
RAIDframe: A Rapid
Prototyping Tool for
RAID Systems

Version 1.0, 29 August 1996

William V. Courtright II
Garth Gibson
Mark Holland
LeAnn Neal Reilly
Jim Zelenka

Parallel Data Laboratory
http://www.cs.cmu.edu/Web/Groups/PDL/RAIDframe/RAIDframe.html
School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, Pennsylvania 15213-3891

©1995, 1996 Carnegie Mellon University.
All rights reserved.

Author: William V. Courtright II, Garth Gibson, Mark Holland, LeAnn Neal Reilly, Jim Zelenka

Release History
Version 0.9 of the RAIDframe documentation and code distributed August 1996.

Permission to use, copy, modify and distribute this software and its documentation is hereby granted, provided that both
the copyright notice and this permission notice appear in all copies of the software, derivative works or modified versions,
and any portions thereof, and that both notices appear in supporting documentation.

CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS “AS IS” CONDITION. CARNEGIE
MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING
FROM THE USE OF THIS SOFTWARE.

Carnegie Mellon requests users of this software to return to

Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213-3890

any improvements or extensions that they make and grant Carnegie Mellon the rights to redistribute these changes.

Acknowledgements
We wish to thank Rachad Youssef for implementing the simulator version of RAIDframe. Dan Stodolsky assisted in the
implementation of several architectures and components of the system, and lent invaluable moral support. Thanks also to
Khalil Amiri who jumped in as a new graduate student to finish the distributed sparing work and to incorporate the disk-
oriented reconstruction algorithm. Paul Mazaitis and Victor Ortega provided invaluable assistance in preparing this
document.

This research is supported in part by the National Science Foundation through the Data Storage Systems Center, an NSF-
engineering research center, under grant number ECD-8907068 and an AT&T fellowship. It is also supported in part by
industry members of the Parallel Data Consortium, including: Hewlett-Packard, Data General Corporation, Digital
Equipment Corporation, International Business Machines, Seagate Technology, Storage Technology, and Symbios Logic.

INTRODUCTION The Importance of RAIDframe to the Research and Develop-
ment Communities 7

CHAPTER 1 Redundant Disk Arrays: A Brief Overview 11
1.1 The Need for Improved Availability in the Storage Subsystem 11

1.1.1 The Widening Access Gap 11
1.1.2 The Downsizing Trend in Disk Drives 12
1.1.3 The Advent of New, I/O-Intensive Applications 13
1.1.4 Why These Trends Necessitate Higher Availability 13

1.2 Technology Background 14
1.2.1 Disk Technology 15
1.2.2 Disk-Array Technology 17

1.2.2.1 Disk-Array Architecture 18
1.2.2.2 Defining the RAID Levels: Data Layout and ECC 18
1.2.2.3 Reading and Writing Data in the Different RAID Levels 23

1.2.2.3.1 RAID Level 1 24
1.2.2.3.2 RAID Level 3 25
1.2.2.3.3 RAID Level 5 26

1.2.2.4 Comparing the Performance of the RAID Levels 28
1.2.2.5 On-line Reconstruction 28
1.2.2.6 Related Work: Variations on These Organizations 29

1.2.2.6.1 Multiple-Failure Tolerance 29
1.2.2.6.2 Addressing the Small-Write Problem 30
1.2.2.6.3 Spare-Space Organizations 32
1.2.2.6.4 Distributing the Functionality of the Array Controller 32
1.2.2.6.5 Striping Studies 32
1.2.2.6.6 Disk-Array Performance Evaluation 34
1.2.2.6.7 Reliability Modeling 34
1.2.2.6.8 Improving the Write-Performance of RAID Level 1 35
1.2.2.6.9 Network File Systems Based on RAID 35

CHAPTER 2 Managing the Complexity of Array Software 37
2.1 Traditional Approaches in Managing Array Software are Suboptimal 38

2.2 Treating RAID Operations as Programs 39
2.2.0.1 Primitive Operations Commonly Used in Redundant Disk Arrays 40

2.2.1 Creating Pass-Fail Primitive Operations 41
2.2.2 Constructing RAID Operations from a Set of Primitive Operations 42
2.2.3 Summary 42

2.3 Representing RAID Operations as Graphs 42
2.3.1 Directed, Acyclic Graphs (DAGs) 43
2.3.2 Simplifying Constraints for DAGs 44
2.3.3 Incorporating Roll-Away Error Recovery Within DAGs 45
2.3.4 Verifying the Correctness of DAGs 46

2.4 Executing RAID Operations 47
2.4.1 Node States and Transitions 47
2.4.2 Executing DAGs Without Errors 49
2.4.3 Handling Errors When Executing DAGs 49

2.5 Reconstructing Data On-line When a Disk Fails 51
2.5.1 Disk-Oriented Reconstruction 51
2.5.2 Buffer Memory Management 53

2.5.3 Interaction with Writes in the Normal Workload 53
2.5.4 Summary 54

CHAPTER 3 RAIDframe: A Framework for Implementing New
Designs 55

3.1 Features 55
3.1.1 RAIDframe as a Stand-Alone User Application 56
3.1.2 RAIDframe as an Event-Driven Simulator 56
3.1.3 RAIDframe as a Device Driver in the Kernel 57
3.1.4 RAID Architectures Implemented in RAIDframe 57

3.2 Internal Architecture 59
3.2.1 RAIDframe Infrastructure 60

3.2.1.1 State Machine 60
3.2.1.2 Graph Execution Engine 62
3.2.1.3 Disk Interface 63

3.2.2 Configurable RAIDframe Modules 63
3.2.2.1 Disk-Queue Module 63
3.2.2.2 Disk-Geometry Database 63
3.2.2.3 Mapping 63
3.2.2.4 Graph Selection 64
3.2.2.5 Graph Library 64
3.2.2.6 Primitive-Operations Library 64

3.3 Reconstruction Architecture 65
3.3.1 Reconstruction State Machine 65
3.3.2 Reconstruction States 65

3.4 Suite of Test Applications 66

CHAPTER 4 Installing, Configuring, and Using RAIDframe 69
4.1 Installing RAIDframe 69

4.1.1 RAIDframe compilation environment 69
4.1.2 Editing the RAIDframe_site.def File 70
4.1.3 Generating Files Necessary for Compilation 70
4.1.4 Compiling RAIDframe user-level binaries 70
4.1.5 Compiling the Device Driver in a Digital Unix source tree 70

4.2 Configuring RAIDframe 72
4.2.1 RAIDframe’s Configuration File 72

4.2.1.1 Array (m) 72
4.2.1.2 Disks (m) 72
4.2.1.3 Spare 73
4.2.1.4 Layout (m) 73
4.2.1.5 Queue (m) 74
4.2.1.6 Debug 74

4.2.2 Configuring the Device Driver Using Control Programs 75
4.2.2.1 rf_setconfig 76
4.2.2.2 rf_ctrl 76

4.3 Testing RAIDframe Operation 77
4.3.1 Running the Test Applications 77

4.3.1.1 Single-Access Test 77
4.3.1.2 Loop Test 77
4.3.1.3 Random Read or Write Test 78
4.3.1.4 File Write-Read Test 78

4.3.1.5 Reconstruction Test 78
4.3.1.6 Write array test 78
4.3.1.7 Script Test 78
4.3.1.8 Layout Test 78

4.3.2 Setting Up the Workload File For the Script Test 79
4.3.2.1 Synthetically Generated Workloads 79
4.3.2.2 Trace-Driven Workloads 80

4.4 Performance Analysis Tools 81
4.4.1 Preparing to Run the rf_genplot Front End 81
4.4.2 Running the rf_genplot Front End 81

4.5 Accessing Built-in Performance Tracing 82

4.6 Debugging RAIDframe Installations 84

CHAPTER 5 Extending RAIDframe 87
5.1 RAIDframe fundamentals 87

5.1.1 Types and Conventions 87
5.1.2 Return Codes 88
5.1.3 Memory Allocation 88
5.1.4 Memory Allocation Lists 89
5.1.5 Shutdown Lists 89
5.1.6 Threads 90

5.1.6.1 Thread Types 90
5.1.6.2 Using mutex variables 91
5.1.6.3 Using condition variables 92
5.1.6.4 Creating threads 93
5.1.6.5 Managing threads 93
5.1.6.6 Threads in the simulator 96

5.1.7 Creating New Debug Options 96
5.1.8 Timing 96
5.1.9 Built-in Tracing of RAIDframe Performance 97

5.2 Installing a New RAID Architecture 98
5.2.1 parityConfig, configName 99
5.2.2 MakeLayoutSpecific, makeLayoutSpecificArg 99
5.2.3 Configure 100
5.2.4 MapSector, MapParity, MapQ 101
5.2.5 IdentifyStripe 102
5.2.6 SelectionFunc 102
5.2.7 MapSIDToPSID 103
5.2.8 GetDefaultHeadSepLimit 103
5.2.9 GetDefaultNumFloatingReconBuffers 104
5.2.10GetNumSpareRUs 104
5.2.11 InstallSpareTable 104
5.2.12SubmitReconBuffer 104
5.2.13VerifyParity 105
5.2.14 faultsTolerated 106
5.2.15states 106
5.2.16flags 106

5.3 Implementing New RAID Operations 107
5.3.1 DAG Creation 107
5.3.2 Creating New Primitive Operations 107

5.4 Adding a New Disk-Queueing Policy 108
5.4.1 Create Operation 108
5.4.2 Enqueue Operation 109
5.4.3 Dequeue Operation 109

5.4.4 Peek Operation 109
5.4.5 Promote Operation 110

5.5 Porting RAIDframe to Other Systems 110
5.5.1 Basic Types 110
5.5.2 Byte Ordering 111
5.5.3 Word Size 111
5.5.4 Timing 111
5.5.5 SCSI Operations 111
5.5.6 Threads 111
5.5.7 Random Numbers 111
5.5.8 CPU Utilization 111

Appendix A: Graph Library 113
A.1 RAID Level 0 113

A.2 RAID Level 1, Chained Declustering, Interleaved Declustering 114

A.3 RAID Level 4, RAID Level 5, Parity Declustering 115

A.4 RAID Level 6 117

Appendix B: RAIDframe Types 125

RAIDframe: A Rapid Prototyping Tool for RAID Systems 7

Version 1.0 8/29/96

INTRODUCTION The Importance of
RAIDframe to the
Research and Development
Communities

The demand for high-capacity, high-performance, and highly available data storage has
increased as information systems have grown to critical importance in business opera-
tions. Given how rapidly the market for Redundant Arrays of Independent Disks
(RAID) [Patterson88] is growing [DISK/TREND94], these architectures are clearly the
storage technology of choice for meeting this demand.

The increasing importance of RAID systems has led to a number of proposals for new
architectures and algorithms, for example, designs emphasizing improved write perfor-
mance [Menon92, Mogi94, Polyzois93, Solworth91, Stodolsky94]. While many of
these proposals are promising, they have been largely evaluated only by simulation or
analytic modeling. To understand the advantages and limitations of these new designs, it
is essential for RAID architects to experiment with concrete implementations.

However, evaluating new designs by introducing them into the marketplace is expen-
sive, slow, and too often unenlightening. Using traditional approaches, implementing
redundant disk arrays has been a difficult, manual process. This is evidenced by an
inability to generate code which is reusable, extensible, and easily verifiable as correct.
While these problems prevent RAID researchers and developers from exploring the
design space, they also lead to long development times and uncertain product reliability
for RAID vendors.

In developing RAIDframe, our primary goal was to decrease design-cycle time by sim-
plifying the process of implementation without sacrificing performance (measured in
terms of storage access and response time). We developed a simple programming
abstraction to which distinct RAID operations (and therefore, architectures) may be eas-
ily implemented in RAIDframe. Once the basic instructions (fewer than a dozen) are
implemented, the time required to implement a new RAID operation is simply the time
required to write a new program. Error recovery is then mechanized without diminish-

The Importance of RAIDframe to the Research and Development Communities

8 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

ing performance or increasing overhead—in contrast to traditional approaches which
were manual and prone to error [Courtright94].

The programming abstraction RAIDframe uses is based on directed acyclic graphs
(DAGs). A designer wishing to introduce a new architecture or optimize an existing
architecture is able to achieve this goal by modifying the library of graphs and graph-
invocation rules implemented in RAIDframe. While graphs and the binding of graphs to
requests varies widely, the majority of the code in RAIDframe is found in the unchang-
ing DAG interpretation engine. In this way, designers are encouraged to experiment
with and extend various RAID architectures because they can ignore the majority of the
code, which is devoted to device-manipulation details.

A particularly powerful feature of RAIDframe is that it separates error recovery from
array architecture. The mechanism used to recover from failed primitive operations
(such as a disk read) during the execution of an array operation is a part of RAIDframe’s
internal infrastructure. To do this, RAIDframe uses a two-phase approach to error
recovery which we callroll-away error recovery. RAIDframe’s architecture-indepen-
dent DAG interpreter handles errors by identifying those nodes in a DAG that commit
data to disk and by specifying the direction of recovery based on when errors occur in
relation to this commit point.

Specifically, if an error occurs before any data has been committed to disk, then the sys-
tem rolls back, releasing resources, and retries the operation with a more appropriate
graph. On the other hand, if an error occurs after data has been committed, the system
rolls forward through the remainder of the graph, giving later requests the impression
that this graph completed instantaneously before the error. In either case, this process is
hidden from the user and performed without regard to array architecture. Graph commit
points can be specified so that roll-back is inexpensive (that is, it does not induce addi-
tional device work in preparing for or executing roll-back) and so that roll-forward does
not need to execute any device operation not already coded in the in-progress graph. By
eliminating the need for architecture-specific code for handling errors, roll-away error
recovery further simplifies the process of building new RAID architectures: there is no
need to create or alter thousands of lines of error-recovery code.

Currently, RAIDframe acts as a software-only RAID controller for Alpha-based OSF/1
machines. To emphasize our intent to enable real designers to experiment with and use
RAIDframe, we have implemented the software so that it can be configured to execute
as an event-driven simulator, as a stand-alone application managing disks through the
UNIX raw-disk-interface, or as an OSF/1 device driver through which standard UNIX
file systems can be mounted and accessed.

RAIDframe’s library of architectures includes RAID levels 0 (nonredundant), 1 (mirror-
ing with shortest-queue selection), 4 (centralized parity), 5 (rotated parity), 6 (Reed-
Solomon double-failure protection), declustered parity, interleaved declustering, and
chained declustering, and others; additionally, variants of some of these support distrib-
uted, on-line spare-disk capacity. Preliminary performance analysis shows that RAID-
frame’s RAID level 0 can keep an array as busy as a much-more-limited direct
implementation of disk striping without substantially increasing response time,
although RAIDframe requires more processing power to achieve this goal [Gibson,
1995]. Moreover, beginning with the RAID level 0 graphs in its library, well over 90%

RAIDframe: A Rapid Prototyping Tool for RAID Systems 9

Version 1.0 8/29/96

and frequently 99% of the lines of code in RAIDframe are unchanged by the modifica-
tions necessary to implement the architectures listed above. Finally, the roll-away error
recovery is fully functional, requiring only that a graph’s commit nodes be marked.

The contents of this document can be roughly divided into two categories:background
andusing RAIDframe. Background chapters are Chapter One, Redundant Disk Arrays;
Chapter Two, Theory of Operation; and Chapter Three, RAIDframe: A Framework for
Implementing New Designs. Together, these chapters provide a basic understanding of
RAID technology, explain the programmatic abstraction RAIDframe uses for modeling
RAID operations, and detail RAIDframe’s features, internal architecture, and support-
ing libraries. The remaining chapters are Chapter Four, Installing, Configuring, and
Using RAIDframe; and Chapter Five, Extending RAIDframe. These last two chapters
help provide designers and developers with the necessary information for using RAID-
frame.

This document, along with the RAIDframe code, will be continually revised and
updated. These updates will be made available on the RAIDframe Web pages at the
URL http://www.cs.cmu.edu/Web/Gruoups/PDL/RAIDframe/RAIDframe.html. To be
notified when updates are made available, send mail to pdl-webmaster@cs.cmu.edu.

RAIDframe users may wish to subscribe to the RAIDframe mailing list,
raidframe@cs.cmu.edu, by sending mail to raidframe-request@cs.cmu.edu.

The Importance of RAIDframe to the Research and Development Communities

10 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

RAIDframe: A Rapid Prototyping Tool for RAID Systems 11

Version 1.0 8/29/96

CHAPTER 1 Redundant Disk Arrays:
A Brief Overview

Chapter 1 presents a brief overview of redundant disk arrays. The text for this chapter
was excerpted from Chapter 2 of Mark Holland’s thesis, “On-line Data Reconstruction
in Redundant Disk Arrays,” published in 1994 by Carnegie Mellon University. The text
has been updated and edited in minor ways to allow it to fit into the RAIDframe docu-
mentation. For a more thorough description of RAID technology, we recommendThe
RAIDbook: A Source Book for Disk Array Technology [RAID96].

1.1 The Need for Improved Availability in the Storage
Subsystem

There exist several trends in the computer industry that are driving the design of storage
subsystems toward higher levels of parallelism. This means that current and future sys-
tems will achieve better I/O performance by increasing the number, rather than the per-
formance, of the individual disks used [Patterson88, Gibson92]. As will be seen, this
distinction is important in that it implies directly the need for improved data availability.
This section briefly describes these trends (Sections 1.1.1 through 1.1.3), and shows
why they lead to the need for improved availability in the storage subsystem (Section
1.1.4).

1.1.1 The Widening Access Gap

First and foremost, processors are increasing in performance at a much faster rate than
disks. Microprocessors are increasing in computational power at a rate between 25 and
30 percent per year [Myers86, Gelsinger89], and projections for future performance
increases range even higher. Gelsinger et al. [Gelsinger 89] predict that the huge transis-
tor budgets projected for microprocessors in the 1990s will allow on-chip multiprocess-

Redundant Disk Arrays: A Brief Overview

12 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

ing, yielding a further 20% annual growth rate for microprocessors. Bell [Bell89]
projects supercomputer growth rates of about 150% per year.

Disk drives, by way of contrast, have been increasing in performance at a much slower
rate. Comparing the state of the art in 1981 [Harker81] to that in 1993 [Wood93] shows
that the average seek time1 for a disk drive improved from about 16 ms to about 10 ms,
rotational latency from about 8.5 ms to about 5 ms, and data transfer rate from about 3
MB/sec (which was achieved only in the largest and most expensive disks) to about 5
MB/sec. Combining these, the time taken to perform an average 8 KB access improved
from 27.1 ms to 15.0 ms, or by about 45%, in the twelve-year period. This corresponds
to an annual rate of improvement of less than 5%.

Increased processor performance leads directly to increased demand for I/O bandwidth
[Gibson92, Kung86, Patterson88]. Since disk technology is not keeping pace with pro-
cessor technology, it is necessary to use parallelism in the storage subsystem to meet the
increasing demands for I/O bandwidth. This has been, and continues to be, the primary
motivation behind disk-array technology.

1.1.2 The Downsizing Trend in Disk Drives

Prior to the early 1980s, storage technology was driven by the large-diameter (14-inch)
drives [IBM3380, IBM3390] used by mainframes in large-scale computing environ-
ments such as banks, insurance companies, and airlines. These were the only drives that
offered sufficient capacity to meet the requirements of these applications [Wood93].
This changed dramatically with the growth of the personal computer market. The enor-
mous demand for small-form-factor, relatively inexpensive disks produced an industry
trend towarddownsizing, which is defined as the technique of re-implementing existing
disk-drive technology in smaller form factors. This trend was enabled primarily by the
rapid increase in storage density achieved during this period, which allowed the capac-
ity of small-form-factor drives to increase from a few tens of megabytes when first
introduced to over two gigabytes today [IBM0664]. It was also facilitated by the rapid
growth in VLSI integration levels during this period, which allowed increasingly
sophisticated drive-control electronics to be implemented in smaller packages. Further
impetus for this trend derived from the fact that smaller-form-factor drives have several
inherent advantages over large disks:

• smaller disk platters and smaller, lighter disk arms yield faster seek operations,

• less mass on each disk platter allows faster rotation,

• smaller platters can be made smoother, allowing the heads to fly lower, which
improves storage density,

• lower overall power consumption reduces noise problems.

These advantages, coupled with very aggressive development efforts necessitated by the
highly competitive personal computer market, have caused the gradual demise of the
larger drives. In 1994, the best price/performance ratio was achieved using 3-1/2-inch
disks, and the 14-inch form factor has all but disappeared. The trend is toward even

1. Seek time, rotational latency, and transfer rate are defined in Section 1.2.1.

The Need for Improved Availability in the Storage Subsystem

RAIDframe: A Rapid Prototyping Tool for RAID Systems 13

Version 1.0 8/29/96

smaller form factors: 2-1/2-inch drives are common in laptop computers [ST9096], and
1.3-inch drives are available [HPC3013]. One-inch-diameter disks should appear on the
market by 1995 and should be common by about 1998. At a (conservative) projected
recording density in excess of 1-2 GB per square inch [Wood93], one such disk should
hold well over 2 GB of data.

These tiny disks will enable very-large-scale arrays. For example, a one-inch disk might
be fabricated for surface-mount, rather than using cables for interconnection as is cur-
rently the norm, and thus a single, printed circuit board could easily hold an 80-disk
array. Several such boards could be mounted in a single rack to produce an array con-
taining on the order of 250 disks. Such an array would store at least 500 GB, and even if
disk performance does not improve at all between now and 1998, could service either
12,500 concurrent I/O operations or deliver 1.25-GB-per-second aggregate bandwidth.
The entire system (disks, controller hardware, power supplies, etc.) would fit in a vol-
ume the size of a filing cabinet.

To summarize, the inherent advantages of small disks, coupled with their ability to pro-
vide very high I/O performance through disk-array technology, leads to the conclusion
that storage subsystems are, and will continue to be, constructed from a large number of
small disks, rather than from a small number of powerful disks. Many trends in the stor-
age industry substantiate this claim. For example, DISK/TREND predicts that the
redundant-disk-array market will exceed thirteen billion dollars by 1997 [DISK/
TREND94]. Storage Technology Corporation, traditionally a maker of large-form-fac-
tor IBM-compatible disk drives, has stopped developing disks altogether and is replac-
ing this product line by one based on disk arrays [Rudeseal92].

1.1.3 The Advent of New, I/O-Intensive Applications

Finally, increases in on-line storage capacity and commensurate decreases in per-mega-
byte cost enable new technologies that demand even higher levels of I/O performance.
The most visible example of this is in the emergence of digital audio and video applica-
tions such as video-on-demand [Rangan93]. Others include scientific visualization and
large-object servers such as spatial databases [McKeown83, Stonebraker92]. These
applications are all characterized by the fact that, if implemented on a large scale, their
demands for storage and I/O bandwidth will far exceed the ability of current data stor-
age subsystems to supply them. These applications will drive storage technologies by
consuming as much capacity and bandwidth as can be supplied and hence necessitate
higher levels of parallelism in storage subsystems.

1.1.4 Why These Trends Necessitate Higher Availability

The preceding discussion demonstrated that higher degrees of I/O parallelism (an
increased number of disks in a storage subsystem) are increasingly necessary to meet
the storage demands of current and future systems. The discussion deliberately avoided
identifying the specific organizations to be used in future storage systems but made the
case that such systems will be composed of a relatively large number of independent
disks. However, constructing a storage subsystem from a large number of disks has one
significant drawback: the reliability of such a system will be worse than that of a system
constructed from a small number of disks because the disk array has a much higher
component count.

Redundant Disk Arrays: A Brief Overview

14 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

As the number of disks comprising a system increases, the reliability of that system
falls. Specifically, assuming the failure rates for a set of disks to be identical, indepen-
dent, exponentially distributed random variables, a simple reliability calculation shows
that the mean time to data loss for a group ofN disks is only 1/N times as long as that of
a single disk [Patterson88]. Gibson analyzed a set of disk-lifetime data to investigate the
accuracy of the assumptions behind this calculation and found “reasonable evidence to
indicate that the lifetimes of the more mature of these products can be modeled by an
exponential distribution” [Gibson92, p. 113]. Working from this assumption, a 100-disk
array composed of disks with a 300,000-hour mean-time-to-failure (typical for current
disks) will experience a failure every 3000 hours, or about once every 125 days. As
disks get smaller and array sizes grow, the problem gets worse: a 600-disk array experi-
ences a failure approximately once every three weeks.

Disk arrays typically incorporate some form of redundancy in order to protect against
data loss when these failures occur. This is generally achieved either bydisk mirroring
[Katzman77, Bitton88, Copeland89, Hsiao91], or byparity encoding [Arulpragasam80,
Kim86, Park86, Patterson88, Gibson93]. In the former, one or more duplicate copies of
each user data unit are stored on separate disks. In the latter, commonly known as
Redundant Arrays of Inexpensive1 Disks (RAID) [Patterson88], a portion of the array’s
physical capacity is used to store an error-correcting code computed over the data stored
in the array. Section 1.2.2 describes both of these approaches in detail. Studies have
shown that, due to superior performance on small read and write operations, a mirrored
array, also known as RAID Level 1, may deliver higher performance to many important
workloads than can a parity-based array [Chen90a, Gray90]. Unfortunately, mirroring is
substantially more expensive—its storage overhead for redundancy is 100%, whereas
the overhead in a parity-encoded array is generally less than 25% and may be less than
10%. Furthermore, several recent studies [Rosenblum91, Menon92a, Stodolsky94]
demonstrated techniques that allow the small-write performance of parity-based arrays
to approach and sometimes exceed that of mirroring.

1.2 Technology Background

This section describes the structure and organization of modern disk drives and disk
arrays; the subsection on disk technology has been kept to a minimum. Product manuals
such as Digital Equipment Corporation’sMass Storage Handbook [DEC86] provide
more thorough descriptions of disk technology. This section describes disk-array struc-
ture and functionality in more detail because this information is essential to understand-
ing the RAIDframe prototyping tool.

1. Because of industrial interest in using the RAID acronym and because of their concerns about
the restrictiveness of its “Inexpensive” component, RAID is often reported as an acronym for
Redundant Arrays of Independent Disks [RAID96].

Technology Background

RAIDframe: A Rapid Prototyping Tool for RAID Systems 15

Version 1.0 8/29/96

FIGURE 1 Physical Components of a Disk Drive

1.2.1 Disk Technology

Figure 1 shows the primary components of a typical disk drive. A disk consists of a
stack of platters coated with magnetic media with data stored on all surfaces. The plat-
ters rotate on a common spindle at constant velocity past the read/write heads (one per
surface), each of which is fixed on the end of a disk arm. The arms are connected to a
common shaft called an actuator. Applying a directional current to a positioning motor
causes the actuator to rotate small distances in either direction. Rotating the actuator
causes the disk heads to move, in unison, radially along the platters, thereby allowing
access to a band spanning most of the coated surface of each platter.

Figure 2 illustrates how data is typically organized on a disk. Part (a) shows how a block
of sequential user data (almost always 512 bytes) is collected together and stored in a
sector. A sector is the minimum-sized unit that can be read from or written to a disk . A
header area in front of each sector contains sector identification and clock synchroniza-
tion information, and a trailer area contains an error correcting code computed over the
header and data. The set of sectors on a single surface at constant radial distance from
the spindle is called atrack, and the set of all tracks at constant radial offset is called a
cylinder. At current densities, a typical 3-1/2-inch disk has 50 to 100 sectors per track,
1000 to 3000 cylinders, and 4 to 20 surfaces.

Drive Motor
(Constant RPM)

Positioning Motor
(Voice Coil)

Platter

Surfaces
(Media)

Actuator

Read/Write HeadArm

Spindle

Redundant Disk Arrays: A Brief Overview

16 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

FIGURE 2 Data Layout on a Disk Drive

In order to access a block of data, the drive-control electronics move the actuator to
position the disk heads over the correct cylinder, waits for the desired data to rotate
under the heads, and then reads or writes the indicated sectors. Moving the actuator is
calledseeking and takes 1 to 20 ms depending on the seek distance. Current disks rotate
at between 3600 and 7200 RPM, making the expected rotational latency (one half of
one revolution) between 4.2 and 8.3 ms. Thus, for each access, the disk must firstseek
to the indicated cylinder and thenrotate to the start of the requested data. The combina-
tion of these two operations is referred to aspositioning the disk heads.

If a user access requests a full track’s worth of data, the rotational latency can be elimi-
nated by reading or writing the data in the order that the requested sectors pass under the
heads, rather than waiting until the first sector rotates under the heads to commence the
operation. This is calledzero-latencyoperation orfull-track I/O and can be extended to
include the case where the access spans only part of a track.

Note that the tracks near the outside of each surface have greater circumference than
those near the spindle. A technique calledzoned bit recording (ZBR) takes advantage of
this and stores more sectors per track in the outer cylinders. This approach groups sets
of 50 to 200 adjacent cylinders into zones with the number of sectors per track being
constant within each zone but successively larger in the outer zones than the inner.

Figure 2b illustrates the assignment of sequential data to sectors, tracks, and cylinders.
Nearly all disks read or write only one head at time, that is, they do not access multiple
heads in parallel,1 and so sequential user data is sequential in any given sector. Thus, as
shown in the figure, sequential data starts at sector zero, proceeds around to the end of
the track, moves to the next track (which is actually on the underside of the first platter),

1. This is because the disk heads cannot be positioned independently, and thermal variations in
the rigidity of the actuator, platters, and spindle make it difficult or impossible to keep all the disk
heads simultaneously positioned over their respective tracks. There do exist a few disks that
access multiple heads in parallel by careful management of head alignment [Fujitsu2360], but
these are not commodity products and typically have lower density and higher cost per megabyte
than standard disks.

Cylinder

012

3 4 5

7

6
Track

Hdr/Sync Data ECC

Sector

(a) Grouping data into sectors, tracks, and cylinders (b) Sequential sector layout

0 1
2

345

6
7

15 8
9

101112

13
14

22 23
16

171819

20
21

28 29
30

312425
26

27

Technology Background

RAIDframe: A Rapid Prototyping Tool for RAID Systems 17

Version 1.0 8/29/96

continues this way to the end of the cylinder, and then moves to the next cylinder and
starts again. Note that in this example, a rotational distance equal to one sector is
skipped upon crossing a track boundary (moving from sector 7 to 8), and two sectors are
skipped upon crossing a cylinder boundary (moving from sector 23 to 24). These gaps
are called thetrack skew andcylinder skew. The data is laid out in this manner to assure
that the drive-control electronics will have time to reposition the actuator when a user
access spans a track or cylinder boundary. The track skew is shorter than the cylinder
skew because only fine adjustments are necessary when switching to a new track within
one cylinder, whereas switching to a new cylinder requires the actuator to be moved one
full cylinder width and then fine-adjusted over the new track. Typical values for track
and cylinder skew in current technology are about 0.5 and 1.5 ms, respectively.

The interface electronics in a disk drive typically contain a buffer memory, varying in
size from about 32 KB to about 1 MB, which serves two purposes. First, several disks
may share a single path to the CPU, and the memory serves to speed-match the disks to
the bus. In order to avoid holding the bus for long periods of time, a disk will typically
read data into the buffer and then burst-transfer it to the CPU. The buffer serves the
same purpose on a write operation: the CPU burst-transfers the data to the drive’s
buffer, and the drive writes it to the media at its own rate. Reading and writing to and
from the buffer, instead of directly between the media and the bus, also eliminatesrota-
tional-position-sensing (RPS) misses [Buzen87], which occur in bufferless disks when
the transfer path to the CPU is not available at the time the data arrives under the disk
heads. The second purpose served by the buffer is as a cache memory [IBM0661,
Maxtor89]. Applications typically access files sequentially, and so the disks comprising
a storage subsystem typically observe a sequential access pattern as well. Thus after
each read operation, the disk controller will continue to read sequential data from the
media into the buffer. If the next block of requested data is sequential with respect to the
previous block, the disk can often service it directly from the buffer instead of accessing
the media. This yields both higher throughput and lower latency. Many disks generalize
this readahead function so that the buffer becomes a full-fledged cache memory.

1.2.2 Disk-Array Technology

This section describes the structure and operation of disk arrays in detail.

FIGURE 3 Disk-Array Architectures

Array Controller (Hardware or Host Software)

Disk

Disk

•
•
•

Disk

Disk

•
•
•

• • •

Disk

Disk

•
•
•

(a) Bus-connected (b) High-bandwidth serial connected

Port(s) to host computer(s)

Disk Disk • • • Disk

• • •

Array
Controller

Port(s) to host computer(s)

Redundant Disk Arrays: A Brief Overview

18 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

1.2.2.1 Disk-Array Architecture
Figure 3 illustrates two possible disk-array-subsystem architectures. Today’s systems
use the architecture of Figure 3a in which the disks are connected via inexpensive, low-
bandwidth (e.g., SCSI [ANSI86]) links to an array controller, which is connected via
one or more high-bandwidth parallel buses (e.g., HIPPI [ANSI91]) to one or more host
computers. Array controllers and disk buses are often duplicated (indicated by the dot-
ted lines in the figure) so that they do not represent a single point of failure [Katzman77,
Menon93]. The controller functionality can also be distributed among the disks of the
array [Cao93].

As disks get smaller [Gibson92], the large cables used by SCSI and other bus interfaces
become increasingly unattractive. The system sketched in Figure 3b offers an alterna-
tive. It uses high-bandwidth, bidirectional serial links for disk interconnection. This
architecture scales to large arrays more easily because it eliminates the need for the
array controller to incorporate a large number of string controllers. Further, by making
each link bidirectional, it provides two paths to each disk without duplicating buses.
Standards for serial-interface disks have emerged (P1394 [IEEE93], Fibre Channel
Fibre91], DQDB [IEEE89]) and Seagate has begun shipping drives with serial inter-
faces. As the cost of high-bandwidth serial connectivity is reduced, architectures similar
to that of Figure 3b may supplant today’s short, parallel bus-based arrays.

In both organizations, the array controller is responsible for all system-related activity:
controlling individual disks, maintaining redundant information, executing requested
transfers, and recovering from disk or link failures. The functionality of an array con-
troller can also be implemented in software executing on the subsystem’s host or hosts.

1.2.2.2 Defining the RAID Levels: Data Layout and ECC
An array controller implements the abstraction of alinear address space. The array
appears to the host as a linear sequence of data units, numbered 0 throughN·B- 1,
whereN is the number of disks in the array andB is the number of units of user data on
a disk. Units holding ECC do not appear in the address space exported by the array con-
troller; they are not addressable by the application program. The array controller trans-
lates addresses in this linear space into physical disk locations (disk identifiers and disk
offsets) as it performs requested accesses. It is also responsible for performing the
redundancy-maintenance accesses implied by application write operations. We refer to
the mapping of an application’s logical unit of stored data to physical disk locations and
associated ECC locations as the disk array’slayout.

Fundamental to all disk arrays is the concept ofstriping consecutive units of user data
across the disks of the array [Kim86, Livny87, Patterson88, Gibson92, Merchant92].
Striping is defined as breaking up the linear address space exported by the array control-
ler into blocks of some size and assigning the consecutive blocks to consecutive disks
rather than filling each disk with consecutive data before switching to the next. The
striping unit (or stripe unit) [Chen90b] is the maximum amount of consecutive data
assigned to a single disk. The array controller has the freedom to set the striping unit
arbitrarily; the unit can be as small as a single bit or byte, or as large as an entire disk.
Striping has two benefits: automatic load balancing in concurrent workloads and high
bandwidth for large sequential transfers by a single process.

Technology Background

RAIDframe: A Rapid Prototyping Tool for RAID Systems 19

Version 1.0 8/29/96

Disk arrays achieve load balance in concurrent workloads (those that have many pro-
cesses concurrently accessing the stored data) by selecting the stripe unit to be large
enough that most small accesses are serviced by a single disk. This allows the indepen-
dent processes to perform small accesses concurrently in the array, and as long as the
processes’ access patterns are not pathologically regular with respect to the striping
unit, it assures that the load will be approximately evenly balanced over the disks. Thus,
anN-disk coarse-grain striped array can serviceN I/O requests in parallel, but each of
them occurs at the bandwidth of a single disk.

Arrays achieve high data rates in low-concurrency workloads by striping at a finer
grain, for example, one byte or one sector. Such arrays are used when the expected
workload is a single process requesting data in very large blocks. Fine-grain striping
assures that each access uses all the disks in the array, which maximizes performance
when the workload concurrency (number of processes) is one1. After the initial seek and
rotational delay penalties associated with each access, a fine-grain-striped array trans-
fers data to or from the CPU atN times the rate of a single disk. Therefore, a fine-grain-
striped array can service only one I/O at any one time but is capable of reading or writ-
ing the data at a very high rate.

Patterson, Gibson, and Katz [Patterson88] classified redundant disk arrays into five
types, called RAID Levels 1 through 5, based on the organization of redundant informa-
tion and the layout of user data on the disks. This terminology has gained wide accep-
tance [RAID93] and is used throughout this document. The term “RAID Level 0” has
since entered common usage to indicate a non-redundant array. Figure 4 illustrates the
layout of data and redundant information for the six RAID levels. The remainder of this
section briefly introduces each of the levels, and subsequent sections provide additional
details.

RAID Level 1, also calledmirroring or shadowing, is the standard technique used to
achieve fault-tolerance in traditional data-storage subsystems [Katzman77, Bitton88].
The disks are grouped into mirror pairs, and one copy of each data block is stored on
each of the disks in the pair. To unify the taxonomy, RAID Level 1 defines the user data
to be block-striped across the mirror pairs, but traditional mirrored systems instead fill
each disk with consecutive user data before switching to the next. This can be thought
of as setting the stripe unit to the size of one disk. RAID Level 1 is a highly reliable
organization since the system can tolerate multiple disk failures (up toN/2) without los-
ing data, so long as no two disks in a mirror pair fail. It can be generalized to provide
multiple-failure tolerance by maintaining more than two copies of each data unit. Its
drawback is that its cost per megabyte of storage is at least double that of RAID Level 0.

RAID Level 2 provides high availability at lower cost per megabyte by utilizing well-
known techniques used to protect main memory against transient data loss. The disks

1. Since the host views the array as one large disk, it never attempts to read or write less than one
sector, and hence every user access uses all the disks in the array. Note that one sector is the mini-
mum unit that can be read from or written to an individual disk, and so a fine-grain-striped array
typically disallows accesses that are smaller thanN times the size of one sector, whereN is the
number of disks in the array. This rarely poses a problem since fine-grain striped arrays are typi-
cally used in applications where the average request size is very large.

Redundant Disk Arrays: A Brief Overview

20 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

comprising the array are divided intodata disks andcheck disks. User data is bit- or
byte-striped across the data disks, and the check disks hold a Hamming error correcting
code [Peterson72, Gibson92] computed over the data in the corresponding bits or bytes
on the data disks. This reduces the storage overhead for redundancy from 100% in mir-
roring to a value in the approximate range of 25-40% (depending on the number of data
disks) in RAID Level 2 but reduces the number of failures that can be tolerated without
data loss. As will be seen, the reliability and performance of such a system can still be
very high. It can be extended to support multiple-failure toleration by using ann-failure-
tolerating Hamming code, which of course increases the capacity overhead for redun-
dancy and the computational overhead for computing the codes.

Thinking Machines Corporation’s Data Vault storage subsystem [TMC87] employed
RAID Level 2, but this organization ignores an important fact about failure modes in
disk drives. Since disks contain extensive error-detection and error-correction function-
ality, and since they communicate with the outside world via complex protocols, the
array controller can directly identify failed disks from their status information or by
their failure to adhere to the communications protocol. A system in which failed compo-
nents areself-identifying is called anerasure channel, to distinguish it from anerror
channel, in which the locations of the errors are not known. Ann-failure-detecting code
for an error channel becomes ann-failure-correcting code when applied to an erasure
channel [Gibson89, Peterson72]. RAID Level 3 takes advantage of this fact to reduce
the storage overhead for redundancy still further.

In RAID Level 3, user data is bit- or byte-striped across the data disks, and a simple par-
ity code is used to protect against data loss. A single check disk (called theparity disk)
stores the parity (cumulative exclusive-or) over the corresponding bits on the data disks.
This reduces the capacity overhead for redundancy to 1/N. When the controller identi-
fies a disk as failed, it can recover any unit of lost data by reading the corresponding
units from all the surviving disks, including the parity disk and XORing them together.
To see this, assume that disk 2 in the RAID Level 3 diagram within Figure 4 has failed,
and note that

Multiple-failure tolerance can be achieved in RAID Level 3 by using more than one
check disk and a more complex error-detecting/correcting code such as a Reed-
Solomon [Peterson72] or MDS code [Burkhard93, Blaum94]. RAID Level 3 has very
low storage overhead and provides very high data-transfer rates. Since user data is
striped on a fine grain, each user access uses all the disks in the array, and hence only
one access can be serviced at any one time. Thus this organization is best suited for
applications such as scientific computation, in which a single process requests a large
amount of sequential data from the array.

Because all accesses use all disks in RAID Level 3, the disk heads move in unison, and
so the cylinder over which the heads are currently located is always the same for all
disks in the array. This assures that the seek time for an access will be the same on all
disks, which avoids the condition in which some disks are idle waiting for others to fin-
ish their portion of an access. In order to assure that rotational latency is also the same
for each access on each disk, systems using RAID Level 3 typically use phase-locked

p
0 4–

d
0

d
1

d
2

d
3

d
4

⊕ ⊕ ⊕ ⊕= 
  d

2
d
0

d
1

p
0 4–

d
3

d
4

⊕ ⊕ ⊕ ⊕= 
 ⇒

Technology Background

RAIDframe: A Rapid Prototyping Tool for RAID Systems 21

Version 1.0 8/29/96

FIGURE 4 Data and Redundancy Organization in RAID Levels 0 through 5

Disk 0 Disk 1 Disk 2 Disk 3

D0 D1 D2 D3

D6 D7 D8 D9

D12 D13 D14 D15

0

1

2

RAID Level 0: Nonredundant

Disk 4

D4

D10

D16

Disk 5

D5

D11

D17

Disk 0 Disk 1 Disk 2 Disk 3

D0 D0 D1 D1

D3 D3 D4 D4

D6 D6 D7 D7

0

1

2

RAID Level 1: Mirroring

Disk 4

D2

D5

D8

Disk 5

D2

D5

D8

D9 D9 D10 D10 D11 D113

Disk 0 Disk 1 Disk 2 Disk 3

d0 d1 d2 d3

d4 d5 d6 d7

d8 d9 d10 d11

0

1

2

RAID Level 2: Hamming-Code ECC

Disk 4

h0-3

Disk 5

d12 d13 d14 d15

h4-7

h8-11

h12-153

D18 D19 D20 D213 D22 D23

0

1

2

RAID Level 3: Byte-Interleaved Parity

Disk 5

p0-4

p5-9

p10-14

p15-193

Disk 4

d4

d9

d14

d19

Disk 3

d3

d8

d13

d18

Disk 2

d2

d7

d12

d17

Disk 1

d1

d6

d11

d16

Disk 0

d0

d5

d10

d15

The figure shows the first few units on each disk in each of the RAID levels.
“D” represents a block of user data (of unspecified size, but some multiple of
one sector), “d” a bit or byte of user data, “hx-y” a Hamming code computed
over user data bits/bytes x through y, “px-y” a parity (exclusive-or) bit/byte
computed over data blocks x through y, and “Px-y” a parity block over user
data blocks x through y. Note from these definitions that the number of bytes
represented by each individual box and label in the above diagrams varies with
the RAID level. The numbers on the left indicate the offset into the disk,
expressed in stripe units. Shaded blocks represent redundant information, and
non-shaded blocks represent user data.

Redundant Disk Arrays: A Brief Overview

22 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

FIGURE 4 Cont. Data and Redundancy Organization in RAID Levels 0 through 5

loop circuitry to synchronize the rotation of the spindles of the disks comprising the
array. Many disks currently on the market support this spindle synchronization.

RAID Level 4 is identical to Level 3 except that the striping unit is relatively coarse-
grained (perhaps 32KB or larger [Chen90b]), rather than a single bit or byte. The block
of parity that protects a set of data units is called aparity unit. A set of data units and
their corresponding parity unit is called aparity stripe. RAID Level 4 is targeted at
applications like on-line transaction processing (OLTP), in which a large number of
independent processes concurrently request relatively small units of data from the array.
Since the striping unit is large, the probability that a single small access will use more
than one disk is low, and hence the array can service a large number of accesses concur-
rently. This organization is also effective for workloads that are predominantly small
accesses but contain some fraction of larger accesses. The array services concurrent

Level 0 is non-redundant and therefore not fault-tolerant. Level 1 is simple mirror-
ing in which two copies of each data block are maintained. Level 2 uses a Hamming
error-correction code to achieve fault tolerance at a lower capacity overhead than
Level 1. Levels 3 through 5 exploit the fact that failed disks are self-identifying.
Thus Levels 3 through 5 achieve fault tolerance using a simple parity (exclusive-or)
code, lowering the capacity overhead to only one disk out of six in this example.
Levels 3 and 4 are distinguished only by the size of the striping unit: one bit or one
byte in Level 3 and one block in Level 4. In Level 5, the parity blocks rotate through
the array rather than being concentrated on a single disk to avoid throughput loss
due to contention for the parity drive.

0

1

2

RAID Level 5: Rotated Block-Interleaved Parity

Disk 5

P0-4

D5

D11

D173

Disk 4

D4

P5-9

D10

D16

Disk 3

D3

D9

P10-14

D15

Disk 2

D2

D8

D14

P15-19

Disk 1

D1

D7

D13

D19

Disk 0

D0

D6

D12

D18

4 D23

D295

D22

D28

D21

D27

D20

D26

P20-24

D25

D24

P25-29

(Left-Symmetric)

0

1

2

RAID Level 4: Block-Interleaved Parity

Disk 5

P0-4

P5-9

P10-14

P15-193

Disk 4

D4

D9

D14

D19

Disk 3

D3

D8

D13

D18

Disk 2

D2

D7

D12

D17

Disk 1

D1

D6

D11

D16

Disk 0

D0

D5

D10

D15

Technology Background

RAIDframe: A Rapid Prototyping Tool for RAID Systems 23

Version 1.0 8/29/96

small accesses in parallel but achieves a high data rate on the occasional large access by
utilizing many disk arms.

In RAID Level 4, each disk typically services a different access, and so, unless the
workload applied contains a significant fraction of large accesses, the heads do not
remain synchronized. Consequently, there is no compelling reason to synchronize the
spindles either. However, spindle synchronization never degrades performance and can
improve it on large accesses; disks arrays typically use it whenever the component disks
support it.

The problem with RAID Level 4 is that the parity disk can be a bottleneck in workloads
containing a significant fraction of small write operations. Each update to a unit of user
data implies that the corresponding parity unit must be updated to reflect the change.
Thus the parity disk sees one update operation for every update to every data disk, and
its utilization due to write operations isN-1 times larger than that of the data disks. This
does not occur in RAID Level 3, since every access uses every disk. To solve this prob-
lem, RAID Level 5 distributes the parity across the disks of the array. This assures that
the parity-update workload is as well balanced across the disks as the data-update work-
load.

In RAID Level 5, there are a variety of ways to lay out data and parity such that parity is
evenly distributed over the disks [Lee91]. The structure shown in Figure 4 is called the
left-symmetric organization and is formed by first placing the parity units along the
diagonal and then placing the consecutive user data units on consecutive disks at the
lowest available offset on each disk. This method for assigning data units to disks
assures that, if there are any accesses in the workload large enough to span many stripe
units, the maximum possible number of disks will be used to service them.

RAID Levels 2 and 4 are of less interest than the others because levels 3 and 5 provide
better solutions, respectively. We omit Levels 2 and 4 from the remaining discussion.

1.2.2.3 Reading and Writing Data in the Different RAID Levels
This section describes the techniques used to read and write data in the different RAID
levels, both when the array is fault-free (“fault-free mode”) and when it contains a sin-
gle failed disk (“degraded mode”). The focus is on the techniques used to maintain par-
ity and to continue operation in the presence of failure. This section uses the terms “read
throughput” and “write throughput” to indicate the maximum rates at which data can be
read from or written to the array.

In all cases, the array controller maps the linear array address and access type supplied
by the host (the “user” read or write) to the indicated set of operations on physical disks
(the corresponding “disk” reads and/or writes). In RAID Level 0, the set of reads or
writes so generated can be immediately and concurrently initiated since there is no par-
ity to maintain and no possibility of continuing operation in the presence of failure.
Thus the read throughput and write throughput of a RAID Level 0 array are bothN
times the throughput of a single disk. In Levels 1, 3, and 5, the disk operations triggered
by a user read or write operation are more complex, especially in the presence of a disk
failure, and often must be sequenced appropriately.

Redundant Disk Arrays: A Brief Overview

24 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

1.2.2.3.1 RAID Level 1
Figure 5 illustrates the different read and write operations in RAID Level 1. In fault-free
mode, the controller must send user write operations to both disks. This reduces the
maximum possible write throughput to 50% of that of RAID Level 0. The two write
operations can, in general, occur concurrently, but some systems perform them sequen-
tially in order to guarantee that the old data will be recoverable should the first write
fail.

FIGURE 5 Read and Write Operations in RAID Level 1 (mirroring)

Typically, read requests are sent to only one of the two disks in the pair so that the other
will be free to service other read operations. The controller can service user reads in
fault-free mode from either copy of the data. This flexibility allows the controller to
improve throughput by selecting, for each user read operation, the disk that will incur
the least positioning overhead [Bitton88, Bitton89]. This is frequently called theshort-
est-seek optimization and can improve read throughput by up to about 15% over RAID
Level 0 [Chen90a].

In degraded mode, the controller sends user write operations that target a unit with one
copy on the failed disk only to the surviving disk in the pair instead of to both. This does
not affect the utilization on the surviving disk because it does not absorb any write traf-
fic that it would not otherwise encounter. However, in the presence of a disk failure, the
surviving disk must absorb, in addition to its regular workload, all the read traffic tar-
geted at the failed drive in fault-free mode. In read-intensive workloads, this can cause
the utilization on the surviving disk to double. User reads and writes that do not target
any units on the failed disk occur as if the array were fault-free.

D D

select
closest

D D D D D D

Fault-Free
Write

Fault-Free
Read

Degraded
Write

Degraded
Read

Technology Background

RAIDframe: A Rapid Prototyping Tool for RAID Systems 25

Version 1.0 8/29/96

FIGURE 6 Read and Write Operations in RAID Level 3 (bit-interleaved parity)

1.2.2.3.2 RAID Level 3
Figure 6 illustrates reads and writes in RAID Level 3. The following discussion
assumes that each user access is some multiple of(N-1)·S in size, whereN is the number
of disks in the array andS is the number of bytes in a sector (almost always 512). This is
because each access uses all data disks, and the minimum sized unit that can be read
from or written to a disk is one sector. If the array is to support accesses that are not a
multiple of this size, the controller must handle any partial-sector updates via read-mod-
ify-write operations, which can degrade write performance.

In fault-free mode, user write operations update the old data in place. The controller
updates the parity disk by computing the cumulative XOR of the data being written to
each drive and writing the result to the parity disk concurrently with the write of the user
data to the data disks. The controller may perform this XOR operation before the write
is initiated or as the data flows down to the disks [Katz93]. Because the XOR happens at
electronic speeds (a few microseconds per complete user access) but the disk runs at
mechanical speeds (milliseconds per access), this computation typically has no measur-

The diagonal lines in the figure indicate that when the host accesses (reads or writes) a
block of data consisting of bits 0 through n-1, disk 0 services bits 0, 3, 6, …, n-3, disk
1 services bits 1, 4, 7, …, n-2, and disk 2 services bits 2, 5, 8, …, n-1. The array con-
troller arranges for the correct bits to read from or write to the correct drive. On a write
operation, the controller writes to disk 3 a block containing the following bits:
(0⊕1⊕2), (3⊕4⊕5), (6⊕7⊕8), …, ((n-3)⊕(n-2)⊕(n-1)). Note that the controller
implements this bit-level parity operation using only sector-sized accesses on the
disks; so n must be a multiple of 8·N·S, where N is the number of disks in the array and
S is the number of bytes in a sector. The controller typically enforces this condition
since the only alternative is to use read-modify-write operations on the individual
disks, which drastically reduces efficiency.

Fault-Free
Write

pddd

Fault-Free
Read

pddd

Degraded
Write

pddd

Degraded
Read

pddd

Redundant Disk Arrays: A Brief Overview

26 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

able effect on the performance of the array. User read operations simply stream the data
into the controller; the parity disk remains idle during this time.

A degraded-mode user write operation in RAID Level 3 occurs in exactly the same
manner as in fault-free mode except that the controller suppresses the write to the failed
disk. A degraded-mode user read is serviced by reading the parity and the surviving data
and XORing them together to reconstruct the data on the failed drive. Disk arrays that
stripe data on a fine grain (a bit or a byte) have the property that their performance in
degraded mode is not significantly different than their performance in fault-free mode.
This is because the controller accesses all disks during every access in any case, and so
supporting degraded-mode operation simply amounts to modifying the bit streams sent
to and from each drive. The XOR operations that occur in degraded mode are typically
performed as the data streams into or out of the controller, and so they do not signifi-
cantly increase access times.

1.2.2.3.3 RAID Level 5
Figure 7 illustrates the various translations of user accesses to disk accesses in RAID
Level 5. User write operations in fault-free mode are handled in one of three ways,
depending on the number of units being updated. In all cases, the update mechanisms
are designed to guarantee the property that after the write completes, the parity unit
holds the cumulative XOR over the corresponding data units, or

If the update affects only one data unit, the prior content of that unit is read and XORed
with the new data about to be written. This produces a map of the bit positions that need
to be toggled in the parity unit in order that the parity unit should reflect the new data.
These changes are applied to the parity unit by reading its old contents, XORing in the
previously generated map, and writing the result back to the parity unit. The correctness
of this transformation is shown as follows where a new data blockD2,newis being writ-
ten to a unit on disk number 2 in anN-disk array:

This parity-update operation is called aread-modify-write and is easily generalized to
the case where the user access targets more than one data unit. In this case, the control-
ler reads the previous contents of all data units to be updated and then XORs them
together with the new data prior to reading, XORing, and re-writing the parity unit.
Read-modify-write updates are used for all fault-free user write operations in which the
number of data units being updated is less than half the number of data units in a parity
stripe.

P
new

D
1

D
2

D
3

... D
N 1–

⊕ ⊕ ⊕ ⊕=

P
new

P
old

D
2 old, D

2 new,⊕ 
 ⊕= ⇒

P
new

D
1

D
2 old, D

2 old,⊕ 
  D

2 new, D
3

... D
N

⊕ ⊕ ⊕ ⊕ ⊕= ⇒

P
new

D
1

D
2 new, D

3
... D

N
⊕ ⊕ ⊕ ⊕=

Technology Background

RAIDframe: A Rapid Prototyping Tool for RAID Systems 27

Version 1.0 8/29/96

FIGURE 7 Read and Write Operations in RAID Level 5 (rotated parity)

The preread-and-then-write operation performed on the data unit is typically done atom-
ically to minimize the positioning overhead incurred by the access [Stodolsky94]. This
is also true for the parity unit. Since the old data must be available to perform the parity
update, the data preread-and-write is typically allowed to complete (atomically) before
the parity preread-and-write is started.

In applications that tend to read blocks of data shortly before writing them, the perfor-
mance of the read-modify-write operation can be improved by acquiring the old con-
tents of the data unit to be updated from the system’s buffer cache rather than reading it
from disk. This reduces the number of disk operations required from four to three. This
situation is very common in OLTP environments [TPCA89, Menon92c].

When the number of data units being updated exceeds half of one parity stripe, there is a
more efficient mechanism for updating the parity. In this case, the controller writes the
new data without pre-reading the old contents of the written unit, reads and XORs
together all of the data units in the parity stripe that arenot being updated, XORs into
this result each of the new data units to be written, and writes the result to the parity
unit. The new parity that is written is therefore the cumulative XOR of the new data
units and the data units not being updated, which is correct. This is called areconstruct-
write operation because of its similarity to the way failed data is recovered.

Fault-Free
Read-Modify-Write

PDDD

Data
Preread

Data
Update

Parity
Preread

Parity
Update

Fault-Free
Reconstruct-Write

PDDD

Fault-Free
Large-Write

PDDD

Fault-Free
Read

PDDD

Degraded
Write

PDDD

Degraded
Read

PDDD

12 3 4

Redundant Disk Arrays: A Brief Overview

28 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

The final mechanism used to update parity in a fault-free RAID Level 5 array is the
degenerate case of the reconstruct-write that occurs when a user access updates all data
units in a parity stripe. In this case, the controller does not need to read any old data, but
instead simply updates each data unit in place and then XORs together all the new data
units in buffer memory and writes the result to the parity unit. This is often called a
large write and is the most efficient form of update.

In degraded mode, a user read requesting data on the failed disk is serviced by reading
all the units in the parity stripe, including the parity unit, and XORing them together to
reconstruct the requested data unit(s). User reads that do not request data on the failed
disk are serviced normally. User write requests updating data on the failed drive are ser-
viced via reconstruct-writes, independently of the number of units being updated, with
the write to the failed disk suppressed. Since the data cannot be written, this method of
update causes the new data to be reflected in the parity so that the next read will return
the correct data. User write requests not updating data on the failed drive are serviced
normally except in the reconstruct-write case where the parity needs to be read. When a
user write request updates data for which the parity has failed, the data is simply written
in place since no parity-maintenance operations are possible.

1.2.2.4 Comparing the Performance of the RAID Levels
Table 1, adapted from Patterson, Gibson, and Katz [Patterson88], compares the fault-
free performance and capacity overhead of the RAID levels. The values are all first-
order approximations since there are a wide variety of effects related to seek distance,
head synchronization, access patterns, etc., that influence performance, but the table
provides a baseline comparison. It’s clear that RAID Level 1 offers better performance
on concurrent, small-access workloads but does so at a high cost in capacity overhead.

1.2.2.5 On-line Reconstruction
The preceding has shown how a disk array operates, and how it may continue to operate
in the presence of a single disk failure. The next step to take is that the array should have
the ability torecover from the failure, that is, restore itself to the fault-free state.1 Fur-
ther, a disk array should be able to effect this recovery without taking the system off-
line. This is implemented by maintaining one or more on-line spare disks in the array.
When a disk fails, the array switches to degraded mode as described above but also
invokes abackground reconstruction process to recover from the failure. This process
successively reconstructs the data and parity units that were lost when the disk failed
and stores them on the spare disk. The mechanism by which this is accomplished is
called thereconstruction algorithm. Once all the units have been recovered, the array
returns to normal performance, and so the recovery is complete.

1. Editor’s Note: The term “recovery” traditionally encompasses more than the process of the
array restoring itself to the fault-free state following a disk failure: it also includes the process by
which the array controller handles software errors during operation. Mark Holland limited the
term here, however, to the specific case of reconstructing data lost on a failed disk. To clarify this
distinction further: recovering from the physical loss of a disk can take the array anywhere from
several minutes to several hours. Handling errors, on the other hand, will take the array millisec-
onds, occurring transparently to the host or user. Automating error recovery is central to our
design of RAIDframe and is covered in greater detail in Chapter 2. To lessen confusion, we will
use the term “recovery” in its broader sense throughout the rest of the document.

Technology Background

RAIDframe: A Rapid Prototyping Tool for RAID Systems 29

Version 1.0 8/29/96

The table reports performance numbers as percentages of RAID Level 0 performance.
The “RMW” column gives the performance of the array when the application reads
each data unit before writing it, which eliminates the need for the data preread. The
capacity overheads are expressed as a percentage of the user data capacity of the array.
The concurrency figures indicate the maximum number of user I/Os that can be simulta-
neously executed. The table reports the maximum concurrency numbers for Levels 1
and 5 as N because such arrays can support N concurrent reads but writes involve multi-
ple I/O operations, and this reduces the maximum supportable concurrency.

1.2.2.6 Related Work: Variations on These Organizations
This section summarizes industrial and academic research on disk arrays. It defines nine
categories of investigation and presents brief summaries of some papers in each. These
studies serve as background in the area of redundant disk arrays.

1.2.2.6.1 Multiple-Failure Tolerance
Each of the RAID levels defined above is only single-failure tolerant; in each organiza-
tion there exist pairs of disks such that the simultaneous failure of both disks results in
irretrievable data loss. This is adequate in most environments because the reliability of
the component disks is high enough that the probability of incurring a second failure
before a first is repaired is low. There are, however, three reasons why single-failure tol-
erance may not be adequate for all systems. First, recalling that the reliability of the
array falls as the number of disks increases, the reliability of very large single-failure
tolerating arrays may be unacceptable [Burkhard93]. Second, applications in which data
loss has catastrophic consequences may mandate a higher degree of reliability than can
be delivered using the RAID architectures described above. Finally, disk drives some-
times exhibitlatent sector failures in which the contents of a sector or group of sectors
are irretrievably lost, but the failure is not detected because the data is never accessed.
The rate at which this occurs is very low, but if a latent sector failure is detected on a
surviving disk during the process of reconstructing the contents of a failed disk, the cor-
responding data becomes unrecoverable. Multiple-failure toleration allows recovery
even in the presence of latent sector failures.

The drawback of multiple-failure toleration is that it degrades write performance: in an
n-failure-tolerating array, every write operation must update at leastn+1 disks so that
some record of the write will remain shouldn of thosen+1 disks fail [Gibson89]. Thus
the write performance of the array decreases in proportion to any increase inn.

TABLE 1. Performance of RAID levels relative to that of RAID level 0

RAID
Level Large Accesses Small Accesses Capacity

Overhead
 (%)

Max
ConcurrencyRead Write RMW Read Write RMW

0 100 100 100 100 100 100 0 N

1 100+ 50 66 100+ 50 66 100 N

3 100 100 100 n/a n/a n/a 100/N 1

5 100 100 100 100 25 33 100/N N

Redundant Disk Arrays: A Brief Overview

30 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

Gibson et al. [Gibson89] treated multiple-fault tolerance as an error-control coding
problem [Peterson72]. They restricted consideration to the class of codes that (1) do not
encode user data but instead simply store additional “check” information in each parity
stripe, (2) use only parity operations (modulo-2 arithmetic) in the computation of the
check information, and (3) incur exactlyn+1 disk writes per user write. They defined
three primary figures of merit on the codes used to protect against data loss: themean-
time-to-data-loss, which is the expected time until unrecoverable failure in an array
using the indicated code, thecheck-disk overhead, which is the ratio of disks containing
ECC to disks containing user data, and thegroup size, which is the number of units in a
parity stripe, including check units, supportable by the code. They demonstrated codes
for double- and triple-error toleration based on three primary techniques, which they
call N-dimensional parity, full-n codes, and theadditive-3 code. Each of these is a tech-
nique for defining the equations that relate each check bit to a set of information bits. In
comparing the techniques according to the figures of merit, they show multiple-order-
of-magnitude reliability enhancements in moving from single- to multiple-fault tolera-
tion and achieve this using relatively low check-disk overheads ranging from 2% to
30%.

Burkhard and Menon [Burkhard93] described two multiple-fault tolerating schemes as
examples ofmaximum-distance-separable (MDS) codes [MacWilliams78]. The first
uses afile-dispersal matrix to distribute a block of data (afile in their terminology) into
n fragments such that anym < n of them suffice to reconstruct the entire file. An array
constructed using such a code can tolerate (n-m) concurrent failures without losing data.
The second, described fully by Blaum et al. [Blaum94], clusters together sets ofN-1
parity stripes whereN is the number of disks in the array and stores two parity units per
parity stripe. The first parity unit holds the same information as in RAID Level 5, and
the second holds parity computed using one data unit from each of the parity stripes in
the cluster. Blaum et. al. showed that this scheme tolerates two simultaneous failures, is
optimal with respect to check-disk overhead and update penalty, and uses only XOR
operations in the computation of the parity units.

1.2.2.6.2 Addressing the Small-Write Problem
Recall from Section 1.2.2.3.3 that small write operations in RAID Level 5 incur up to
four disk operations: data preread, data write, parity preread, and parity write. This
degrades the performance of small write operations by a factor of four when compared
to RAID Level 0. Several organizations have been proposed to address this problem.

Menon and Kasson [Menon89, Menon92a] proposed a technique based onfloating the
data and/or parity units to different disk locations upon each update. Normally, the con-
troller services a small write operation by pre-reading the old data, waiting for the disk
to spin through one revolution, writing the new data back to the original location, and
then repeating this process for the parity unit. In the floating data/parity scheme, the
controller reserves (leaves unoccupied) some number of data units on each track of each
disk. After each preread operation, the array controller writes the new data to a rotation-
ally convenient free location rather than writing it in place. This saves up to one full
rotation (10-17 milliseconds of disk time) per preread-write pair. An analytical model in
the paper shows that a free unit can typically be found within about two units of the
location of the old data. This makes each preread/write pair take only slightly longer
than a single access and thus can potentially nearly double the small-write performance
of the array. Menon and Kasson concluded that the best capacity-performance tradeoff

Technology Background

RAIDframe: A Rapid Prototyping Tool for RAID Systems 31

Version 1.0 8/29/96

is achieved by applying this floating only to the parity unit rather than to both data and
parity. A potential problem with this approach is that the array controller must be inti-
mately familiar with the geometry and performance characteristics of the component
disks as well as the latencies involved in communicating with them. This requires a high
degree of predictability from the disks and makes the design difficult to verify, tune, and
maintain.

Another technique proposed to address the small-write problem is to eliminate them
from the workload. TheLog-Structured File System (LFS) [Rosenblum91, Seltzer93]
has the potential to achieve this by organizing the file system as an append-only log.
The motivation behind this file system is that a disk drive is able to service sequential
accesses at about twenty times the bandwidth of random accesses. All user writes are
held in memory until enough have accumulated to allow them to be written to disk using
a single large update. Over time, this causes the disk to fill with dead data, and so a
cleaner process periodically sweeps through the disk, compacts live files into sequential
extents, and reclaims dead space. This technique improves write performance by caus-
ing all writes to be sequential and can potentially improve read performance by causing
files written contiguously to end up contiguous on the disk. When the underlying stor-
age mechanism is a disk array, the only writes that are encountered are large enough to
span entire parity stripes, and thus the large-write optimization always applies.

Stodolsky et. al. [Stodolsky94] adapted the ideas behind LFS to the problem of parity
maintenance and proposed an approach based on logging the parity changes generated
by each write operation rather than immediately updating the parity upon each user
write. In this scheme, the controller reads the old data (or acquires it from the buffer
cache) and writes the new data as before. It then XORs together the old and new data to
produce aparity-update record, which it appends to a write-only buffer rather XORing
it with the old parity. The controller spills the entire buffer to disk when it becomes full.
No parity operations are performed for each user write, but some of the array’s capacity
(about one disk’s worth) must be reserved to hold the parity update logs. Eventually the
log space in the array becomes full, at which time the controller empties it by reading
the log records and the corresponding parity units, XORing them together, and writing
the result back out to the parity locations. Note that the controller buffers only parity
information and so is not vulnerable to data loss due to power failure. While in RAID
Level 5 parity is updated using a large number of small, random accesses, in parity log-
ging it is updated using a smaller number of large, sequential accesses. The paper
showed simulation results indicating that this technique can allow the performance of
RAID Level 5 arrays to approach, or under certain conditions even exceed, that of mir-
roring.

Menon and Cortney [Menon93] described the architecture of a controller that improves
small-write performance by deferring the actual update operations for some period of
time after the application performs the write. In this approach, the controller stores the
data associated with a write in a nonvolatile, fault-tolerant cache memory in the array
controller. Immediately upon storing the data in the cache, the host computer is told that
the write is complete even though the data has not yet been sent to disk. The controller
maintains the data block in the cache until another block replaces it, at which time it is
written (“destaged”) to disk using the four-operation RAID Level 5 update. This
improves write performance in two ways. First, if the host performs another write to the
same unit prior to destage, the new data can simply replace the old in the cache, and the

Redundant Disk Arrays: A Brief Overview

32 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

first write need not occur at all. Second, if the host writes several units in the same track,
they are all destaged at the same time, which greatly improves disk efficiency. This is an
expensive solution, suitable only for large-scale systems because of the necessity of
incorporating the large, nonvolatile, fault-tolerant cache.

1.2.2.6.3 Spare-Space Organizations
RAID Level 5 arrays typically maintain one or more on-line spare disks so that recon-
struction can be immediately initiated should one of the primary disks fail. This spare
disk can be viewed as a system resource that is grossly underutilized; the throughput of
the array could be increased if this disk is used to service user requests.

Menon and Kasson [Menon92b] described and evaluated three alternatives for organiz-
ing the spare space in a RAID Level 5 disk array. The first,dedicated sparing, is the
default approach of dedicating a single disk as the spare. In the second, calleddistrib-
uted sparing, the spare space is distributed among the disks of the array, much in the
same manner as parity is distributed in RAID Level 5. In the third technique,parity
sparing, the array is divided into at least two independent groups, and when a failure
occurs the affected group is merged into another with the parity space in the surviving
group serving as the spare space for the group containing the failure. In the latter two
organizations, the completion of reconstruction returns the array to fault-free mode, but
in a different configuration than before the failure. For this reason, they require a sepa-
ratecopyback phase in the reconstruction process to restore the array to the original con-
figuration when the failed disk has been physically replaced. The paper concluded that
distributed sparing was preferable to parity sparing due to improved reconstruction-
mode performance.

1.2.2.6.4 Distributing the Functionality of the Array Controller
The existence of a centralized array controller in both of the architectures shown in
Figure 2 has two disadvantages: It constitutes either a single point of failure or an
expensive system resource that must be duplicated, and its performance and connectiv-
ity limit the scalability of the array to larger numbers of disks. Cao et al. [Cao93]
described a disk-array architecture they callTickerTAIP that distributes the controller
functionality among several loosely coupled controller nodes. Each node controls a rel-
atively small set of disks (one SCSI string, for example) and communicates with the
other nodes via a small, dedicated interconnect network. Under the direction of the dis-
tributed controllers, data and parity units as well as control information pass through the
interconnect to effect the RAID read and write algorithms. The paper demonstrated the
elimination of several performance bottlenecks through the use of the distributed-con-
trol architecture.

1.2.2.6.5 Striping Studies
A variety of studies have looked at how to select the striping unit in a redundant disk
array. The choice is always made based on the characteristics of the expected workload.

Gray, Horst, and Walker [Gray90] objected to the notion of striping the data across the
disks comprising an array, arguing that fine-grain striping is inappropriate for transac-
tion processing systems because it causes more than one arm to be used per disk request
and that coarse-grain striping has several drawbacks when compared to non-striped
arrays. These drawbacks stem primarily from the inability to address individual disks
directly from software. They include the inability to archive and restore a single disk,

Technology Background

RAIDframe: A Rapid Prototyping Tool for RAID Systems 33

Version 1.0 8/29/96

the software problems inherent in re-coding existing device drivers to enable them to
handle the abstraction of one very large, highly concurrent disk, the problem of design-
ing single channels fast enough to absorb all bandwidth produced by the array, etc. They
proposed instead an organization in which the parity is striped across the array in large
contiguous extents at the end of each disk. The data is not striped at all; the controller
allocates sequential user data sequentially on each disk and fills each disk with data
before using the next. This is essentially equivalent to RAID Level 5 with a very large
striping unit, but it allows each disk to be addressed individually. The paper conceded
that none of these problems are insurmountable in RAID arrays but asserted that design-
ers cannot ignore the problem of retrofitting existing systems to use disk arrays.

Chen and Patterson [Chen90b] developed simple rules of thumb for selecting the strip-
ing unit in a nonredundant disk array. They expect that these rules will hold, perhaps
with some modification, for redundant arrays as well. The study used simulations to
evaluate the performance of a block-striped RAID Level 0 on many different, syntheti-
cally generated workloads and then investigated choices of the striping unit that maxi-
mize the minimum observed throughput across all these workloads. They found that a
good rule of thumb is to select the striping unit according to the formula

whereS is a constant typically around 1/4. Note that the stripe-unit size takes on its min-
imum value (one sector) at concurrency one in order to assure that the single requesting
process is able to utilize all the disks. The size of the striping unit increases as the con-
currency rises in order to gradually reduce the probability that any particular access will
use more than one disk arm.

Lee and Katz [Lee91] described several different strategies for placing the parity units
among the striped data units. They found that the most significant performance effect of
varying parity placement was the number of disks used for large reads and writes; some
placement strategies caused fewer than the maximum number of possible disks to be
used on large accesses, and these suffered in performance. The left-symmetric parity
placement illustrated in the RAID Level 5 case of Figure 4 was among the best of the
options.

Merchant and Yu [Merchant92] noted that it is common for a database workload to con-
sist of two components: transactions and ad hoc, read-only queries into the database.
Transactions generate small, randomly distributed accesses into the array, whereas the
ad hoc queries often scan significant portions of the database. To efficiently handle this
workload combination, they proposed a dual striping strategy for mirrored arrays where
the size of the stripe unit is small in one copy (4 KB) and large in the other (32 KB). The
authors note that using a large stripe unit is efficient for relatively large accesses because
it reduces the number of actuators used, but under a small-access model it can cause
workload imbalance among the disks. They assert that the converse is true as well: a
small stripe unit achieves good workload balance but causes too many actuators to be
used per large access. Thus they service the transactions using the small-stripe-unit copy
of the data and the ad hoc queries with the large-stripe-unit copy. Merchant and Yu eval-
uated this organization, using both analytical modeling and simulation, with a syntheti-
cally generated workload that adhered to the assumptions made in designing the striping
strategy. They found substantial benefits to this approach.

Size S avgpositioning time disk xfer rate concurrency 1–()⋅ ⋅ ⋅ 1 sector+=

Redundant Disk Arrays: A Brief Overview

34 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

1.2.2.6.6 Disk-Array Performance Evaluation
Chen et al. [Chen90a] tackled the thorny problem of comparing RAID Level 5 to RAID
Level 1. The comparison is difficult to make because equating the number of actuators
causes the array capacities to differ and vice versa. The authors addressed this problem
by choosing to equate user data capacity and reporting two metrics: throughput at a
fixed 90th-percentile response time and throughput per disk at a fixed 90th-percentile
response time. Their motivation for this decision was the assumption that systems will
dictate a minimum acceptable capacity and level of responsiveness and will require the
maximum possible throughput subject to these constraints. The authors evaluated the
architectures by implementing them in real hardware and applying synthetically gener-
ated workloads that varied in the parameters of interest. The results largely validated the
simple model of Patterson et al. [Patterson88], which is approximated in Table 1. They
further showed that due to the shortest-seek optimization, the RAID Level 1 outper-
formed the RAID Level 5 on small-access-dominated-workloads, whereas the reverse
was true on large-access workloads due to more efficient write operations in RAID
Level 5.

1.2.2.6.7 Reliability Modeling
Patterson et. al. [Patterson88] derived a simple expression for the mean time to data loss
(MTTDL) in a redundant disk array:

whereMTTFdisk is the mean time to failure of a component disk;Ngroups is the number
of independent groups in the array, each of which containsNdiskspergroup disks, includ-
ing the (possibly distributed) parity disk; andMTTRdisk is the mean time to repair
(reconstruct) a disk failure. This model assumes that disk failure rates are identical,
independent, exponentially distributed random variables. In arrays that maintain one or
more on-line spare disks, the repair time can be very short, a few minutes to half an
hour, and so the mean time to data loss can be very long.

Schulze et. al. [Schulze89] noted that the time until data loss due to multiple simulta-
neous disk failures, which is the only failure mode modeled by the above equation, is
not an adequate measure of true reliability because the failure of other system compo-
nents (array controllers, string controllers, cabling, air conditioning, etc.) can equally
well cause data to be lost or become temporarily inaccessible. This paper estimated the
reliability of each such component and derived simple techniques for building redun-
dancy into the controllers, cabling, cooling, etc. so as to maximize the overall system
reliability.

Modeling the reliability of disk arrays was one of the primary topics of Gibson’s Ph.D.
dissertation [Gibson92, Gibson93]. He analyzed all of the assumptions behind the sim-
ple equation given above, identified the conditions under which they do and do not hold,
and derived new reliability models for conditions not previously covered. Specifically,
he investigated whether disk failure rates are truly exponentially distributed, derived
reliability models for disk arrays with dependent failure modes, extended these models
to take into account the possibility of spare-pool exhaustion, and investigated the reli-
ability implications of both the number and the connectivity of the spare drives. He ver-

MTTF
RAID

MTTF
disk 

  2

N
groups

N
diskspergroup

N
diskspergroup

1– 
  MTTR

disk
--=

Technology Background

RAIDframe: A Rapid Prototyping Tool for RAID Systems 35

Version 1.0 8/29/96

ified the models using Monte Carlo simulation of disk lifetimes and found good
agreement between the two. This work theoretically and empirically validated the use of
the models and disk-array structures described above.

1.2.2.6.8 Improving the Write-Performance of RAID Level 1
As shown in Table 1, mirrored systems achieve only 50% of the write performance of
nonredundant arrays because each write must be sent to two disks. This section
describes several studies intended to improve this performance. Most of the ideas here
relate to caching and deferring updates and so apply to parity-encoded arrays as well.

Solworth and Orji proposed several variations on an organization to improve mirrored-
array write performance. They first proposed implementing a large, nonvolatile, possi-
bly fault-tolerant write-only disk cache dedicated exclusively to write operations
[Solworth90]. In this scheme, the controller defers user write operations by holding the
corresponding data in the cache until a user read operation moves the disk heads to the
vicinity of the data to be written, at which time it destages the data to disk. In this sense,
this scheme is similar to the deferred-update techniques described by Menon and Cor-
ney [Menon93] with the primary difference being that reads are not cached in Solworth
and Orji’s proposal, and the cache replacement policies are adapted to account for this.
The authors do not address the question of whether some of the memory used for write-
caching would be better used for read-caching.

In two follow-up studies, Solworth and Orji proposeddistorted mirrors [Solworth91]
anddoubly distorted mirrors[Orji93]. In the former, the controller updates data in place
on the primary disk in a mirror pair but writes the data to any convenient location on the
secondary drive. The controller maintains a data structure in memory describing the
location of each block on the secondary drive. This approach reduces the total disk-arm
time consumed in servicing a write request. The controller services small reads from
either copy but services large reads from the primary copy only since consecutive
blocks on the secondary are not, in general, sequential on the disk. In the latter (doubly
distorted mirrors), the authors combined the ideas of a write-only cache and write-any-
where semantics on the secondary drive to eliminate the necessity that the cache be non-
volatile and fault-tolerant.

Polyzois, Bhide, and Dias [Polyzois93] proposed a modification to the deferred-write
technique in which the two disk arms in a mirror pair alternate between reading and
writing. Deferred writes accumulate in the cache for some period of time, and then the
controller batches them together and writes them out to one drive. During this period,
the other drive services all read operations. The two drives then switch roles: the first
services reads, and the second destages deferred writes. This scheme yields very low
latency access to data for moderate workloads because there is always one disk arm
available to service user read requests, and write operations incur only the latency
required to install the data in the cache.

1.2.2.6.9 Network File Systems Based on RAID
Several studies have looked at extending the ideas of striping and parity protection to
network file systems. This allows the file system to operate in the presence of server
and/or network failures and provides for disaster recovery should all data stored at one
site be permanently destroyed. It achieves this at lower disk cost than the standard
approach of file duplication on multiple servers.

Redundant Disk Arrays: A Brief Overview

36 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

Stonebraker and Schloss [Stonebraker90] proposed an organization that is essentially
identical to RAID Level 5 with each disk replaced by a server in a network file system.
They evaluated the performance, overhead, and reliability of several variations on this
idea and concluded that distributed RAID has many reliability advantages but performs
poorly in the presence of failures. Other studies [Cabrera91, Hartman93] have extended
this idea to network file systems that stripe data for performance.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 37

Version 1.0 8/29/96

CHAPTER 2 Managing the Complexity
of Array Software

In Chapter 1, we described the need for improved availability in the storage subsystem
due to the widening access gap, the downsizing trend in disk drives, and the advent of
new I/O-intensive applications. We discussed the structure and operation of disk arrays
in some detail, explaining the different data layouts and fault tolerance for each of the
original RAID levels. We also summarized some of the related work done on variations
of these RAID organizations, most of which looks at improving performance by identi-
fying the best techniques for laying out and writing data.

What should be clear from our description of disk arrays in Chapter 1 is the complexity
of the array software used to control the disks in the array. What may not be clear from
our discussion is that most of the related work has approached the task of managing this
complexity on a case-by-case basis. What we mean by this is that researchers have
looked at specific contexts for using redundant arrays and have proposed ways to opti-
mize the software based on the specific needs of expected workloads. This ad hoc
approach to designing and implementing array software means that there is little code
reused between RAID organizations. It also means that each architecture handles any
errors that occur during operation in a specific, limited way, adding to the complexity of
the array software.

Our goal is to simplify the process of designing and implementing array software that
performs optimally for a particular situation. To do this, we have aimed to increase the
amount of code reused between RAID designs, to enable a means for verifying the cor-
rectness of designs before they are implemented, to generalize an error-recovery mecha-
nism, and to provide a mechanism for reconstructing data on-line when a disk fails.
Achieving these four things, we believe, will lead to shorter design-cycle times, soft-
ware that performs as it was designed to do, mechanized error recovery, and highly
available and reliable systems.

Managing the Complexity of Array Software

38 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

In this chapter, we introduce a structured method for implementing array software,
based on a graphical programming abstraction. This abstraction allows many RAID
operations to be composed quickly from a relatively small set of primitive operations.
We begin in Section 2.1 by looking in more detail at traditional approaches to managing
array software. Section 2.2 describes the concept underlying our own structured
approach. Next, we describe how to compose these RAID operations, or programs, with
graphs in Section 2.3 before discussing how to execute them in Section 2.4. Finally, in
Section 2.5 we discuss an algorithm for reconstructing data when a disk fails.

2.1 Traditional Approaches in Managing Array
Software are Suboptimal

As we have already said, redundant arrays have typically been designed in an ad hoc
fashion, each organization developed to address particular needs and each customized to
handle specific error conditions. It is this customized error recovery that has particularly
added to the complexity of array software and that has contributed to the difficulty in
managing array software. Traditionally, array designers have adopted one of two
approaches to error recovery: forward error recovery and backward error recovery.

Briefly, forward error recovery requires anticipating all possible errors and manually
coding actions for completing operations once an error has occurred. This approach
requires hundreds of thousands of lines of code with the possibility of overlooked
errors. While custom-designed code from a complete understanding of all error vectors
allows the software to achieve near-optimal performance, the error-recovery code must
be re-written to handle a new set of error vectors if the code is to be reused for a similar
but distinct application. As long as the set of vectors is relatively small, this task is not
too difficult and, in fact, this approach is the dominant method of error recovery in gen-
eral-production software.

Of course, many of the error vectors may be consolidated and treated similarly, reducing
the number of unique cases which must be handled. For example, if parity has failed in
the middle of a large write operation, the remaining data writes may continue unaf-
fected, regardless of their current disk state (old or new). However, this does not elimi-
nate the problem of extending existing code to support new array operations. This is
because the remaining error vectors are still a function of error context, and as new
array operations are introduced, that context will change, thereby requiring changes in
error-recovery code.

Finally, verifying code constructed in this fashion can be tedious and prone to mistakes.
To demonstrate that it is correctly implemented, each RAID operation must satisfy a set
of invariants, rules which are always true for a consistent array. Ensuring correctness
requires identifying each error scenario and demonstrating that the code correctly han-
dles each error vector. Automating this process is possible if the code structure is well
defined, perhaps in the form of a state machine [Clarke82, Clarke94]. However, because
of the ad hoc nature of code using forward error recovery, hand analysis is required.

Ideally, redundant-disk-array software would be constructed without regard for the con-
text in which errors occur. This implies that when, for example, a disk read fails, only

Treating RAID Operations as Programs

RAIDframe: A Rapid Prototyping Tool for RAID Systems 39

Version 1.0 8/29/96

the very general process of recording the fact that a disk has failed would need to be
implemented. The implications of the error (e.g., failure to read non-overwrite data dur-
ing a “reconstruct write”) would be irrelevant, making the software completely indepen-
dent of array architecture.

Database systems have achieved this simplicity, allowing programmers to create new
transactions with little regard for error recovery. This is accomplished by guaranteeing
that the operations that compose the transaction are atomic and undoable. When an error
that causes an atomic operation to fail occurs, the programmer is presented with the illu-
sion that the operation never occurred. Furthermore, thesystem undoes the effects of the
previously completed operations, completely removing all effects of the failed transac-
tion. With the burden of detecting and recovering from errors delegated to the underly-
ing system, the programmer is left with the relatively straightforward task of creating
transactions that begin in a consistent system and commit only consistent state changes
to the system.

The approach used to achieve this simplicity, backward error recovery, requires a dura-
ble log which records the effects of operations as they complete. When it is determined
that a transaction has failed, the contents of the log are used to undo the previously com-
pleted operations. Unfortunately, maintaining this log may be expensive—in addition to
the resources required to store the log, additional work may be required to create the
information which is stored in the log.

For example, consider a large write operation in a RAID level 5 array that overwrites
data and parity with new information. To guarantee that each of these write operations is
undoable, the previous contents of the data and parity must be stored in the log. Instead
of just overwriting each one, each disk operation must now read and write data and par-
ity, doubling the total workload of the disks and decreasing the response time and
throughput of the system. If a disk operation fails, then the saved state is restored; and,
while the system restores state, processing stops.

Our strategy is to address the limitations of both forward error recovery and backward
error recovery and to provide criteria for using each, thereby enabling error recovery to
be automated, transparent, and verifiably correct. Specifically, forward error recovery is
easy if no case analysis is required; backward error recovery is easy if there is no state to
save and restore. We call our approach roll-away error recovery because it is a hybrid
approach. We will describe how roll-away error recovery works in more detail in
Section 2.4.3 on page 49

2.2 Treating RAID Operations as Programs

As we discussed in Section 1.2.2.3 on page 22, the array controller—however imple-
mented—maps user read and write operations (such assmall write anddegraded-mode
read) to a relatively small set of corresponding disk operations. These operations, which
we will refer to asprimitive operations throughout the remainder of this document,
include operations for disk access (such asdisk read and exclusive-or), redundancy
computation, and resource allocation (such as memory buffers). Because primitive
operations are the basic actions used by the array software to control disks, they can be

Managing the Complexity of Array Software

40 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

thought of as instructions or steps, and when constraints upon their sequencing are
imposed, they can be used to construct RAID operations in a programmatic fashion.

By treating RAID operations as programs, we are able to minimize the number of code
changes required to extend the software. The best-known method for doing this is to
create modular code which isolates functions that are known to change orthogonally
with architecture [Meyers78].

FIGURE 8 Isolating Common Infrastructure

As Figure 8 shows, the most obvious functions that vary with array architecture are data
encoding, information layout, and operation structure. For example, recall from Chapter
1 that the only difference between RAID levels 4 and 5 is the manner in which informa-
tion is distributed across the disks in the array. By isolating device-specific code from
the code that defines the array architecture and by requiring that the device software
handle all device-specific errors, we are able to provide an infrastructure which allows
array designers to build a variety of architectures without having to consider the details
of the underlying device actions.

In order to understand how primitive operations can be used to compose RAID opera-
tions, we will first look at the set of primitive operations most commonly used. In
Section 2.2.1 through Section 2.2.2 we will then describe how to create pass-fail primi-
tives and how to create RAID operations from primitive operations.

2.2.0.1 Primitive Operations Commonly Used in Redundant Disk Arrays
In addition to disk drives, the most popular devices sold today for array construction
include: memory managers, lock managers, arithmetic units, and parity logs. Table 2
summarizes the primitive operations provided by these devices and the effects of the

Infrastructure code, which provides the primitive operations from which array oper-
ations are implemented, appears in the lower half of the diagram. Architecture-spe-
cific code, such as data encoding, appears in the upper half. When a new architecture
is implemented, the infrastructure is unchanged, restricting changes to modules that
contain array-specific code.

disk I/O

encoding

paritylock
manager logarithmetic

layout array operations

memory
manager

Treating RAID Operations as Programs

RAIDframe: A Rapid Prototyping Tool for RAID Systems 41

Version 1.0 8/29/96

operations. These devices may be constructed from hardware, software, or some combi-
nation.

A memory manager is used to negotiate the use of buffers from a shared pool. Similarly,
the lock manager maintains a set of locks, granting either shared or exclusive ownership
to competing processes. The arithmetic unit provides operations that perform data
encoding and decoding functions, such as bitwise exclusive-or, which is used in parity
encodings, and nonbinary polynomial multiplication, which is used in Reed-Solomon
encodings.

2.2.1 Creating Pass-Fail Primitive Operations

Before we can automate array error recovery transparently, it is necessary for us to dis-
tinguish between errors at the device level and those at the array level. Isolating device-
specific recovery from array-specific error recovery enables us to create RAID opera-
tions without regard for the internal details of the devices. To do this, we abstract primi-
tive operations with a wrapper that is responsible for creating the illusion of pass-fail
devices, in whichpass implies successful completion andfail implies the presence of a
permanent fault [Courtright94].

By allowing primitive operations to returnfail only when an unrecoverable device fault
is detected, we are further able to restrict the class of errors observable by RAID opera-
tions to those that require handling at the array level. Otherwise, primitive operations
returnpass, completely hiding from RAID operations the effects of any device faults
that may have been detected. When primitive operations do fail, we want them to fail
atomically (i.e., all-or-nothing state changes), but we don’t require it. We will defer dis-
cussing how nonatomic failure is handled until Section 2.4.3, which describes error
recovery.

To ensure thatpass implies that a primitive operation has successfully completed, we
allow primitive operations to commit only those state changes that are consistent with

TABLE 2. Primitive RAID operations

Device Primitive Operation Effect

disk Rd copy data from disk to buffer

disk Wr copy data from buffer to disk

memory manager MemA acquire a buffer

memory manager MemD release a buffer

lock manager Lock acquire a lock

lock manager Unlock release a lock

arithmetic XOR xor contents of buffers

arithmetic Q generate a Reed-Solomon code

arithmetic Q Reed-Solomon decode

read cache probe if hit, return shared lock and pointer

read cache copy copy data from cache to a buffer

Managing the Complexity of Array Software

42 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

their behavior. For example, a disk write is required to write the correct ECC informa-
tion to disk when writing data to a sector.

2.2.2 Constructing RAID Operations from a Set of Primitive Operations

As we have already said, RAID operations are composed from a relatively small set of
primitive operations; the order in which primitive operations are executed is solely a
function of the data and control dependencies that exist between them. Therefore, it is
important for the array designer to know the location of necessary dependencies that
exist between primitive operations in order to design RAID operations well. Omitting
dependencies will result in erroneous behavior, while extra dependencies may reduce
concurrency and unnecessarily degrade performance. Table 3 lists the four basic types
of dependencies that may exist between primitive operations.

2.2.3 Summary

Defining an array operation is a straightforward process: our primary concern is to
abstract device-specific operation from the array-specific operation, which is the exter-
nal interface of the operation. To do this, we have required that primitive operations be
responsible for detecting all faults and for tolerating those faults which are specified to
be tolerable by the device fault model. Primitive operations which complete success-
fully, either by avoiding or tolerating a device fault, returnpass to indicate success.
Primitive operations returnfail only when they are unable to recover from a fault. To
compose RAID operations, the array designer must know where dependencies exist
between primitive operations.

2.3 Representing RAID Operations as Graphs

Creating storage operations from a set of primitive operations is a technique that has
been used for more than twenty years. The best-known example of this is thechannel-
program approach used in the IBM System/370 architecture [Brown72]. At the time it
was introduced, much of the internal workings of a disk drive were exposed to the sys-
tem, requiring external control of arm positioning, sector searching, and data transfer.
Channel programs isolated these details from users by providing an abstract interface
that was closer to that found in today’s SCSI drives [ANSI91]. The programs are repre-
sented as a linear array of sequentially parsed primitive operations.

Similar methods for abstracting the details of storage operations were recently proposed
in the distributed, redundant-disk-array architecture called TickerTAIP [Cao94]. In

TABLE 3.

Dependence Explanation

True read after write data dependence

Anti write after read data dependence

Output write after write data dependence

Control dependence of a primitive operation upon the comple-
tion of another

Representing RAID Operations as Graphs

RAIDframe: A Rapid Prototyping Tool for RAID Systems 43

Version 1.0 8/29/96

TickerTAIP, the work required to maintain valid data encodings is performed bywork-
ers, which are distributed throughout the array. To simplify managing simultaneous
primitive operations occurring across the array, TickerTAIP uses a centralized table in
which each entry contains a list of operations for a worker to execute. Once an array
operation is initiated, each worker is responsible for sequencing its own activities.
Unlike channel programs, TickerTAIP achieves parallelism within an array operation
because multiple workers may execute primitive operations concurrently.

These two examples clearly show that it is possible to construct RAID operations from a
set of primitive operations using tables. However, we believe that there is a better
approach based upondirected, acyclic graphs (DAGs), which will allow designers to
reason about the ordering of primitive operations. Because we have decided to treat
RAID operations as programs, we are able to use DAGs to model primitive operations
and the ordering constraints that bind them together—the visual information supplied
by DAGs is intuitive and aids in analyzing the design of RAID operations. The follow-
ing subsection describes how DAGs are created.

2.3.1 Directed, Acyclic Graphs (DAGs)

When using DAGs to model RAID operations, the primitive operations described in
Table 2 on page 41 are represented as the nodes of the graph. Figure 9 illustrates a small
write operation represented as a directed acyclic graph. Each primitive operation is rep-
resented by a single node, and therefore the properties of a node (e.g., atomic failure)
are inherited from the defining properties of the primitive operations.

Notice that the nodes in the graph of Figure 9 do not convey the context (e.g., “read old
parity”) of each primitive operation. This is because the context is known only by the
designer of the graph. Section 2.4.3 shows how we capitalize upon this independence of
context to achieve mechanized execution.

As we already said in Section 2.2.2 on page 42, executing primitive operations within
an array operation is constrained by the presence of control and data dependencies.
Dependencies are represented in a DAG by the directed arcs which connect the nodes of
the DAG. An arc is drawn from a parent node to a child node if executing the child is
dependent upon the parent node. Because the type of dependence represented by the
arcs will not be used to control execution, the arcs are left unlabeled. Furthermore, a sin-
gle arc may represent the presence of one or more data or control dependencies. We
defer discussing further the rules for executing DAGs until Section 2.4 on page 47.

Managing the Complexity of Array Software

44 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

FIGURE 9 RAID Level 4/5 Small-Write Graph

2.3.2 Simplifying Constraints for DAGs

We have imposed a number of constraints on DAGs to simplify executing them. First, a
node that is a direct descendent of a predicate node may have no parents other than the
predicate node. Second, because DAGs are by definition acyclic, there cannot be any
cycles in RAID operations; eliminating cycles does not eliminate predicate nodes and
conditional execution.1 An array designer can include a node which selectively enables
one or more branches for execution. Finally, all DAGs must berooted graphs, meaning
that all graphs begin with a singleroot or source node. The source node has the property
that it has no parents. Similarly, all DAGs must have a single sink node, a node which
has no children. If a graph does not contain a single source or sink node, aNOP (no
operation) node can be inserted. Adding an extraNOP node to create a single source or
sink does not have any effect upon the array operation represented by the graph.

1. The current release of RAIDframe does not contain predicate nodes, nor does it support their
processing.

This illustration presents the small write operation. The nodes of the graph are pass-
fail actions and the arcs represent the presence of control or data dependencies.

In this graph, theRd-XOR-Wr chain on the far right performs the read-modify-write
of parity. TheRd-Wr chains represent the reading of old data and the overwriting of
new data. The fact that parity is computed from the old data is represented by the
presence of theRd-XOR arcs (true data dependencies). TheRd-Wr arcs represent
anti (read after write) data dependencies. Finally, aNOP (no-operation) node has
been added to simplify the structure of the graph, guaranteeing a single sink (tail)
node.

NOP

Rd

Wr Wr

NOP

RdRd

XOR

Wr ● ● ●

● ● ●

Representing RAID Operations as Graphs

RAIDframe: A Rapid Prototyping Tool for RAID Systems 45

Version 1.0 8/29/96

Besides modeling RAID operations, we have also incorporated automated roll-away
error recovery into the DAG structure. The following section describes the added
requirements for structuring DAGs to enable them to handle errors when the array oper-
ates.

2.3.3 Incorporating Roll-Away Error Recovery Within DAGs

As we said earlier, roll-away error recovery is a hybrid approach: when appropriate, it
uses forward error recovery without accounting for all possible error scenarios; when
necessary, it uses backward error recovery without the cost of logging state information.
A more detailed discussion of roll-away error recovery can be found in William V.
Courtright II’s dissertation, which is currently in progress. Here we will explain the
basic method for mechanizing error recovery through the structure and composition of
DAGs.

To understand how roll-away error recovery works, it is important first to recall that
redundant arrays encode data to survive disk faults (See “Why These Trends Necessitate
Higher Availability” on page 11). Codewords are composed of two types of symbols:
one for data, the other for a check (for example parity). In order for redundant arrays to
tolerate faults—meaning the loss of one or more symbols without losing information—
the set of valid codewords is constrained. Primitive operations change data symbols; for
example, they write new data. This in turn requires modifying the corresponding check
symbols; that is, they must then write new parity. If a primitive operation fails before it
has completed—that is, one or more symbols have been modified on disk—the code-
word can be left in one of a large number of states.

Because the direction of error recovery depends upon when a primitive operation fails,
it is essential to determine where in the RAID operation all modified symbols can be
safely committed to disk. To establish this place, which we call thecommit barrier, we
have divided RAID operations into two phases in which codewords are modified only in
phase two. Within the DAG structure, we add aCommit node to distinguish between
these two phases.

In the first phase, no existing codewords can be modified; here, nodes within a DAG
represent primitive operations that can generally be undone easily, such asdisk read or
XOR. Obviously, the second phase of a RAID operation is where we place those primi-
tive operations that modify symbols—however, not all RAID operations have two
phases. For example, because a read operation does not modify any codewords, it does
not have a phase two. On the other hand, a write operation (shown in Figure 10) clearly
modifies codewords; in order for the write operation to progress to phase two, all sym-
bols that are to be updated must be available. Section 2.4.3 on page 49, which follows a
discussion of how DAGs are executed, explains how the error-recovery mechanism
automatically executes when an error is detected.

Managing the Complexity of Array Software

46 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

FIGURE 10 RAID Level 4/5 Small-Write Graph with Commit Node

To establish the commit barrier when constructing a DAG for a RAID operation, the
array designer must first identify all those nodes that modify a symbol. Next, the
designer must create control dependencies from the nodes’ parents to the nodes them-
selves. This will guarantee that no symbols will be modified until all modified symbols
can be safely committed to disk. In short, commit nodes are generally the sink node of
read operations and the parent of all symbol update actions that are found in write oper-
ations.

2.3.4 Verifying the Correctness of DAGs

Because we model RAID operations as well-structured graphs, correctness verifica-
tion—that is, the process of demonstrating that an array’s behavior is consistent with its
specified behavior—is greatly simplified. Furthermore, automating this task is now pos-
sible. Given that DAGs consist of well-defined primitives, it is possible to think of them
as state machines. Through model checking, used to verify the correctness of state
machines [Clarke82, Clarke94], RAID designs can be verified immediately, long before
actual implementation begins [Wing96].

Verifying that RAID operations are correctly implemented requires that graphs meet
three criteria. First, primitive operations must be valid. Second, valid codewords for

NOP

Rd

Wr Wr

NOP

RdRd

XOR

Wr ● ● ●

● ● ●

Commit

A Commit node was inserted to prevent writes of new data from proceeding until all
reads of old data and the computation parity have been completed.

Executing RAID Operations

RAIDframe: A Rapid Prototyping Tool for RAID Systems 47

Version 1.0 8/29/96

RAID operations must be maintained; for example, to maintain valid parity for RAID
Level 5, the sum of the parity bits must always equal 0. Third, graphs must recover from
errors using roll-away handling, which we describe briefly in Section 2.4.3.

2.4 Executing RAID Operations

Array operations modeled as DAGs may be executed directly without first being trans-
lated into an intermediate form. More importantly, modeling with graphs has enabled us
to simplify and automate error recovery. To do this, we employ an undo-redo error
recovery scheme, similar to the one used in the System R recovery manager [Gray81].
In our approach, if a primitive operation fails at any time during the execution of a
graph, the execution mechanism will automatically undo the effects of the previously
completed primitives.

In this section, we describe node states and their transitions, how to execute a graph, and
how to structure graphs to incorporate roll-away error recovery. To guarantee correct
operation in the first two subsections, we assume that all primitive operations are atomic
and undoable. We relax these requirements in Section 2.4.3 on error recovery, which
allows elimination of much of the overhead (both performance and storage) required to
achieve undoable atomic primitives. .

2.4.1 Node States and Transitions

In addition to a primitive, each node in a graph has three other fields, summarized in
Table 4:do action, undo action andstate. Thedo action is used during normal execu-
tion and theundo action is used during error recovery. Each of these fields contains the
name and parameters of an action.

Each node in a graph may be in one of the seven states summarized in Table 5. The
allowable transitions between these states are illustrated in Figure 11.

TABLE 4.

Node Field Description

do action function executed during normal processing

undo action function which removes the effects of the do action

state current state of the node

Managing the Complexity of Array Software

48 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

FIGURE 11 Node State Transitions

When a graph is initially submitted for execution, all nodes are in thewait state. A node
enters theskip state if its parent is a predicate node which determines that the branch
that contains the node will not be executed. Once entered, a node will never leave the
skip state.

TABLE 5.

Node State Description

wait blocked, waiting on parents to complete

fired execution of do action in progress

pass execution of do action completed successfully

fail execution of do action failed

skip node will not be executed

error recovery execution of undo action in progress

undone previously executed node has since been undone

All nodes in a graph begin in the wait state. When a graph successfully com-
pletes execution, all nodes are in either thepass or skipped states. Theerror
recovery andundone states, described later in Section 2.5, are reached only if
the operation fails.

wait

fired skipped

fail pass

branch not taken
node ready to be executed

execution failed
execution successful

execute node’s undo action

undone

node undo complete

undo

Executing RAID Operations

RAIDframe: A Rapid Prototyping Tool for RAID Systems 49

Version 1.0 8/29/96

Thefired state is entered if at least one of its parents is in thepass state and the remain-
der of its parents is in either theskip or pass state. When a node enters thefired state,
its do action is executed. The node remains in thefired state until thedo action com-
pletes. The node then enters either thepass or fail state, depending upon the outcome of
this execution. If a completed node must be undone, the node first enters theerror
recovery state which indicates that the node’sundo action is being executed. Once the
undo action completes, the node enters theundone state. The error-recovery procedure,
which is responsible for moving nodes to theundone state, is described in further detail
in Section 2.4.3.

2.4.2 Executing DAGs Without Errors

Executing a graph, for example the graph shown in Figure 9 on page 44, begins with the
source (head) node and completes with thesink (tail) node. This direction of execution,
from source to sink, is referred to asforward execution throughout the remainder of this
document. The source node is executed and, assuming it completes successfully (that is,
it returnspass), the node enters thepass state.

If the graph does not contain predicate nodes (which is the case with the current RAID-
frame release), any node can be executed (i.e., enter thefired state) once all of its par-
ents have reached thepass state. Assuming all nodes complete successfully, this
process continues until the sink node enters thepass state; at this point, the execution
of the graph is complete and the RAID operation is declared to be successful.

2.4.3 Handling Errors When Executing DAGs

Because device-specific error recovery is removed from the structure of the graph, we
were able to define a general execution mechanism which automates handling of errors
due to failed primitives. This mechanism, together with a library of RAID operations,
will allow array architectures to be implemented rapidly.

As we explained in Section 2.3.3, we have divided RAID operations into two phases to
determine the direction of roll-away error recovery. If an error occurs during phase one
of a RAID operation, as shown in Figure 12, the error-recovery mechanism rolls back-
ward, releasing resources. At this point, the system substitutes a new graph for the failed
graph and retries the operation. If an error is detected during phase two, as shown in
Figure 13, the error-recovery mechanism completes the RAID operation—when this
happens, all symbols are simultaneously updated. To an outside observer, it would
appear as if the failure(s) occured after the RAID operation completed.

In the next section, we describe the mechanism we have developed that the array uses to
recover from a disk failure. We present the library of DAGs provided in the current
release of RAIDframe, and the prototyping framework that incorporates our approach to
modeling and executing RAID operations, in Appendix A.

Managing the Complexity of Array Software

50 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

FIGURE 12 Handling Errors Prior to Commit Point

The failure of theRd node (indicated in bold) occurs prior to the commit point. This
causes forward execution to halt and roll back to begin. Roll back works backward
through the graph from the point of failure, undoing the previously completed
nodes. If a failure occurs prior to the commit point, the system appears as if the
graph never executed.

NOP
pass

Rd
pass

Rd
fail

XOR
wait

Commit
wait

Wr
wait

Wr
fired

NOP
wait

NOP
undone

Rd
undone

Rd
fail

XOR
wait

Commit
wait

Wr
wait

Wr
undone

NOP
wait

fo
rw

ar
d

ex
ec

ut
io

n

ro
ll

ba
ck

Reconstructing Data On-line When a Disk Fails

RAIDframe: A Rapid Prototyping Tool for RAID Systems 51

Version 1.0 8/29/96

FIGURE 13 Handling Errors After Commit Point

2.5 Reconstructing Data On-line When a Disk Fails

In Chapter 1 we introduced the need for a process in which the array restores itself to the
fault-free state following a disk failure. In this section, we provide a brief description of
a disk-oriented algorithm (taken from [Holland94]) for reconstructing lost data into
spare disk space. For a more complete discussion of reconstruction algorithms, includ-
ing performance evaluations and optimizations of the disk-oriented algorithm, please
refer to Chapter 4 in [Holland94].

2.5.1 Disk-Oriented Reconstruction

Not only must a single-fault-tolerant disk array recover from the loss of a disk, it should
be able to effect this recovery without taking the system off-line. This is implemented
by maintaining one or more on-line spare disks in the array. When a disk fails, the array
switches to degraded mode as described in Chapter 1; at the same time, it also invokes a
background reconstruction process to recover from the failure. This process succes-
sively reconstructs the data and parity units that were lost when the disk failed and
stores them on the spare disk. The mechanism by which this is accomplished is called

Because the leftmost Wr node failed after the commit point had been reached, forward
execution continues. The rightmost Wr node completes successfully as does the sink
(NOP) node. If a failure occurs after a commit point, the sink node is always reached
and the system appears as if the successful completion of the graph was followed by a
failure.

NOP
pass

Rd
pass

Rd
pass

XOR
pass

Wr
fail

Wr
fired

NOP
wait

NOP
pass

Rd
pass

Rd
pass

XOR
pass

Wr
fail

Wr
pass

NOP
pass

fo
rw

ar
d

ex
ec

ut
io

n

ro
ll

fo
rw

ar
d

Commit
pass

Commit
pass

Managing the Complexity of Array Software

52 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

the reconstruction algorithm. Once all the units have been recovered, the array returns to
normal performance and is once again single-failure tolerant, and so the recovery is
complete. Prior to Mark Holland’s thesis work, the default algorithm for reconstructing
data from a failed disk wasstripe-oriented; in his thesis, Mark demonstrated adisk-ori-
ented algorithm that performs substantially better than the stripe-oriented one. The disk-
oriented algorithm createsC reconstruction processes, where C represents the number
of disks in the array not including the spare. Each of theC-1 processes associated with a
surviving disk execute the following loop:

repeat

1. Find lowest-numbered unit on this disk that is needed for reconstruction.

2. Issue a low-priority request to read the indicated unit into a buffer.

3. Wait for the read to complete.

4. Submit the unit’s data to a centralized buffer manager for XOR or block the process
if buffer manager has no memory to accept the unit.

until (all necessary units have been read)

The process associated with the replacement disk executes:

repeat

1. Request the next sequential full buffer from the buffer manager.

2. Block the process if none are available.

3. Issue a low-priority write of the buffer to the replacement disk.

4. Wait for the write to complete.

until (the failed disk has been reconstructed)

The buffer manager provides a central repository for data and parity from parity stripes
that are currently “under reconstruction.” When a new buffer arrives from a surviving-
disk process, the manager XORs the data into an accumulating “sum” for that parity
stripe and notes the arrival of a unit for the indicated parity stripe from the indicated
disk. When it receives a request from the replacement-disk process, it searches its data
structures for a parity stripe for which all units have arrived, deletes the corresponding
buffer from the active list, and returns it to the replacement-disk process.

The advantage of this approach is that it is able to maintain one low-priority request in
the queue for each disk at all times, which means that it will absorb a significant portion
of the array’s bandwidth that is not absorbed by users. This approach yields substan-
tially faster reconstruction than alternative approaches.

There are two implementation issues that need to be addressed in order for the above
algorithm to perform as expected. The first relates to the amount of memory needed, and
the second to the interaction of reconstruction accesses with updates in the normal
workload. The following two sections discuss these implementation issues.

Reconstructing Data On-line When a Disk Fails

RAIDframe: A Rapid Prototyping Tool for RAID Systems 53

Version 1.0 8/29/96

2.5.2 Buffer Memory Management

In the disk-oriented algorithm, transient fluctuations in the arrival rate of user requests
at various disks can cause some reconstruction processes to read data more rapidly than
others. The buffer manager must store this information until the corresponding data or
parity arrives from slower reconstruction processes, and thus the buffering requirements
of each individual reconstruction process vary over time. It’s possible to construct
pathological conditions in which a substantial fraction of the data space of the array
needs to be buffered in memory, and so it’s necessary to define a buffer memory man-
agement policy for the disk-oriented algorithm.

The amount of memory needed for disk-oriented reconstruction can be bounded by
enforcing a limit on the number of buffers employed. If no buffers are available, a
requesting process blocks until a buffer is freed by some other process. We have divided
the buffer pool into two parts: each surviving-disk reconstruction process has one buffer
assigned for its exclusive use, and all remaining buffers are assigned to a “free buffer
pool.” A surviving-disk process always reads units into its exclusive buffer, but then
upon submission to the buffer manager, the buffer manager transfers the data to a buffer
from the free pool, and then installs this buffer in its data structures. This division of
buffers simplifies the code by assuring that there is always a free buffer into which to
read data or parity when a reconstruction access arrives at the head of a disk queue. A
buffer stall condition occurs only when there are no free buffers available into which to
transfer the incoming unit, at which point the corresponding reconstruction process has
no outstanding I/O requests. Only the first process submitting data for a particular parity
stripe must acquire a free buffer because subsequent submissions for that parity stripe
can be XORed into this buffer. Thus this approach is able to maintain as many parity
stripes under reconstruction as there are buffers in the free buffer pool.

Forcing reconstruction processes to stall when there are no available free buffers causes
the corresponding disks to idle respecting reconstruction. For our purposes, a relatively
small number of free buffers suffices to achieve good reconstruction performance.
There should be at least as many free buffers as there are surviving disks, so that in the
worst case each reconstruction process can have one access in progress and one buffer
submitted to the buffer manager.

2.5.3 Interaction with Writes in the Normal Workload

The reconstruction accesses for a particular parity stripe must be interlocked with user
writes to that parity stripe because a user write can potentially invalidate data that has
been previously read by a reconstruction process. This problem applies only to user
writes to parity stripes for which some (but not all) data units have already been fetched;
if the parity stripe is not currently “under reconstruction,” then the user write can pro-
ceed independently.

We handle this problem by beginning a conflicting user write only after the desired
stripe’s reconstruction is complete. This approach is memory-efficient and does not
waste disk bandwidth, but if it is implemented as stated, a user write may experience a
very long latency when it is forced to wait for a number of low-priority accesses to com-
plete. The disk-oriented algorithm overcomes this drawback by expediting the recon-
struction of a parity stripe containing the data unit that is about to be written by the user.

Managing the Complexity of Array Software

54 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

When the algorithm detects a user write to a data unit in a parity stripe that is currently
under reconstruction, it elevates all pending accesses for that reconstruction to the prior-
ity of user accesses. If there are any reconstruction accesses for the indicated parity
stripe that have not yet been issued, the algorithm issues them immediately, at regular
priority rather than low priority. The user write triggering the re-prioritization stalls
until the expedited reconstruction is complete, and the algorithm allows it to proceed
normally.

Note that a user write to a lost and as-yet unreconstructed data unit implies that an on-
the-fly reconstruction operation must occur because the written data must be incorpo-
rated into the parity and there is no way to do this without the previous value of the
affected disk unit. Thus, this approach to interlocking reconstruction with user writes
does not incur any avoidable disk accesses. Also, forcing the user write to wait for an
expedited reconstruction does not significantly elevate average user response time,
because the number of parity stripes that are under reconstruction at any given moment
(typically less than about 3C) is small with respect to the total number of parity stripes
in the array (many thousand).

A potential problem arises if a free reconstruction buffer has not yet been acquired for
the parity stripe whose reconstruction is to be expedited, and none are available. The
algorithm simply allocates a new buffer and frees it when the reconstruction is com-
plete. This may not be acceptable for some implementations because the amount of
buffer memory available may be strictly limited and completely in use. There are a
number of potential solutions to this problem, ranging from reserving a few buffers for
this purpose, to stealing an in-use buffer and forcing the reconstruction of the corre-
sponding parity stripe to be restarted. We did not pursue these avenues as the problem is
minor and highly transient.

2.5.4 Summary

This section describes the disk-oriented reconstruction algorithm which is designed to
absorb for reconstruction all of the disk-array bandwidth not absorbed by the users. The
algorithm keeps every surviving disk busy with reconstruction reads at all times, unless
blocked by the inability to acquire a buffer to hold the reconstruction unit. Splitting the
buffer pool into “exclusive” and “free” parts and forcing processes to block only at
buffer submission time assures maximally efficient buffer usage because a reconstruc-
tion process cannot block unless there are zero free buffers in the system. Expediting the
reconstruction of parity stripes for which a user write is pending preserves software
boundaries in that the code controlling the user write operations is maintained sepa-
rately from the code controlling the reconstruction process. The only modification
required to the user-write code is that it must make a single call into the reconstruction
module prior to initiating a write operation so that a pending reconstruction operation, if
any, can be forced to complete before the write occurs.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 55

Version 1.0 8/29/96

CHAPTER 3 RAIDframe: A
Framework for
Implementing New
Designs

We now describe RAIDframe, a framework for implementing RAID designs, intended
for use in researching, verifying, testing and producing RAID systems. This chapter
presents an overview of RAIDframe features and the RAID architectures implemented
in the current release, then describes its internal architecture and the accompanying
reconstruction architecture, and concludes by briefly describing the suite of test applica-
tions packaged with the RAIDframe release which can be used to create a variety of
workloads for controlled testing.

3.1 Features

RAIDframe has a number of features that support experimenting and verifying
advanced disk-array designs, including:

• extensibility

• correctness verification

• mechanized error recovery

• disk-oriented reconstruction

• applications for controlled testing of workloads

• synthetic workload generation

• trace playback

• performance monitoring

• debugging facilities

• multiple front ends for the user level

Array architectures implemented in RAIDframe can be evaluated in three distinct exe-
cution environments: a stand-alone application controlling UNIX “raw” disks, an event-

RAIDframe: A Framework for Implementing New Designs

56 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

driven simulator, and a Digital UNIX device driver capable of performing block and
character operations (and thus, capable of mounting a standard file system on a set of
disks). In all three environments, the code unique to a disk-array architecture (mapping,
caching, DAGs, primitive operations, and disk queueing) is reused without change. In
the following sections, we describe each of these environments, the types of uses each
one is intended to support, and the limitations of each. Then we list the RAID architec-
tures currently implemented in the RAIDframe. We end the section with a figure show-
ing a case study of the performance of microbenchmarks in RAIDframe.

3.1.1 RAIDframe as a Stand-Alone User Application

As a stand-alone user application, RAIDframe is a process that accesses real disks
through the UNIX “raw” device interface. RAIDframe itself is provided as a library,
libraidframe.a . Applications may link this library into their address space and
treat RAIDframe as a flat, addressable storage space (much like a single large file). This
enables users to verify and benchmark their work without modifying the kernel, which
can greatly reduce time for developing and evaluating new RAID architectures, disk-
queueing policies, DAG constructs, et cetera.

There are several front ends to this user-level library available with RAIDframe. One
such (driver) can accept either a synthetic workload from a workload generator or a
trace file of I/O activities. Because the parameters of the synthetic workload are pre-
cisely controllable, array architects can investigate specific array-performance effects.
This front end also provides various debugging and stress tests for architectures and pol-
icies, including forced reconstruction, constant workload, and layout checking.

The stand-alone user application shares another front end,rf_genplot , with the
event-driven simulator (described in the next section). Therf_genplot front end
provides array architects with a means for comparing how different RAID architectures
perform running a simulated workload: it runs workload scripts against various RAID
configurations and outputs results into a file. Additionally, options allow users to graph
the results, either from a current stand-alone run or using results from a previous run to
generate graphs in multiuser mode.

Developing, testing, and instrumenting a RAID architecture at the user level enhances
portability and extensibility. Moreover, as shown in Figure 14, there is almost no differ-
ence in the measurements between in-kernel and stand-alone user-level RAIDframe
performance [Gibson95]—which means that array designers unable or unwilling to port
RAIDframe’s in-kernel implementation to their operating system can be confident of the
validity of user-level performance results. The main drawback of running RAIDframe
as a stand-alone user application is that only a single application may be run against the
disk array, and in doing so, may not have an access pattern identical to what it would be
if it were running through a file system (and, thus, potentially performing additional
meta-data accesses).

3.1.2 RAIDframe as an Event-Driven Simulator

The RAIDframe simulator exists to support analyses of configurations for which the
user has no hardware (for example, a new disk) or no interest in building (for example,
hundreds of disks in an array). The RAIDframe simulator is built on top of the Berkeley

Features

RAIDframe: A Rapid Prototyping Tool for RAID Systems 57

Version 1.0 8/29/96

RaidSim simulator [Chen90b, Lee91], which was further modified at CMU. In the sim-
ulator, the low-level disk operations are simulated by a configurable disk-geometry
model instead of being executed by a real disk; the geometry model is configurable to a
wide range of disks. The simulator, like the stand-alone application, uses either a syn-
thetic workload generator or a trace file for replay. Because it runs a synthetic workload
against simulated disks, the simulator provides results quickly—more quickly than the
versions running against real disks.

The simulator runs as a single-threaded, event-driven program that tracks disk-I/O time.
However, there are several disadvantages in using it. First, it is more difficult to run an
application against this simulator because it does not actually transfer data, and its
event-driven nature causes “virtual time” to pass more quickly than “wall time.” Next,
while the geometry model provides seek, rotate, and transfer information for each SCSI
I/O sent to any drive, it does not account for bus overhead or disk caching. Also, support
for verifying data correctness is not provided. The lack of support for bus overhead and
data verification can have significant impact on user results.

Like the previous configuration, the simulator provides its functionality in a library
(libraidframe_sim.a) which applications may link against. This enables many of
the same front ends to the real-disk user-level configuration to be used with this simula-
tor (with the caveat that the simulator is single-threaded and its routines are not reen-
trant; therefore, multithreaded tests are not supported).

3.1.3 RAIDframe as a Device Driver in the Kernel

RAIDframe also runs as a Digital Unix device driver capable of mounting a standard
file system on a set of disks (and supports standard file system operations, such as
newfs). This allows RAIDframe users to measure the performance of a disk array when
it is running a real workload (as opposed to the trace-driven or synthetic versions at the
user level). At this level, RAIDframe represents disks as either a raw or block device.

Because the device driver must be compiled in the kernel, any unstable code—such as a
bad memory access—can cause a machine crash. Therefore, it is recommended that new
disk-array architectures be developed in user mode before being installed in the kernel.

3.1.4 RAID Architectures Implemented in RAIDframe

RAIDframe is released with a variety of disk-array architectures that include not only
the basic RAID architectures that are in production today but also a number of experi-
mental architectures that are proposed by the research community. Table 6 lists the
architectures that have been implemented in RAIDframe. See Chapter 1, “Redundant
Arrays: A Brief Overview,” for descriptions of these architectures.

TABLE 6. RAID architectures and their support levels

Architecture Support Level

RAID level 0 Full

RAID level 1 Full

RAID level 4 Full

RAIDframe: A Framework for Implementing New Designs

58 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

RAID level 5 Full

RAID level 5 + Distributed sparing Full

Parity declustering Full

Distributed sparing Full

Parity declustering + Distributed sparing Full

Chained declustering Full

Interleaved declustering + Distributed sparing Full

EvenOdd no reconstruction

EvenOdd (declustered) no reconstruction

TABLE 6. RAID architectures and their support levels

Architecture Support Level

Internal Architecture

RAIDframe: A Rapid Prototyping Tool for RAID Systems 59

Version 1.0 8/29/96

FIGURE 14 Case-Study Peformance of Microbenchmarks in RAIDframe

3.2 Internal Architecture

RAIDframe’s internal architecture is partitioned into a relatively small set of modules; it
separates infrastructure, which does not need to change for users to add new array archi-

Random 4 KB Reads Random 4 KB Writes

0 200 400 600 800

Throughput (IO/sec)

0

100

200

300

R
es

po
ns

e
tim

e
(m

s)

Kernel Process: Real Disks

0 200 400 600 800

Throughput (IO/sec)

10

15

20

25

30

35

40

45

50

55

60

Kernel Process: Real Disks

0 200 400 600 800

Throughput (IO/sec)

0

100

200

300

R
es

po
ns

e
tim

e
(m

s)
User Process: Real Disks

0 200 400 600 800

Throughput (IO/sec)

10

15

20

25

30

35

40

45

50

55

60

R
es

po
ns

e
tim

e
(m

s)

User Process: Real Disks

RAID Level 0
RAID Level 1
RAID Level 4
RAID Level 5
RAID Level 6
Declustering

RAIDframe: A Framework for Implementing New Designs

60 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

tectures, from the remainder of the system, which users are expected to modify to create
and test new disk-array architectures.

As Figure 15 illustrates, RAIDframe is composed of eleven independent modules,
seven of which may be modified to support new architectures.

FIGURE 15 RAIDframe Modules

3.2.1 RAIDframe Infrastructure

This section describes modules which we consider to be infrastructure and do not intend
to be modified.

3.2.1.1 State Machine
User requests are processed by a central state machine, which is responsible for creating
graphs, submitting them for execution, et cetera. While the state machine is config-
urable, most architectures use a machine similar to the one illustrated in Figure 16 on
page 62. The following table lists the access states controlled by the state machine.

TABLE 7. States of the RAIDframe state machine

State Function

rf_MapState map user access

rf_LockState acquire stripe locks

rf_CreatDAGState select and create DAG(s)

rf_ExecuteDAGState execute DAG(s) that are ready

rf_ProcessDAGState postprocess completed DAGs

Memory
Mapping

Graph

DAG Creation

Primitive

Graph Disk-Queue
Module

Policy/Databases
(expected to be modified)

Operations
Disk

Interface

Infrastructure
(unchanging)

State Machine

Engine
Execution

Access States

Selection

Disk-Geometry
DatabaseManagement

Internal Architecture

RAIDframe: A Rapid Prototyping Tool for RAID Systems 61

Version 1.0 8/29/96

It is important to note that RAIDframe performs stripe locking and memory allocation
prior to creating a DAG.

rf_CleanupDAGState free a graph and stripe locks

rf_LastState null state (indicates end of sequence)

rf_IncrAccessCountState increase count of graphs in flight

rf_DecrAccessCountState decrease count of graphs in flight

rf_QuiesceState wait for the array to quiesce (no graphs in flight)

TABLE 7. States of the RAIDframe state machine

State Function

RAIDframe: A Framework for Implementing New Designs

62 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

FIGURE 16 RAIDframe Control Flow

3.2.1.2 Graph Execution Engine
The primary infrastructure module is the graph execution engine. This engine is respon-
sible only for fully exploiting the allowable concurrency within a DAG; that is, the
engine has no knowledge of the architecture embodied in the graph. Figure 15 illustrates
the structure of RAIDframe.

RAIDframe’s engine also incorporates a simple and uniform mechanism for handling
error conditions in the array. When any error condition occurs prior to the commit node,
the engine rolls back, undoing previous state changes. The engine then creates a new
graph and retries the operation. If an error occurs after the commit node, the engine rolls
forward and finishes executing the graph.

In this example, when a request arrives in the system, it is first sent to the mapping
module to compute the set of physical disk locations affected by the access. This
produces a data structure describing, for each stripe touched by the access, the mapping
of addresses in the RAID address space to physical disk units within each stripe. Next,
stripes containing parity information are locked to assure that concurrent writes to the
same stripe do not conflict in their parity updates. The access is then converted to a
graph and submitted for execution. If a failure occurs while a graph is processing,
recovery local to the failed graph leads to creating a graph appropriate for avoiding the
failure, if possible.

Map Addresses

Lock

Select DAG

Execute DAG

Unlock

Reconfigure Array

User Request

Complete

Good Bad

Mapping Library

Graph Selection

Graph Library

Graph Primitives

Disk Models
Event-Driven

Simulator

Queueing Disciplines

Simulation only

Mechanized InfrastructureArchitectural Policies

Internal Architecture

RAIDframe: A Rapid Prototyping Tool for RAID Systems 63

Version 1.0 8/29/96

3.2.1.3 Disk Interface
The disk interface module organizes pending disk requests according to queuing disci-
plines specified at the time of configuration; this allows users to optimize disk use as
needed. This is discussed further in Chapters 4 and 5.

3.2.2 Configurable RAIDframe Modules

The following sections describe the default implementations of RAIDframe’s config-
urable modules. Please see Chapter 5, “Extending RAIDframe,” for more information
about reconfiguring the modules.

3.2.2.1 Disk-Queue Module
In the current version, disk requests can be queued in RAIDframe or at the disk. The
number of requests allowed for queuing at the disk is configurable. Within RAIDframe,
multiple queueing policies are available, including FIFO, SSTF, SCAN, CSCAN and
CVSCAN. FIFO is First In First Out—requests are serviced in arrival order. Shortest
Seek Time First (SSTF) queueing specifies that the next request dispatched is the one
closest geographically to the previous request. SCAN specifies that the disk arm
traverses the disk from one end to another and back (two-way elevator algorithm), while
CSCAN specifies one-way disk sweeps (one-way elevator algorithm). CVSCAN is a
discipline that uses two parameters to queue disk requests. With CVSCAN, adding new
queuing disciplines can be achieved simply by assigning new values to the two parame-
ters. New disciplines can also be added to the disk-queue switch by specifying new
function calls forcreate, enqueue, dequeue, promote,and peek.

*For more information about CVSCAN, please refer to [Geist87].

3.2.2.2 Disk-Geometry Database
This database contains disk specifications used by the simulator. These specifications
include layout parameters (tracks per cylinder, number of zones, etc.) as well as perfor-
mance parameters (rpm, seek times, etc.).

3.2.2.3 Mapping
All accesses in RAIDframe go through a mapping module prior to locking the block
ranges in the disk array. The framework for the mapping is general to all architectures
and invokes architecture-specific mapping routines. The routines are typically short (for
example, 5 lines of C code). Each routine provides the ability for the mapping code to:

• map individual sectors and parity units for a given RAID address

TABLE 8. RAIDframe disk I/O queueing policies

Name Algorithm

fifo First In, First Out

cvscan CVSCAN*

sstf Shortest Seek Time First

scan Two-way Elevator

cscan One-way Elevator

RAIDframe: A Framework for Implementing New Designs

64 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

• identify a stripe for a given RAID address

• identify a parity-stripe ID for a given data-stripe ID

The mapping module maps an access in the RAID address space to the corresponding
set of physical disk addresses. The result is returned as a list of Access Stripe Map
(ASM) structures, one per stripe accessed. Each ASM structure contains a pointer to a
list of physical-disk-address structures which describe the physical locations touched by
the user access.

Note that this first-level mapping routine returns only static mapping information, that
is, the list of physical locations that will actually be read or written. Additional remap-
ping to physical location can be done at later stages of the access.

The mapping module also maps the parity. The physical-disk location returned always
indicates the entire parity unit, even when only a subset of it is being accessed. This is
because an access that is not stripe-unit aligned but spans a stripe-unit boundary may
require access to two distinct portions of the parity unit. At this point, however, the sys-
tem cannot determine which portion(s) of the parity unit will be needed. Instead, the
algorithm-selection code decides what subset of the parity unit to access.

3.2.2.4 Graph Selection
A graph-selection algorithm is required for each architecture. This algorithm, imple-
mented as a C routine, determines which graph from the graph library is to be used to
execute a specific user request (type, layout map), given the current state of the array.
By default, RAIDframe attempts to create one graph for each ASM (i.e., parity stripe).
However, if this is not possible, graphs are then selected on a per data unit (or even per
sector) basis.

3.2.2.5 Graph Library
The graph library contains the routines, such asCreateSmallWriteDAG() , that are
capable of creating graphs if called by graph selection. Each routine receives type and
physical mapping information and returns a pointer to a graph tailored for that request.
Adding new graphs requires installing new or extending existing creation functions.
The graphs that can be created by the graph-selection algorithm are shown in the
Appendix.

3.2.2.6 Primitive-Operations Library
The primitive-operations library contains the functions that abstract single device oper-
ations (for example,XOR, DISKRD, etc.) from which graphs are created. Primitives
delineate the failure domains that RAIDframe accommodates; that is, when a node fails,
the device associated with it is considered failed as well. Primitives are required to inde-
pendently detect and recover from soft errors.

TABLE 9.

Operation Function

DiskRead read from disk

DiskReadMirror issue disk read to disk with the shortest queue (RAID Level 1)

Reconstruction Architecture

RAIDframe: A Rapid Prototyping Tool for RAID Systems 65

Version 1.0 8/29/96

3.3 Reconstruction Architecture

In Chapter 2, we described the disk-oriented algorithm that Mark Holland implemented
and evaluated prior to RAIDframe’s development (See “Reconstructing Data On-line
When a Disk Fails” on page 51). We have incorporated this reconstruction algorithm
into the current RAIDframe package to allow RAID designers to simulate a disk failure
so that they can evaluate the performance of their systems while undergoing reconstruc-
tion.

In this section, we describe the reconstruction architecture currently implemented in
RAIDframe.

3.3.1 Reconstruction State Machine

The state machine in Section 3.2.1.1 controls the processing of user-initiated disk
accesses. However, when a disk fails, a separate state machine responsible for recon-
structing the lost data initiates a reconstruction thread and then processes reconstruction
requests in parallel with the user workload. Reconstruction requests are lower priority
than user-initiated ones; the reconstruction thread simply dispatches disk accesses in
batches until all data on the failed disk has been restored. The disk-oriented algorithm
allows reconstruction to keep one low-priority disk request in the queue for each physi-
cal disk at all times, maximizing the efficiency of reconstruction without significantly
penalizing response time for the system user.

3.3.2 Reconstruction States

When invoked, the reconstruction thread issues, through the locking and DAG layers, a
low-priority read request for the next unit on each disk required for reconstruction. As
each reconstruct read completes, its data is XORed into the accumulating “sum” for the
indicated stripe, and the next read request for that disk is issued. When the last unit asso-
ciated with a particular stripe has been read and summed, the reconstruction thread
issues a low-priority request for the now-reconstructed data to be written to a replace-
ment or spare disk.

DiskWrite write to disk

XOR compute bit-wise exclusive-or

NOP no operation

Q compute Reed-Solomon encoding

Q’ decode Reed-Solomon code

TABLE 9.

Operation Function

RAIDframe: A Framework for Implementing New Designs

66 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

FIGURE 17 RAIDframe Reconstruction Control Flow

3.4 Suite of Test Applications

In this section, we introduce the test suite we have included with the RAIDframe code
which will allow implementors to test their systems at the user level.

An important method for testing the operation of an array is by actually using it; how-
ever, placing the system within a real workload environment in order to test it is obvi-
ously not ideal. Therefore, the stand-alone application and simulator versions of
RAIDframe receive I/O requests from a workload file which can contain either 1) a
script that is interpreted by a synthetic workload generator, or 2) traces of actual disk
I/Os. For both of these versions of RAIDframe, the workload file is mandatory for oper-

Map Addresses

Lock Stripe(s)

Select DAG

Execute DAG

Unlock Stripe(s)

Reconfigure Array

User Request

Complete

Good Bad

User-Initiated Process

The reconstruction thread starts by quiescing the array. The thread sets up its inter-
nal state, queues one access request per surviving disk, and then re-enables the user
workload. From this time on, reconstruction proceeds in parallel with the applied
user workload. A new request is submitted to a surviving disk after a previous read
request is completed. Reconstruction completes when the reconstruction read
requests associated with all surviving disks have completed (i.e., they have submit-
ted their last stripe unit to the buffer manager).

Reconstruction Process

Disk Failure

Quiesce Array

Re-enable User Workload

Select Stripe

Lock Stripe

P
ar

al
le

l P
ro

ce
ss

in
g

Reconstruct Stripe

Unlock Stripe

Complete

Suite of Test Applications

RAIDframe: A Rapid Prototyping Tool for RAID Systems 67

Version 1.0 8/29/96

ating (the stand-alone application currently does not accept live user workloads,
although it can be tested against real disks). The script test runs the workload file.

Seven other tests—single-access, loop, degraded-mode read, random read or write, file
write-read, entire-array write, and reconstruction—verify the data and redundancy of
the array by accessing its disks in different ways. The layout test verifies that the map-
ping of data and redundancy between the array software (that is, logical location) and
actual disk locations (that is, physical locations) is correct. We briefly describe how to
use these tests in Chapter 4.

TABLE 10. RAIDframe user-level tests

Test Operation

single-access test writes, reads, and verifies a single location in the
RAID address space

loop test writes, reads, and verifies multiple locations concur-
rently in the array

degraded-mode read test tests read activity with the array in a faulted state

random read or write test allows a user to read and write to multiple locations
in the array in fault-free and degraded mode

file write-read test writes, reads, and verifies the contents of a file

write-array test writes data to the entire array in chunks of a user-
specified size, then verifies data and parity for the
entire array

reconstruction test runs the loop test while forcing reconstruction to
occur at the same time (validating data content of
array when complete)

*script test runs the workload file which contains either a script
for generating a synthetic workload or actual I/O
traces

*layout test verifies the one-to-one mapping properties (that is,
RAID address to physical locations) of a given archi-
tecture

*Because it runs without threading, the simulator version runs only these two tests.

RAIDframe: A Framework for Implementing New Designs

68 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

RAIDframe: A Rapid Prototyping Tool for RAID Systems 69

Version 1.0 8/29/96

CHAPTER 4 Installing, Configuring, and
Using RAIDframe

RAIDframe may be compiled as either a stand-alone application, a simulator, or a
device driver in the kernel. Compiled as a stand-alone application, RAIDframe runs
against real disks using either a synthetically generated workload or replaying traces of
actual workloads. As a simulator, RAIDframe uses a disk-geometry model to simulate
various configurations of hardware; the workload for the simulator, as with the stand-
alone application, can be either a synthetically generated one or traces of I/O from
actual workloads. In the kernel, RAIDframe runs as a device driver against real disks
and upon which a real file system can be mounted. All three versions currently run on
DEC Alphas running versions 2.0 and 3.2[c,d,e,f,g] of the Digital UNIX operating sys-
tem.

We begin this chapter by describing the contents of the first RAIDframe code release,
then explain how to install and configure each version. Then we briefly describe how to
test RAIDframe’s operation by verifying data, redundancy, and mapping and how to
generate workloads for RAIDframe. Finally, we end this chapter by describing how to
access RAIDframe’s built-in performance tracing and by listing some of the options for
debugging implementations.

4.1 Installing RAIDframe

Before installing any of the RAIDframe versions, you will need to decompress and de-
tar the distribution file,raidframe.tar .

4.1.1 RAIDframe compilation environment

The RAIDframe distribution is designed to be compiled in a variety of configurations.
The compilation system usesimake . Your system most likely includes man pages and
other documentation forimake . It is not the intention of this document to discuss the

Installing, Configuring, and Using RAIDframe

70 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

mechanics ofimake ; therefore, the following sections will focus exclusively on how
the RAIDframe compilation environment is set up and operates.

4.1.2 Editing the RAIDframe_site.def File

The first step in compiling RAIDframe is to edit the fileRAIDframe_site.def,
which can be found in theconfig/ directory of the RAIDframe distribution. This file
contains switches that tell the compilation system which components of RAIDframe
should be built and how to build them. If you wish to compile the RAIDframe simula-
tor, RF_COMPILE_SIM should be defined to be1 here (otherwise, it should be0).
Likewise, if you wish to compile the user-level driver,RF_COMPILE_USER should be
set to1, otherwise0. Finally, RF_COMPILE_KERNEL controls the compilation of the
various kernel-support utilities (rf_ctrl , rf_setconfig , et cetera). If your system
requires special compiler flags or defines, they may also be set in this file at this time.

4.1.3 Generating Files Necessary for Compilation

Once RAIDframe_site.def has been correctly edited for the system on which
compilation is to take place, Makefiles should be generated for the entire tree. To do so,
make your current directory the top-level directory of the RAIDframe distribution, and
execute the commands:

./itomf

make depend

The first command will recursively descend the RAIDframe tree, generating Makefiles
for each directory. The second will generate dependencies for each Makefile based on
the current sources. Any time theRAIDframe_site.def file is changed,itomf
should be executed again. Any time a change to the sources logically represents a
change in dependencies (such as a change torf_archs.h , or adding a new
#include directive to an existing source file),make depend should be executed
again. Additionally,make depend should be executed again whenever a new Make-
file is generated, to create dependencies for it.

4.1.4 Compiling RAIDframe user-level binaries

After generating Makefiles for the source tree, simply executing:

make

at the top of the RAIDframe distribution should compile all options selected in
RAIDframe_site.def. All simulator binaries and libraries will be in thesim/
directory. All user-level driver binaries and libraries will be in theuser/ directory.
Kernel-support utilities will be in theutils/ directory.

4.1.5 Compiling the Device Driver in a Digital Unix source tree

RAIDframe provides both block and character (UNIX “raw”) device interfaces. To con-
figure them into your kernel, you must add appropriate stanzas to the block and charac-
ter device switches. This will require selecting a major device number. We recommend

Installing RAIDframe

RAIDframe: A Rapid Prototyping Tool for RAID Systems 71

Version 1.0 8/29/96

choosing 51. For further discussion about assigning major device numbers, seeDEC
OSF/1 Writing Device Drivers, Volume 1: Tutorial.

To compile RAIDframe in the kernel, you will need to take the following steps:

1. Add the RAIDframe option to your kernel’s configuration file (src/kernel/
conf/alpha/CONFIGNAME whereCONFIGNAME is the name of your kernel
configuration file). This entry looks like:

pseudo-device raidframe <Number of arrays to support>

options RAIDFRAME_RECON 1

The number of arrays to support must be an integer greater than 0.

2. Add an entry for RAIDframe to the device switch tables found insrc/kernel/
io/common/conf.c . To do this, type the following lines exactly:

#include <raidframe.h>

#if NRAIDFRAME > 0

int rf_open(), rf_close(), rf_strategy(), rf_read();

int rf_write(), rf_ioctl(), rf_size();

#else /* NRAIDFRAME > 0 */

#define rf_open nodev

#define rf_close nodev

#define rf_strategy nodev

#define rf_read nodev

#define rf_write nodev

#define rf_ioctl nodev

#define rf_size nodev

#endif /*NRAIDFRAME > 0 */

3. Select the major number for the device. (Note: OSF/1 requires that the number in
the comment match the number in the entry table). To do this, first look for the block
device (bdevsw) table in theconf.c file; this is where you set the major number
for the RAIDframe pseudo device. Add these lines to it:

{rf_open, rf_close, rf_strategy, nodev, /*51*/

rf_size, 0, rf_ioctl, DEV_FUNNEL_NULL},

Next, look for the character device switch (cdevsw) table in the same file; this is
where you select the major number for RAIDframe. Add these lines tocdevsw :

{rf_open, rf_close, rf_read, rf_write, /*51*/

rf_ioctl, nodev, nulldev, 0,

asyncsel, nodev, DEV_FUNNEL_NULL, NULL, NULL},

4. Edit the top-levelMakefile of your kernel source tree (src/kernel/Make-
file). Add the entry “raidframe/./du_data ” to theSUBDIRS definition.

1. Removing this option disables in-kernel reconstruction but reduces code size.

Installing, Configuring, and Using RAIDframe

72 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

5. Copy or symlink the RAIDframe directory into the DU source tree. The top level of
the RAIDframe source distribution should appear assrc/kernel/raidframe .

6. Update thefiles file with the new modules. You can do so by appending the con-
tents of the fileetc/kfiles included in the RAIDframe distribution.

7. Rebuild the kernel (this will require a reconfiguration pass).

4.2 Configuring RAIDframe

While all three versions of RAIDframe share the same configuration file, the kernel ver-
sion is configured at the same time that it is compiled in the kernel. For those users who
want to configure a device driver after it has been installed, we have included two con-
trol programs for doing so; we describe these control programs in Section 4.2.2 on
page 75.

4.2.1 RAIDframe’s Configuration File

The configuration file is divided into sections marked bySTART <section_name> .
Comments are supported in the configuration file; they must be preceded by a pound
sign (#). Of the six sections in the configuration file, four are mandatory:array, disks,
layout, and queue; these are denoted with an(m) in the following paragraphs. See
Figure 18 on page 75 for a sample configuration file.

Each of the following sections describes how to enter specifications for the stand-alone
application and the simulator.

4.2.1.1 Array (m)
This section is used to specify in integers the number of rows, columns, and spare drives
in the array. Enter these specifications into the configuration file in this order:

<numRow> <numCol> <numSpare>

4.2.1.2 Disks (m)
This section lists the pathnames to the device files corresponding to physical disks for
the kernel and user-level versions of RAIDframe; each item in the list is a string ending
with the device filename. Enter pathnames in this format:

/dev/...

/dev/...

The simulator, on the other hand, uses a set of disk names that it will instantiate from the
disk.db database file. Enter disk names as

<Disk name>

<Disk name>

where each item is a string containing the name of an actual disk drive.

Configuring RAIDframe

RAIDframe: A Rapid Prototyping Tool for RAID Systems 73

Version 1.0 8/29/96

4.2.1.3 Spare
This section may include the device files of spare disks (if they exist). Pathnames are
entered in the same format as theDisk section.

For the simulator, theDisks and Spare sections must contain names of actual disk
drives instead of listing the pathnames to the device files (that is, /dev/...). If a
pathname is specified instead of an actual disk drive, the simulator version of RAID-
frame will default to the Hewlett-Packard HP2247 disk drive.

4.2.1.4 Layout (m)
This section includes general layout parameters:sectors per stripe unit, stripe unit per
parity unit, andstripe units per reconstruction unit. It also contains a parity configura-
tion label (which is a single character) to specify the RAID architecture to use. The
parameters are detailed in the following table.

For the parity-configuration layout, there are nine single-character labels that corre-
spond to the RAID architectures currently implemented (see Table 6 on page 57 for a
complete list of architectures and their support levels).

TABLE 11. RAIDframe layout parameters

Parameter Explanation

numRow number of rows of disks, each row a distinct parity group

numCol number of columns of disks in each row

sectPerSU number of sectors in a stripe unit

parityConfig parity layout based on RAID level

SUsPerPU number of stripe units per parity unit

SUsPerRU number of stripe units per reconstruction unit

When specifiying SUsPerRU, set the number to 1 unless you are specifically
implementing reconstruction under party declustering; if so, you should
read through the reconstruction code first.

TABLE 12. Config file architecture specific data

parityConfig Architecture Must be followed by

0 RAID level 0

1 RAID level 1

4 RAID level 4

5 RAID level 5

E EvenOdd)

e Declustered EvenOdd blockdesign file

T Parity declustering blockdesign file

D Declustering + distributed sparing blockdesign file

Installing, Configuring, and Using RAIDframe

74 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

The details for specifying new parity-configuration parameters are given in Chapter 5,
“Extending RAIDframe.” Enter layout specifications into the configuration file in this
order:

<sectPerSU> <SUsPerPU> <SUsPerRU> <parityConfig>

where the items are integers. Depending on the value of the parity configuration, you
can add a number of needed parameters that are specific to an architecture. In this event,
the pathname for layout-specific parameters will follow the general ones in theLayout
section (Table 12).

4.2.1.5 Queue (m)
This section contains generic parameters for the queue of disk I/O requests: queue type
(FIFO, CVSCAN, etc.) and the number of concurrent requests that can be sent to disk.
Enter queue specifications into the configuration file in the format:

<queue type> <numConcurrentrequests>

where thequeue type is a string and thenumber of concurrent requests is an integer.
Where necessary, queue-specific parameters will follow the general ones in theQueue
section (Figure 4.2).

4.2.1.6 Debug
This section lists a number of user-configurable debug options. Enter these options into
the configuration file in the format:

<debug variable><value>

where thedebug variable is a string and thevalue is an integer (a partial list of debug
options and their variables is given in Section 4.6 on page 84). Some debugging options
have only on/off settings—for these, zero is off, non-zero is on. Others can accept a
range of integral values.

R RAID level 5 + rotated sparing

C Chained declustering

I Interleaved declustering

TABLE 12. Config file architecture specific data

parityConfig Architecture Must be followed by

Configuring RAIDframe

RAIDframe: A Rapid Prototyping Tool for RAID Systems 75

Version 1.0 8/29/96

FIGURE 18 RAIDframe’s Configuration File

4.2.2 Configuring the Device Driver Using Control Programs

Once the RAIDframe device driver has been installed, you can configure it using either
the command-line options ofrf_setconfig or the menu-drivenrf_ctrl —an
OSF menu-driven program located in the RAIDframe directory.rf_ctrl is a simple
front end to a set of I/O controls (ioctls) which are listed in Table 13; in addition, these
ioctls can be used by other applications. Using both programs is explained in the follow-
ing sections.

RAIDframe’s configuration file has seven sections: array, disks, spare, layout,
queue, and debug;array, disks, layout, andqueue must be specified. All sec-
tions begin with START and all comments are denoted with a#.

START array
parameters are: numRow numCol numSpare
1 4 1

START disks
a list of device files corresponding to physical disks
/dev/rrz17c
/dev/rrz19c
/dev/rrz20c
/dev/rrz21c

START spare
a list of device files corresponding to spare physical disks
spare device goes here
/dev/rrz117c

START layout
general layout parameters: sectPerSU SUsPerParityUnit SUsPerReconUnit
parityConfig
64 1 1 T

layout-type specific parameters for 'T' layout: bd_file_name
/afs/cs/project/pdl/Reconstruction/lib/bds/4.4.bd

START queue
generic queue parameters: queue type, number
concurrent requests that can be sent to a disk
FIFO 1
queue-specific configuration lines:
(none for FIFO)

START debug
accessDebug 1
mapDebug 1
dagDebug 1
testDebug 1

Installing, Configuring, and Using RAIDframe

76 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

4.2.2.1 rf_setconfig
To runrf_setconfig , type:

rf_setconfig configfilename [devname]

whereconfigfilename is the name of the file containing configuration information
for the array. Ifdevname is unspecfied,/dev/raidframe_c is used.

To unconfigure the device, type:

rf_setconfig -s [configfilename devname]

With no additional arguments,rf_setconfig -s will unconfigure /dev/
raidframe_c . If a configuration file and device name are specified, the array named
by devname will be unconfigured.

4.2.2.2 rf_ctrl
To runrf_ctrl , type

rf_ctrl <device_file>

and select the desired ioctl from the menu.

TABLE 13 RAIDframe ioctl s

Control Option Syntax

Configure the driver; takes astruct
rf_configuration

RAIDFRAME_CONFIGURE

Unconfigure the array; takes no arguments RAIDFRAME_SHUTDOWN

Takes astruct rf_test_acc RAIDFRAME_TEST_ACC

“Fail” a disk (for testing reconstruction); takes a
struct rf_recon_req

RAIDFRAME_FAIL_DISK

Get reconstruction percentage complete on a
row; takes and returns an integer

RAIDFRAME_CHECKRECON

Copy reconstructed data back to replaced diskRAIDFRAME_COPYBACK

Start tracing accesses (DFStrace) RAIDFRAME_START_ATRACE

Stop tracing accesses (DFStrace) RAIDFRAME_STOP_ATRACE

Get the size of the device (number of sectors);
yields an integer

RAIDFRAME_GET_SIZE:

Get basic configuration information (not the
same asrf_configuration); yields
struct rf_device_config

RAIDFRAME_GET_INFO

ResetAccTrace totals on the device RAIDFRAME_RESET_ACCTOTALS

RetrieveAccTrace totals for a device; yields
RF_AccTotals

RAIDFRAME_GET_ACCTOTALS

TurnAccTrace on if integer argument is non-
zero (off otherwise); takes anint

RAIDFRAME_KEEP_ACCTOTALS

Testing RAIDframe Operation

RAIDframe: A Rapid Prototyping Tool for RAID Systems 77

Version 1.0 8/29/96

4.3 Testing RAIDframe Operation

As we mentioned in Chapter 3, there are eight test applications for verifying the data,
redundancy and layout for RAIDframe implementations at the user level (that is, the
stand-alone application and the simulator). Because the simulator runs only against sim-
ulated disks, only the script and layout tests are available in that mode.

4.3.1 Running the Test Applications

The following subsections demonstrate sample interactions with the menu-driven test
applications. In many cases, options and interactions are commented to clarify their use.

4.3.1.1 Single-Access Test

Pick a test: s

enter -1 for the RAID address to quit

Starting RAID address [0-82176]? 4032

number of blocks? 219

Input row id of disk to mark failed (-1 for none): -1

Entering 0 for theinput row id will cause the system to prompt you for the column
number of the disk to be failed.

4.3.1.2 Loop Test

Pick a test: l

How many parallel threads? 2

How many I/Os per thread? 10

Same seed or different seeds in each thread [s/d]? d

Degraded mode? [n=none, c=constant, a=asynchronously,
r=async, init recon] n

TABLE 14. RAIDframe front-end test operations

Test Option

single-access test s

loop test l

degraded-mode read test d

random read or write test r

file write-read test f

reconstruction test R

write array test w

*script test S

*layout test L

* The simulator runs only these two test options.

Installing, Configuring, and Using RAIDframe

78 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

The mode optionn is the fault-free test in which no disks are failed. Mode optionc fails
a disk before beginning the loop test; you must specify which disk just as you would in
order to run the single-access test. Mode optiona instructs RAIDframe to randomly fail
a disk during the run; optionr is the same as optiona but initiates reconstruction after
failing the specified disk.

4.3.1.3 Random Read or Write Test

Pick a test: r

How many parallel threads? [0 is ok] 1

Reads or Writes [r/w]? r

Degraded mode: none, constant, constant double

degraded,async, async+init recon [n/c/2/a/r]? n

Random or sequential I/Os? [r/s] r

How many I/Os per thread? 2

4.3.1.4 File Write-Read Test

Pick a test: f

File name? foo

The only parameter RAIDframe requests is the file name.

4.3.1.5 Reconstruction Test

Pick a test: R

How many parallel threads? [0 is ok] 1

Degraded-mode: none, const, async, async+recon, reconfig,

recon+copyback? [n/c/a/r/R/C] n

Perform the painful test? [y/n] n

4.3.1.6 Write array test

Pick a test: w

How many sectors to write at a time? [64] 512

Writing 512 sectors at a time

Degraded mode? [n=none, c=constant, a=asynchronously,

r=async+recon, C=async+recon+copyback] n

4.3.1.7 Script Test

Pick a test: S

Trace or script file name? foo

You must specify either a script or trace file. See Section 4.3.2 on setting up a workload
file.

4.3.1.8 Layout Test

Pick a test: L

Testing RAIDframe Operation

RAIDframe: A Rapid Prototyping Tool for RAID Systems 79

Version 1.0 8/29/96

There are no parameters for this test. This test performs a set of checks to ensure that
multiple RAID addresses do not share physical data sector mappings, and that all physi-
cal data sector mappings are valid.

4.3.2 Setting Up the Workload File For the Script Test

It may be necessary to test how the array operates under a simulated workload. In
RAIDframe, the stand-alone user application and simulator versions receive I/O
requests from a synthetic-workload generator or replay traces of actual disk I/Os. The
following sections describe how to create a script file for the workload generator and the
parameters for a trace file of actual disk I/Os.

4.3.2.1 Synthetically Generated Workloads
The synthetic-workload generator conforms its load to a script containing a variable
number of access profiles with individual occurrence probabilities. Each profile defines
a deterministic or exponentially distributed access size with a given mean and align-
ment. Access addresses are randomly generated throughout the entire address space, or
with a given probability, within a single locality specified with each profile. Access
types are either read, write or sequential (the same as the last access with its address
advanced).

The script file contains a description of the workload that you want to run, including
probability, I/O request type, size, alignment, distribution, and local region (Table 15).

The lines are in the format:

TABLE 15 Workload description file parameters

Parameter What is Specified

<probability> the fraction of the total workload (given as an integer between
0-100) that this script describes

<reqType> the type of I/O request using anr or aw, for a read or write

<size> the access size in KB (given as an integer)

<align> the access alignment in KB (given as an integer)

<distr> a character describing the access-size distribution:d means
deterministic (this is always equal to<size>); e means
exponentially distributed with mean<size>

<lprob> the probability (given as an integer between 0-100) that this
access is within the local region

<lfrac> the fraction of the array’s data space (given as an integer
between 0-100) defining the local region

<loffs> the offset into the array of the start of the local region (given
as an integer between 0-100)

The<lfrac> and<loffs> parameters allow you to define the local region of the
disk array where you want to generate accesses.

Installing, Configuring, and Using RAIDframe

80 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

<probability> <reqType> <size> <align> [<distr> [<lprob>
<lfrac> <loffs>]]

where only the first four parameters,<probability> <reqType> <size>
<align> , are mandatory in the script file. Or, they can be in the format:

<probability> s

which means that with probability<probability> the next access selected by any
given process will be sequential with respect to the previous access, whatever it hap-
pened to be. There can be only one such line in any given script file.

The following is an example of a script file that specifies running a 50/50 read/write
workload using random 8k accesses that are 8k aligned:

50 r 8 8

50 w 8 8

4.3.2.2 Trace-Driven Workloads
The trace file contains actual I/O traces that have been collected from another applica-
tion instead of synthetic traces that have been generated from a script. The trace file
must contain aheader andtrace records. The header contains the number of indepen-
dent processes in the trace, the number of traces for each process, and the file offsets for
each trace. Traces understood by RAIDframe must contain an explicit sequence of
tuples: (thread id, delay time before issuing this request, read or write, block address,
number of blocks, and a requester-waits/requester-does-not-wait flag). Table 16 shows
the parameters for trace records.

Each trace record has the following format:

<long blkno> <long size> <double delay> <short pid> <char
op> <char async_flag>

TABLE 16 Trace format

Parameters What is Specified

<int64 blkno> RAID address (given as an integer)

<int64 size> number of blocks (given as an integer)

<double delay> number of seconds (given as an integer)

<int16 pid> process identification number (given as an integer)

<char op> character operation withanr or w for a read or write

<int8 async_flag> character asynchronous flag; set to 1 if the I/O requests are
asynchronous

These traces are stored in binary format as opposed to ASCII. Integers are stored in
little-endian format, while floating-point values are in IEEE format.

Performance Analysis Tools

RAIDframe: A Rapid Prototyping Tool for RAID Systems 81

Version 1.0 8/29/96

4.4 Performance Analysis Tools

Because it is valuable to compare how different RAID architectures perform relative to
one another when implemented in RAIDframe, we have included a front end for doing
so at the user level calledrf_genplot . A key benefit ofrf_genplot is that it
enables users to test throughput versus response time for various RAID architectures
and configurations. As we explained in Section 3.1.1 on page 56,rf_genplot runs
workload scripts from a work file against various RAID architectures and outputs
results into a file.

4.4.1 Preparing to Run the rf_genplot Front End

rf_genplot requires three arguments in order to run:configlistfile ,
worklistfile , andoutfilebase . It reads the files namedconfiglistfile
and worklistfile and writes files namedoutfilebase.out , outfile-
base.ps , andoutfilebase.mif.

The first four lines ofconfiglistfile provide parameters for graphing the results
of the workload scripts. Specifically, the first line lists the graph title, the second is the
graph subtitle, the third defines x- and y-axis ranges, and the fourth defines major and
minor tick marks for both the x and y axes. After that, theconfiglistfile lists
configurations to use and names for them, separated by colons. The filename of the con-
figuration file must appear before the colon; after the colon is the name of the configura-
tion which will appear on the graph. Here is an example of aconfiglistfile :

Random 4KB Reads

RAID level 1 Vs. RAID level 5

0 900 10 60

200 100 5 2.5

/usr20/config/config1.user:Raid 1

/usr20/config/config5.user:Raid 5

Theworklistfile simply lists scripts forrf_genplot to run; here is an example:

/usr20/data/randblock/randblock.1.Read.10disk.A.rst

/usr20/data/randblock/randblock.2.Read.10disk.A.rst

/usr20/data/randblock/randblock.5.Read.10disk.A.rst

/usr20/data/randblock/randblock.10.Read.10disk.A.rst

/usr20/data/randblock/randblock.15.Read.10disk.A.rst

/usr20/data/randblock/randblock.20.Read.10disk.A.rst

/usr20/data/randblock/randblock.30.Read.10disk.A.rst

/usr20/data/randblock/randblock.40.Read.10disk.A.rst

4.4.2 Running the rf_genplot Front End

rf_genplot runs each of the scripts listed in theworklistfile against each
RAID configuration given in theconfiglistfile and outputs the results to the
outfilebase.out file. Results are given as throughput and response time pairs for
each architecture, with blank lines between configurations.

Installing, Configuring, and Using RAIDframe

82 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

If given the -o option before the filenames,rf_genplot will generate the xmgr
batch file and run xmgr to produceoutfilebase.ps andoutfilebase.mif
files in addition to running the workload scripts against the RAID configurations. The
outfilebase.ps andoutfilebase.mif files contain graphs of throughput ver-
sus response time for all the architectures listed in theconfiglistfile .

If given the -p option, rf_genplot will produceoutfilebase.ps and out-
filebase.mif files using theoutfilebase.out file created from a previous run.
This option allowsrf_genplot to run first on a machine in single-user (standalone)
mode, then later in a fully-configured environment to generate graphs.

4.5 Accessing Built-in Performance Tracing

RAIDframe provides a mechanism for timing and tracing eleven predefined system
events (Table 17). The codepath for each event is delineated by a set of macros that
make calls to a built-in timer mechanism, which in turn relies on a cycle-counter regis-
ter of the DEC Alpha architecture [Digital92]. An assembly module in the timer reads
the cycle counter and evaluates the number of microseconds elapsed. Once the built-in
tracing mechanism is turned on, it gathers timer records and saves them in a file.

To turn on tracing at the user level, setaccessTraceBufSize to a value greater
than 0 in theDebug section of the RAIDframe configuration file (see Section 4.2.1 for
more details); this determines the number of trace entries to accumulate in memory
before flushing them to disk where they are saved in the filetrace.dat (an example
of a trace file is given in Figure 19 below).trace.dat is accessed using a utility
calledrf_tracestats whose command line argument is in the form:

rf_tracestats [-v] [-p] trace.dat

TABLE 17 Timed codepaths

Event Timed Codepath

User I/O Average Access Time

Graph suspend Suspend Ovhd

Call to complete access stripe map (ASM) Mapping

Acquiring stripe-lock ranges Locking

Graph creation DAG Creations

Graph retry DAG Retry

Freeing graph structures and return to user Cleanup

Execute full graph DAG Execution

Request pending in disk queue Disk wait time

Reconstruction Reconstruction time

Exclusive-or computation Xor eval

Accessing Built-in Performance Tracing

RAIDframe: A Rapid Prototyping Tool for RAID Systems 83

Version 1.0 8/29/96

where-v is verbose mode and-p prints formatted trace records on-screen. If no file-
name is given,rf_tracestats expects a trace onstdin .

Traces can also be extracted from the kernel withrf_tracestats by running it with
the -k argument and specifying the name of the device to extract traces from. For
example:

rf_tracestats -k /dev/rraidframe_c

Chapter 5 explains how to extend built-in performance tracing by adding new code-
paths.

FIGURE 19 Parity Logging Execution Profile

Average Access Time: 24652.32 us

Suspend Ovhd : 3.38 us (0.0 %)

Mapping : 55.70 us (0.2 %)

Locking : 46.03 us (0.2 %)

DAG Creation : 136.50 us (0.6 %)

DAG Retry : 0.00 us (0.0 %)

Cleanup : 10.47 us (0.0 %)

DAG Execution : 24342.59 us (98.7 %)

 ******** DAG Execution Profile********

 Total Xor Time : 131.24 us (0.5 %)

 Total Log Time : 169.22 us (0.7 %)

 Total Disk Queue : 5227.00 us (21.2 %)

 Total Disk Phys : 17840.21 us (72.4 %)

 ******* summary disk statistics*******

 Avg num phys IOs : 1.50

 Avg queueing time: 3461.59 us (14.0 %)

 Avg physical time: 11814.71 us (47.9%)

 Avg total time : 15276.30 us (62.0 %)

Installing, Configuring, and Using RAIDframe

84 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

4.6 Debugging RAIDframe Installations

Here is a partial list of the currently implemented debug options and their effects; we
have chosen to list the options that are most likely to be used frequently. A complete list
of debug options may be found in the source filerf_optnames.h .

TABLE 18. RAIDframe debugging options

Option Effect

accessdebug Prints out details of each user request.

accSizeKB n The “loop test” generates a synthetic workload of ran-
dom I/Os. This debug variable can force the sizes of
the I/Os to be n KB. If n=0, the sizes of the I/Os are
not fixed. Default is n=0.

accessTraceBufSize n Specifies the number of trace records that will be buff-
ered before writing to the file trace.dat. If n=0, tracing
(execution profiling) is disabled. Default is n=0.

alignAccesses n The “loop test” generates a synthetic workload of ran-
dom I/Os. This debug variable forces the I/Os to be
aligned if n=1. Default is n=0.

dagDebug This variable prints out the type of each DAG when
created.

degDagDebug This variable prints additional information about
degraded-mode DAGs.

demoMode n This debug variable enables demo mode if n=1. In
demo mode, most data and redundancy verification is
disabled, and meters are generated to display response
time and throughput. Default is n=0.

diskDebug This variable prints information about each disk at
configuration time.

doDebug This variable prints each disk operation as it begins
and ends (user driver only).

dtDebug This variable prints disk-thread status (user driver
only).

Debugging RAIDframe Installations

RAIDframe: A Rapid Prototyping Tool for RAID Systems 85

Version 1.0 8/29/96

engineDebug This variable prints information about engine-thread
and node processing.

maxRandomSizeKB The “loop test” generates a synthetic workload of ran-
dom I/Os. This debug variable can force the size of
the I/Os to be no greater than n KB. If n=0, max size is
unlimited. Default is n=0.

maxTraceRunTimeSec n n = the amount of time in seconds a script file should
drive I/Os into RAIDframe. If n=0, max time is
unlimited. Default is n=0.

memDebug n This variable is useful for debugging memory leaks
and buffer overruns. Enabled when n=1. When n=2,
this debug variable also prints the address range of
every buffer as it is allocated and freed. Default is
n=0, for no debugging

printDagsDebug n If n=1, each DAG (graph) is printed after creation.
Default is n=0.

printStatesDebug n If n=1, the state machine prints state information.
Default is n=0.

queueDebug When non-zero, this causes information about disk-
queue operations as they happen (policy-independent
layer). Default is 0.

rewriteParityStripes n If n=1, parity is rewritten prior to start of test. This is
useful when tests that verify parity are run on an
uninitialized array. Default is n=0.

shutdownDebug When non-zero, information about shutdown activi-
ties is printed as they occur. Default is 0.

TABLE 18. RAIDframe debugging options

Option Effect

Installing, Configuring, and Using RAIDframe

86 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

sizePercentage n n is an integer that represents what fraction of the total
available disk space will be used. Useful for limiting
the duration of reconstruction testing and array initial-
ization. If n=0, 100% of the array is used. Default is
n=0.

validateDAGDebug n If n=1, integrity of each DAG (graph) is verified prior
to execution. Default is n=0.

TABLE 18. RAIDframe debugging options

Option Effect

RAIDframe: A Rapid Prototyping Tool for RAID Systems 87

Version 1.0 8/29/96

CHAPTER 5 Extending RAIDframe

This chapter is intended to give you a head start in understanding how to enhance the
existing RAIDframe package; we expect that, in order to understand thoroughly how to
extend RAIDframe, you will first have to become familiar with the code itself. The fol-
lowing sections briefly describe key RAIDframe subsystems, and provide a how-to
guide for certain common extensions.

5.1 RAIDframe fundamentals

5.1.1 Types and Conventions

Most RAIDframe types are defined inrf_types.h . These definitions are intended
both to make code more easily readable and more easily portable. For instance, a sector
number is of typeRF_SectorNum_t . This is defined as typeRF_uint64 , which is
in turn the system-independent definition of a 64-bit unsigned integer. Thus, porting
RAIDframe to a new system type requires the correct definition ofRF_uint64 on that
platform, but does not require redefinition ofRF_SectorNum_t , much less changes
to the code using values of this type.

Here are some commonly used RAIDframe types and what they represent:

TABLE 19. Some common RAIDframe types

RAIDframe Type Type Representation

RF_SectorNum_t the number of an individual sector (e.g.,sector #37 of
an array)

RF_SectorCount_t a number of sectors (e.g.,read 100 sectors)

Extending RAIDframe

88 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

When new type and structures are introduced, the header files in which they are defined
are given. It is often the case that a structure is defined in that header file, but the C lan-
guagetypedef which is used to refer to it is defined in the filerf_types.h . The
convention is that astruct RF_SomeName_s will be defined in the appropriate
header file, whereRF_SomeName_t is defined inrf_types.h as:

typedef struct RF_SomeName_s RF_SomeName_t;

In the future, this document will refer to “RF_SomeName_t, defined in
some_file.h ” even though the actualtypedef of RF_SomeName_t is in
rf_types.h , and some_file.h contains the definition of struct
RF_SomeName_s.

Appendix B has a more detailed list of RAIDframe types and their use.

5.1.2 Return Codes

Most RAIDframe operations return typeint . This is a descriptive error code with0
being defined as success and a non-zero value being a value defined insys/errno.h ,
which is appropriate for providing to a calling process to identify the nature of a failure.

5.1.3 Memory Allocation

Memory allocation is different for different systems, and vastly different inside and out-
side the kernel. For this reason, RAIDframe provides an internal abstraction of memory
allocation operations to avoid cluttering code with special cases for various environ-
ments and platforms. The following macros, which are defined inrf_debugMem.h ,
should suffice for most simple memory allocation and deallocation operations:

RF_Malloc(ptr,size,cast)

RF_Calloc(ptr,nelements,element_size,cast)

RF_Free(ptr,size)

In the user environment, these perform the following operations, respectively:

ptr = cast malloc(size)

ptr = cast calloc(nelements, element_size)

free(ptr)

RF_StripeNum_t the number of an individual stripe (e.g.,stripe number
three)

RF_StripeCount_t a number of stripes (e.g.,30 stripes)

RF_IoType_t kind of I/O (RF_IO_TYPE_READ,
RF_IO_TYPE_WRITE, or RF_IO_TYPE_NOP)

RF_Raid_t entire in-core state of an array

TABLE 19. Some common RAIDframe types

RAIDframe Type Type Representation

RAIDframe fundamentals

RAIDframe: A Rapid Prototyping Tool for RAID Systems 89

Version 1.0 8/29/96

Thus, to allocate an array of five integers, you might:

int *i;

RF_Malloc(i,5*sizeof(int),(int *));

or

RF_Calloc(i,5,sizeof(int),(int *));

And deallocate it with:

RF_Free(i,5*sizeof(int));

While the size argument toRF_Free is not used at the user level, it should be set cor-
rectly, because in-kernel memory deallocation does require this field.

5.1.4 Memory Allocation Lists

Tracking memory allocations can be difficult. In addition, most allocation should be
done at start-of-day and deallocated at end-of-day. To ease the programmer burden of
tracking allocations, RAIDframe provides allocation lists (of type
RF_AllocListElem_t , defined in rf_alloclist.h). In addition, two new
memory-allocation operations are defined inrf_debugMem.h :

RF_MallocAndAdd(ptr,size,cast,alloc_list)

RF_CallocAndAdd(ptr,nelements,element_size,cast,alloc_list)

These behave the same asRF_Malloc andRF_Calloc , respectively, with the addi-
tional semantic that the operations are noted in the allocation listalloc_list . When
alloc_list is destroyed, the memory will be freed automatically. Allocation lists are
generally provided to start-of-day configuration routines to simplify cleanup and shut-
down, and are destroyed after all end-of-day activities are complete. In addition, indi-
vidual I/Os have associated allocation lists, which track memory allocated for the
purpose of creating and executing their DAGs.

5.1.5 Shutdown Lists

Another way in which RAIDframe simplifies the cleanup process is with the use of
shutdown lists (RF_ShutdownList_t , defined inrf_shutdown.h).

A shutdown list is a linked list of elements containing a void function pointer and an
argument to be passed to that function. When an item is added to a shutdown list, it is
prepended. When a shutdown list is invoked, the functions in it are called in order from
beginning to end and are passed their associated arguments. Thus, the last item added to
a shutdown list is the first item called when the shutdown list is invoked. This is to
ensure correctness when dealing with dependent modules where one module requires
another to be configured and operational to function correctly. (For instance, module B
must operate upon module A at creation and clean-up time; therefore, module A must
be configured before module B and must not be unconfigured before module B is
unconfigured).

Extending RAIDframe

90 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

Start-of-day configuration routines are provided as a pointer to the head of a shutdown
list, so they may add entries. The shutdown list is invoked to deconfigure and clean up
any configured systems. Entries are added to a shutdown list by calling
rf_ShutdownCreate , which is defined as:

int rf_ShutdownCreate(RF_ShutdownList_t **listp,

void (*func)(void *arg), void *arg)

When the shutdown list pointed to bylistp is executed, the functionfunc will be
called, and the argumentarg will be passed to it. Ifrf_ShutdownCreate()
returns non-zero, it was unable to add an entry to the shutdown list, and the caller should
behave accordingly (and is guaranteed thatfunc() has not been called, nor will it be
called when the contents oflistp are invoked).

It is a RAIDframe convention that a failing configuration operation must provide for
complete cleanup at its point of failure. That is, if a configuration operation returns
unsuccessfully (see above), any memory it has allocated must be listed in an allocation
list, or must be already freed. Likewise, any necessary cleanup operations must be
entered into the shutdown list provided or must be invoked before the error is returned.
To simplify the coding of such creation and configuration operations, a programmer
may wish to add multiple entries to a shutdown list for a single configuration operation.

5.1.6 Threads

Thread support is provided by a variety of macros and functions found in
rf_threadstuff.[ch] . These macros hide various porting issues, as well as user/
kernel/simulator differences.

5.1.6.1 Thread Types
Threads in RAIDframe are represented by handles, which are of typeRF_Thread_t .
When a thread is created, it is passed a single pointer-sized argument of type
RF_ThreadArg_t . Pointers may be explicitly cast to and from this type. Because
synchronization primitives must be declared very differently in the kernel than at the
user-level, and they do not exist at all in the simulator, there are no explicit mutex and
condition types. Instead, several macros exist to declare mutexes and conditions.

TABLE 20 Mutex and Condition Declaration Macros

Macro name Declaration type

RF_DECLARE_MUTEX Declare a mutex with no special keywords

RF_DECLARE_STATIC_MUTEX Declare a mutex with thestatic C keyword

RF_DECLARE_EXTERN_MUTEX Declare a mutex with theextern C keyword

RF_DECLARE_COND Declare a condition variable with no special
keywords

RF_DECLARE_STATIC_COND Declare a condition variable with thestatic
C keyword

RF_DECLARE_EXTERN_COND Declare a condition variable with theextern
C keyword

RAIDframe fundamentals

RAIDframe: A Rapid Prototyping Tool for RAID Systems 91

Version 1.0 8/29/96

These macros are invoked with a single argument, which is the name of the mutex or
condition variable to declare. For example:

RF_DECLARE_MUTEX(rf_new_lock)

declares a global mutex namedrf_new_lock . Note the lack of trailing semicolon on
the line above; the declaration macros add semicolons as necessary.

5.1.6.2 Using mutex variables
Before they may be used, mutexes must be initialized with the function
rf_mutex_init() . After they are no longer needed, they must be destroyed with
the functionrf_mutex_destroy() . Each of these functions takes a pointer to a
mutex variable, and returns a value of typeint . A zero-valued return indicates success;
anything else indicates an error of some sort. To initialize and destroyrf_new_lock ,
from our example above:

int rc;

/* ... */

rc = rf_mutex_init(&rf_new_lock);

if (rc) {

printf(“ERROR: cannot initialize rf_new_lock\n”);

return(rc);

}

/* ... */

rc = rf_mutex_destroy(&rf_new_lock);

if (rc) {

printf(“ERROR: cannot destroy rf_new_lock\n”);

}

To simplify the destruction of mutexes when necessary, an entry can be automatically
added to a shutdown list to destroy a mutex. Rather than initializing a mutex with
rf_mutex_init() , the functionrf_create_managed_mutex() may be used
instead. The first argument to this function is of typeRF_ShutdownList_t ** , and
the second is a pointer to the mutex, just likerf_mutex_init() . This also returns
anint , with a value of0 indicating success. In this case, success indicates that not only
was the mutex initialized correctly, but an entry has been added to the shutdown list
which will destroy the mutex when necessary.

As their names imply, the macrosRF_LOCK_MUTEX and RF_UNLOCK_MUTEX
respectively lock and unlock mutexes. These macros each take a single argument, which
is the name of the mutex to operate upon. Previously, we gave an example defining a
mutex namedrf_new_lock . Now we shall lock and unlock it, to provide a critical
section for some new code:

RF_LOCK_MUTEX(rf_new_lock);

/* Your critical section here. */

RF_UNLOCK_MUTEX(rf_new_lock);

Extending RAIDframe

92 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

5.1.6.3 Using condition variables
Before a condition variable may be used, it must be initialized with
rf_cond_init() . When a condition variable is no longer needed, it must be
destroyed withrf_cond_destroy() . Like the corresponding mutex operations,
these functions take as their only argument a pointer to the condition variable to be ini-
tialized, and return an int , with 0 indicating success. Similarly,
rf_create_managed_cond() takes anRF_ShutdownList ** , and a pointer
to a condition variable, and returns success to indicate that not only has the condition
variable been successfully initialized, but an entry has been added to the shutdown list
which will automatically destroy the condition variable.

RAIDframe provides simple macros for accessing the functionality of condition vari-
ables, in the form of macros namedRF_WAIT_COND, RF_SIGNAL_COND, and
RF_BROADCAST_COND. The wait operation takes two arguments, a conditon variable
to wait for an event on, and a mutex to atomically unlock before waiting and lock after
waiting. The signal and broadcast operations both take a condition variable upon which
to generate a wakeup event. The signal operation attempts to wake at most one thread,
while broadcast awakens all threads awaiting an event. For implementation reasons, it is
important that threads waiting for events re-check their wakeup conditions upon exiting
the wait operation to be sure that a bogus wakeup event has not been generated. Here is
an example of what a consumer thread in a standard producer-consumer might look
like:

while (1) {

RF_DECLARE_EXTERN_MUTEX(rf_new_wrkr_mutex)

RF_DECLARE_EXTERN_COND(rf_new_wrkr_cond)

RF_LOCK_MUTEX(rf_new_wrkr_mutex)

while (rf_new_wrkr_queue == NULL) {

RF_WAIT_COND(rf_new_wrkr_cond, rf_new_wrkr_mutex);

/*

 * rf_new_wrkr_shutdown is a variable that another

 * thread will set to a non-zero value when we

 * should abort and shut down

 */

if (rf_new_wrkr_shutdown) {

/* something wants us to quit */

RF_UNLOCK_MUTEX(rf_new_wrkr_mutex);

return;

}

}

/* queue now locked and unempty, dequeue something */

RF_UNLOCK_MUTEX(rf_new_wrkr_mutex)

/* queue now unlocked, dispatch op */

}

RAIDframe fundamentals

RAIDframe: A Rapid Prototyping Tool for RAID Systems 93

Version 1.0 8/29/96

5.1.6.4 Creating threads
The macroRF_CREATE_THREAD is used to create threads. This macro evaluates to a
return code of typeint , with 0 indicating success, and nonzero indicating that an error
occurred (and the thread could not be created). For example:

static void showmyname_thread(arg)

RF_ThreadArg_t arg;

{

char *name = (char *)arg;

printf(“My name is \”%s\”\n”, name);

RF_EXIT_THREAD(0);

}

void run_name_threads()

{

RF_ThreadArg_t a;

RF_Thread_t th;

char name[100];

int i, rc;

for(i=0;i<10;i++) {

a = (RF_ThreadArg_t)name;

rc = RF_CREATE_THREAD(th, showmyname_thread, a);

if (rc) {

printf(“ERROR: could not create thread %d\n”, i);

}

}

}

The above example also uses the macroRF_EXIT_THREAD, which a thread calls
when it wishes to cease executing. This macro takes as an argument an integer exit sta-
tus.

5.1.6.5 Managing threads
One problem with the code in the above example is that the loop that creates the threads
does not know when the threads have been created or when they exit. In many cases,
threads will be created for the purpose of dispatching various events. In these cases, the
creator of the thread will want to know when the thread has begun execution and is
ready to accept events. Likewise, during a cleanup phase, end-of-day routines will want
to know when a thread has received notification of system teardown, so resources that
the thread might otherwise check or use in its normal operation (for instance, work
queues, mutex and condition variables, et cetera) can be deallocated. To address this
problem, RAIDframe provides “thread group” management, which can be used to deter-

Extending RAIDframe

94 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

mine when one or a group of threads have been created and are ready to execute events,
and when they are no longer executing.

A thread group is of typeRF_ThreadGroup_t . This must be initialized in one of two
ways. One is by callingrf_init_threadgroup() , which takes as its sole argu-
ment a pointer to anRF_ThreadGroup_t to initialize. The other is to call
rf_init_managed_threadgroup() , which takes as its first argument an
RF_ShutdownList_t**, and anRF_ThreadGroup_t* as its second argument.
In the first case, the thread group must be deallocated when it is no longer needed by
calling rf_destroy_threadgroup() with a pointer to the thread group as its sole
argument (in the latter case, the deallocation action is queued on the shutdown list).

Several macros, described in the table below, are key to thread group operation:

TABLE 21 Thread Group Operations

Rewritten to use a thread group, the previous example might look like:

static RF_ThreadGroup_t group;

int threads_should_run = 0;

static void showmyname_thread(arg)

RF_ThreadArg_t arg;

{

char *name = (char *)arg;

printf(“My name is \”%s\”\n”, name);

/* other local initialization */

RF_THREADGROUP_RUNNING(&group);

while(threads_should_run && (...)) {

/* dispatch loop */

}

Macro name Caller When called

RF_THREADGROUP_STARTED Creator After successfully
creating a member thread

RF_THREADGROUP_RUNNING Member
thread

Once running

RF_THREADGROUP_DONE Member
thread

When ready to exit

RF_THREADGROUP_WAIT_START Creator Waiting for member
threads to successfully
begin running

RF_THREADGROUP_WAIT_STOP Creator Waiting for member
threads to stop running

RAIDframe fundamentals

RAIDframe: A Rapid Prototyping Tool for RAID Systems 95

Version 1.0 8/29/96

RF_THREADGROUP_DONE(&group);

RF_EXIT_THREAD(0);

}

void run_name_threads()

{

RF_ThreadArg_t a;

RF_Thread_t th;

char name[100];

int i, rc;

rc = rf_init_threadgroup(&group);

if (rc) {

printf(“ERROR: cannot create thread group\n”);

return;

}

threads_should_run = 1;

for(i=0;i<10;i++) {

a = (RF_ThreadArg_t)name;

rc = RF_CREATE_THREAD(th, showmyname_thread, a);

if (rc) {

printf(“ERROR: could not create thread %d\n”, i);

}

else {

RF_THREADGROUP_STARTED(&group);

}

}

RF_THREADGROUP_WAIT_START(&group);

printf(“All threads running\n”);

/* potentially do something here */

threads_should_run = 0;

RF_THREADGROUP_WAIT_STOP(&group);

printf(“All threads done\n”);

rc = rf_destroy_threadgroup(&group);

if (rc) {

printf(“WARNING: error destroying thread group\n”);

}

}

Extending RAIDframe

96 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

If RF_THREADGROUP_WAIT_STOP is called on a thread group before
RF_THREADGROUP_WAIT_START, the results may not be what is desired.

5.1.6.6 Threads in the simulator
The simulator does not support threads. In this environment, all mutex and condition
operations become no-ops, and thread creation is disallowed. Architectures and mod-
ules which require a separate stream of execution should instead maintain timed event
queues when compiled for simulation.

5.1.7 Creating New Debug Options

Debug options are of typelong . To add a debug option, add an entry of the form:

RF_DBG_OPTION(<Name>,<Val>)

to rf_optnames.h where the<Name> is the name of your debugging variable and
<Val> is the (long) value that it should default to. To use your debug variable, be sure
the line#include “rf_options.h” appears in your source file. You may refer-
ence the new debug variable asrf_<Name> . For example, say you want to add a
debug variable namednewDebugVar , with a default value of zero. The following line
would be added torf_optnames.h :

RF_DBG_OPTION(newDebugVar,0) /* your new entry */

Note that it is important to preserve the lack of whitespace between the parenthesis
when adding new entries torf_optnames.h . Code which uses this variable might
look like:

if (rf_newDebugVar) {

printf(“foo is now %d\n”, foo);

if (rf_newDebugVar > 1) {

/* print detailed info */

printf(“bar is now %d, baz is %lu\n”, bar,

(u_long)baz));

}

}

Note that, though your new debug variable identifies itself inrf_optnames.h , you
must#include the filerf_options.h to use it.

5.1.8 Timing

RAIDframe provides a platform- and environment-independent timing mechanism that
can be used both for microbenchmarking individual codepaths and for collecting statis-
tics about how time is being spent in the system overall. This generic timing mechanism
is used, among other things, to generate the elements of RAIDframe trace records (see
Section 5.1.9, below).

A timer is of typeRF_Etimer_t , which is defined in a platform-dependent manner in
rf_etimer.h . Timers require no special initialization to be used, and are fully copy-

RAIDframe fundamentals

RAIDframe: A Rapid Prototyping Tool for RAID Systems 97

Version 1.0 8/29/96

able. The macroRF_ETIMER_START takes as its only argument the timer to start.
Likewise,RF_ETIMER_STOP also takes a timer as its sole argument. To find out how
long a timer has been running, the difference between the start time and the stop time
must be computed. Because this computation time might affect other timing results, it is
invoked separately with the macroRF_ETIMER_EVAL, which computes the time
elapsed betweenRF_ETIMER_START and RF_ETIMER_STOP for that timer. To
access this result, the macroRF_ETIMER_VAL_US takes as its argument a timer, and
returns the number of microseconds thatRF_ETIMER_EVAL computed as the elapsed
time.RF_ETIMER_VAL_MS likewise returns the number of elapsed milliseconds.

This example demonstrates how timers can be used to compute the amount of time that
elapses between different points in a codepath. It takes advantage of the copyability of
timers to snapshot a running timer at different points to obtain intermediate timing
results. Evaluation of elapsed time is deferred until all events being timed have com-
pleted, to avoid timing the computation of elapsed time.

RF_Etimer_t timer, t1, t2;

RF_ETIMER_START(timer);

/* do some computation (A) here */

t1 = timer;

RF_ETIMER_STOP(t1);

/* do some computation (B) here */

t2 = timer;

RF_ETIMER_STOP(t2);

/* perform some set of operations (C) here */

RF_ETIMER_STOP(timer);

RF_ETIMER_EVAL(timer);

RF_ETIMER_EVAL(t1);

RF_ETIMER_EVAL(t2);

printf(“Operation A took %lu microseconds\n”,

(unsigned long)RF_ETIMER_VAL_US(t1));

printf(“%lu ms elapsed before operation C started\n”,

(unsigned long)RF_ETIMER_VAL_MS(t2));

printf(“Together, A, B, and C took %d:%06d\n”,

(int)RF_ETIMER_VAL_US(timer)/1000000,

(int)RF_ETIMER_VAL_US(timer)%1000000);

5.1.9 Built-in Tracing of RAIDframe Performance

RAIDframe has several predefined codepaths that it will evaluate once the tracing
option is turned on in theDebug section of the RAIDframe configuration file. To turn

Extending RAIDframe

98 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

on tracing, setaccessTraceBufSize to a value greater than 0. Table 22 shows the
source files used in timing and tracing and what their functions are.

To add a trace record to the trace file, you must callrf_LogTracRec(). The tracing
module accumulates records until it is shut down, or its tracing buffers fill (it uses the
number of buffers specified byaccessTraceBufSize). At this time, the accumu-
lated buffers are flushed into thetrace.dat file. rf_LogTraceRec() takes two
arguments. The first is a pointer to anRF_Raid_t , which is the array for which an
event has occurred. The second is a pointer to the trace record itself. Trace records are
of typeRF_AccTraceEntry_t , which is defined inrf_acctrace.h .

To readtrace.dat , userf_tracestats . The command line argument is in the
form:

rf_tracestats [-v] [-p] trace_dat

where-v is verbose mode and-p prints formatted trace records on-screen (without
arguments,rf_tracestats displays only summary information for an entire trace-
file).

5.2 Installing a New RAID Architecture

A central switch table in the modulerf_layout.c specifies the routines which each
array architecture relies on for functions such as graph selection, mapping, and recon-
struction. Each RAID architecture is represented by an entry in this table. The table is
mapsw, is defined inrf_layout.c , and has typeRF_LayoutSW_t (defined in
rf_layout.h). To add a new architecture, you will first need to add your own entry
to this table, to describe your architecture, and define operations upon it.

This is themapsw entry for RAID level 5. Note that portions of the table appear
within the RF_NK2 andRF_NU macros. These macros are used inmapsw entries to
remove unnecessary parts of the table in certain environments. (For instance, the in-ker-
nel portion of RAIDframe does not parse configuration files itself, but instead relies on a
utility program (rf_setconfig or rf_ctrl) to do so. Likewise, this utility pro-
gram has no need to actually perform RAID operations such as sector-mapping.)

TABLE 22. Source files for tracing and timing

Source File Function

rf_etimer.h Times codepaths

rf_readcc.s Platform-specific assistance for
rf_etimer.h

rf_acctrace.[ch] Gathers timer records efficiently

rf_tracestats.c Processes the records

Installing a New RAID Architecture

RAIDframe: A Rapid Prototyping Tool for RAID Systems 99

Version 1.0 8/29/96

/* RAID level 5 */

{‘5’, “RAID Level 5”,

RF_NK2(rf_MakeLayoutSpecificNULL, NULL)

RF_NU(

rf_ConfigureRAID5,

rf_MapSectorRAID5, rf_MapParityRAID5, NULL,

rf_IdentifyStripeRAID5,

rf_RaidFiveDagSelect,

rf_MapSIDToPSIDRAID5,

rf_GetDefaultHeadSepLimitRAID5,

rf_GetDefaultNumFloatingReconBuffersRAID5,

NULL, NULL,

rf_SubmitReconBufferBasic,

rf_VerifyParityBasic,

1,

DefaultStates,

0)

},

5.2.1 parityConfig, configName

The first entry is of typeRF_ParityConfig_t . This is a single-character identifier
of the RAID architecture. Every entry in this table should have a unique value for its
RF_ParityConfig_t . This is the character identifier used in the RAIDframe config-
uration files to identify the RAID architecture. The second entry is of typechar* , and
is a string identifying the RAID architecture. For instance, “RAID Level 5” above.
There is no limit on the length of this string, but it should be reasonably short and not
contain newlines, tabs, or any special characters.

5.2.2 MakeLayoutSpecific, makeLayoutSpecificArg

The next two entries are for parsing layout-specific information from the user’s RAID-
frame configuration file. The first is a function returningint , which is used to parse the
relevant portion of the configuration file. The second,makeLayoutSpecificArg ,
is an extra argument to this function, to make it easier to use the same parsing function
with different parameters for different RAID architectures.

The function has a declaration of the form:

int MakeLayoutSpecific(FILE *fp, RF_Config_t *cfgPtr,

void *arg);

The first argument is a regular file pointer, which has advanced to the beginning of the
layout-specific section of the configuration file (note that this section may begin with

Extending RAIDframe

100 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

one or more blank lines). The second argument is the configuration that is currently
being parsed (RF_Config_t is defined inrf_configure.h). The final argument,
arg , is the aforementionedmakeLayoutSpecificArg .

TheMakeLayoutSpecific function should perform all necessary parsing and com-
putation, and allocate memory to store its results (as necessary). The number of bytes
allocated for this purpose should be stored incfgPtr->layoutSpecificSize ,
and a pointer to this memory should be stored incfgPtr->layoutSpecific . This
should be a single, contiguous block of memory that is fully copyable (that is, contains
no pointer to other regions of memory). This can later be retrieved by other layout-spe-
cific functions.

Upon success, theMakeLayoutSpecific operation should return0. Otherwise, it
should return a meaningful error value fromsys/errno.h . If an array architecture
does not have any layout-specific information, it should specify
rf_MakeLayoutSpecificNULL for MakeLayoutSpecific , and NULL for
makeLayoutSpecificArg .

5.2.3 Configure

TheConfigure operation is called at start-of-day to initialize any layout- and array-
specific information, and to allocate any extra resources the RAID architecture may
require. It has the form:

int Configure(RF_ShutdownList_t **shutdownListp,

RF_Raid_t *raidPtr, RF_Config_t *cfgPtr);

The shutdown list is provided so that any necessary shutdown and cleanup activities
may be registered at this configuration time. In addition,raidPtr->cleanupList
is of typeRF_ShutdownList_t* . The contents ofraidPtr->cleanupList are
deallocated after the array is quiesced and shut down. The array that is being configured
is raidPtr , and the user’s configuration file is described fully bycfgPtr .

On success, theConfigure routine should return0. On failure, it should return a
descriptive, nonzero error code. Additionally, all memory that theConfigure routine
allocated should either be deallocated or enqueued onraidPtr->cleanupList .
Likewise, any necessary cleanup activities should be performed immediately before
returning a failure, or enqueued onshutdownList .

The Configure routine may use the field
raidPtr->Layout.layoutSpecificInfo , which is of typevoid* , to store
any array-specific information that it desires. It should also initialize
raidPtr->totalSectors to the number of data sectors the array is capable of
storing (note that this does not include the number of sectors that have been allocated to
redundancy data). Additionally, there are several fields in theraidPtr->Layout
structure (of typeRF_RaidLayout_t , defined in rf_layout.h), which this
routine is required to initialize. They are as follows:

Installing a New RAID Architecture

RAIDframe: A Rapid Prototyping Tool for RAID Systems 101

Version 1.0 8/29/96

TABLE 23 RF_RaidLayout_t fields to be filled in by Configure

5.2.4 MapSector, MapParity, MapQ

The MapSector , MapParity , andMapQ routines provide basic array-layout infor-
mation. They are declared as:

void MapSector(RF_Raid_t *raidPtr,

RF_RaidAddr_t raidSector, RF_RowCol_t *row,

RF_RowCol_t *col, RF_SectorNum_t *diskSector,

int remap);

void MapParity(RF_Raid_t *raidPtr,

RF_RaidAddr_t raidSector, RF_RowCol_t *row,

RF_RowCol_t *col, RF_SectorNum_t *diskSector,

int remap);

void MapQ(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,

RF_RowCol_t *row, RF_RowCol_t *col,

RF_SectorNum_t *diskSector, int remap);

Each of these functions is called to determine the location of a single sector in the array.
The array is indicated byraidPtr . The sector is indicated byraidSector , which is
the sector number of the array to be mapped. The function assigns*row and*col to
indicate which disk the sector resides on, and*diskSector is the sector number on
that disk that the mapping has yielded.

TheMapSector routine is used to map data sectors to physical disk sectors. All array
architectures must provide this routine. This should yield a unique mapping for every
sector in the array.

TheMapParity routine is likeMapSector , except that the resulting sector is not the
corresponding physical data sector, but rather the corresponding physical parity sector.
In most architectures, many data sectors will map to the same parity sector. In non-fault-
tolerant architectures, this routine may beNULL.

The MapQ routine is similar toMapParity , except it is used to map an additional
redundancy unit. This is provided by dual-fault-tolerant architectures, such as Even-
Odd and Raid Level 6.

Layout Field Contents

numStripe number of stripes in the array

dataSectorsPerStripe number of data sectors in each stripe

dataStripeUnitsPerDisk number of stripe units in a disk that contain data

bytesPerStripeUnit number of bytes in each stripe unit

numDataCol number of data columns in each stripe

numParityCol number of parity columns in each stripe

Extending RAIDframe

102 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

If the remap argument has the valueRF_REMAP, the mapping should be to the spare
sector corresponding to the sector to which the mapping function would otherwise
yield.

5.2.5 IdentifyStripe

TheIdentifyStripe routine is used to determine which physical disks contain sec-
tors that share a stripe with a particular sector. This routine has the declaration:

void IdentifyStripe(RF_Raid_t *raidPtr,

RF_RaidAddr_t addr, RF_RowCol_t **diskids,

RF_RowCol_t *outrow);

The first argument,raidPtr , is the array in which the mapping is to be performed.
The second argument,addr , is the sector in said array for whichIdentifyStripe
is to determine the disks of its fellow stripe members. This function should assign to
*diskids an array of (raidPtr->Layout.numDataCol +
raidPtr->Layout.numParityCol) RF_RowCol_t elements. These are the
column numbers of the disks. The row of disks that the stripe occupies should be
assigned to*outrow .

When reading the extant RAIDframe code, one may note that some architectures actu-
ally generate an ordered list of disks in the stripe. This is not necessary; rather, this is a
historic convention used to make debugging easier.

5.2.6 SelectionFunc

When an I/O request enters the system, it is passed through
rf_SelectAlgorithm() in rf_aselect.c . This routine uses the layout-spe-
cific DAG selection routine to choose a DAG creation function for a particular access.
This routine SelectionFunc , is declared as:

void SelectionFunc(RF_Raid_t *raidPtr, RF_IoType_t type,

RF_AccessStripeMap_t *asmap,

RF_VoidFuncPtr *createFunc);

This routine is used to determine what DAG creation function a particular access to the
array indicated by raidPtr should use. RF_IO_TYPE_READ and
RF_IO_TYPE_WRITE are the only legal values for thetype argument, which indi-
cates the direction of the access. Theasmap argument (of type
RF_AccessStripeMap_t , found in rf_layout.h) describes the access in its
entirety, including physical disk mappings for data and parity, ranges accessed, and the
presence of disk failures, which may affect the access. TheSelectionFunc routine
should take these failures into account when determining the creation function to use,
potentially determining that an access should be performed in degraded mode, rather
than fault-free. If a unit to be accessed has failed, but is already reconstructed, the
SelectionFunc routine should also take this into account, and alter the physical
mappings inasmap to reflect the fact that the data has been reconstructed. This is espe-
cially important when the access is a write, because without this remapping, a recon-
structed data or parity unit will not be updated to reflect the new contents of the stripe.

Installing a New RAID Architecture

RAIDframe: A Rapid Prototyping Tool for RAID Systems 103

Version 1.0 8/29/96

A pointer to the DAG creation function should be assigned to*createFunc . A later
section details DAG creation operations, and how this function should behave. Assign-
ing a value ofNULL to *createFunc indicates that a DAG cannot be created for this
access.rf_SelectAlgorithm() will initially attempt to create one graph for each
parity stripe in the access’s codeword. If this creation is unsuccessful,
rf_SelectAlgorithm() will then try to create a set of graphs for each stripe unit
within that parity stripe. If graphs cannot be generated for each stripe unit,
rf_SelectAlgorithm() will attempt to create a DAG for each sector in each
stripe unit in the codeword. Finally, if this fails,rf_SelectAlgorithm() declares
failure, and the access is failed.

5.2.7 MapSIDToPSID

The MapSIDToPSID routine is used by architectures for which the relationship
between data stripes and parity stripes is not an equivalence. For instance, parity declus-
tering allows multiple stripes to be packed into a single parity stripe, to increase the size
of the reconstruction unit without affecting the size of the stripe unit. This routine has
the declaration:

void MapSIDToPSID(RF_RaidLayout_t *layoutPtr,

RF_StripeNum_t stripeID, RF_StripeNum_t *psID,

RF_ReconUnitNum_t *which_ru);

The layout of the array in which this mapping is to be performed is described by
layoutPtr . The stripe number of the stripe to be mapped isstripeID , and the
resulting parity stripe is stored byMapSIDToPSID in *psID . This routine also stores
the reconstruction unit of the stripe in*which_ru . The identity mapping is most
common here; that is:

*psID = stripeID;

*which_ru = 0;

This is performed automatically if theMapSIDToPSID routine for an architecture is
NULL, or if the number of stripe units per parity unit for a layout is1.

5.2.8 GetDefaultHeadSepLimit

The disk-directed reconstruction code has the ability to keep disk arms synchronized
with one another when sweeping surviving columns. This is controlled by the head sep-
aration limit for the array, which is assigned at start-of-day by calling theGetDe-
faultHeadSepLimit routine, which is declared as:

RF_HeadSepLimit_t GetDefaultHeadSepLimit(

RF_Raid_t *raidPtr);

This function takes as its sole argument the array in question, and returns how many
sectors ahead of the slowest disk the fastest disk is allowed to be. That is to say, it
returns the maximal difference in sector number between the lowest-numbered-sector
currently being read by the disk-directed reconstruction code, and the highest-num-
bered-sector currently being read by the disk-directed reconstruction code (neglecting

Extending RAIDframe

104 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

stripes being read for forced reconstruction). If this routine isNULL, a value of(-1) is
assumed.(-1) indicates that this separation is unlimited. Note that(-1) is the only
legal value less than1.

5.2.9 GetDefaultNumFloatingReconBuffers

The disk-directed reconstruction module maintains a pool of “floating” reconstruction
buffers, which are not assigned to any particular disk, but are instead used to store the
results of additional I/Os to disks which would otherwise be idle. An architecture may
specify a minimum number of these buffers to keep for each array by providing a
GetDefaultNumFloatingReconBuffers routine, which has the following
form:

int GetDefaultNumFloatingReconBuffers(

RF_Raid_t *raidPtr);

This routine is called at start-of-day on the array, and should return the minimum num-
ber of floating reconstruction buffers to maintain for the array.

5.2.10 GetNumSpareRUs

Architectures which support distributed sparing tell the system how many spare recon-
struction units there are on each disk with theGetNumSpareRUs routine, which has
the form:

RF_ReconUnitCount_t GetNumSpareRUs(RF_Raid_t *raidPtr);

Given an arrayraidPtr , this routine returns the number of spare reconstruction units
there are on each disk.

5.2.11 InstallSpareTable

Distributed-sparing architectures which have dynamic sparing mappings may need to
compute a new sparing table when reconstruction begins for a disk. To do so, these
architectures provide anInstallSpareTable routine with the following declara-
tion type:

int InstallSpareTable(RF_Raid_t *raidPtr,

RF_RowCol_t frow, RF_RowCol_t fcol);

The arguments indicate the array to determine the mapping for (raidPtr), and the row
and column (frow and fcol , respectively) of the failed disk to be reconstructed to
spare space. On success, this routine returns0. On failure, it returns a descriptive non-
zero error code.

5.2.12 SubmitReconBuffer

When the disk-directed reconstruction code finishes reading a buffer, it must either use
it to compute the contents of a failed unit, or save it until it has enough other informa-
tion from the stripe from which the buffer originated to do so. When a read of a buffer

Installing a New RAID Architecture

RAIDframe: A Rapid Prototyping Tool for RAID Systems 105

Version 1.0 8/29/96

from a surviving disk completes, an architecture’sSubmitReconBuffer routine is
called. This routine is declared as:

int SubmitReconBuffer(RF_ReconBuffer_t *rbuf,

int keep_it, int use_committed);

The buffer which has just been read isrbuf (the array from which it was read is
rbuf->raidPtr). If keep_it is nonzero, theSubmitReconBuffer routine
may hold the buffer, even if it cannot immediately use its contents. Ifkeep_it is 0,
theSubmitReconBuffer routine must either immediately use or copy the contents
of rbuf . If use_committed is nonzero, this routine must consume a buffer off the
committedRbufs list of the row’s reconstruction control unit, even if such a buffer is
not needed (in the case where the buffer is not needed, it may immediately be released
with rf_ReleaseFloatingReconBuffer()). In turn, the
SubmitReconBuffer routine should callrf_CheckForFullRbuf() when a
targetRF_ReconBuffer_t contains the reconstructed data for the failed unit in the
stripe.

If the SubmitReconBuffer routine for an architecture isNULL, the architecture
cannot reconstruct failed units.

5.2.13 VerifyParity

RAIDframe has a built-in ECC verification and correction mechanism (which is also
used to format arrays with correct redundancy information, and can be used in various
tests for debugging purposes to determine that the redundancy information is correct for
an access). This relies on theVerifyParity routine, which an architecture must
provide to check and correct (if requested) the redundancy information for a stripe. This
routine has the form:

int VerifyParity(RF_Raid_t *raidPtr,

RF_RaidAddr_t raidAddr, RF_PhysDiskAddr_t *parityPDA,

int correct_it, RF_RaidAccessFlags_t flags);

The array in which redundancy information is to be verified israidPtr . The stripe for
which this information is to be checked is the one containing sector number
raidAddr . To improve performance and ease the coding ofVerifyParity , the
parityPDA argument provides the already-complete mapping of the redundancy
information to physical addresses for this stripe. Ifcorrect_it is nonzero, and the
redundancy information is not correct, new redundancy information should be
computed and written for this stripe. Finally, any RAID accesses that must be performed
should use theflags given as the last parameter to theVerifyParity routine.

When reading existing data in the stripe, or writing new redundancy information, the
VerifyParity routine should create trivial DAGs to do so. The function
rf_MakeSimpleDAG() in rf_parityscan.c assists in this task.

The VerifyParity routine returns a status value indicating the current correctness
of the parity before and after execution. The following values, defined in
rf_parityscan.h , are the legal returns for this routine:

Extending RAIDframe

106 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

TABLE 24 Return Values for the VerifyParity Operation

5.2.14 faultsTolerated

The faultsTolerated field of the mapsw entry for a RAID architecture indicates
the minimum number of faults that an array can tolerate without data loss. For example,
Raid Level 4 can tolerate exactly one disk failure, so itsfaultsTolerated is 1.
Raid Level 0 cannot tolerate any failures, so itsfaultsTolerated is 0. Raid Level 1
(mirroring) can potentially survive several faults; however, if both members of a mirror
pair fail, data is lost; thus, itsfaultsTolerated is 1, because that is the minimum
number of failures which it can guarantee surviving.

5.2.15 states

The states field lists the order in which an access to this array architecture passes
through the access state machine. This field is an array of elements of type
RF_AccessState_t . The last element in this array must berf_LastState ,
which indicates that the access is complete. Most architectures will wish to use the
valueDefaultStates in this field, which is a standard ordering of states.

5.2.16 flags

The final field of amapsw entry is flags, which are a set of flags ORd together to indi-
cate that the architecture has certain standard properties. Some architectures will wish to
provide a0 in this field (indicating that none of these flags apply). Legal values include:

Value Meaning

RF_PARITY_OKAY redundancy information is correct

RF_PARITY_CORRECTED redundancy information was incorrect,
butcorrect_it was nonzero, and it
is now correct

RF_PARITY_BAD redundancy information is not correct,
andcorrect_it was0

RF_PARITY_COULD_NOT_CORRECT redundancy information is not correct,
correct_it was nonzero, and
correct redundancy information could
not be computed or could not be written

RF_PARITY_COULD_NOT_VERIFY redundancy information could not be
verified, either current data or
redundancy could not be read, or
correct redundancy information could
not be computed

Implementing New RAID Operations

RAIDframe: A Rapid Prototyping Tool for RAID Systems 107

Version 1.0 8/29/96

TABLE 25 RF_LayoutSW_t Flag Values

5.3 Implementing New RAID Operations

5.3.1 DAG Creation

As discussed in Section 5.2.6 on page 102, RAIDframe graph-creation functions must
at least be able to create graphs for accessing single blocks at a time for accesses to be
successfully generated. RAIDframe will currrently never attempt to create graphs for an
access which spans more than a single parity stripe (such accesses are broken up into
sets of single-parity-stripe accesses, which are executed concurrently).

The appropriate graph creation routine for an access or portion of an access is deter-
mined by an architecture'sSelectionFunc . The SelectionFunc provides a
void function pointer. This function should have the form:

void DagCreationFunc(RF_Raid_t *raidPtr,

RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h,

void *bp, RF_RaidAccessFlags_t flags,

RF_AllocListElem_t *allocList);

The array and parameterization of the access are described byraidPtr andasmap,
respectively. The DAG creation function should fill in the empty DAG headerdag_h .
At the time the DAG creation function is called,dag_h is initialized as an enabled
DAG with no nodes. In the RAIDframe kernel environment,bp is astruct buf*
which represents the access’s target buffer (most DAG creation functions will not need
this information at all. Some may choose to operate differently for kernel-internal or
user accesses, so this information is available). Outside the kernel,bp is generally
ignored. Theflags variable is a bitwise OR of values fromrf_dagflags.h . Many
of these flags are not applicable to the DAG creation function, but again, they are pro-
vided for those few cases where the DAG creation function wishes to do something dif-
ferent as a result. Finally, a per-access memory allocation list,allocList , is provided
for any temporary storage that may need to be allocated. This not only includes extra
buffers for computing redundancy information before storing it, but also includes the
storage required to hold the actual nodes of the DAG themselves.

5.3.2 Creating New Primitive Operations

The most important rule to follow when creating primitive operations is that they must
be nonblocking. Primitives such asdisk read employ call-back functions—the disk
read is scheduled, the primitive returns, and the call-back routine is later called when the

Value Meaning

RF_DISTRIBUTE_SPARE architecture supports distributed sparing

RF_BD_DECLUSTERED this is a declustered architecture which requires
externally generated block-design tables

Extending RAIDframe

108 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

disk read actually completes. If a primitive is allowed to block, RAIDframe will not be
able to properly schedule its workload (and may deadlock).

In its current release, RAIDframe provides a variety of primitive operations that may be
reused by architectures that you later implement.

5.4 Adding a New Disk-Queueing Policy

RAIDframe supports multiple queueing disciplines for pending disk I/Os. The follow-
ing section explains how to add a new queueing policy.

A queueing policy must maintain a set of pending I/Os for a single disk. Although an
array may have many disks, a queueing policy is only aware of disks on an individual
basis. Therefore, it only needs to support a limited number of simple operations:create,
enqueue, dequeue, peek, andpromote.

To add a queueing policy, you must register it with the disk queue manager. This is done
by modifying thediskqueuesw structure inrf_diskqueue.c . Entries in this
structure are of typeRF_DiskQueueSW_t (defined inrf_diskqueue.h), and
look like:

{"fifo", /* FIFO */

rf_FifoCreate,

rf_FifoEnqueue,

rf_FifoDequeue,

rf_FifoPeek,

rf_FifoPromote},

The first entry is thequeueType (RF_DiskQueueType_t) and is a string used to
identify the queueing discipline. RAIDframe configuration files will use this string to
request this queueing policy. The remainder of the entries are function entry points,
described in the sections below. You should add new policies to the end of the
diskqueuesw array. The first entry in this array (FIFO) is the default policy (which
is used when the configuration parser cannot recognize the requested queueing policy as
specified in the RAIDframe configuration file).

5.4.1 Create Operation

Your creation function should have a declaration of the form:

void *rf_PolicynameCreate(

RF_SectorCount_t sectors_per_disk,

RF_AllocListElem_t *cl_list,

RF_ShutdownList_t **listp)

This function is called to create and initialize a disk queue. It returns a generic (void*)
pointer, which will be used later to identify the individual queue to your queueing mod-
ule. (One disk queue will be created for each disk). The size of each disk in sectors is

Adding a New Disk-Queueing Policy

RAIDframe: A Rapid Prototyping Tool for RAID Systems 109

Version 1.0 8/29/96

passed by the value in sectors_per_disk . An allocation list is passed as
cl_list . Any memory which your queueing policy allocates should be registered
with this allocation list by usingRF_CallocAndAdd or RF_MallocAndAdd to
allocate the memory. If any special operations need to be performed to shut down the
queue, these should be resgistered with the shutdown listlistp .

5.4.2 Enqueue Operation

Your enqueue function should have a declaration of the form:

void rf_PolicynameEnqueue(void *qptr,

RF_DiskQueueData_t *req, int priority)

This function is called to add a request to the disk’s queue. The queue is uniquely iden-
tified by qptr , which is the returned value from the queue creation function. The
request is pointed to byreq and is of typeRF_DiskQueueData_t (defined in
rf_diskqueue.h). The priority is either of typeRF_IO_NORMAL_PRIORITY or
RF_IO_LOW_PRIORITY. When dequeueing, you should always give preference to
dequeueing I/Os of NORMAL priority over I/Os of LOW priority. The
RF_DiskQueueData_t structure contains two pointers,next andprev, both of type
RF_DiskQueueData_t * , which may be used by this queueing code to maintain
lists of pending I/Os.

The Enqueue, Dequeue, Peek, and Promote operations need not be protected internally
with locks; the discipline-independent disk-queueing code inrf_diskqueue.c will
do this automatically.

5.4.3 Dequeue Operation

Your dequeue function should have a declaration of the form:

RF_DiskQueueData_t *rf_PolicynameDequeue(void *qptr)

This function is called to remove a request from the disk’s queue. The queue is uniquely
identified byqptr , which is the returned value from the queue creation function. If an
I/O of priority RF_IO_NORMAL_PRIORITY is in the queue, it should be returned. If
there is more than one such I/O, the queueing module should select one and return it (for
instance,FIFO queueing will return the first such I/O to be enqueued). If no I/O of
NORMAL priority is awaiting dispatch in this queue, an I/O of priority
RF_IO_LOW_PRIORITY may be returned. If there are no I/Os of any priority in the
queue, this operation should returnNULL. Before returning a valid pending I/O, it
should be removed from the queue.

5.4.4 Peek Operation

Your peek function should have a declaration of the form:

RF_DiskQueueData_t *rf_PolicynamePeek(void *qptr)

This function should behave identically to the dequeue function, except that it should
not remove the I/O from the list of pending I/Os for this disk. Additionally, if the Peek

Extending RAIDframe

110 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

operation is called, and there are no subsequent Enqueue, Dequeue or Promote opera-
tions, another Peek or Dequeue operation should return the same I/O (that is, a queue
should be deterministic for its contents at any given time, and its choice of which I/O to
execute next should be affected only by a change of its contents).

5.4.5 Promote Operation

Your promote function should have a declaration of the form:

int rf_PolicynamePromote(void *qptr,

RF_StripeNum_t parityStripeID,

RF_ReconUnitNum_t which_ru)

This operation should search the queue for entries for which theparityStripeID
and which_ru fields of theRF_DiskQueueData_t structure match those which
are passed as arguments to this function, and which have a priority field valued at
RF_IO_LOW_PRIORITY. Each such I/O should be re-marked as having priority
RF_IO_NORMAL_PRIORITY, and any necessary rearrangements of the queueing pol-
icy’s data should be performed at this time. This function should return the number of
such I/Os it has found and promoted to normal priority, or zero if none such were found.

5.5 Porting RAIDframe to Other Systems

Currently all three versions of RAIDframe—stand-alone user application, event-driven
simulator, and in-kernel device driver—run on DEC Alphas running pre-4.0 versions of
the Digital UNIX operating system. Additionally, the simulator runs on a variety of
operating systems and architectures. This section is intended as an aid in porting RAID-
frame to new platforms.

5.5.1 Basic Types

The first step is to define a set of basic types inrf_types.h . You must provide vari-
ous sizes of signed and unsigned integers for your system. Table 26 lists the types you
must define, and what they must be defined to.

TABLE 26 Basic RAIDframe integer types

RAIDframe type Meaning

RF_int8 signed 8-bit integer

RF_uint8 unsigned 8-bit integer

RF_int16 signed 16-bit integer

RF_uint16 unsigned 16-bit integer

RF_int32 signed 32-bit integer

RF_uint32 unsigned 32-bit integer

RF_int64 signed 64-bit integer

RF_uint64 unsigned 64-bit integer

Porting RAIDframe to Other Systems

RAIDframe: A Rapid Prototyping Tool for RAID Systems 111

Version 1.0 8/29/96

5.5.2 Byte Ordering

If the target platform is big-endian, the macroRF_IS_BIG_ENDIAN must be set to1
in rf_types.h . If it is not,RF_IS_BIG_ENDIAN must be set to0.

5.5.3 Word Size

Some optimized error correction code computations in RAIDframe take advantage of
the system’s natural word size. To support these optimized routines, RF_LONGSHIFT
should be defined to thelog 2(sizeof(long)) for your system (for example, on a
system with 64-bitlong s, this would be3, on a system with 32-bit longs, this would be
2).

5.5.4 Timing

Section 5.1.8 describes various timing macros defined inrf_etimer.h that provide
precision timing. These are architecture-dependent. Ideally, these functions provide
microsecond-accurate timing with little or no overhead. When porting to a new plat-
form, the nature of the precision/overhead tradeoff must be characterized, and an appro-
priate implementation provided. Some architectures need assembly-language
assistance; this should be added torf_readcc.s .

5.5.5 SCSI Operations

SCSI operations are isolated withinrf_camlayer.c . Ports of more than just the sim-
ulator should provide code in this file for such operations as SCSI Read Capacity.

5.5.6 Threads

Section 5.1.6 details the thread operations defined inrf_threadstuff.c and
rf_threadstuff.h . Ports that provide user-level-driver or kernel functionality
must provide appropriate platform-dependent thread operations here. A Pthreads imple-
mentation is already provided for the user-level driver; architectures for which a com-
pliant Pthreads implementation is available should be able to re-use this.

5.5.7 Random Numbers

Various tests used by the out-of-kernel front-ends generate random numbers for access
types, locations, and data buffers. The filerf_randmacros.h contains macros used
by this code in both the single-threaded simulator environment, and the multi-threaded
user-level driver environment.

5.5.8 CPU Utilization

The files rf_cpuutil.c and rf_cpuutil.h contain mechanisms for tracking
CPU utilization during certain operations (such as reconstruction) for the user-level and
kernel drivers. If you wish to measure CPU utilization on your platform, you should
provide appropriate code here for doing so.

Extending RAIDframe

112 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

RAIDframe: A Rapid Prototyping Tool for RAID Systems 113

Version 1.0 8/29/96

The graphs necessary for implementing the RAID architectures listed in Table 6 in
Chapter 3 are available for reuse in the graph library, and they are shown in the follow-
ing section. We have categorized the graphs implemented in RAIDframe by the particu-
lar architecture for which they were designed; in some cases, graphs are reused among
several different RAID levels.

A.1 RAID Level 0

As we already explained in Chapter 1, RAID level 0 arrays do not encode data; there-
fore, a RAID level 0 array is not fault-tolerant. Because of this, only nonredundant oper-
ations are available for use. Figure 1 illustrates the structure of nonredundant read and
write operations. The NOP operations guarantee that each DAG has single source and
sink nodes. Each graph is capable of supporting one or more simultaneous primitive
operations, allowing the graph to scale with the size of the user request.

Appendix A: Graph Library

114 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

FIGURE 1 Nonredundant Graphs

A.2 RAID Level 1, Chained Declustering, Interleaved
Declustering

RAID level 1 arrays are fault tolerant and employ copy-based redundancy to survive
single disk faults without loss of service. This means that operations are defined to ser-
vice both fault-free and degraded read and write requests. Table 23 specifies which
operations are used to service a request given the state of the disks.

In addition to the nonredundant graphs described in Figure 1, RAID level 1 arrays
require an additional write operation, themirrored write, which is responsible for main-
taining copy-based redundancy in a fault-free array. This operation, illustrated in
Figure 2, contains twice the number of write operations as a nonredundant write opera-
tion because a copy of each symbol is written to both a primary and a secondary disk.

TABLE 1.

Request Disk Faults Graph

read none, single disk nonredundant read

write none mirrored write

write single disk nonredundant write

Commit

Nonredundant WriteNonredundant Read

RdRd ••• WrWr •••

NOP Commit

NOP

RAIDframe: A Rapid Prototyping Tool for RAID Systems 115

Version 1.0 8/29/96

FIGURE 2 Mirrored-Write Graph

A.3 RAID Level 4, RAID Level 5, Parity Declustering

RAID levels 4 and 5 tolerate disk faults through the use of parity encoding. As
expected, the operations used to satisfy read and write requests are largely the same;
however, because it is possible to write only a fraction of a codeword, additional write
operations are required. Namely, thesmall write operation (Figure 3), which is used to
write data to less than half of a codeword, and thereconstruct write operation (Figure 4
on page 117), which is used to write data to more than half, but less than a full, code-
word. Table 24 breaks down graph selection for RAID level 4 and 5 arrays. Because
these two arrays differ only in mapping, the same table applies to both architectures.

TABLE 2.

Request
Disk
Faults Graph

read none nonredundant read

read data disk degraded read

read parity disk nonredundant write

write < 50% of codeword none small write

write > 50% and < 100% none reconstruct write

write entire codeword none large write

write data disk reconstruct write

write parity disk nonredundant write

Commit

NOP

WrWr ••• WrWr •••

RAID level 1 arrays use copy-based encoding to survive disk faults and require that
data be written to two independent disks. In this graph, the write operations on the
left represent writes to a primary disk(s) and write operations on the right represent
writes of data to secondary disk(s). TheNOP source node of the nonredundant
write graph is replaced by aCommit node.

116 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

The small write operation, illustrated in Figure 3 on page 116, writes both data and par-
ity to disk. Parity is computed as:

(EQ 1)

The cluster of read operations on the left side of the graph represent the read of old data
and the single read operation on the right represents the read of old parity. Once parity
has been computed, the new data and parity symbols are written to the array.

FIGURE 3 Small-Write Graph

In the reconstruct write operation, illustrated in Figure 4, parity is computed from all
symbols in the codeword. TheRd operations collect data symbols that are not being
overwritten. Once all data symbols are collected, parity is computed and the new data
and parity symbols are written to disk.

Paritynew Parityold Dataold Datanew⊕ ⊕=

NOP

Rd

Wr Wr

NOP

RdRd

XOR

Wr •••

•••

Commit

RAIDframe: A Rapid Prototyping Tool for RAID Systems 117

Version 1.0 8/29/96

FIGURE 4 Reconstruct-Write Graph

A.4 RAID Level 6

In addition to parity, RAID level 6 arrays employ a second check symbol to allow them
to survive two simultaneous disk failures. We refer to this second symbol as “Q.” The
graphs used by this architecture are summarized in Table 25.

TABLE 3.

Request Disk Faults Graph

read none nonredundant read

read single data disk degraded read

read parity disk nonredundant read

read Q disk nonredundant read

read two data disks PQ double-degraded read

read data + parity disks PQ degraded-DP read

read data + Q disks degraded read

The Rd operations read the data symbols that are not being overwritten. The left-
mostWr operations overwrite data symbols, and theWr operation on the right over-
writes parity.

NOP

Rd

Wr Wr

NOP

Rd

XOR

Wr

•••

Commit

•••

118 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

Read operations to fault-free or single-fault arrays are handled in much the same man-
ner as RAID level 5. When an attempt is made to read a codeword with two missing
data symbols, aPQ double-degraded-read operation, illustrated in Figure 5, is used.

read parity + Q disks nonredundant read

write < 50% of codeword none PQ small write

write < 50% of codeword parity PQ small write, P omitted

write < 50% of codeword Q small write

write > 50% and < 100% none PQ reconstruct write

write > 50% and < 100% parity PQ reconstruct, P omitted

write > 50% and < 100% Q reconstruct write

write 100% none PQ large write

write 100% parity PQ large write, P omitted

write 100% Q large write

write one data disk PQ reconstruct write

write two data disks PQ double-degraded write

write data + parity disks PQ reconstruct, P omitted

write data + Q disks reconstruct write

write parity + Q disks nonredundant write

TABLE 3.

Request Disk Faults Graph

RAIDframe: A Rapid Prototyping Tool for RAID Systems 119

Version 1.0 8/29/96

FIGURE 5 PQ Double-Degraded-Read Graph

Reading data from a codeword in which both a data symbol and parity are missing
requires the use of the “Q” symbol to reconstruct the missing data. The operation to do
this, thePQ degraded-DP-read operation, is illustrated in Figure 6.

FIGURE 6 PQ Degraded-DP-Read Graph

Similar to RAID level 5 arrays, writing less than half of a codeword to a RAID level 6
array is best done using a read-modify-write algorithm. ThePQ small write operation,

This operation is used when two data units are missing from the codeword. The left-
mostRd operation reads the old value of parity, and the right-most operation reads the
old value ofQ. The centerRd operations read all surviving data in the codeword. TheQ
operation regenerates a single missing data symbol, and theXOR node regenerates the
other missing symbol.

NOP

RdRd

Q

XOR

Rd Rd

Commit

•••

NOP

Rd

Commit

RdRd

Q

•••

120 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

illustrated in Figure 7, writes new data symbols and computes new values of parity and
“Q” using Equation 1 on page 116. If either the parity or Q disks fail, this same graph is
used, but the chains that would normally update the now-failed check symbol are omit-
ted.

FIGURE 7 PQ Small-Write Graph

Writing over half, but less than an entire, codeword is best done by a reconstruct write,
similar to the one used in RAID level 5. Illustrated in Figure 8, thePQ reconstruct-write
operation reads the data symbols not overwritten, meaning that the entire (new) code-
word is held in memory. Parity and Q are then computed, and the new data, parity, and
Q are then written to disk. This operation is also used when data is being written to an
array in which a single data disk has failed and a fault-free disk is being written.

This graph is similar to the small-write graph (Figure 3), but with an extra chain
added to update the “Q” disk. TheCommit node blocks all writes from initiating
until all new symbols (data, parity, and Q) have been computed.

NOP

Rd

Wr Wr

NOP

RdRd

Q

Wr

XOR

Rd

Wr

Commit

•••

•••

RAIDframe: A Rapid Prototyping Tool for RAID Systems 121

Version 1.0 8/29/96

FIGURE 8 PQ Reconstruct-WriteGraph

If two data disks have failed and data is written to at least one, but not both, of the failed
disks, thePQ double-degraded write operation, illustrated in Figure 9, is used. This
graph employs an algorithm similar to the one used in the PQ degraded write operation
but must reconstruct the failed data which is not overwritten.

This graph is similar to the reconstruct-write graph (Figure 4) but with an extra chain
added to update the “Q” disk. In this example, assume thatD1 andD2 are to be written.
TheRd operations read old data (D0, D3 andD4). New values ofP andQ are then com-
puted and the writes ofD1, P, andQ are initiated. TheCommit node blocks allWr
nodes from executing until all new symbols have been computed.

D0 D1 D2 D3 P QD4

•••

NOP

Rd

Wr Wr

NOP

Rd

Q

Wr

Commit

XOR

Wr •••

122 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

FIGURE 9 PQ Double-Degraded-Write Graph

Finally, writing data to the entire codeword is simply performed using thePQ large-
write operation. Illustrated in Figure 10, the operation overwrites every symbol in the
codeword.

Assume thatD1 andD2 are to be overwritten. BecauseD4 is missing, the PQ recon-
struct operation cannot be used. This operation completes the requests by recon-
structing D4 and then using the reconstruct-write algorithm. First all surviving
symbols are read. TheRd actions in the center read the read of data (e.g.,D0 D1 and
D3), theRd operations on the ends read oldP andQ. TheQ operation reconstructs
D4. At this point, the entire codeword is known and the computation and writing of
parity, Q and data can begin. TheCommit node was added to preventWr opera-
tions from executing before theXOR andQ nodes have completed.

D0 D1 D2 D3 P QD4

NOP

Rd

Wr Wr

NOP

Rd

Q

Wr

XOR

Wr

Rd Rd

Q

XOR

Commit

•••

•••

RAIDframe: A Rapid Prototyping Tool for RAID Systems 123

Version 1.0 8/29/96

FIGURE 10 PQ Large-Write Graph

Instead of allowing new data to be written concurrently while the parity overwrite
record is computed, theCommit node blocks the writes of new data until theXOR and
Q nodes have executed completely.

NOP

Wr Wr

NOP

Q

Wr

XOR

Wr

Commit

•••

124 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

RAIDframe: A Rapid Prototyping Tool for RAID Systems 125

Version 1.0 8/29/96

This section describes in more detail various types within RAIDframe.

TABLE 4 RAIDframe types

RF_AccessState_t enumerated set of states an access goes
through (defined inrf_types.h)

RF_AccessStripeMap_t structure describing all the physical accesses
required to complete a logical access,
separated into data and parity accesses

RF_AccessStripeMapFlags_t bitwise OR of flag values indicating the
status of anRF_AccessStripeMap_t ,
including locks held, reconstruction attempts,
redirection, etc (flag values defined in
rf_layout.h)

RF_AccessStripeMapHeader_t overhead information for an
RF_AccessStripeMap_t , also used to
make lists ofRF_AccessStripeMap_t s

RF_AccTotals_t total accumulated access times for an array
broken down by operation type

RF_AccTraceEntry_t one record in a RAIDframe trace

RF_AllocListElem_t element in a memory allocation list, also
used as header of list

RF_AntecedentType_t identifies a dependency type between two
nodes in a DAG, values defined in
rf_dag.h

Appendix B: RAIDframe Types

126 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

RF_ATEnt_t internal structure used by the pthreads
interface to debug mutex and condition
allocation and destruction

RF_CBParam_t generic parameter for a callback; this is a
union capable of holding a pointer in thep
field, and a 64-bit integer in thev field

RF_CallbackDesc_t entry in a callback list, contains operation to
perform and arguments

RF_ChaindeclusterConfigInfo_t layout-specific information for chained
declustering

RF_ChunkDesc_t bookkeeping list element used by buffer
allocation system

RF_ChunkHdr_t represents a list ofRF_ChunkDesc_t

RF_CommonLogData_t parity log entry

RF_Config_t describes a RAIDframe configuration file

RF_CopybackDesc_t represents a request to copy one disk’s image
to another

RF_CumulativeStats_t simple array statistics as perceived by access
generator

RF_CvscanArmDir_t identifies a disk arm direction (left or right),
values defined inrf_cvscan.h

RF_CvscanHeader_t queueing-policy specific information for
CVSCAN disk queueing

RF_DagHeader_t represents a DAG, contains information
about access associated with DAG, array
associated with DAG, memory allocation for
the DAG, etc

RF_DagList_t a set of DAGs associated with an access

RF_DagNode_t one node in a DAG

RF_DagNodeFlags_t bitwise OR of values indicating special
execution requirements for a DAG node,
values defined inrf_dag.h

RF_DAGParam_t generic parameter for a DAG operation; this
is a union capable of holding a pointer in the
p filed, and a 64-bit integer in thev field

RF_DagStatus_t execution status of a DAG, values defined in
rf_dag.h

RF_DDhandler_t simulator type which represents a function
implementing a disk event type

RF_DebugNames_t structure used by debug variable parser to
bind names of variables to the addresses
containing their values

RAIDframe: A Rapid Prototyping Tool for RAID Systems 127

Version 1.0 8/29/96

RF_DeclusteredConfigInfo_t layout-specific information for parity
declustering

RF_DeviceConfig_t describes basic array disk configuration
(queue depth, disks, spares), used by kernel
ioctl() interface

RF_DiskId_t logical binding between a disk, an array it is
configured in, and its queue

RF_DiskMap_t used by parity logging to associate a parity
record type with a physical disk access

RF_DiskOp_t generic representation of system-dependent
SCSI structures related to a single operation

RF_DiskQueue_t queue of requests for an individual disk

RF_DiskQueueData_t entry in request queue for a disk

RF_DiskQueueDataFlags_t bitwise OR of flags describing
RF_DiskQueueData_t

RF_DiskQueueSW_t switch table entry for a disk queueing policy
(contains function pointers for disk queue
operations)

RF_DiskQueueType_t string identifying a disk queuing policy

RF_DiskState_t representation of a simulated disk (arm
position, queue, et cetera)

RF_DiskStats_t statistics maintained for a simulated disk

RF_DiskStatus_t represents the operational status of a disk,
values defined inrf_disks.h

RF_Etimer_t structure system-dependent information
needed by timing mechanism

RF_EventCreate_t used by the simulator front-end to associate
accesses with simulated threads

RF_EvenOddConfigInfo_t layout-specific information for even-odd

RF_FifoHeader_t queueing-policy specific information for
FIFO disk queueing

RF_FreeList_t structure used to maintain an arena of
unallocated objects (arena may have a
maximum size)

RF_FreeListStats_t used to keep usage statistics for a freelist

RF_Geometry_t simulator information about the behavior of a
paritcular kind of disk

RF_GeometryList_t list of RF_Geometry_t s

RF_HeadSepLimit_t distance that a reconstruction process is to
allow between accesses on different disks
((-1) represents infinity)

RF_Hist_t entry in a histogram (for statistics)

128 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

RF_int8 8 bit signed integer

RF_int16 16 bit signed integer

RF_int32 32 bit signed integer

RF_int64 64 bit signed integer

RF_InterdeclusterConfigInfo_t layout-specific information for interleaved
declustering

RF_IoCount_t a number of I/O operations, used by
statistics-gathering modules

RF_IoType_t type of I/O operation
(RF_IO_TYPE_READ,
RF_IO_TYPE_WRITE, or
RF_IO_TYPE_NOP, defined in
rf_types.h)

RF_LayoutSW_t RAID architecture operations switch table
entry

RF_LockReqDesc_t request for a lock (read or write) of an access
range

RF_LockTableEntry_t entry in a stripe lock hash table

RF_MCPair_t structure containing a mutex and a condition,
used for synchronization

RF_NodeStatus_t current execution status of a DAG node,
values defined inrf_dag.h

RF_Offset_t byte offset into a disk array

RF_Owner_t representation of a simulated thread

RF_OwnerInfo_t information about the state of a simulated
thread

RF_ParityConfig_t single-character identifier of an array
architecture

RF_ParityLog_t list of regions in the array and their
associated parity log entries

RF_ParityLogData_t single entry in a parity log

RF_ParityLogDiskQueue_t queue of parity log entries to be written to a
disk or reintegrated

RF_ParityLogggingConfigInfo_t layout-specific information for parity logging

RF_ParityLogQueue_t list of RF_ParityLog_t s

RF_ParityLogRecord_t binding of a physical disk access to a parity
log record type

RF_ParityRecordType_t type of entry in a parity log, values defined in
rf_paritylog.h

129 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

RF_PendingRecon_t reconstruction request that is not yet
executing, because a reconstruction is
already in-progress on that array

RF_PerDiskReconCtrl_t one disk’s information for disk-directed
reconstruction process

RF_PSSFlags_t flags for
RF_ReconParityStripeStatus_t ,
values defined inrf_psstatus.h

RF_PSStatusHeader_t hash table of parity stripe status structures

RF_PhysDiskAddr_t representation of a single, contiguous range
of sectors on a single disk in an array

RF_PropHeader_t list of bindings of results of one DAG node
to parameters of another

RF_Raid_t a disk array and all its associated state

RF_Raid0ConfigInfo_t layout-specific informatino for RAID level 0

RF_Raid1ConfigInfo_t layout-specific informatino for RAID level 1

RF_Raid4ConfigInfo_t layout-specific informatino for RAID level 4

RF_Raid5ConfigInfo_t layout-specific informatino for RAID level 5

RF_Raid5RSConfigInfo_t layout-specific informatino for RAID level 5
with rotated sparing

RF_RaidAccessDesc_t information associated with a single array
access

RF_RaidAccessFlags_t bitwise OR of flags for
RF_RaidAccessDesc_t , defined in
rf_dagflags.h

RF_RaidAddr_t sector address of an access in a disk array

RF_RaidDisk_t representation of a disk device, and its
association with a disk array

RF_RaidLayout_t information about an array’s configuration
(stripe units in array, sectors in a stripe unit,
et cetera)

RF_RaidReconDesc_t description of a current or pending
reconstruction

RF_RbufType_t identifies what kind of reconstruction buffer
a buffer is (floating, forced, etc), values
defined inrf_types.h

RF_recon_acc_stats_t timing information for a reconstruction
access broken down by operational
component

RF_ReconBuffer_t memory buffer used to hold data from disks
for disk-directed reconstruction

130 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

RF_ReconConfig_t configuration information for reconstruction
activity (head separation limit, buffer
limitations)

RF_ReconCtrl_t primarty structure for reconstruction process;
tracks buffers, status tables, et cetera

RF_ReconDoneProc_t callback for when reconstruction is complete;
used primarily by simulator

RF_ReconEvent_t representation of reconstruction “event”-
such as disk read complete, disk write
complete, buffer available

RF_ReconMap_t map of reconstruction status for array regions

RF_ReconMapListElem_t single entry in a reconstruction map hash
table

RF_ReconParityStripeStatus_t information about a single parity stripe’s
reconstruction status

RF_ReconUnitCount_t a number of reconstruction units

RF_ReconUnitNum_t number of a particular reconstruction unit

RF_RedFuncs_t logical set of ECC computation functions for
a particular parity type

RF_RegionBufferQueue_t queue of buffers for parity logs for a
particular array region

RF_RegionId_t identifier of a parity region (used by parity
logging)

RF_RegionInfo_t parity logging information for a paritcular
array region

RF_Revent_t a reconstruction event

RF_RowCol_t disk row or column number

RF_RowStatus_t operational status of a row of disks in an
array

RF_SectorCount_t a number of sectors

RF_SectorNum_t the number of a particular sector

RF_ShutdownList_t list of cleanup function to invoke, with their
arguments

RF_SpareTableEntry_t used to map a regular stripe unit to and from
a spare stripe unit

RF_SparetWait_t used by kerenl interface so user process can
provide a particular spare region mapping for
an array

RF_Sstf_t queueing-policy specific data for SSTF,
CSCAN, and SCAN disk queueing policies

RF_SstfQ_t internal datastructures used by SSTF,
CSCAN, and SCAN queueing disciplines

131 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

RF_StripeCount_t a number of stripes

RF_StripeLockDesc_t an entry in the stripe lock hash table

RF_StripeNum_t the number of a particular stripe

RF_Thread_t generic representation of a thread handle

RF_ThreadArg_t generic (pointer-sized) thread argument

RF_ThreadAttr_t thread attribute representation used by the
Pthreads adaptation layer

RF_ThreadGroup_t a managed group of threads

RF_ThroughputStats_t statistics for array throughput

RF_TICS_t measurement of time used by simulator

RF_ua1024_t array of 1024 unsigned 8-bit integers

RF_ua32_t array of 32 unsigned 32-bit integers

RF_uint8 8 bit unsigned integer

RF_uint16 16 bit unsigned integer

RF_uint32 32 bit unsigned integer

RF_uint64 64 bit unsigned integer

RF_user_acc_stats_t timing information for an access broken
down by operational component

RF_VoidFuncPtr pointer to function returningvoid
(arguments unspecified)

RF_ZoneData_t information about a single zone on a disk,
used by simulator

RF_ZoneList_t simulator structure representing the list of
zones on a disk

132 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

RAIDframe: A Rapid Prototyping Tool for RAID Systems 133

Version 1.0 8/29/96

[Aho88] Aho, A. V., Sethi, R., and Ullman, J. D.Compilers: Principles, Techniques,
and Tools. Reading, MA: Addison-Wesley Publishing Company (March, 1988).

[ANSI86] American National Standard for Information Systems—Small Computer Sys-
tem Interface (SCSI), ANSI X3.132-1986, New York, NY, 1986.

[ANSI91] American National Standard for Information Systems—High Performance
Parallel Interface—Mechanical, Electrical, and Signalling Protocol Specification,
ANSI X3.183-1991, New York, NY, 1991.

[ATC90] Array Technology Corporation, RAID+ Series Model RX, Boulder, CO, 1990.
Product description.

[Arulpragasam80] Arulpragasam, J. and R. Swarz, “A Design for State Preservation on
Storage Unit Failure,”Proceedings of the International Symposium on Fault Tolerant
Computing, 1980, pp. 47-52.

[Bell89] Bell, C.G., “The Future of High Performance Computers in Science and Engi-
neering,”Communications of the ACM, Vol. 32, No. 9, 1989, pp. 1091-1101.

[Bitton88] Bitton, D. and J. Gray, “Disk Shadowing,”Proceedings of the 14th Confer-
ence on Very Large Data Bases, 1988, pp. 331-338.

[Bitton89] Bitton, D., “Arm Scheduling in Shadowed Disks,”Proceedings of the Com-
puter Society International Conference (COMPCON 89), 1989, pp. 132-136.

Bibliography

134 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

[Blaum94] Blaum, M., Brady, J., Bruck, J., and Menon, J., “Evenodd: An Optimal
Scheme for Tolerating Double Disk Failures in RAID Architectures,”Proceedings of
the International Symposium of Computer Architecture (ISCA), 1994, pp. 245-54.

[Brown72] Bernstein, P. A., Hadzilacos, V., and Goodman, N.Concurrency Control and
Recovery in Database Systems. Reading, MA: Addison-Wesley, 1987.

[Burkhard93] Burkhard, W. and J. Menon, “Disk Array Storage System Reliability,”
Proceedings of the International Symposium on Fault-Tolerant Computing, 1993, pp.
432-441.

[Buzen87] Buzen, J.P. and Shum, A.W., “A Unified Operational Treatment of RPS
Reconnect Delays,”Performance Evaluation Review, Vol. 15, No. 1, 1987.

[Cabrera91] Cabrera, L.-F. and D. Long, “Swift: Using Distributed Disk Striping to Pro-
vide High I/O Data Rates,”Computing Systems, Vol. 4, No. 4, 1991, pp. 405-439.

[Cao93] Cao P., Lim, S.B., Venkataraman, S., and Wilkes, J., “The TickerTAIP Parallel
RAID Architecture,”Proceedings of the International Symposium of Computer Archi-
tecture (ISCA), 1993, pp. 52-63.

[Cao94] Cao, P., Lim, S. B., Venkataraman, S., and Wilkes, J. “The TickerTAIP parallel
RAID architecture.”ACM Transactions on Computer Systems, Vol. 12, No. 3. August
1994, pp. 236-269.

[Chen90a] Chen, P. et al., “An Evaluation of Redundant Arrays of Disks using an
Amdahl 5890,”Proceedings of the Conference on Measurement and Modeling of Com-
puter Systems, 1990, pp. 74-85.

[Chen90b] Chen, P. and Patterson, D., “Maximizing Performance in a Striped Disk
Array,” Proceedings of International Symposium on Computer Architecture, 1990, pp.
322-331.

[Clark82] Clarke, E. and Emerson, E.A. "Synthesis of synchronization skeletons for
branching time temporal logic."Proc. of the Workshop on Logic of Programs, May
1981, Yorktown Heights, NY. Published asLecture Notes in Computer Science, Vol.
131. Wein, Austria: Springer-Verlag, 1982, pp. 52-71.

[Clark94] Clarke, E., Grumberg, O., and Long, D. “Model checking.”Proc. of the Inter-
national Summer School on Deductive Program Design. Marktoberdorf, Germany. July
26 - August 27, 1994.

[Copeland89] Copeland, G. and Keller, T., “A Comparison of High-Availability Media
Recovery Techniques,”Proceedings of the ACM Conference on Management of Data,
1989, pp. 98-109.

[Courtright94] Courtright, W.V. and Gibson, G., “Backward Error Recovery in Redun-
dant Disk Arrays,”Proceedings of the 1994 Computer Measurement Group (CMG)
Conference, 1994, pp.63-74.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 135

Version 1.0 8/29/96

[DEC86] Digital Equipment Corporation,Digital Large System Mass Storage Hand-
book, 1986.

[DISK/TREND94] DISK/TREND, Inc., 1994 DISK/TREND Report: Disk Drive
Arrays. 1925 Landings Drive, Mountain View, CA, SUM-3.

[Drapeau94] Drapeau, A., Shirriff, K., Hartman, J., Miller, E., Seshan, S., Katz, R.,
Patterson, D., Lee, E., Chen, P., and Gibson, G., “RAID-II: A High-Bandwidth Network
File Server,”Proceedings of the 21st Annual International Symposium on Computer
Architecture (ISCA), 1994, pp. 234-44.

[Fibre91] Fibre Channel—Physical Layer, ANSI X3T9.3 Working Document, Revision
2.1, May 1991.

[Fujitsu2360] Fujitsu Corporation, Model M2360A product information.

[Geist87] Geist, R., Reynolds, R., and Pittard, E., “Disk Scheduling in System V,”
ACM..

[Gelsinger89] Gelsinger, P.P., Gargini, P.A., Parker, G.H., and Yu, A.Y.C., “Micropro-
cessors circa 2000,”IEEE Spectrum, October 1989, pp. 43-74.

[Gibson89] Gibson, G., Hellerstein, L., Karp, R., Katz, R. and Patterson, D., “Coding
Techniques for Handling Failures in Large Disk Arrays,”Proceedings of the Interna-
tional Conference on Architectural Support for Programming Languages and Operat-
ing Systems, 1989, pp. 123-132.

[Gibson92] Gibson, G.,Redundant Disk Arrays: Reliable, Parallel Secondary Storage,
MIT Press, 1992.

[Gibson93] Gibson, G. and Patterson, D., “Designing Disk Arrays for High Data Reli-
ability,” Journal of Parallel and Distributed Computing, Vol. 17, 1993, pp. 4-27.

[Gibson95] Gibson, G. A., Courtright, W.V., Holland, M., and Zelenka, J., “RAID-
frame: Rapid Prototyping for Disk Arrays,” CMU-CS-95-200, Carnegie Mellon Univer-
sity, 1995.

[Gray81] Gray, J., McJones, P., Blasgen, M., Lindsay, B., Lorie, R., Price, T., Putzolu,
F., and Traiger, I. “The recovery manager of the System R database manager.”Comput-
ing Surveys, Vol. 13, No. 2. June 1981, pp. 223-242.

[Gray90] Gray, G., Horst, B. and Walker, M., “Parity Striping of Disc Arrays: Low-Cost
Reliable Storage with Acceptable Throughput,”Proceedings of the Conference on Very
Large Data Bases, 1990, pp. 148-160.

[Harker81] Harker, J.M , Brede, D.W., Pattison, R.E., Santana, G.R., and Taft, L.G., “A
Quarter Century of Disk File Innovation,” IBM Journal of Research and Development,
Vol. 25 no. 5, 1981, pp. 677-689.

136 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

[Hartman93] Hartman, J. and Ousterhout, J., “The Zebra Striped Network File system,”
Proceedings of the Symposium on Operating System Principles, 1993.

[Holland92] Holland, M. and Gibson, G., “Parity Declustering for Continuous Opera-
tion in Redundant Disk Arrays,”Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, 1992, pp. 23-25.

[Holland94] Holland, M.On-line Data Reconstruction in Redundant Disk Arrays, Carn-
egie Mellon University, 1994.

[HPC3013] HP Corporation, Disk Drive Model HP C3013 (Kittyhawk) product infor-
mation.

[Hsiao90] Hsiao, H., and DeWitt, D., “Chained Declustering: A New Availability Strat-
egy for Multiprocessor Database Machines,”Proceedings of the International Data
Engineering Conference, 1990.

[IBM0661] IBM Corporation,IBM 0661 Disk Drive Product Description, Model 370,
First Edition, Low End Storage Products, 504/114-2, 1989.

[IBM3380] IBM Corporation,IBM 3380 Direct Access Storage Introduction, Manual
GC26-4491-0, 1987.

[IBM3390] IBM Corporation,IBM 3390 Direct Access Storage Introduction, Manual
GC26-4573-0, 1989.

[IEEE89] Proposed IEEE Standard 802.6—Distributed Queue Dual Bus (DQDB)--
Metropolitan Area Network, Draft D7, IEEE 802.6 Working Group, 1989.

[IEEE93] IEEE High Performance Serial Bus Specification, P1394/Draft 6.2v0, New
York, NY, June, 1993.

[Katz93] Katz, R., Chen, P., Drapeau, A., Lee, E., Lutz, K., Miller, E., Seshan, S., and
Patterson, D., “RAID-II: Design and Implementation of a Large Scale Disk Array Con-
troller,” Symposium on Integrated Systems, 1993.

[Katzman77] Katzman, J. “System Architecture for Nonstop Computing,”Proceedings
of the Computer Society International Conference (COMPCON 77), 1977.

[Kim86] Kim, M., “Synchronized Disk Interleaving,”IEEE Transactions on Comput-
ers, Vol. 35, No. 11, 1986, pp. 978-988.

[Kung86] Kung, H.T., “Memory Requirements for Balanced Computer Architectures,”
Proceedings of the International Symposium on Computer Architecture, 1986, pp. 49-
54.

[Lee91] Lee, E. and Katz, R., “Performance Consequences of Parity Placement in Disk
Arrays,” Proceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 1991, pp. 190-199.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 137

Version 1.0 8/29/96

[Livny87] Livny, M., Khoshafian, S., and Boral, H., “Multi-disk Management Algo-
rithms,” Proceedings of the ACM Conference on Measurement and Modeling of Com-
puter Systems, 1987, pp. 69-77.

[Long94] Long, D., Montague, B., and Cabrera, L.-F., “Swift/RAID: A Distributed
Computing System,”Computing Systems, Vol 3., No. 7, pp. 333-359, 1994.

[MacWilliams78] MacWilliams, F. and Sloane, N.,Theory of Error-Correcting Codes,
North Holland, 1978.

[Maxtor89] Maxtor Corporation,XT-8000S Product Specification and OEM Technical
Manual, Document 1015586, 1989.

[McKeown83] McKeown, D.,MAPS: The Organization of a Spatial Database System
Using Imagery, Terrain, and Map Data, Department of Computer Science Technical
Report CMU-CS-83-136, Carnegie Mellon University, 1983.

[Menon89] Menon, J. and Kasson, J.,Methods for Improved Update Performance of
Disk Arrays, IBM Research Division Computer Science Report RJ 6928 (66034), 1989.

[Menon92a] Menon, J. and Kasson, J., “Methods for Improved Update Performance of
Disk Arrays,”Proceedings of the Hawaii International Conference on System Sciences,
1992, pp. 74-83.

[Menon92b] Menon, J. and Mattson, D., “Comparison of Sparing Alternatives for Disk
Arrays,” Proceedings of the International Symposium of Computer Architecture (ISCA),
1992, pp. 318-329.

[Menon92c] Menon, J. and Mattson, D., “Performance of Disk Arrays in Transaction
Processing Environments,”Conference on Distributed Computing Systems, 1992, pp.
302-309.

[Menon93] Menon, J. and Cortney, J., “The Architecture of a Fault-Tolerant Cached
RAID Controller,” Proceedings of the International Symposium of Computer Architec-
ture, 1993, pp. 76-86.

[Merchant92] Merchant, A. and Yu, P., “Performance Analysis of A Dual Striping Strat-
egy for Replicated Disk Arrays,”Proceedings of the Second International Conference
on Parallel and Distributed Information Systems, 1992.

[Meyers78] Meyers, G. J.Composite/Structured Design. New York: Nav Nostrand
Reinhold Co., 1978.

[Mogi94] Mogi, K., and Kitsuregawa, M., “Dynamic Parity Stripe Reorganizations for
RAID5 Disk Arrays,” Proceedings of the Third International Conference on Parallel
and Distributed Information Systems, IEEE Computer Society Press, September 1994,
pp. 17-26.

[Muntz90] Muntz, R. and Lui, J., “Performance Analysis of Disk Arrays Under Fail-
ure,” Proceedings of the Conference on Very Large Data Bases, 1990, pp. 162-173.

138 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

[Myers86] Myers, G.J., Yu, A.Y.C., and House, D.L., “Microprocessor Technology
Trends,”Proceedings of the IEEE, Vol. 74, No. 12, 1986.

[Ng92] Ng, S. and Mattson, R., “Maintaining Good Performance in Disk Arrays During
Failure Via Uniform Parity Group Distribution,”Proceedings of the First International
Symposium on High-Performance Distributed Computing, 1992, pp. 260-269.

[Orji93] Orji, C. and Solworth, J., “Doubly Distorted Mirrors,”Proceedings of the ACM
Conference on Management of Data, 1993, pp. 307-316.

[Park86] Park, A. and Balasubramanian, K., “Providing Fault Tolerance in Parallel Sec-
ondary Storage Systems,” Princeton University Technical Report CS-TR-057-86, 1986.

[Patterson88] Patterson, D., Gibson, G., and Katz, R.A., “A Case for Redundant Arrays
of Inexpensive Disks (RAID),”Proceedings of the 1988 ACM Conference on Manage-
ment of Data (SIGMOD), Chicago, IL, June 1988, pp. 109-116.

[Peterson72] Peterson, W. and Weldon Jr., E.,Error-Correcting Codes, second edition,
MIT Press, 1972.

[Polyzois93] Polyzois, C., Bhide, A., and Dias, D., “Disk Mirroring with Alternating
Deferred Updates,”Proceedings of the Conference on Very Large Data Bases, 1993, pp.
604-617.

[RAID96] RAID Advisory Board,The RAIDBook: A Source Book for RAID Technol-
ogy, 5th Ed., St. Peter, Minnesota, 1996.

[Ramakrishnan92] Ramakrishnan, K., Biswas, P., and Karedla, R., “Analysis of File I/O
Traces in Commercial Computing Environments,”Proceedings of the Conference on
Measurement and Modeling of Computer Systems, 1992, pp. 78-90.

[Rangan93] Rangan, P.V., and Vin, H.M., “Efficient Storage Techniques for Digital
Continuous Multimedia,”IEEE Transactions on Knowledge and Data Engineering,
Vol. 5, No. 4, 1993.

[Rosenblum91] Rosenblum, M.. and J. Ousterhout, “The Design and Implementation of
a Log-Structured File System,”Proceedings of the Symposium on Operating System
Principles, 1991, pp. 1-15.

[Rosenblum92] Rosenblum, M., and Ousterhout, J.. “The Design and Implementation
of a Log-Structured File System.”ACM Transactions on Computer Systems, Vol. 10,
No. 1., February 1992, pp. 26-52.

[Rudeseal92] A. Rudeseal, Storage Technology Corporation, Presentation at Carnegie
Mellon University, March 5, 1992.

[Schulze89] Schulze,M., Gibson, G., Katz, R., and Patterson, D., “How Reliable is a
RAID?” Proceedings of COMPCON,1989, pp. 118-123.

RAIDframe: A Rapid Prototyping Tool for RAID Systems 139

Version 1.0 8/29/96

[Seltzer93] Seltzer, M., Bostic, K., McKusick, M., and Staelin, C., “An Implementation
of a Log-Structured File System for UNIX,”Proceedings of the Winter USENIX Con-
ference, 1993, pp. 201-220.

[Solworth90] Solworth, J. and Orji, C., “Write-Only Disk Caches,”Proceedings of the
ACM Conference on Management of Data, 1990, pp. 123-132.

[Solworth91] Solworth, J. and Orji, C., “Distorted Mirrors,”Proceedings of the Interna-
tional Conference on Parallel and Distributed Information Systems, 1991, pp. 10-17.

[STC94] Storage Technology Corporation,Iceberg 9200 Storage System: Introduction,
STK Part Number 307406101, Storage Technology Corporation, Corporate Technical
Publications, 2270 South 88th Street, Louisville, CO 80028.

[ST9096] Seagate Corporation, Disk Drive Model ST9096 product information.

[Stodolsky94] Stodolsky, D., Gibson, G., Courtright, W.V., and Holland, M., “A Redun-
dant Disk Array Architecture for Efficient Small Writes,” Technical Report No. CMU-
CS-94-170, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
15213-3890, July 1994.

[Stonebraker90] Stonebraker, M. and Schloss, G., “Distributed RAID—A New Multi-
ple Copy Algorithm,”Proceedings of the IEEE Conference on Data Engineering, 1990,
pp. 430-437.

[Stonebraker92] Stonebraker, M., “An Overview of the Sequoia 2000 Project,”Pro-
ceedings of the Thirty-Seventh IEEE Computer Society International Conference
(COMPCON), 1992, pp. 383-388.

[TMC87] Thinking Machines Corporation,Connection Machine Model CM-2 Techni-
cal Summary, Thinking Machines Technical Report HA87-4, 1987.

[TPCA89] The TPC-A Benchmark: A Standard Specification, Transaction Processing
Performance Council, 1989.

[Wing96] Wing, J. and M. Vaziri-Farahani, “Model Checking a Controller Algorithm
for the RAID Level 5 System,” unpublished paper.

[Wood93] Wood, C. and Hodges, P., “DASD Trends: Cost, Performance, and Form Fac-
tor,” Proceedings of the IEEE, Vol. 81, No. 4, 1993, pp. 573-585.

140 RAIDframe: A Rapid Prototyping Tool for RAID Systems

Version 1.0 8/29/96

A
adding a new RAID architecture 98
array operation

large write 28
read-modify-write 26
reconstruct write 27

atomic 39
average seek time 12

B
background reconstruction process 28
Byte Ordering 111
bytesPerStripeUnit 101

C
calloc 88
Chained declustering 58, 74
channel program 42
check-disk overhead 30
cleanupList 100
commit point 45
committedRbufs 105
compilation 69
Compiling RAIDframe user-level binaries 70
condition 126
condition variables 92
configlistfile 81
configName 99
Configure 100
control flow 62
control programs 75
copyback phase 32
correctness verification 46
cpu utilization 111
CSCAN 130
CVSCAN 126

D
data dependence

anti 44
true 44

dataSectorsPerStripe 101
dataStripeUnitsPerDisk 101
debug options

creating new 96
RF_DBG_OPTION 96

DEC Alphas 69, 110
Declustered EvenOdd 73
Declustering + distributed sparing 73
DefaultStates 106
degraded-mode read test 67
dependencies 42
device driver 57
directed, acyclic graphs 43
disk

actuator 15
cylinder 15
interface 63
mirroring 14
sector 15

track 15
disk array

layout 18
performance evaluation 34

disk-geometry model 57
disk-oriented algorithm 51
disk-queueing policy

adding new 108
diskqueuesw 108
distributed controllers 32
Distributed sparing 58
do action 47

E
error recovery

backward 39
forward 38
roll-away 39

error-control code
additive-3 code 30
full-n 30
N-dimensional parity 30

EvenOdd 58
EvenOdd (declustered) 58
EvenOdd) 73
event-driven simulator 56
executing DAGs 47
execution engine 62
extending built-in tracing of RAIDframe performance 97

F
faultsTolerated 106
file write-read test 67
file-dispersal matrix 30
flags 106
floating 30
floating reconstruction buffers 104
forward execution 49
free 88

G
GetDefaultHeadSepLimit 103
GetDefaultNumFloatingReconBuffers 104
GetNumSpareRUs 104
graph selection 64
group size 30

H
high-bandwidth parallel buses 18

I
IdentifyStripe 102
imake 69, 70
installing a new architecture 98
Installing RAIDframe 69
InstallSpareTable 104
Interleaved declustering 74
Interleaved declustering + Distributed sparing 58
invariants 38
ioctl 127

itomf 70

L
latent sector failures 29
Layout 100, 102

fields 101
layout test 67
layoutSpecific 100
layoutSpecificInfo 100
layoutSpecificSize 100
left-symmetric organization 23
library

disk-geometry 63
disk-queue 63
graph 64
primitive operations 64

linear address space 18
Log-Structured File System (LFS) 31
loop test 67

M
MakeLayoutSpecific 99, 100
MakeLayoutSpecificArg 100
makeLayoutSpecificArg 99, 100
malloc 88
MapParity 101
mapping 63
MapQ 101
MapSector 101
MapSIDToPSID 103
mapsw 106
maximum-distance-separable (MDS) codes 30
mean-time-to-data-loss (MTTDL) 34
memory allocation 88

RF_Calloc 88, 89
RF_Free 88, 89
RF_Malloc 88, 89

memory allocation lists 89
RF_CallocAndAdd 89
RF_MallocAndAdd 89

mirrors
distorted 35
doubly distorted 35

mode
degraded 23
fault-free 23

model checking 46
mutex 126
mutex variables 91

N
network file systems based on RAID 35
node

NOP 44
predicate 48, 49
source 44

node state 47
numDataCol 101, 102
numParityCol 101, 102
numStripe 101

P
parity

disk 20
encoding 14
stripe 22

Parity declustering 58, 73
Parity declustering + Distributed sparing 58
parityConfig 99
parity-update record 31
pass-fail devices 41
porting 110
porting RAIDframe 110
positioning 16
primitive operations 39

creating new 107
Pthreads 111, 126, 131

Q
queueing operation

create 63, 108
dequeue 63, 109
enqueue 63, 109
peek 63, 109
promote 63, 110

queueing policies
adding new 108
CSCAN 63
CVSCAN 63
FIFO 63
SCAN 63
SSTF 63

R
RAID architecture operations

configName 99
Configure 100
GetDefaultHeadSepLimit 103
GetDefaultNumFloatingReconBuffers 104
GetNumSparePUs 104
IdentifyStripe 102
InstallSpareTable 104
MakeLayoutSpecific 99
makeLayoutSpecificArg 99
MapParity 101
MapQ 101
MapSector 101
MapSIDToPSID 103
parityConfig 99
SelectionFunc 102
SubmitReconBuffer 104
VerifyParity 105

RAID Level
1 19
2 19
3 20
4 22
5 23
6 117

RAID level 0 57, 73
RAID level 1 57, 73

RAID level 4 57, 73
RAID level 5 58, 73
RAID level 5 + Distributed sparing 58
RAID level 5 + rotated sparing 74
RAID operations

implementing new 107
RAIDframe features 55
raidframe.tar 69
raidframe@cs.cmu.edu 9
RAIDframe_site.def 70
RAIDframe_site.def. 70
raidframe-request@cs.cmu.edu 9
random numbers 111
random read or write test 67
reconstruction

algorithm 28
states 65

reconstruction test 67
reliability modeling 34
return codes 88
RF_AccessState_t 106, 125
RF_AccessStripeMap_t 102, 107, 125
RF_AccessStripeMapFlags_t 125
RF_AccessStripeMapHeader_t 125
RF_AccTotals_t 125
RF_AccTraceEntry_t 125
RF_AllocListElem_t 89, 107, 108, 125
RF_AntecedentType_t 125
rf_archs.h 70
RF_ATEnt_t 126
RF_BD_DECLUSTERED 107
RF_BROADCAST_COND 92
RF_CallbackDesc_t 126
RF_Calloc 89
RF_CallocAndAdd 109
RF_CBParam_t 126
RF_ChaindeclusterConfigInfo_t 126
rf_CheckForFullRbuf 105
RF_ChunkDesc_t 126
RF_ChunkHdr_t 126
RF_CommonLogData_t 126
RF_COMPILE_KERNEL 70
RF_COMPILE_SIM 70
RF_COMPILE_USER 70
rf_cond_destroy 92
rf_cond_init 92
RF_Config_t 99, 100, 126
RF_CopybackDesc_t 126
rf_create_managed_cond 92
rf_create_managed_mutex 91
RF_CREATE_THREAD 93, 95
rf_ctrl 70, 76, 98
RF_CumulativeStats_t 126
RF_CvscanArmDir_t 126
RF_CvscanHeader_t 126
RF_DagHeader_t 107, 126
RF_DagList_t 126
RF_DagNode_t 126
RF_DagNodeFlags_t 126

RF_DAGParam_t 126
RF_DagStatus_t 126
RF_DBG_OPTION 96
RF_DDhandler_t 126
RF_DebugNames_t 126
RF_DECLARE_EXTERN_COND 92
RF_DECLARE_EXTERN_MUTEX 92
RF_DeclusteredConfigInfo_t 127
rf_destroy_threadgroup 94, 95
RF_DeviceConfig_t 127
RF_DiskId_t 127
RF_DiskMap_t 127
RF_DiskOp_t 127
RF_DiskQueue_t 127
RF_DiskQueueData_t 109, 110, 127
RF_DiskQueueDataFlags_t 127
RF_DiskQueueSW_t 108, 127
RF_DiskQueueType_t 108, 127
RF_DiskState_t 127
RF_DiskStats_t 127
RF_DiskStatus_t 127
RF_DISTRIBUTE_SPARE 107
RF_ETIMER_EVAL 97
RF_ETIMER_START 97
RF_ETIMER_STOP 97
RF_Etimer_t 96, 97, 127
RF_ETIMER_VAL_MS 97
RF_ETIMER_VAL_US 97
RF_EvenOddConfigInfo_t 127
RF_EventCreate_t 127
RF_EXIT_THREAD 93, 95
RF_FifoHeader_t 127
RF_FreeList_t 127
RF_FreeListStats_t 127
rf_genplot 81, 82
RF_Geometry_t 127
RF_GeometryList_t 127
RF_HeadSepLimit_t 103, 127
RF_Hist_t 127
rf_init_managed_threadgroup 94
rf_init_threadgroup 94, 95
RF_int16 110, 128
RF_int32 110, 128
RF_int64 110, 128
RF_int8 110, 128
RF_InterdeclusterConfigInfo_t 128
RF_IO_LOW_PRIORITY 109, 110
RF_IO_NORMAL_PRIORITY 109, 110
RF_IO_TYPE_NOP 88, 128
RF_IO_TYPE_READ 88, 102, 128
RF_IO_TYPE_WRITE 88, 102, 128
RF_IoCount_t 128
RF_IoType_t 88, 102, 128
RF_IS_BIG_ENDIAN 111
rf_LastState 106
RF_LayoutSW_t 128

Flag Values 107
RF_LOCK_MUTEX 91, 92
RF_LockReqDesc_t 128

RF_LockTableEntry_t 128
rf_MakeLayoutSpecificNULL 100
rf_MakeSimpleDAG 105
RF_Malloc 89
RF_MallocAndAdd 109
RF_MCPair_t 128
rf_mutex_destroy 91
rf_mutex_init 91
RF_NodeStatus_t 128
RF_Offset_t 128
RF_Owner_t 128
RF_OwnerInfo_t 128
RF_PARITY_BAD 106
RF_PARITY_CORRECTED 106
RF_PARITY_COULD_NOT_CORRECT 106
RF_PARITY_COULD_NOT_VERIFY 106
RF_PARITY_OKAY 106
RF_ParityConfig_t 99, 128
RF_ParityLog_t 128
RF_ParityLog_ts 128
RF_ParityLogData_t 128
RF_ParityLogDiskQueue_t 128
RF_ParityLogggingConfigInfo_t 128
RF_ParityLogQueue_t 128
RF_ParityLogRecord_t 128
RF_ParityRecordType_t 128
RF_PendingRecon_t 129
RF_PerDiskReconCtrl_t 129
RF_PhysDiskAddr_t 105, 129
RF_PropHeader_t 129
RF_PSSFlags_t 129
RF_PSStatusHeader_t 129
RF_Raid_t 88, 100, 101, 102, 103, 104, 105, 107, 129
RF_Raid0ConfigInfo_t 129
RF_Raid1ConfigInfo_t 129
RF_Raid4ConfigInfo_t 129
RF_Raid5ConfigInfo_t 129
RF_Raid5RSConfigInfo_t 129
RF_RaidAccessDesc_t 129
RF_RaidAccessFlags_t 105, 107, 129
RF_RaidAddr_t 101, 102, 105, 129
RF_RaidDisk_t 129
RF_RaidLayout_t 100, 103, 129
RF_RaidReconDesc_t 129
RF_RbufType_t 129
RF_recon_acc_stats_t 129
RF_ReconBuffer_t 105, 129
RF_ReconConfig_t 130
RF_ReconCtrl_t 130
RF_ReconDoneProc_t 130
RF_ReconEvent_t 130
RF_ReconMap_t 130
RF_ReconMapListElem_t 130
RF_ReconParityStripeStatus_t 129, 130
RF_ReconUnitCount_t 104, 130
RF_ReconUnitNum_t 103, 110, 130
RF_RedFuncs_t 130
RF_RegionBufferQueue_t 130
RF_RegionId_t 130

RF_RegionInfo_t 130
rf_ReleaseFloatingReconBuffer 105
RF_REMAP 102
RF_Revent_t 130
RF_RowCol_t 101, 102, 104, 130
RF_RowStatus_t 130
RF_SectorCount_t 87, 108, 130
RF_SectorNum_t 87, 101, 130
rf_SelectAlgorithm 103
rf_setconfig 70, 76, 98
rf_ShutdownCreate 90
RF_ShutdownList 92
RF_ShutdownList_t 89, 91, 94, 100, 108, 130
RF_SIGNAL_COND 92
RF_SpareTableEntry_t 130
RF_SparetWait_t 130
RF_Sstf_t 130
RF_SstfQ_t 130
RF_StripeCount_t 88, 131
RF_StripeLockDesc_t 131
RF_StripeNum_t 88, 103, 110, 131
RF_Thread_t 93, 95, 131
RF_ThreadArg_t 93, 94, 95, 131
RF_ThreadAttr_t 131
RF_THREADGROUP_DONE 95
RF_THREADGROUP_RUNNING 94
RF_THREADGROUP_STARTED 95
RF_ThreadGroup_t 94, 131
RF_THREADGROUP_WAIT_START 95, 96
RF_THREADGROUP_WAIT_STOP 95, 96
RF_ThroughputStats_t 131
RF_TICS_t 131
RF_ua1024_t 131
RF_ua32_t 131
RF_uint16 110, 131
RF_uint32 110, 131
RF_uint64 87, 110, 131
RF_uint8 110, 131
RF_UNLOCK_MUTEX 91, 92
RF_user_acc_stats_t 131
RF_VoidFuncPtr 102, 131
RF_WAIT_COND 92
RF_ZoneData_t 131
RF_ZoneList_t 131
rooted graphs 44
rotational latency 12

S
SCAN 130
scientific visualization 13
script test 67
SCSI Operations 111
seeking 16
SelectionFunc 102, 107
shortest-seek optimization 24
shutdown lists 89
simple reliability calculation 14
single-access test 67
single-user mode 82
skew

cylinder 17
track 17

small-form-factor drives 12
sparing

dedicated 32
distributed 32
parity 32

SSTF 130
stand-alone user application 56
state machine 60
states 106
stripe unit 18
striping studies 32
SubmitReconBuffer 104, 105
synthetic workload 56
synthetic workload generator 66

T
thread groups 93

RF_THREADGROUP_DONE 94
RF_THREADGROUP_RUNNING 94
RF_THREADGROUP_STARTED 94
RF_THREADGROUP_WAIT_START 94
RF_THREADGROUP_WAIT_STOP 94

thread macros
RF_DECLARE_COND 90
RF_DECLARE_EXTERN_COND 90
RF_DECLARE_EXTERN_MUTEX 90
RF_DECLARE_MUTEX 90, 91
RF_DECLARE_STATIC_COND 90
RF_DECLARE_STATIC_MUTEX 90

thread types 90
RF_Thread_t 90
RF_ThreadArg_t 90

threads 90, 111
creation 93
managing threads 93
thread groups 93
thread types 90

TickerTAIP 42
timer 96
timing 96, 111

RF_ETIMER_EVAL 97
RF_ETIMER_START 97
RF_ETIMER_STOP 97
RF_Etimer_t 96
RF_ETIMER_VAL_MS 97
RF_ETIMER_VAL_US 97

totalSectors 100
trace file 56
Types 110
types

basic types for porting RAIDframe 110
types and conventions 87

U
undo action 47
user-level front ends 56

driver 56
rf_genplot 56

V
VerifyParity 105

return values 106
video-on-demand 13

W
Word Size 111
worklistfile 81
workload file 66
write-array test 67
write-only disk cache 35

Z
zero-latency operation 16
zoned bit recording (ZBR) 16

