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1 Abstract
The UNIX Fast File System (FFS) is probably the most
widely-used file system for performance comparisons.
However, such comparisons frequently overlook many
of the performance enhancements that have been added
over the past decade. In this paper, we explore the two
most commonly used approaches for improving the
performance of meta-data operations and recovery:
journaling and Soft Updates. Journaling systems use an
auxiliary log to record meta-data operations and Soft
Updates uses ordered writes to ensure meta-data
consistency. 

The commercial sector has moved en masse to
journaling file systems, as evidenced by their presence
on nearly every server platform available today: Solaris,
AIX, Digital UNIX, HP-UX, Irix, and Windows NT. On
all but Solaris, the default file system uses journaling. In
the meantime, Soft Updates holds the promise of
providing stronger reliability guarantees than
journaling, with faster recovery and superior
performance in certain boundary cases.

In this paper, we explore the benefits of Soft Updates
and journaling, comparing their behavior on both micro-
benchmarks and workload-based macrobenchmarks. We
find that journaling alone is not sufficient to “solve” the
meta-data update problem. If synchronous semantics are
required (i.e., meta-data operations are durable once the
system call returns), then the journaling systems cannot
realize their full potential. Only when this synchronicity
requirement is relaxed can journaling systems approach
the performance of systems like Soft Updates (which
also relaxes this requirement). Our asynchronous
journaling and Soft Updates systems perform
comparably in most cases. While Soft Updates excels in
some meta-data intensive microbenchmarks, the
macrobenchmark results are more ambiguous. In three
cases Soft Updates and journaling are comparable. In a
file intensive news workload, journaling prevails, and in
a small ISP workload, Soft Updates prevails.

2 Introduction
For the past several decades, a recurring theme in

operating system research has been file system perfor-

mance. With the large volume of operating systems
papers that focus on file systems and their performance,
we do not see any change in this trend. Many of the
obstacles to high performance file service have been
solved in the past decade. For example, clustering of
sequential reads and writes removes the need for disk
seeks between adjacent files [25][26][28]. The Co-locat-
ing FFS [13] solves the inter-file access problem for
both reads and writes when the data access pattern
matches the namespace locality; that is, when small files
in the same directory are accessed together.   The syn-
chronous meta-data problem has been addressed most
directly through journaling systems [5][16] and Soft
Updates systems[11].

In this paper, we focus on the performance impact
of synchronous meta-data operations and evaluate the
alternative solutions to this problem. In particular, we
compare Soft Updates to journaling under a variety of
conditions and find that while their performance is com-
parable, each provides a different set of semantic guar-
antees.

The contributions of this work are: the design and
evaluation of two journaling file systems, both FFS-
compatible (i.e., they have the same on-disk structure); a
novel journaling architecture where the log is imple-
mented as a stand-alone file system whose services may
be used by other file systems or applications apart from
the file system; and a quantitative comparison between
Soft Updates and journaling.

The rest of this paper is organized as follows. In
Section 3, we discuss a variety of techniques for main-
taining meta-data integrity. In Section 4, we describe
Soft Updates and in Section 5, we discuss our two jour-
naling implementations. In Section 6, we highlight the
semantic differences between journaling and Soft
Updates. In Section 7, we describe our benchmarking
methodology and framework, and in Section 8, we
present our experimental results. In Section 9, we dis-
cuss related work, and we conclude in Section 10.

3 Meta-Data Integrity
File system operations can broadly be divided into

two categories, data operations and meta-data opera-
tions. Data operations act upon actual user data, reading



or writing data from/to files. Meta-data operations mod-
ify the structure of the file system, creating, deleting, or
renaming files, directories, or special files (e.g., links,
named pipes, etc.).

During a meta-data operation, the system must
ensure that data are written to disk in such a way that the
file system can be recovered to a consistent state after a
system crash. FFS provides this guarantee by requiring
that when an operation (e.g., a create) modifies multiple
pieces of meta-data, the data must be written to disk in a
fixed order. (E.g., a create writes the new inode before
writing the directory that references that inode.) Histori-
cally, FFS has met this requirement by synchronously
writing each block of meta-data. Unfortunately, syn-
chronous writes can significantly impair the ability of a
file system to achieve high performance in the presence
of meta-data operations. There has been much effort, in
both the research community and industry, to remove
this performance bottleneck. In the rest of this section,
we discuss some of the most common approaches to
solving the meta-data update problem, beginning with a
brief introduction to Soft Updates [11] and journaling
[16], the two techniques under analysis here. Then we
discuss Soft Updates in detail in Section 4 and journal-
ing in detail in Section 5, and highlight the differences
between the two in Section 6.

3.1 Soft Updates

Soft Updates attacks the meta-data update problem
by guaranteeing that blocks are written to disk in their
required order without using synchronous disk I/Os. In
general, a Soft Updates system must maintain depen-
dency information, or detailed information about the
relationship between cached pieces of data. For exam-
ple, when a file is created, the system much ensure that
the new inode reaches disk before the directory that ref-
erences it does. In order to delay writes, Soft Updates
must maintain information that indicates that the direc-
tory data block is dependent upon the new inode and
therefore, the directory data block cannot be written to
disk until after the inode has been written to disk. In
practice, this dependency information is maintained on a
per-pointer basis instead of a per-block basis in order to
reduce the number of cyclic dependencies. This is
explained more fully in Section 4. 

3.2 Journaling Systems

Journaling (or logging) file systems attack the
meta-data update problem by maintaining an auxiliary
log that records all meta-data operations and ensuring
that the log and data buffers are synchronized in such a
way to guarantee recoverability. The system enforces

write-ahead logging [15], which ensures that the log is
written to disk before any pages containing data modi-
fied by the corresponding operations. If the system
crashes, the log system replays the log to bring the file
system to a consistent state. Journaling systems always
perform additional I/O to maintain ordering information
(i.e., they write the log). However, these additional I/Os
can be efficient, because they are sequential. When the
same piece of meta-data is updated frequently (e.g., the
directory in which a large number of files are being cre-
ated and that directory’s inode), journaling systems
incur these log writes in exchange for avoiding multiple
meta-data writes.

Journaling systems can provide a range of seman-
tics with respect to atomicity and durability. If the log is
maintained synchronously (that is, the log is forced to
disk after each meta-data operation), then the journaling
system provides guarantees identical to FFS. If the log is
maintained asynchronously, buffering log writes until
entire buffers are full, the semantics are comparable to
Soft Updates. 

A third configuration that warrants consideration,
but is not currently supported by either of the systems
described in this paper, is to support group commit. In a
group commit system [16], log writes are synchronous
with respect to the application issuing the meta-data
operation, but such operations block to allow multiple
requests to be batched together, providing the potential
for improved log throughput. On a highly concurrent
system with many simultaneous meta-data operations,
group commit can provide a significant performance
improvement, but it provides no assistance on single-
threaded applications, such as most of the macrobench-
marks described in Section 7.3. The asynchronous
implementations described here provide performance
superior to a group commit system since they avoid any
synchronous writes and never make applications wait.

In the context of building a journaling file system,
the key design issues are: 

• Location of the log.

• Management of the log (i.e., space reclamation and
checkpointing).

• Integration or interfacing between the log and the
main file system.

• Recovering the log.
In Section 5, we present two alternative designs for

incorporating journaling in FFS, focusing on how each
addresses these issues.

3.3 Other Approaches

Some vendors, such as Network Appliance [18],
have addressed the meta-data update problem by hard-



ware techniques, most notably non-volatile RAM
(NVRAM). Systems equipped with NVRAM not only
avoid synchronous meta-data writes, but can cache data
indefinitely, safe in the knowledge that data are persis-
tent after a failure. On a system crash, the contents of
the NVRAM can be written to disk or simply accessed
during the reboot and recovery process. Baker and her
colleagues quantify the benefits of such systems[1].
Such systems provide performance superior to both Soft
Updates and journaling, but with the additional expense
of NVRAM.

The Rio system provides a similar solution [3]. Rio
assumes that systems have an uninterrupted power sup-
ply, so memory never loses its contents. Part of the nor-
mal main memory is treated as a protected region,
maintained with read-only protection during normal
operation. The region is made writable only briefly to
allow updates. This memory is then treated as non-vola-
tile and used during system restart after a crash. Just as
with NVRAM, storing meta-data in Rio memory elimi-
nates the need for synchronous writes. The performance
trade-off between Rio and Soft Updates or journaling is
the cost of protecting and unprotecting the memory
region versus maintenance of the dependency or log
information.

Log-structured file systems (LFS) offer a different
solution to the meta-data update problem. Rather than
using a conventional update-in-place file system, log-
structured file systems write all modified data (both data
blocks and meta-data) in a segmented log. Writes to the
log are performed in large segment-sized chunks. By
carefully ordering the blocks within a segment, LFS
guarantees the ordering properties that must be ensured
to update meta-data reliably. Unfortunately, it may not
be possible to write all the related meta-data in a single
disk transfer. In this case, it is necessary for LFS to
make sure it can recover the file system to a consistent
state. The original LFS implementation [27] solved this
problem by adding small log entries to the beginning of
segments, applying a logging approach to the problem.
A later implementation of LFS [28] used a simple trans-
action-like interface to make segments temporary, until
all the meta-data necessary to ensure the recoverability
of the file system was on disk. LFS utilizes a combina-
tion of Soft Updates and journaling approaches. Like
Soft Updates, it ensures that blocks are written to disk in
a particular order, like journaling, it takes advantage of
sequential log writes and log-based recovery.

4 Soft Updates
 This section provides a brief description of Soft

Updates; more detail can be found in other publications
[12][14][24].

While conventional FFS uses synchronous writes to
ensure proper ordering of meta-data writes, Soft
Updates uses delayed writes (i.e., write-back caching)
for meta-data and maintains dependency information
that specifies the order in which data must be written to
the disk. Because most meta-data blocks contain many
pointers, cyclic dependencies occur frequently if depen-
dencies are recorded only at the block level. For exam-
ple, consider a file creation and file deletion where both
file names are in the same directory block and both
inodes are in the same inode block. Proper ordering dic-
tates that the newly created inode must be written before
the directory block, but the directory block must be writ-
ten before the deleted inode, thus no single ordering of
the two blocks is correct for both cases. In order to elim-
inate such cyclic dependencies, Soft Updates tracks
dependencies on a per-pointer basis instead of a per-
block basis. Each block in the system has a list of all the
meta-data dependencies that are associated with that
block. The system may use any algorithm it wants to
select the order in which the blocks are written. When
the system selects a block to be written, it allows the
Soft Updates code to review the list of dependencies
associated with that block. If there are any dependencies
that require other blocks to be written before the meta-
data in the current block can be written to disk, then
those parts of the meta-data in the current block are
rolled back to an earlier, safe state. When all needed
rollbacks are completed, the initially selected block is
written to disk. After the write has completed, the sys-
tem deletes any dependencies that are fulfilled by the
write. It then restores any rolled back values to their cur-
rent value so that subsequent accesses to the block will
see the up-to-date value. These dependency-required
rollbacks allow the system to break dependency cycles.
With Soft Updates, applications always see the most
recent copies of meta-data blocks and the disk always
sees copies that are consistent with its other contents.

Soft Updates rollback operations may cause more
writes than would be minimally required if integrity
were ignored. Specifically, when an update dependency
causes a rollback of the contents of an inode or a direc-
tory block before a write operation, it must roll the value
forward when the write completes. The effect of doing
the roll forward immediately makes the block dirty
again. If no other changes are made to the block before
it is again written to the disk, then the roll forward has
generated an extra write operation that would not other-
wise have occurred. To minimize the frequency of such
extra writes, the syncer task and cache reclamation algo-
rithms attempt to write dirty blocks from the cache in an
order that minimizes the number of rollbacks.

Not only does Soft Updates make meta-data write
operations asynchronous, it is also able to defer work in



some cases. In particular, when a delete is issued, Soft
Updates removes the file’s name from the directory
hierarchy and creates a remove dependency associated
with the buffer holding the corresponding directory
data. When that buffer is written, all the delete depen-
dencies associated with the buffer are passed to a sepa-
rate background syncer task, which does the work of
walking the inode and indirect blocks freeing the associ-
ated file data blocks. This background deletion typically
occurs 30 to 60 seconds after the system call that trig-
gered the file deletion.

If a Soft Updates system crashes, the only inconsis-
tencies that can appear on the disk are blocks and inodes
that are marked as allocated when they are actually free.
As these are not fatal errors, the Soft Updates file sys-
tem can be mounted and used immediately, albeit with a
possible decrease in the available free space. A back-
ground process, similar to fsck, can scan the file sys-
tem to correct these errors [24].

As discussed in more detail in Section 6, while Soft
Updates preserves the integrity of the file system, it does
not guarantee (as FFS does) that all meta-data opera-
tions are durable upon completion of the system call.

5 Journaling
In this section, we describe two different implemen-

tations of journaling applied to the fast file system. The
first implementation (LFFS-file) maintains a circular
log in a file on the FFS, in which it records journaling
information. The buffer manager enforces a write-ahead
logging protocol to ensure proper synchronization
between normal file data and the log.

The second implementation (LFFS-wafs) records
log records in a separate stand-alone service, a write-
ahead file system (WAFS). This stand-alone logging
service can be used by other clients, such as a database
management system [30], as was done in the Quicksil-
ver operating system [17].

5.1 LFFS-file

The LFFS-file architecture is most similar to the
commercially available journaling systems. LFFS-file
augments FFS with support for write-ahead logging by
adding logging calls to meta-data operations. The log is
stored in a pre-allocated file that is maintained as a cir-
cular buffer and is about 1% of the file system size. To
track dependencies between log entries and file system
blocks, each cached block’s buffer header identifies the
first and last log entries that describe an update to the
corresponding block. The former is used to ensure that
log space is reclaimed only when it is no longer needed,
and the latter is used to ensure that all relevant log

entries are written to disk before the block. These two
requirements are explained further below.

The fundamental requirement of write-ahead log-
ging is that the logged description of an update must
propagate to persistent storage before the updated
blocks. The function LFFS-file calls during initiation of
disk writes enforces this requirement. By examining the
buffer headers of the blocks it is writing, LFFS-file can
determine those portions of the log that must first be
written. As the log is cached in memory, it must be
flushed to disk up to and including the last log entry
recorded for the block that is about to be written. In
most cases, the relevant log entries will already be on
disk, however if they are not, then a synchronous log
write is initiated before the block is written. This syn-
chronous flush requires an update of the file system’s
superblock. 

Since the log is implemented as a circular buffer,
log space must be reclaimed. LFFS-file uses standard
database checkpointing techniques [15]. Specifically,
space is reclaimed in two ways. First, during the peri-
odic syncer daemon activity (once per second), the log-
ging code examines the buffer headers of all cached
blocks to determine the oldest log entry to which a dirty
buffer refers. This becomes the new start of the log,
releasing previously live space in the log. The log’s start
is recorded in the superblock, so that roll-forward can
occur efficiently during crash recovery. While this
approach is usually sufficient to keep the log from
becoming full, the logging code will force a checkpoint
when necessary. Such a forced checkpoint causes all
blocks with updates described by some range of log
entries to be immediately written to persistent storage.

LFFS-file maintains its log asynchronously, so like
Soft Updates, it maintains file system integrity, but does
not guarantee durability.

LFFS-file is a minor modification to FFS. It
requires approximately 35 hooks to logging calls and
adds a single new source file of approximately 1,700
lines of code to implement these logging calls.

5.2 LFFS-wafs

LFFS-wafs implements its log in an auxiliary file
system that is associated with the FFS. The logging file
system (WAFS, for Write-Ahead File System) is a sim-
ple, free-standing file system that supports a limited
number of operations: it can be mounted and
unmounted, it can append data, and it can return data by
sequential or keyed reads. The keys for keyed reads are
log-sequence-numbers (LSNs), which correspond to
logical offsets in the log. Like the logging file in LFFS-
file, the log is implemented as a circular buffer within
the physical space allocated to the file system. When



data are appended to the log, WAFS returns the logical
offset at which the data are written. This LSN is then
used to tag the data described by the logging operation
exactly as is done in LFFS-file (low and high LSNs are
maintained for each modified buffer in the cache).

LFFS-wafs uses the same checkpointing scheme as
that used for LFFS-file. LFFS-wafs also enforces the
standard write-ahead logging protocol as described for
LFFS-file.

Because LFFS-wafs is implemented as two disjoint
file systems, it provides a great deal of flexibility in file
system configuration. First, the logging system can be
used to augment any file system, not just an FFS. Sec-
ond, the log can be parameterized and configured to
adjust the performance of the system. In the simplest
case, the log can be located on the same drive as the file
system. As is the case for LFFS-file, this will necessar-
ily introduce some disk contention between log writes
and foreground file system activity. A higher perform-
ing alternative is to mount the log on a separate disk,
ideally a small, high speed one. In this case, the log disk
should never seek and the data disk will perform no
more seeks than does a conventional FFS. Finally, the
log could be located in a small area of battery-backed-
up or non-volatile RAM. This option provides the great-
est performance, at somewhat higher cost. 

By default, LFFS-wafs mounts its log synchro-
nously so that meta-data operations are persistent upon
return from the system call. That is, log messages for
creates, deletes, and renames are flushed to disk before
the system call returns, while log messages correspond-
ing to bitmap operations are cached in memory until the
current log block is flushed to disk. This configuration
provides semantics identical to those provided by FFS.
For higher performance, the log can be mounted to run
asynchronously. In this case, the system maintains the
integrity of the file system, but does not provide syn-
chronous FFS durability guarantees; instead it provides
semantics comparable to LFFS-file and Soft Updates.

LFFS-wafs requires minimal changes to FFS and to
the rest of the operating system. The FreeBSD 4.0 oper-
ating system was augmented to support LFFS-wafs by
adding approximately 16 logging calls to the ufs layer
(that is the Unix file system layer, independent of the
underlying file system implementation) and 13 logging
calls to manage bitmap allocation in the FFS-specific
portion of the code. These logging calls are writes into
the WAFS file system. The only other change is in the
buffer management code, which is enhanced to maintain
and use the LSNs to support write-ahead logging. The
buffer management changes required approximately 200
lines of additional code.

Although similar in design to LFFS-file, LFFS-
wafs is somewhat more complex. Rather than simply

logging to a file, LFFS-wafs implements the infrastruc-
ture necessary to support a file system. This results in
about three times the number of lines of code (1,700
versus 5,300).

5.3 Recovery

Both journaling file systems require database-like
recovery after system failure. First, the log is recovered.
In both LFFS-file and LFFS-wafs, a superblock contains
a reference to the last log checkpoint. In LFFS-file, the
superblock referenced is that of the FFS; in LFFS-wafs,
the superblock is that of the WAFS. In LFFS-file, check-
points are taken frequently and the state described in the
superblock is taken as the starting state, thus any log
writes that occurred after the last checkpoint are lost. In
LFFS-wafs, superblocks are written infrequently and the
log recovery code must find the end of the log. It does so
by reading the log beginning with the last checkpoint
and reading sequentially until it locates the end of the
log. Log entries are timestamped and checksummed so
that the log recovery daemon can easily detect when the
end of the log is reached.

Once the log has been recovered, recovery of the
main file system begins. This process is identical to
standard database recovery [15]. First, the log is read
from its logical end back to the most recent checkpoint
and any aborted operations are undone. LFFS-file uses
multiple log records for a single meta-data operation, so
it is possible that only a subset of those records have
reached the persistent log. While database systems typi-
cally use a commit record to identify the end of a trans-
action, LFFS-file uses uniquely identified record types
to indicate the end of a logical operation. When such
records do not occur, the preceding operations are
treated as aborted operations. Since LFFS-wafs logs at a
somewhat higher logical level, creates are the only
potentially aborted operations. Creates require two log
records, one to log the allocation of the inode and one to
log the rest of the create. In both LFFS-file and LFFS-
wafs, aborted operations must be undone rather than
rolled forward. This happens on the backward pass
through the log. On the forward pass through the log,
any updates that have not yet been written to disk are
reapplied. Most of the log operations are idempotent, so
they can be redone regardless of whether the update has
already been written to disk. Those operations that are
not idempotent affect data structures (e.g., inodes) that
have been augmented with LSNs. During recovery, the
recovery daemon compares the LSN in the current log
record to that of the data structure and applies the update
only if the LSN of the data structure matches the LSN
logged in the record.



Once the recovery daemon has completed both its
backward and forward passes, all the dirty data blocks
are written to disk, the file system is checkpointed and
normal processing continues. The length of time for
recovery is proportional to the inter-checkpoint interval.

6 System Comparison
When interpreting the performance results of Sec-

tion 8, it is important to understand the different sys-
tems, the guarantees that they make, and how those
guarantees affect their performance. Table 1 lists the dif-
ferent file systems that we will be examining and Table
2 summarizes the key differences between them

FFS-async is an FFS file system mounted with the
async option. In this configuration, all file system writes

are performed asynchronously. Because it does not
include the overhead of either synchronous meta-data
updates, update ordering, or journaling, we expect this
case to represent the best case performance. However, it
is important to note that such a file system is not practi-
cal in production use as it may be unrecoverable after
system failure.

Both journaling and Soft Updates systems ensure
the integrity of meta-data operations, but they provide
slightly different semantics. The four areas of difference
are the durability of meta-data operations such as create
and delete, the status of the file system after a reboot and
recovery, the guarantees made about the data in files
after recovery, and the ability to provide atomicity

The original FFS implemented meta-data opera-
tions such as create, delete, and rename synchronously,
guaranteeing that when the system call returned, the
meta-data changes were persistent. Some FFS variants
(e.g., Solaris) made deletes asynchronous and other
variants (e.g., SVR4) made create and rename asynchro-
nous. However, on FreeBSD, FFS does guarantee that
create, delete, and rename operations are synchronous.

FFS-async makes no such guarantees, and further-
more does not guarantee that the resulting file system
can be recovered (via fsck) to a consistent state after
failure. Thus, instead of being a viable candidate for a
production file system, FFS-async provides an upper
bound on the performance one can expect to achieve
with the FFS derivatives.

Soft Updates provides looser guarantees than FFS
about when meta-data changes reach disk. Create,
delete, and rename operations typically reach disk
within 45 seconds of the corresponding system call, but
can be delayed up to 90 seconds in certain boundary
cases (a newly created file in a hierarchy of newly cre-
ated directories). Soft Updates also guarantees that the
file system can be restarted without any file system
recovery. At such a time, file system integrity is assured,
but freed blocks and inodes may not yet be marked as
free and, as such, the file system may report less than
the actual amount of free space. A background process,
similar to fsck, restores the file system to an accurate
state with respect to free blocks and inodes [24].

The journaling file systems provide a spectrum of
points between the synchronous guarantees of FFS and
the relaxed guarantees of Soft Updates. When the log is
maintained synchronously, the journaling systems pro-
vide guarantees identical to FFS; when the log is written
asynchronously, the journaling systems provide guaran-
tees identical to Soft Updates, except that they require a
short recovery phase after system restart to make sure
that all operations in the log have been applied to the file
system.

File System Configurations
FFS Standard FFS

FFS-async FFS mounted with the async option

Soft-Updates FFS mounted with Soft Updates

LFFS-file FFS augmented with a file log
log writes are asynchronous

LFFS-wafs-1sync FFS augmented with a WAFS log
log writes are synchronous

LFFS-wafs-1async FFS augmented with a WAFS log
log writes are asynchronous

LFFS-wafs-2sync FFS augmented with a WAFS log
log is on separate disk

log writes are synchronous

LFFS-wafs-2async FFS augmented with a WAFS log
log is on a separate disk

log writes are asynchronous

Table 1. File System Configurations. 
.

Feature File Systems

Meta-data updates are synchronous FFS,
LFFS-wafs-[12]sync

Meta-data updates are asynchronous Soft Updates
LFFS-file
LFFS-wafs-[12]async

Meta-data updates are atomic. LFFS-file
LFFS-wafs-[12]*

File data blocks are freed in back-
ground

Soft Updates

New data blocks are written before 
inodes

Soft Updates

Recovery requires full file system 
scan

FFS

Recovery requires log replay LFFS-*

Recovery is non-deterministic and 
may be impossible

FFS-async

Table 2. Feature Comparison.



The third area of different semantics is in the guar-
antees made about the status of data in recently created
or written to files. In an ideal system, one would never
allow meta-data to be written to disk before the data ref-
erenced by that meta-data are on the disk. For example,
if block 100 were allocated to file 1, you would want
block 100 to be on disk before file 1’s inode was written,
so that file 1 was not left containing bad (or highly sen-
sitive) data. FFS has never made such guarantees. How-
ever, Soft Updates uses its dependency information to
roll back any meta-data operations for which the corre-
sponding data blocks have not yet been written to disk.
This guarantees that no meta-data ever points to bad
data. In our tests, the penalty for enforcing this ranges
from 0 (in the less meta-data intensive ssh benchmark
described in Section 7.3.1) to approximately 8% (in the
meta-data intensive Netnews benchmark, described in
Section 7.3.2). Neither of the journaling file systems
provides this stronger guarantee. These differences
should be taken into account when comparing perfor-
mance results.

The final difference between journaling systems
and Soft Updates is the ability to provide atomicity of
updates. Since a journaling system records a logical
operation, such as rename, it will always recover to
either the pre-operation or post-operation state. Soft
Updates can recover to a state where both old and new
names persist after a crash.

7 Measurement Methodology
The goal of our evaluation is twofold. First, we seek

to understand the trade-offs between the two different
approaches to improving the performance of meta-data
operations and recovery. Second, we want to understand
how important the meta-data update problem is to some
typical workloads.

We begin with a set of microbenchmarks that quan-
tify the performance of the most frequently used meta-
data operations and that validate that the performance
difference between the two systems is limited to meta-
data operations (i.e., that normal data read and write
operations behave comparably). Next, we examine mac-
robenchmarks.

7.1 The Systems Under Test

We compared the two LFFS implementations to
FFS, FFS-async, and Soft Updates. Our test configura-
tion is shown in Table 3.

7.2 The Microbenchmarks

Our microbenchmark suite is reminiscent of any
number of the microbenchmark tests that appear in the

file system literature [11][27][29]. The basic structure is
that for each of a large number of file sizes, we create,
read, write, and delete either 128 MB of data or 512
files, whichever generates the most files. The files are
allocated 50 per directory to avoid excessively long
lookup times. The files are always accessed in the same
order.

We add one microbenchmark to the suite normally
presented: a create/delete benchmark that isolates the
cost of meta-data operations in the absence of any data
writing. The create/delete benchmark creates and imme-
diately deletes 50,000 0-length files, with each newly-
created file deleted before moving on to the next. This
stresses the performance of temporary file creation/dele-
tion.

The results of all the microbenchmarks are pre-
sented and discussed in Section 8.1.

7.3 The Macrobenchmarks

The goal of our macrobenchmarking activity is to
demonstrate the impact of meta-data operations for sev-
eral common workloads. As there are an infinite number
of workloads, it is not possible to accurately character-
ize how these systems will benefit all workloads.
Instead, we show a variety of workloads that demon-
strate a range of effects that meta-data operations can
introduce.

7.3.1 The SSH Benchmark
The most widely used benchmark in the file system

literature is the Andrew File System Benchmark [19].
Unfortunately, this benchmark no longer stresses the file
system, because its data set is too small. We have con-
structed a benchmark reminiscent of Andrew that does
stress a file system.

FreeBSD Platform
Motherboard Intel ASUS P38F, 440BX Chipset

Processor 500 Mhz Xeon Pentium III

Memory 512 MB, 10 ns

Disk 3 9 GB 10,000 RPM Seagate Cheetahs
Disk 1: Operating system, /usr, and swap

Disk 2: 9,088 MB test partition
Disk 2: 128 MB log partition
Disk 3: 128 MB log partition

I/O Adapter Adaptec AHA-2940UW SCSI

OS FreeBSD-current (as of 1/26/00 10:30 PM)
config: GENERIC + SOFTUPDATES –

bpfilter – unnecessary devices

Table 3. System Configuration.



Our benchmark unpacks, configures, and builds a
medium-sized software package (ssh version 1.2.26
[34]). In addition to the end-to-end timing measurement,
we also measure the time for each of the three phases of
this benchmark:

• Unpack This phase unpacks a compressed tar
archive containing the ssh source tree. This phase
highlights meta-data operations, but unlike our
microbenchmarks, does so in the context of a real
workload. (I.e., it uses a mix of file sizes.)

• Config This phase determines what features and
libraries are available on the host operating system
and generates a Makefile reflecting this
information. To do this, it compiles and executes
many small test programs. This phase should not be
as meta-data intensive as the first, but because most
of the operations are on small files, there are more
meta-data operations than we see in the final phase.

• Build This phase executes the Makefile built during
the config phase to build the ssh executable. It is
the most compute-intensive phase of the benchmark
(90% CPU utilization running on FFS). As a result,
we expect to see the least performance difference
here.
We run the three phases of the benchmark consecu-

tively, so the config and build phases run with the file
system cache warmed by the previous phases.

7.3.2 Netnews
A second workload that we examine is that of a

Netnews server. We use a simplified version of Karl
Swartz’s Netnews benchmark [31]. It simulates the
work associated with unbatching incoming news articles
and expiring old articles by replaying traces from a live
news server. The benchmark runs on a file system that is
initialized to contain 2 GB of simulated news data. This
data is broken into approximately 520,000 files spread
over almost 7,000 directories. The benchmark itself
consists of two phases:

• Unbatch This phase creates 78,000 new files
containing 270 MB of total data.

• Expire This phase removes 91,000 files, containing
a total of 250 MB of data.
In addition to the sheer volume of file system traffic

that this benchmark generates, this workload has two
other characteristics that effect the file system. First,
successive create and delete operations seldom occur in
the same directory. Because FFS places different direc-
tories in different regions of the disk, this results in little
locality of reference between successive (synchronous)
meta-data operations, causing a large number of disk
seeks.

The second characteristic of interest is that due to
the large data set that the benchmark uses, it is difficult
for the file system to maintain all of the meta-data in its
buffer cache. As a result, even the Soft Updates and
journaling file systems that we are studying may incur
many seeks, since the meta-data on which they need to
operate may not be in cache. It is important to note that
our benchmark is actually quite small compared to cur-
rent netnews loads. Two years ago, a full news feed
could exceed 2.5 GB of data, or 750,000 articles per day
[4][7]. Anecdotal evidence suggests that a full news
feed today is 15–20 GB per day.

7.3.3 SDET
Our third workload is the deprecated SDET bench-

mark from SPEC. This benchmark was originally
designed to emulate a typical timesharing workload, and
was deprecated as the computing landscape shifted from
being dominated by timesharing systems to being domi-
nated by networked clients and servers [10]. Nonethe-
less, as SDET concurrently executes one or more scripts
of user commands designed to emulate a typical soft-
ware-development environment (e.g., editing, compil-
ing, and various UNIX utilities), it makes fairly
extensive use of the file system. The scripts are gener-
ated from a predetermined mix of commands [8][9], and
the reported metric is scripts/hour as a function of the
script concurrency.

7.3.4 PostMark
The PostMark benchmark was designed by Jeffrey

Katcher to model the workload seen by Internet Service
Providers under heavy load [21]. Specifically, the work-
load is meant to model a combination of electronic mail,
netnews, and web-based commerce transactions. To
accomplish this, PostMark creates a large set of files
with random sizes within a set range. The files are then
subjected to a number of transactions. These transac-
tions consist of a pairing of file creation or deletion with
file read or append. Each pair of transactions is chosen
randomly and can be biased via parameter settings. The
file creation operation creates a new file. The sizes of
these files are chosen at random and are uniformly distributed 
over the file size range. File deletion removes a file from
the active set. File read selects a random file and reads it
in its entirety. File append opens a random file, seeks to
the end of the file, and writes a random amount of data,
not exceeding the maximum file size. We initially ran
our experiments using the default PostMark configura-
tion of 10,000 files with a size range of 512 bytes to 16
KB. One run of this default configuration performs
20,000 transactions with no bias toward any particular
transaction type and with a transaction block size of 512



bytes. However, as this workload is far smaller than the
workload observed at any ISP today, we ran a larger
benchmark using 150,000 files with the default size
range, for a total data size of approximately 1.1 GB. The
results presented in Section 8.2.4 show both workloads,
and it is important to note that the results change dra-
matically with the data set size. When we increase the
data set by a factor of 15, performance (in transactions
per second) dropped by nearly the same factor.

8 Results

8.1 Microbenchmark Results

Our collection of microbenchmarks separates meta-
data operations from reading and writing. As the sys-
tems under test all use the same algorithms and underly-
ing disk representation, we expect to see no significant
performance difference for read and write tests. For the
create and delete tests, we expect both Soft Updates and
the journaling systems to provide significantly
improved performance over FFS. The important ques-
tion is how close these systems come to approaching the
performance of FFS-async, which might be viewed as
the best performance possible under any FFS-based sys-
tem.

All of the microbenchmarks represent the average
of at least five runs; standard deviations were less than
1% of the average. The benchmarks were run with a
cold file system cache.

The read and write tests perform comparably, as
expected (and are omitted for the sake of space).

Figure 1 shows the results of the create
microbenchmark. At the high-performing end of the
spectrum, Soft Updates, LFFS-wafs-2async, and FFS-
async provide comparable performance. At the low per-
formance end of the spectrum, we see that FFS and
LFFS-wafs-1sync perform comparably until the intro-
duction of the indirect block at 104KB. This introduces
a synchronous write on FFS which is asynchronous on
LFFS-wafs-1sync, so LFFS-wafs-1sync takes a lead. As
file size grows, the two systems converge until FFS ulti-
mately overtakes LFFS-wafs-1sync, because it is not
performing costly seeks between the log and data parti-
tions. LFFS-file and LFFS-wafs-1async occupy the
region in the middle, reaping the benefits of asynchro-
nous meta-data operations, but paying the penalty of
seeks between the data and the log.

The next significant observation is the shape of the
curves with the various drops observed in nearly all the
systems. These are idiosyncrasies of the FFS disk layout
and writing behavior. In particular, on our configuration,
I/O is clustered into 64 KB units before being written to
disk. This means that at 64KB, many of the asynchro-
nous systems achieve nearly the maximum throughput
possible. At 96 KB, we see a drop because we are doing
two physically contiguous writes and losing a disk rota-
tion between them. At 104 KB we see an additional drop
due to the first indirect block, which ultimately causes
an additional I/O. From 104 KB to 1 MB we see a
steady increase back up to the maximum throughput.
Between 1 and 4 MB there is a slight decline caused by
longer seeks between the first 96 KB of a file and the
remainder of the file as the larger files fill cylinder
groups more quickly.

For small file sizes, where meta-data operations
dominate, LFFS-wafs-2async offers a significant
improvement over LFFS-wafs-2sync. As file size
grows, the benchmark time is dominated by data trans-
fer time and the synchronous and asynchronous systems
converge.

The delete microbenchmark performance is shown
in Figure 2. Note that performance is expressed in files
per second. This microbenchmark highlights a feature of
Soft Updates that is frequently overlooked. As
explained in Section 4, Soft Updates performs deletes in
the background. As a result, the apparent time to remove
a file is short, leading to the outstanding performance of
Soft Updates on the delete microbenchmark. This back-
grounding of deletes provides a very real advantage in

Figure 1. Create Performance as a Function of 
File Size.
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certain workloads (e.g., removing an entire directory
tree), while in other cases, it simply defers work (e.g.,
the Netnews benchmark discussed in Section 7.3).

As soon as the file size surpasses 96 KB, all of the
systems without Soft Updates suffer a significant perfor-
mance penalty, because they are forced to read the first
indirect block in order to reclaim the disk blocks it refer-
ences. In contrast, by backgrounding the delete, Soft
Updates removes this read from the measurement path.

In the region up to and including 96 KB, Soft
Updates still enjoys increased performance because it
performs deletes in the background, but the effect is not
as noticeable. The journaling systems write a log mes-
sage per freed block, so they suffer from a slight
decrease in performance as the number of blocks in the
file increases.

Our final microbenchmark is the 0-length file cre-
ate/delete benchmark. This benchmark emphasizes the
benefits of asynchronous meta-data operations without
the interference of data reads or writes. This benchmark
also eliminates the overhead of compulsory read misses
in the file system cache, as the test repeatedly accesses
the same directory and inode data. Figure 3 shows the
results for this benchmark. As this benchmark does
nothing outside of meta-data operations, the synchro-
nous journaling implementations behave identically to
FFS. The one- and two-disk WAFS-based asynchronous
journaling implementations perform comparably,
achieving less than half the performance of FFS-async.
The reason for FFS-async’s superiority is that when the
system is running completely asynchronously, the files
are created and deleted entirely within the buffer cache

and no disk I/O is needed. The journaling systems, how-
ever, still write log records. LFFS-file outperforms the
WAFS-based journaling schemes because it writes log
blocks in larger clusters. The WAFS-based systems
write 4 KB log blocks while the LFFS-file system write
in fully clustered I/Os, typically eight file system
blocks, or 64 KB on our system. Soft Updates performs
nearly as well as FFS-async since it too removes files
from the buffer cache, causing no disk I/O. However, it
is computationally more intensive, yielding somewhat
poorer performance.

8.2 Macrobenchmark Results

In this section, we present all results relative to the
performance of FFS-async, since that is, in general, the
best performance we can hope to achieve. For through-
put results (where larger numbers are better), we nor-
malize performance by dividing the measured result by
that of FFS-async. For elapsed time results (where
smaller numbers are better), we normalize by taking
FFS-async and dividing by each measured result. There-
fore, regardless of the measurement metric, in all results
presented, numbers greater than one indicate perfor-
mance superior to FFS-async and numbers less than one
indicate performance inferior to FFS-async. As a result,
the performance of FFS-async in each test is always 1.0,
and therefore is not shown.

8.2.1 Ssh
As explained in Section 7.3.1, this benchmark sim-

ulates unpacking, configuring and building ssh [34].

Figure 2. Delete Performance as a Function 
of File Size. 
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Table 4 reports the normalized performance of our sys-
tems. While many of the results are as expected, there
are several important points to note. The config and
build phases are CPU-intensive, while the unpack phase
is dominated by disk-intensive meta-data operations.
For the CPU-intensive phases, most of the journaling
and Soft Updates systems perform almost as well as
FFS-async, with the synchronous journaling systems
exhibiting somewhat reduced throughput, due to the few
synchronous file creations that must happen.

During the unpack phase, Soft Updates is the only
system able to achieve performance comparable to FFS-
async. The synchronous journaling systems demonstrate
only 10 to 20% improvement over FFS, indicating that
the ratio of meta-data operations to data operations is
significant and that the meta-data operations account for
nearly all the time during this phase. Both the LFFS-
wafs-async systems approach 90% of the performance
of FFS-async. 

The LFFS-file system has slower file create perfor-
mance on files larger than 64KB, and the build bench-
mark contains a sufficient number of these to explain its
reduced performance on the unpack phase. 

8.2.2 Netnews
As described in Section 7.3.2, the Netnews bench-

mark places a tremendous load on the file system, both
in terms of the number of meta-data operations it per-
forms, and the amount of data on which it operates. The
impact of these stresses is apparent in the benchmark

results shown in Table 5. On this benchmark, all of the
file systems are completely disk bound.

All of the asynchronous journaling systems and the
two-disk synchronous system approach the performance
of FFS-async (within 5%), but Soft Updates performs at
only 87% of FFS-async and the one disk synchronous
system performs at less than 60% of FFS-async. The
Soft Updates performance is largely due to writes
caused by dependency-required rollback. Soft Updates
performed 13% more disk writes than FFS. The major
cause for these rollbacks is that the data set exceeds the
size of the buffer cache. Much of the performance bene-
fits of Soft Updates come from being able to aggregate
several meta-data writes into a single write. For exam-
ple, updating several inodes in a single block at once
rather than writing each one individually. To be most
effective, it needs to be able to cache blocks for at least
15 and preferably 30 seconds. In the Netnews bench-
mark, the cache evictions occur much more rapidly,
which decreases the aggregation and increases the like-
lihood of needing to do rollback operations. Recent tun-
ing work (reflected in these results) defers the writing of
blocks with rollback dependencies by having them
travel around the LRU list twice before they are written.
This change eliminated most of the rollbacks associated
with directory dependencies. About 65% of the remain-
ing extra I/O operations come from the rollbacks associ-
ated with ensuring that inodes not reference data blocks
that have not been written (see Section 6 for a discus-
sion of this feature). The other 35% comes from the
reduced aggregation caused by the faster buffer flushing
and rollbacks associated with directories.

The significant difference between the one and two
disk synchronous systems indicates that it is the conten-
tion between log I/O and data I/O that hampers perfor-
mance, not the synchronous writing of the log.

Unpack Config Build Total

Absolute Time (in seconds)
FFS-async 1.02 10.38 42.60 53.99

Performance Relative to FFS-async

FFS 0.14 0.66 0.85 0.73

Soft-Updates 0.99 0.98 1.01 1.01

LFFS-file 0.72 1.08 0.95 0.96

LFFS-wafs-1sync 0.15 1.01 0.88 0.82

LFFS-wafs-1async 0.90 0.94 1.00 0.99

LFFS-wafs-2sync 0.20 0.85 0.93 0.86

LFFS-wafs-2async 0.90 1.05 0.98 0.99

Table 4.  Ssh Results. Data gathered are the averages of 5
runs; the total column is the measured end-to-end running
time of the benchmark. Since the test is not divided evenly
into the three phases, the normalized results of the first three
columns do not average to the normalized result of the total
column. All standard deviations were small relative to the
averages. As the config and build phases are the most CPU-
intensive, they show the smallest difference in execution time
for all systems. Unpack, the most meta-data intensive,
demonstrates the most significant differences.

Unbatch Expire Total

Absolute Time (in seconds)
FFS-async 1282 640 1922

Perf. Relative to FFS-async

FFS 0.63 0.40 0.53

Soft-Updates 0.86 0.89 0.87

LFFS-file 0.95 0.95 0.95

LFFS-wafs-1sync 0.67 0.48 0.59

LFFS-wafs-1async 0.98 0.92 0.96

LFFS-wafs-2sync 0.91 0.67 0.81

LFFS-wafs-2async 0.97 0.95 0.96

Table 5. Netnews Results Normalized to FFS-async.
These results are based on a single run, but we observed
little variation between multiple runs of any
configuration.



8.2.3 SDET
Figure 4 shows the results for the SDET test. Once

again we see the systems diverge into the largely asyn-
chronous ones (Soft Updates, LFFS-file, LFFS-wafs-
[12]async) and the synchronous ones (FFS, LFFS-wafs-
[12]sync), with the synchronous journaling systems pro-
viding minimal improvement over FFS. As expected,
the synchronous schemes drop in performance as script
concurrency increases, because the scripts compete for
the disk. Soft Updates outperforms the other schemes
because of its backgrounding of file deletion. LFFS-file
suffers the same performance problem here that we
observed in the ssh unpack test, namely that it creates
files larger than 64 KB more slowly than the other sys-
tems.

8.2.4 PostMark
This test, whose results are shown in Figure 5, dem-

onstrates the impact that delayed deletes can have on
subsequent file system performance. When we run the
test with a small file set (right-hand bars), Soft Updates
outperforms the LFFS-wafs systems significantly and
outperforms LFFS-file by a small margin. However,
with a larger data set (left-hand bars), which takes sig-
nificantly longer to run (1572 seconds versus 21 sec-
onds for the FFS-async case), the backgrounded deletes
interfere with other file system operations and Soft
Updates performance is comparable to all the asynchro-
nous journaling systems. When the log writes are syn-
chronous, seeks between the logging and data portions
of the disk cause the difference between the 1-disk and
2-disk cases. In the asynchronous case, the ability to
write log records lazily removes the disk seeks from the
critical path.

9 Related Work
In Section 3, we discussed much of the work that

has been done to avoid synchronous writes in FFS. As
mentioned in the introduction, small writes are another
performance bottleneck in FFS. Log-structured file sys-
tems [27] are one approach to that problem. A second
approach is the Virtual Log Disk [32].

Log-structured file systems (LFS) solve both the
synchronous meta-data update problem and the small-
write problem. Data in an LFS are coalesced and written
sequentially to a segmented log. In this way, LFS avoids
the seeks that a conventional file system pays in writing
data back to its original location. Using this log-struc-
tured technique, LFS also solves the meta-data consis-
tency problem by carefully ordering blocks within its
segments. Like the journaling systems, LFS requires a
database-like recovery phase after system crash and like
Soft Updates, data are written in an order that guaran-
tees the file system integrity. Unlike either Soft Updates
or journaling, LFS requires a background garbage col-
lector, whose performance has been the object of great
speculation and debate [2][22][28][29].

Building on the idea of log-structured file systems,
Wang and his colleagues propose an intelligent disk that
performs writes at near maximum disk speed by select-
ing the destination of the write based upon the position

Figure 4. SDET Results. The results are the 
averages of five runs.
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of the disk head [32]. The disk must then maintain a
mapping of logical block numbers to physical locations.
This mapping is maintained in a virtual log that is writ-
ten adjacent to the actual data being written. The pro-
posed system exists only in simulation, but seems to
offer the promise of LFS-like performance for small
writes, with much of the complexity hidden behind the
disk interface, as is done in the AutoRaid storage system
[33]. While such an approach can solve the small-write
problem, it does not solve the meta-data update prob-
lem, where the file system requires that multiple related
structures be consistent on disk. It does however
improve the situation by allowing the synchronous
writes used by FFS to occur at near maximum disk
speed.

Another approach to solving the small-write prob-
lem that bears a strong resemblance to journaling is the
database cache technique [6] and the more recent Disk
Caching Disk (DCD) [20]. In both of these approaches,
writes are written to a separate logging device, instead
of being written back to the actual file system. Then, at
some later point when the file system disk is not busy,
the blocks are written lazily. This is essentially a two-
disk journaling approach. The difference between the
database cache techniques and the journaling file system
technique is that the database cache tries to improve the
performance of data writes as well as meta-data writes
and does nothing to make meta-data operations asyn-
chronous; instead, it makes them synchronous but with a
much lower latency. In contrast, DCD places an
NVRAM cache in front of the logging disk, making all
small writes, including meta-data writes, asynchronous.

10 Conclusions
We draw several conclusions from our compari-

sons. At a high level, we have shown that both journal-
ing and Soft Updates succeed at dramatically improving
the performance of meta-data operations. While there
are minor differences between the two journaling archi-
tectures, to a first approximation, they behave compara-
bly. Surprisingly, we see that journaling alone is not
sufficient to solve the meta-data update problem. If
application and system semantics require the synchro-
nicity of such operations, there remains a significant
performance penalty, as much as 90% in some cases. In
most cases, even with two disks, the penalty is substan-
tial, unless the test was CPU-bound (e.g., the config and
build phases of the ssh benchmark).

Soft Updates exhibits some side-effects that
improve performance, in some cases significantly. Its
ability to delay deletes is evidenced most clearly in the
microbenchmark results. For the massive data set of the
Netnews benchmark, we see that Soft Updates’ ordering

constraints prevent it from achieving performance com-
parable to the asynchronous journaling systems, while
for the small Postmark dataset, Soft Updates back-
grounding of deletes provides superior performance.
The race between increasing memory sizes and increas-
ing data sets will determine which of these effects is
most significant.

If our workloads are indicative of a wide range of
workloads (as we hope they are), we see that meta-data
operations are significant, even in CPU-dominated tasks
such as the ssh benchmark where FFS suffers a 25%
performance degradation from FFS-async. In our other
test cases, the impact is even more significant (e.g., 50%
for Netnews and PostMark).

The implications of such results are important as
the commercial sector contemplates technology transfer
from the research arena. Journaling file systems have
been in widespread use in the commercial sector for
many years (Veritas, IBM’s JFS, Compaq’s AdvFS,
HP’s HPFS10, Irix’s XFS), while Soft Updates systems
are only beginning to make an appearance. If vendors
are to make informed decisions concerning the future of
their file systems, analyses such as those presented here
are crucial to provide the data from which to make such
decisions.
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