

registers r0 through r15, and the status register (CPSR). We also consider the
ATPCS [1], which specifies conventions for procedure calls and returns. By the
convention in the ATPCS, registers r13, r14, r15 store the stack pointer (SP),
link register (LR) for return addresses and program counter (PC). We highlight
these registers for their impact on control-flow safety. The state of an ARM pro-
cessor comprises the registers r0O to r15, the processor status register CPSR, and
the processor’s main memory (modeled as an array of 232 byte-addressed bytes).

2.2 Safety properties for ARM machine-code programs

Next, we discuss the memory and control-flow safety
properties we wish to prove for ARM machine-code.

Typical addresses

Kernel space (may vary slightly

(reserved) across kernels)
0xC0000000 3 3 3 3
— sy We instantiate these safety properties in the context
; .. of user programs running on a specific OS (Linux in
25z our current implementation), as our goal is to pro-
Q30
Hf 553 vide isolation for user programs running in an OS.
eap 3 o< . . .
s % The main goal of our safety properties is to ensure
BSS segment 5 that (i) a running program cannot affect other run-
Data segment . d . h . d
A ning programs, and (ii) the running program does
Text segment 1. .
0x08048000 not exhibit any unexpected or emergent behaviors

not already present in its machine-code.

Memory Safety. The goal of our memory safety
policy is to prevent a program from modifying OS-
addressable memory (thus preventing it from mod-
ifying OS data-structures in privilege escalation at-

(a) Memory safety: Linux
Process Memory Layout

Previous Link Register
(Saved R14) I

*, Must not be
/' overwritten

Previous Stack Pointer
(Saved R13)

Previous Frame
Pointer (Saved R11)

Caller-save register
values (if any) ...

Stack of
caller
function

Stack (called function)

Stack grows
to smaller

addresses

Stack of callee
function
(address in
r1l)

tacks), and from modifying its own instructions to
prevent self-modification. In a multiprogramming
OS such as Linux, each user program runs as a sepa-
rate process, each with its own virtual memory with
a common layout. In processors with 32-bits of ad-
dressable memory, each process has a 4 GB memory
space, with the upper 1GB typically reserved for the

(b) Control-flow safety: OS. Figure 1(a) illustrates this layout. Our memory
Function Activation safety policy requires that all memory writes be re-
Record stricted to the area between the start of the process’s

stack space (marked 0xBF000000) and the start of
the text segment of the code.

Control-flow Safety. The goal of our control-flow safety is to ensure that
there are no unexpected control-flow transfers, that only instructions in the
text section of the program are executed. We also require that there can be
no control-flow hijacks with modified function return addresses. Our memory
safety policy partially ensures control-flow safety by preventing the modification
of the text section. Our control-flow safety is also enforced by protecting the
return addresses for function calls saved on the program stack. First, we consider
the ATPCS [1] convention. Registers r11 and r13 store the frame pointer (stack
base address) and stack pointer (stack top address) respectively, while r14 stores

Fig. 1. Safety properties

the return address of the current function. When a function call is made, the
caller function first saves its current values of r11, r13, and r14 on the stack
(whose base address is stored at ri1), before loading the address of the next
instruction (i.e. the return address) to (r14). Also, the ATPCS specifies that the
stack grows downwards to lower addresses. Thus, to prevent control-flow hijacks,
we must ensure that all memory writes are to addresses smaller than the current
function’s frame pointer (r11).

2.3 Hoare logic for ARM machine-code programs

We use the HOL4 theorem prover [16], and the Hoare logic [12] for ARM
machine-code programs developed at Cambridge [11], to prove safety theorems.
The Cambridge ARM model has been extensively tested and validated [6], pro-
viding us with a strong foundation for our logic. The Cambridge ARM model
uses Hoare triple theorems and separation logic [15] to describe the behavior
of each instruction, and the model captures realistic details of ARM instruc-
tions, which we illustrate briefly. The model decompiles each ARM instruction
to a Hoare triple theorem of the form (p) ¢ (q), with p and q representing
the state of the processor before (pre-state) and after (post-state) executing
code c respectively!. Then, the theorem (p) ¢ (q) informally means that for
a processor in state p before running c, after running c, the processor will have
state q. The pre- and post-states p and q contain assertions about the values
of machine resources e.g. registers, status flags and the program counter. They
can also contain pure boolean assertions which describe relationships among the
values of machine resources, which encode relationships which hold true before
or after the execution of the instruction. The theorem for the ARM instruction
0xE5832000, with the mnemonic “str r2 [r3]”, is shown below:

|- SPEC ARM_MODEL (aR 3w r3 * aR 2w r2 * aPC p * aMEMORY df f)
{(p,0xE5832000w)} (aR 3w r3 * aR 2w r2 * aPC (p+4w) * aMEMORY df ((r3=+r2) £f))

SPEC indicates that the theorem is a Hoare triple, while ARM_MODEL stores the
ARM-specific instruction semantics [11]. The pre-state shows that the registers
r2 and r3 contain the (symbolic) values 72 and r3 respectively, the main mem-
ory contains the map f with domain df, and the program counter has some
address p before running the instruction. After running the instruction, the val-
ues of registers r2, r3 remain unchanged, the program counter advances to p+4,
while the memory has been updated to store the value that was in register r2
at the address given by the value that was in register r3. The * operator is the
separating conjunction [15] which asserts all other resources are unchanged.

2.4 Composition rule in Hoare logic

SPECxpcrq SPECzqcesr COMPOSE SPEC xzpcq FRAME
SPEC zp (c1Uc2) r SPEC x (pxr) ¢ (g*r)

! In Hoare logic, p, q are named pre-, post-condition, but we use the terms pre-,
post-state as we call the boolean conditions imposed by a branch the pre-condition.

The Compose rule of Hoare logic [8] is shown above, which extends single
instruction Hoare triple theorems to describe multiple instructions. One critical
detail of this rule is that to apply the Compose rule to compose two Hoare
triple theorems, the pre-state of the second theorem must be equal to the post-
state of the first theorem. Conceptually, when instruction i; executes, followed
by instruction is, as io is executing immediately after i1, the processor state
observed just before is executes is exactly the processor state after i; executes.
Pre-composition Tactic. A typical proof tactic for composing Hoare triple
theorems for sequential instructions, 41,73, with 4; running immediately before
i2, into a single Hoare triple theorem, is given by the following steps: (i) Using
the Frame rule (shown above), add machine state assertions in 41, but not in iz,
to i2’s theorem; (ii) Using the Frame rule, add machine state assertions in iz, but
not in i1, to ¢;’s theorem; (iii) Instantiate free variables in i with the post-state
machine resource values from ;. We call these steps the pre-composition tactic.
After carrying out the above theorem manipulation steps, the manipulated the-
orems ¢} and i} for both instructions will now have the post-state of i} matching
the pre-state of i}, allowing us to directly apply the Compose rule in Hoare logic.

For instance, consider the two instructions, ¢; (“mov r3,r4”), followed by
i (“sub r2, r3, #16”). We illustrate the use of the Compose rule to obtain a
theorem describing the behavior of a program (or its fragment), i1i5. The Hoare
triple theorems for each of the two instructions are shown respectively:

|- SPEC ARM_MODEL
(aR 3w r3 * aR 4w r4 * aPC p) {(p,0xE1A03004w)}
(aR 3w r4 * aR 4w r4 * aPC (p + 4w))

|- SPEC ARM_MODEL
(aR 2w r2 * aR 3w r3 * aPC p) {(p,0xE2432010w)}
(aR 2w (r3 - 16w) * aR 3w r3 * aPC (p + 4w))

Thus, in composing the two theorems i1, i3 in our above example, our pre-
composition tactic will carry out the following steps on the theorems i1, io: (i)
Use the Frame rule to add aR 2w r2 to i1 to get }; (ii) Use the Frame rule to
add aR 4w 4 to iy to get i5; (iii) Instantiate the value of p to p + 4w, and r3
to r4 in i to get i4; (iv) Apply Compose rule to theorems i, #5 to obtain:

|- SPEC ARM_MODEL (aR 3w r3 * aR 4w r4 * aPC p * aR 2w r2)
{(p,0xE1403004w) ; (p + 4w,0xE2432010w)}
(aR 2w (r4 - 16w) * aR 3w r4 * aPC (p + 8w) * aR 4w r4)

The pre-composition tactic prepares two suitable Hoare triples for reasoning
about the effects of code on the same pre-state (i.e. pre-state of the first Hoare
triple) by placing them in the same context (i.e. describing the effects of the
code in both triples in terms of the pre-state variables of the first Hoare triple).

3 Design: The L Program Logic

Next, we describe the design of our logic framework for automatically verify-
ing safety properties, and discuss the rationale behind our design decisions. Our

logic framework needs to fulfill three tasks. First, it needs to specify safety as-
sertions for each instruction. A safety assertion of an instruction specifies the
conditions which must be true before the instruction is executed for our mem-
ory and control-flow safety properties to hold. Second, it needs to ensure that
the Hoare triple theorems for every instruction are encoded with their safety
assertions. Third, it needs to define, formally, the requirements for a program to
possess our desired safety properties.

SPEC z ((ms A cfi1 A cfiz) x p) {(offset, ins)}q

MEM_CFI_SAFE
MEMCFISAFE z ((MCSAt of fset ms cfi1 cfiz) % p) {(offset,ins)} ¢

MEMCFISAFE x p c1 q MEMCFISAFE x q c2 1
MEMCFISAFE z p (c1 Ucg) r
MEMCFISAFE z p c q
MEMCFISAFE x (px 1) ¢ (g*1)

MEM_CFI_SAFE_COMPOSE

MEMCFISAFE_FRAME

Fig. 2. Logic rules for Lrr

3.1 Individual Instructions: Safety Assertion Specification

Figure 2 shows the MEM_CFI_SAFE rule for augmenting the Hoare triple theorem of
a single instruction with its safety assertion. This rule overcomes the challenge of
reasoning about safety properties at every instruction using Hoare logic. We add
our safety assertions as a pure boolean condition to the pre-state of an instruc-
tion’s Hoare triple. Then, when the Compose rule (§2.4) is applied to compose
theorems of multiple instructions, the pre-states of successor instructions (g in
the Compose rule) will be hidden, thus hiding our augmented safety assertions.
Also, safety assertions which hold can be simplified to true and eliminated from
the Hoare triple. Thus, for a Hoare triple describing a sequence of instructions,
we cannot tell if the theorem contains safety assertions for every instruction.
The MEM_CFI_SAFE rule overcomes this challenge by ensuring that the Hoare
triple for every instruction has been augmented with its safety assertions. This
rule has two features. First, MEM_CFI_SAFE can be instantiated only from single
instruction Hoare SPEC theorems, because code ¢ in the SPEC theorem in the rule
antecedent admits only a single instruction with the machine word ins located
at address offset. The second rule which generates the safe MEMCFISAFE the-
orem, MEM_CFI_SAFE_COMPOSE, does not admit Hoare triple SPEC theorems, and
only allows the composition of MEMCFISAFE theorems. Second, the MEM_CFI_SAFE
rule can be instantiated only when the pre-state is augmented with our safety
assertion, the pure boolean conjunction, ms A cfi1 A cfis, in its pre-state. Thus,
the MEMCFISAFE relation indicates the resulting Hoare triple has been augmented
with our safety assertion in its instruction pre-state. MCSAt is a syntactic relation
which associates our safety assertion, ms A cfi; A cfiq, with the address of fset
which the assertion applies to. We also add the safety assertions ms, cfiy, cfis
to the hypotheses of the theorem, to indicate that they are undischarged.
Safe instruction semantics are sound. Our safe instruction semantics, in
the form of MEMCFISAFE theorems, are a special form of Hoare triple theorems.

F FUN_SAFE(addr, NODES, FUNCS,CFGpred, CFGauce, ICFGcatipred, ICFGcalisuce,
ICFGretpred; ICFGretsuce, ASSNSentry, PoStcondezit, prestate, poststate)
< ((Vnode - node € NODES = (min(node, addr) = addr)) A
(Vnode, pred - node € NODES = pred € CFGpreq(node) =
HOARE_WITH_ASSERT(pd1, assni, pred, node, z, c1,p, q) A
HOARE _WITH_ASSERT(pdz, assna, node, node’,x, c1,q,r) A (pdy = assna)) A
(Vnode, succ - node € ICFG cqlisuce(succ) = succ € ICFGcqlipred(node) =
HOARE_WITH_ASSERT(pd:, assni, node, succ,z,p, q) A
FUN_SAFE(succ, nodes, funcs,cfgi,cfgs,cfgs,cfga,cfgs,cfge,assna,pda,q,r) A (pdi = assnz)) A
(Vnode, pred - node € ICFGretsuce(pred) = pred € ICFGretpred(node) =
FUN_SAFE(pred, nodes, funcs,cfgi,cfgz,cfgs,cfga,cfgs,cfge,assni,pdi,p,q) A
HOARE WITH_ASSERT(pdz, assnz, node, node’, x, q,) A (pd1 = assnz))

Fig. 3. FSI rule: Judgment for Interprocedural Function Safety

They are augmented to ensure that every instruction described in an MEMCFISAFE
theorem has an associated safety assertion, added to it as a pure boolean con-
dition in the pre-state of the instruction’s theorem. We proved the following
theorem: - Vo p ¢ ¢ - MEMCFISAFE x p ¢ ¢ = SPEC = p c¢ ¢q. Informally, our
safety-augmented Hoare triple theorems retain a direct correspondence to the
Hoare triple theorems proven by the Cambridge ARM model. Hence, our safe
instruction semantics inherits the soundness of the Cambridge ARM model.

3.2 Sequential Code Blocks

Next, we describe how we obtain safety-augmented Hoare triple theorems for
basic blocks of sequential code (safe basic block theorems). A basic block is
a sequence of instructions which execute sequentially, with a single entry and
single exit instruction. The two rules (Fig. 2) we need for building safe basic block
theorems are MEM_CFI_SAFE_COMPOSE, and MEMCFISAFE _FRAME (proved using the
Frame rule in separation logic). These two rules allow us to inductively build up
a safe basic block theorem from safety theorems for individual instructions. The
process of building up a safety theorem for a basic block of sequential code is the
same as that of composing Hoare triple theorems (§2.4), except that only safety-
augmented Hoare triple theorems can be composed. This process is repeated
recursively for every instruction in a basic block to obtain a single safe theorem
for the basic block. Our safe basic block theorems have the same semantics as
Cambridge ARM Hoare triples, as proved in §3.1.

3.3 Function Judgment for Local Reasoning

Global vs. Local Reasoning. In a typical correctness proof for a program
using Hoare logic, we would repeatedly apply the Compose rule to the Hoare
triple for every instruction in the program to obtain a single Hoare triple de-
scribing the entire program. This is a “global reasoning” process which identifies

the final values of all registers, main memory, etc. at the end of the program’s
execution. In the presence of loops and function calls, loop invariants and pre-
and post-conditions for functions will need to be manually provided.

For safety assertions to hold in a program, we only need to ensure that the
safety assertions for each instruction hold locally at that instruction. For the
safety assertions at a given instruction is to hold, we consider every instruction
i1 that can execute before io. Then, the post-state of each instruction 7; must
have machine resources values that result in the safety assertions at i being
true. The reasoning behind this process is analogous to the mechanics of the
pre-composition process before applying the Compose rule in Hoare logic (§2.4).
As long as the machine resource values from the post-states of predecessor in-
structions i; enable the safety assertion at is to be true, the safety assertion
holds. In addition, any pure boolean condition from the post-state of predeces-
sor instructions 47 will also apply to the pre-state of instruction i5. Hence, safety
properties hold on a per-instruction basis. To check if a safety assertion holds
for an instruction, we only need to perform “local reasoning” by considering the
post-state values and boolean conditions of all predecessor instructions.

Safe Function Judgment. We define the FUN_SAFE rule (Fig. 3), which defines
what it means for a function to be safe. This rule encodes our “local reasoning”
process for verifying that safety assertions hold. First, we rearrange MEMCFISAFE
theorems to form HOARE WITH_ASSERT theorems, which make explicit the hy-
potheses (which are the undischarged safety assertions) of the theorems, and
rearrange machine resource expressions into a tuple for pattern-matching later.

F HOARE_WITH_ASSERT(pd, assn, DCpre, PCpost, T, C, P, q) <
assn = (MEMCFISAFE z (aPC pcpre * p * precond pd) c(aPC pcpost * q)))

A function is comprised of basic blocks of instructions in the function. In a
function’s intra-procedural control-flow graph (CFG), the nodes are basic blocks
of the function’s instructions, and the edges are control transfers within the
function. In a function’s inter-procedural CFG, the nodes are (i) basic blocks
which call other functions, (ii) basic blocks which are return-sites from callee
functions, and (iii) callee functions, while edges are function calls or returns.
Arguments to the FUN_SAFE relation. To formally specify the requirements
for a function to be safe, we consider the safety assertions which must be dis-
charged at each edge in both the intra- and inter-procedural CFGs. First, the
FUN_SAFE relation is parameterized by the function address addr, a set of ad-
dresses of basic blocks in the function NODES, a set of addresses of callee func-
tions FUNC'S, and 6 maps CFG and ICFG specifying the predecessors and
successors of edges in the function’s intra- and inter-procedural CFGs. FUN_SAFE
also records the safety assertions of the function, assnsepsry, the conditions which
the function guarantees hold at its exit postcondey;:, as well as the machine re-
source pre-state prestate and post-state poststate. The first clause specifies that
the address of the function is the lowest basic block address for the function.
Intra-procedural safety requirements. The second clause specifies that for
each intra-procedural CFG edge, the safety assertions of the instruction at the
destination of each edge must be discharged by the post-condition of the instruc-

tion at the source of the edge, i.e. (pdy = assns). Also, in the spirit of the Hoare
Compose rule, we require that the post-state of the predecessor instruction g, is
equal to the pre-state of the successor instruction.

Inter-procedural safety requirements. The third and fourth clauses specify
the requirements for inter-procedural CFG edges. The third clause specifies that
for call edges, the safety assertions of the called function must be discharged by
the post-condition of the calling basic block, i.e. pd; = assns. The fourth clause
specifies that for return edges, the safety assertions of the basic block which
is the return site for the function must be discharged by the post-condition of
the returning function, i.e. pd; = assny. In both clauses, we require that the
post-state of the predecessor node must equal the pre-state of the successor node.
Compositional reasoning for functions. Although the FSI rule appears
to be recursively defined without a base case, this rule actually collapses to
include only the first and second clauses for functions which do not call any other
functions. This implies that our safety property proving requires the CFG of the
program to have no cycles, i.e. we are unable to analyze recursive programs.

4 Implementation: Proofs using L

We describe the implementation of our automatic safety property verification.
Our framework consists of 128 lines of HOL4 definitions and 11.8 KLOC of proof
scripts in ML. We illustrate how safety properties are automatically specified
for each instruction, and describe our selective composition proof tactic which
prepares our safe basic block theorems for automated proving, and our abstract
interpretation framework which automatically discharges proof obligations.

4.1 Automatic Safety Property Specification

To illustrate the safety assertions we augment instructions with, consider the
instruction word 0xE5832000 (str r2 [r3]) located at address 0x81E0. We
first obtain the following Hoare logic theorem from the decompiler:

|- SPEC ARM_MODEL (aR 3w r3 * aR 2w r2 * aPC Ox81EQ0 * aMEMORY d4f f)
{(0x81E0,0xE5832000w)} (aR 3w r3 * aR 2w r2 * aPC 0x81E4 * aMEMORY df ((xr3 =+ r2) f))

Suppose the text section of this program lies in the range [0280B4, 0x85F4].
This instruction writes to the byte locations 3,73 + 1,73 + 2,73 + 3. Thus, we
set the first conjunct in the safety assertion ms to {r3 + 3;r3 + 2;r3 + 1;73}

C {addr | 0x85F8 < addr A addr < 0xBF000000} which asserts that the mem-
ory locations written to are in our allowed safe region. Then, the first control-flow
safety conjunct, cfiy is set to Ipc.pc = 0x81E4 A pc € {addr | 0x80B4 < addr A addr < 0x85F4},
which asserts that the address of the next instruction to be executed lies in the
text section of the binary. Next, the second control-flow safety conjunct, cfis
is set to {r3+3;73+ 2;r3 + 1;73} C {addr | addr < ri1}, which asserts that
the memory locations written to cannot overwrite the saved link register (1r,
stored in register r11) value on the stack.

4.2 Selective Composition Proof Tactic

Next, we discuss the steps for automatically proving that safety properties hold
using L r. After augmenting single instruction theorems with safety assertions
(83.1) and obtaining safe basic block theorems (§3.2), we need to prove that
the antecedents in the FSI rule (Fig. 3) hold. Each of the top-level conjuncts
of FSI requires either an HOARE WITH_ASSERT theorem for safe basic blocks or
an FUN_SAFE theorem for safe functions. We also need to prove that the pre-
condition pd; of each predecessor basic block or function discharges the safety
assertion assns in the successor, based on the program’s CFG.

From §4.1, we can see that the safety as-
sertion at each instruction contains three con-
juncts: one for memory-safety and two for
control-flow safety. In a safe program, for the
r3 >= mmn_sare wen theorem of a given instruction is, its predeces-

sor (safe basic block or function) theorem iy

r3 <= MAX_SAFE_MEM

w2 should have a pre-condition which implies the
L1 0 safety assertion of io. Observe that the safety
assertion for each instruction has three con-
str r2, [r3] juncts, and each of the range conjuncts (ms
and c¢fi; in §4.1) is specified by two conjuncts:

one each for the lower and upper bounds of the
valid memory locations written to. Thus, the
safety assertion at each instruction comprises
multiple conjuncts. However, in a machine-
code program, each basic block can only carry
out one of the “elementary” arithmetic com-
parison operations (one of <, >, <, >, etc.), because each empx* instruction is a
branch and will mark the end of the basic block it belongs to. Hence, informa-
tion from multiple predecessor basic blocks are required to discharge the safety
assertion at each instruction.

Forward propagation of branch conditions. In §3.3, we noted that we
must use a local reasoning process to ensure our proof process is automatic,
because global reasoning would require manually specified information. How-
ever, our safety assertions contain multiple conjuncts, whereas each basic block
in machine-code can provide only one conjunct in its pre-condition. To enable
our proof process to use pre-conditions from predecessors which are more than
one edge away from a given basic block in the program CFG, we selectively
“propagate” the pre-conditions of basic blocks forward. We call this process “se-
lective composition”, where we apply the pre-composition tactic (§2.4) forward
to successor theorems under certain conditions.

To illustrate the process of selective composition, consider the following ex-
ample. Consider the store instruction from above, str r2 [r3]. Figure 4 shows
the CFG of the possible structure of the basic blocks in a program with safety
checks to ensure that the store instruction is safe. Then, we need the pre-
conditions from basic blocks blks, blks, blks, blks to be available at blks to dis-

Fig. 4. Possible structure for pro-
gram with safe str r2 [rx3].

charge the safety assertion at blkg. At each of the nodes blko, blks, blky, blks,
there are two Hoare triple theorems: one where each blk; executes blk; 1 next (for
i € {2,3,4,5}), and one where the safety check fails, and each blk; goes on to exe-
cute blk;. However, we do not compose blks, blks, blky, blks to form a single Hoare
triple theorem, because the resulting block of code will have multiple exits, which
is not captured by our safe basic block theorem (the MEM_CFI_SAFE_COMPOSE
rule), which only admits single exit blocks. Instead, we iteratively carry out the
steps in the pre-composition tactic (§2.4) for basic blocks blks, blks, blky, blks.
This enables us to select to place the analysis of the machine-code in blocks
blksy, blks, blky, blks, blkg in the context of the pre-state values of machine re-
sources in blky. This then allows us to discharge the safety assertion at blkg with
the combined pre-conditions of blksy, blks, blky, blks at blks. We call this process
“selective composition” because we are only carrying out the pre-composition
process without applying the composition rule. Note that this selective composi-
tion process succeeds only when the target basic block which the pre-conditions
are being propagated forward to have only one predecessor basic block. Only
then is the pre-condition from the predecessor block blk; the only pre-condition
that will apply at the successor block blk; 1.

Local use of global information. Next, we describe the second instance of
selective composition. Recall that for control-flow safety, we require that the
address of each instruction executed must be within the text section of the
program. The address of the next instruction to be executed can be statically
determined at every point of the program except where a function returns to its
caller. Consider a typical machine-code instruction for returning from a function
call pop {pc}. Control is being returned from the function by restoring the saved
link register value from the stack to the program counter. The instruction will
be specified by the Hoare triple theorem:

|- SPEC ARM_MODEL (aPC p * aR 13w r13 * aMEMORY df f)
{(p,0xE8BD8000w)} (aPC (f r13) * aR 13w (r13 + 4w) * aMEMORY df f)

Here, aMEMORY df f is an assertion that the main memory is the map £ which
when applied to an address addr, returns the word stored at addr, and df is a set
specifying the address domain of f. Thus, in the post-state of this instruction, we
can see that the next instruction to be executed is at address £ r13. However, the
memory map f does not contain any information that enables us to determine
the value of £ r13. The return address for a (non-leaf) function is saved to
the stack in the function prologue before any instructions in the function. An
example of such an instruction is push {1r}, with the following Hoare triple:

|- SPEC ARM_MODEL (aR 14w r14 * aR 13w rl13 * aPC p * aMEMORY df f)
{(p,0xE92D4000w)} (aR 14w r14 * aR 13w (r13 - 4w) * aPC (p + 4w)
* aMEMORY df ((r13 - 4w =+ ri14) f)

The memory in the post-state of the function is ((r13 - 4w =+ r14) £f), which
contains the value of the link register, r14, at the top of the stack, at the address
r13 - 4. Hence, the information we need to discharge the control-flow safety
assertion at the function exit is the memory expression at the post-state of the
function prologue, and the new value of register r13. After substituting the post-
state memory and register r13 values of the function prologue into the return

instruction, the program counter in the return instruction post-state will contain
((r13 - 4w =+ r14) f) (r13 - 4w) which simplifies to ri14, and the safety
assertion simplifies to r14 € {addr | 0x85F8 < addr A addr < 0x85F4}, which
can be discharged by any caller of the function, which supplies a concrete value
of r14. Again, we can use the pre-composition tactic to substitute the value
of the memory (and registers) at the post-state of the function prologue into
every subsequent basic block in the function. As long as the prologue precedes
every instruction in the function, and the function does not alter the callee-
saved registers until the its epilogue, our proof steps will not affect the memory
expression.

4.3 Automatic Discharge of Proof Obligations

There are two ways to discharge the safety assertions of a theorem. First, for a
given safety theorem, the pure boolean conditions of the pre-state of the theo-
rem preceding it may imply the safety assertion holds for the current theorem.
Second, if the former does not hold, then the safety assertion is added to the
hypotheses of the preceding instruction, and the Frame rule is used to add the
undischarged assertion to the theorems of the preceding instructions. We use ab-
stract interpretation [4] to identify safety assertions which cannot be discharged.
At each instruction, our analysis records the safety assertions which need to be
framed to the safe instruction theorem for that instruction.

We use a flow-sensitive backwards fixed-point analysis. Our analysis proceeds
across all nodes in reverse topological order in each iteration. At each node, the
analysis checks that for each predecessor node, the instruction theorem for that
node has pure boolean conditions which can discharge the safety assertions at
the current node. For safety assertions the predecessor cannot discharge, our
analysis adds the assertion to the predecessor node, propagating the assertion
backwards up the CFG. Our analysis is also inter-procedural, but its analysis
is context-insensitive, so that the analysis information for each function is the
union of the information resulting from all its callers. This does not affect our
analysis, as it generates a conservative safety theorem for a function so that it
can satisfy the safety requirements of all its call-sites and return-sites.

In the general case, this analysis may not terminate. If there are safety asser-
tions being propagated which have values that change with a loop, the analysis
will not terminate. This is because the free variable instantiation at loop bound-
aries will generate new safety assertions to be framed whenever the assertion is
propagated across the loop boundary. We prevent the assertion analysis from
running forever by (i) recording the propagation path of safety assertions, and
(ii) aborting the analysis if a cycle is detected in this path. Then, we inform the
user that we are unable to prove the safety properties for the program.

4.4 Discussion: Soundness

The semantics of our single instruction (§3.1) and basic block (§3.2) safety the-
orems are sound, as we proved they have the same semantics as the Cambridge

ARM model [12] (§3.1), which is sound. At the function level, the construction
of our FSI rule ensures that we have captured all the possible relationships be-
tween basic blocks and functions being called and returned from. The FUN_SAFE
theorem requires that its CFG predecessor and successor maps are correct for
the safety verification to be sound. Standard algorithms exist for constructing
control-flow graphs for programs, so we do not envision the requirement for ac-
curate CFGs to be a problem. Our selective composition proof tactic does not
need to be correct, as the soundness of our verification depends only on the
soundness of our logic. Any bugs in our proof tactic will only result in a failure
by our system to prove the safety of an safe executable.

5 Evaluation

We aim to show that we can verify real-world programs, and we pick programs
with constructs that are challenging to verify. We also measure the runtime of
our verification to show the feasibility of our verification. Our test programs
were compiled using an unmodified version of the gcc toolchain for the ARMv7
architecture with —00 optimization. Figure 5 summarizes our test programs. sort
implements the Bubble Sort algorithm which has a doubly-nested loop, which
can be challenging to verify. sort also contains 2 other functions to test our
ability to verify safety in programs with multiple function calls/returns. memcpy
is an implementation of the the C library function which we developed, and
shows we can verify a real-world function. stringsearch is an application in
the MiBench commercially-representative embedded benchmark suite [7], and
it implements the Boyer-Moore string search algorithm, and demonstrates our
verification on real-world programs.

Test Program |CFG edges|Instructions|Functions|Description
memcpy 27 116 2 Real-world memcpy
sort 112 337 5 Nested loops, function calls/returns
stringsearch 153 530 5 Boyer-Moore string search (MiBench [7])

Fig. 5. Test programs, their sizes, and the purpose of each test.

Cambridge ARM|Safe Basic|Abstract In-|Safe Func-|Total Proof
Decompiler Blocks terpretation |tion Time
memcpy |1.3 mins 2.7 mins |5.7 mins 6.7 mins |16.4 mins
sort 2.5 mins 11.2 mins |36 mins 73 mins 122.7 mins
stringsearch (2.8 mins 15.3 mins [327.6 mins |17.8 mins |363.5 mins

Fig. 6. Verification runtime.

Figure 6 shows the time taken to verify the safety of each of our test programs.
We carried out the verification on an 2.6 GHz Core i7 system. The verification
of our simple memcpy test-case took 16 minutes, while the sort test-case was
more demanding and took about 2 hours to verify as it had a doubly-nested
loop with multiple function calls. stringsearch, took about 6 hours to verify,

as its inter-procedural CFG was complex, with function call-chains that were 3
calls deep. However, this was significantly faster than ARMor [23], which took
8 hours to verify the same stringsearch test program on a computer with
similar specifications. We believe these are reasonable times for verifying safety
properties, as programs only need to be verified once when they are first installed.

6 Related Work

Many techniques have been developed for verifying machine-code programs using
logic. Certified assembly programming uses a Hoare logic with separation logic
to build certified libraries [21, 14], but they require specifications to be manually
annotated in programs, and their verification is interactive. Tan and Appel [17]
developed a program logic to reason about multiple-entry, multiple-exit machine-
code fragments for reasoning about unstructured control-flows in executables for
Foundational Proof Carrying Code (FPCC). They require programmers to use a
special compiler to generate machine-code programs annotated with types [10],
while we verify unmodified executables compiled using an off-the-shelf compiler.
Executables have also been verified without using a program logic, although
concise theorems cannot be proven. Xu et al. [20] verify safety properties for
machine-code using static-analysis. Thakur et al. [18] perform model-checking
on machine-code without requiring a precomputed, fixed, inter-procedural CFG.

XFT [5] and ARMor [23], are software fault isolation [19] implementations
which ensure that (x86 and ARM, respectively) executables possess memory and
control-flow safety properties, and they verify that the machine-code programs
they process possess memory and control-flow safety properties. XFI requires
modules being verified to be annotated with hints. PittSFleld [9] also provides
software fault isolation for x86 executables, but it verifies that its safety rewriting
is correct, as opposed to verifying that the executables it processes are safe.
ARMor [23] is closest to our work. They require machine-code to be compiled
with a modified compiler, after which the program must undergo binary rewriting
to insert safety checks. In contrast, we can prove safety properties automatically
for unmodified executables by using our novel logic framework with our selective
composition proof tactic.

7 Conclusion and Future Work

We have presented a novel logic framework, AUSPICE, for automatically veri-
fying safety properties in unmodified ARM machine-code programs. Our frame-
work consists of a program logic, L5 r, which uses a subset of a trustworthy
Hoare logic for ARM executables [11,12], and extends it for local reasoning, and
the selective composition proof tactic, which fully automates the verification of
safety properties. We demonstrated the feasibility of our fully automated safety
property verification on one synthetic and two real-world (including a real-world
benchmark [7]) examples. In future, we intend to validate our approach on more
programs, and expand our verification to programs with system calls.

Acknowledgment.

The authors thank Lu Zhao for his assistance with ARMor [23, 22], and Magnus
Myreen for his assistance with the Cambridge ARM model [11, 12].

References

1.

®

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.

20.
21.

22.

23.

The ARM-THUMB Procedure Call Standard (2000),
http://infocenter.arm.com/help/topic/com.arm.doc.espc0002/ATPCS.pdf

ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (2014)
Anonymous: (closely related work). In: (Under review) (2015)

Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL
(1977)

Erlingsson, U., Abadi, M., Vrable, M., Budiu, M., Necula, G.: XFI: Software
Guards for System Address Spaces. In: OSDI (2006)

Fox, A.: Formal specification and verification of ARM6. In: TPHOLs (2003)
Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: Mibench: A free, commercially representative embedded benchmark suite.
In: IEEE WWC Workshop (2001)

Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10) (Oct 1969)

McCamant, S., Morrisett, G.: Evaluating SFI for a CISC Architecture. In: USENIX
Security (2006)

Morrisett, G., Crary, K., Glew, N., Grossman, D., Samuels, R., Smith, F., Walker,
D., Weirich, S., Zdancewic, S.: TALx86: A Realistic Typed Assembly Language.
In: Workshop on Compiler Support for System Software (WCSSS) (1999)
Myreen, M., Fox, A., Gordon, M.: Hoare Logic for ARM Machine Code. In: Fun-
damentals of Software Engineering (FSEN) (2007)

Myreen, M., Gordon, M.: Hoare Logic for Realistically Modeled Machine Code. In:
TACAS (2007)

Myreen, M., Gordon, M., Slind, K.: Machine-code verification for multiple archi-
tectures: An application of decompilation into logic. In: FMCAD (2008)

Ni, Z., Shao, Z.: Certified Assembly Programming with Embedded Code Pointers.
In: POPL (2006)

Reynolds, J.: Separation Logic: A Logic for Shared Mutable Data Structures. In:
IEEE LICS (2002)

Slind, K., Norrish, M.: A Brief Overview of HOL4. In: TPHOLs (2008)

Tan, G., Appel, A.: A Compositional Logic for Control Flow. In: VMCALI (2006)
Thakur, A., Lim, J., Lal, A., Burton, A., Driscoll, E., Elder, M., Andersen, T.,
Reps, T.: Directed proof generation for machine code. In: CAV (2010)

Wahbe, R., Lucco, S., Anderson, T., Graham, S.: Efficient Software-Based Fault
Isolation. In: SOSP (1993)

Xu, Z., Miller, B., Reps, T.: Safety Checking of Machine Code. In: PLDI (2000)
Yu, D., Hamid, N., Shao, Z.: Building Certified Libraries for PCC: Dynamic Storage
Allocation. In: ESOP (2003)

Zhao, L., Li, G., Regehr, J.: A Practical Logic Framework for Verifying Safety
Properties of Executables. In: LOLA (2011)

Zhao, L., Li, G., Sutter, B.D., Regehr, J.: ARMor: Fully Verified Software Fault
Isolation. In: EMSOFT (2011)

