
1 © Copyright 2015 EMC Corporation. All rights reserved.

2 TIER STORAGE ARCHITECTURE
SORIN FAIBISH - DE, PRESENTER

JOHN BENT, UDAY GUPTA, DENNIS TING, PERCY TZELNIC
FAST DATA GROUP, CTO OFFICE - EMC

1 © Copyright 2015 EMC Corporation. All rights reserved.

2 © Copyright 2015 EMC Corporation. All rights reserved.

• Performance: unable to complete analytics in a reasonable period of time

• Scalability: data set sizes limit their ability to perform analytics

• Storage capacity: need to support multiple uses and accommodate peak
usage periods without over-provisioning resources

• Reliability: critical

• Easy deployment and manageability at scale: no skills to manage large
data sets so they derive value

Motivation for 2 tiers
Big Data Adds Big Challenges to HPC

“Big Data Storage: Benefits from the Lessons Learned in High Performance Computing”
ESG, December 2014

3 © Copyright 2015 EMC Corporation. All rights reserved.

• Storage Disk Arrays become obsolete as:

– Flash replaces disk for +100x performance (flash array faster than disk array)

– Cloud replaces disk for +100x capacity (object store scales unlimited)

• Moving older/cold data to cloud is becoming today’s reality

– Cloud approaching $0 for data at rest

– Capacity disks from arrays move to the cloud, leaving the Array as a Flash only Fast Tier, on-
premise

• We can no longer package Performance and Capacity in one Storage Array

– Split the two, hence 2 Tiers (Fast Tier and Capacity Tier)

Problem Solved by 2 tiers
As The 2nd Platform Evolves Towards The 3rd…

 Game Changer!

4 © Copyright 2015 EMC Corporation. All rights reserved.

HOW DID WE GET HERE?

• HPC Burst Buffers and PLFS

• DOE Fast Forward Project

• Emerging Technologies and Evolving Workloads

5 © Copyright 2015 EMC Corporation. All rights reserved.

Burst buffer overview
 Fast flash storage tier between CN’s and scratch

– On CN, ION, or storage array

– Our focus has been on ION
▪ Simple, hardware async, aggregation, separation of failure domains, co-

processing of data streams

– But our software allows BB to be anywhere

 Purpose
– Checkpointing

▪ Dump memory in 3-15 mins

▪ N-N or N-1 using PLFS

– Out of core

– Staging ground

– Pipelining data between disparate process groups

6 © Copyright 2015 EMC Corporation. All rights reserved.

DOE - Fast Forward Project overview

 Sponsored by 7 leading US national labs

 Exascale goal by 2020

 RFP elements CPU, Memory and Filesystem

 One storage project was selected
– Intel/Whamcloud, EMC and HDF5

▪ With support for Graph analytics ACG application

– PLFS Burst Buffer – renamed IOD - essential for the project
done by EMC

 Completed June 2014

7 © Copyright 2015 EMC Corporation. All rights reserved.

EXASCALE FAST FORWARD
ARCHITECTURE

Compute
Nodes

I/O Nodes
Burst Buffer

Storage
Servers

New MPI Application DAOS Server

MPI-IO

I/O Forwarding Client
DAOS Client

I/O Forwarding Server

IOD: I/O Dispatcher

NVRAM

HDF5
 POSIX

Interconnect
Fabric

MPI/Portals

SAN Fabric
OFED

The HDF Group EMC Intel

8 © Copyright 2015 EMC Corporation. All rights reserved.

IOD: A non-POSIX* interface to persistent data
 Burst Buffer space management on IO Nodes (IONs)

– Persist, purge, pre-stage, reorganize

– Co-processing analysis on in-transit data

– Query and reorganize data placement

 Object storage
– Arrays for semantic storage of multi-dimensional structured data

– Blobs for traditional sequences of bytes

– Key-value stores for smaller get/put operations

– Containers instead of directories

 Transactions: atomic operations across sets of objects

 Asynchronous operations operates in background (optional)

 List IO all the way through the stack
– Reduce trips across network

– Everything fully asynchronous with distributed transactions

– Reads, writes, commits, unlink, etc across sets of objects

* Currently Morphed as basis of 2 tiers architecture

9 © Copyright 2015 EMC Corporation. All rights reserved.

Transactions: Key for FF Project

 Group sets of operations across sets of objects into
one atomic operation

 Allow versions (“views”) for readers

 Lend themselves well to time-series analysis

 Provide eventual consistency for time-skewed
distributed processes

 Allow efficient incremental overwrite

10 © Copyright 2015 EMC Corporation. All rights reserved.

One step of
computation

16 steps of
computation
per checkpoint
or transaction

From the earliest to
the latest write to the
checkpoint, all procs
are stopped/blocked

Between steps
there is data
dependency

The 4 “idle” triangles show the
potential resources that we can
leverage to do computing

TYPICAL MPI IO CHECKPOINT

11 © Copyright 2015 EMC Corporation. All rights reserved.

When one CN finish
writing its part of
checkpoint, it can
continue computing.

No “idle” triangle.

TRANSACTIONAL CHECKPOINT

12 © Copyright 2015 EMC Corporation. All rights reserved.

TRANSACTIONAL COMPARED TO MPI IO

Transactional MPI File IO

Open Independently Global barrier implied

Write Simple POSIX like API Complicated, maybe optimized by shuffling data

Close Committed independently Global barrier implied

Read Readable TID means data
is complete

Data integrity ensured by sync() and execution
order

13 © Copyright 2015 EMC Corporation. All rights reserved.

DISTRIBUTED ASYNCHRONOUS TRANSACTIONS
C
o
m

p
u
te

N

o
d
e
s

IO
N

:
F
la

s
h
-

b
a
s
e
d
 B

u
rs

t
B
u
ff

e
rs

GPUs GPUs

Parallel File System

14 © Copyright 2015 EMC Corporation. All rights reserved.

THREE IOD OBJECT TYPES

• Blobs
– Data Files will be stored as such

• Arrays
– When stored, they are “flattened” into a blob

• KV Stores
– Namespace metadata may be stored here as well such as

value length

15 © Copyright 2015 EMC Corporation. All rights reserved.

EMERGING TECHNOLOGIES
• New PCIe flash arrays

• New flash technology close to memory latency

• New faster interconnect fabrics & RDMA

• Improved HDFS performance

• Myriad of new Open Source Object Stores: Swift, S3

• New Data analytics and other in-memory apps

• New Analytics engines: Spark

16 © Copyright 2015 EMC Corporation. All rights reserved.

• More and more storage closer and closer to apps
– PCIe attached FLASH, FLASH on chip, etc.

• New storage interfaces
– KV and object store

• Workloads adapting to the above
– Or forcing it . . .

• Increased market pressures for open source and
SDS

EVOLVING WORKLOADS

17 © Copyright 2015 EMC Corporation. All rights reserved.

• File systems aren’t scalable!
> Object storage are

• Object systems aren’t usable!
> File system interfaces on top of object stores

• What have we gained?
– Decoupled storage systems (2Tier)
– Performance of flash, scalability of object
– Flexible interfaces
– Relaxed protocols for applications not needing POSIX semantics
– Evolutionary on-ramp for slow 2nd platform transformation into 3rd
– An architecture that allows “Dynamically Loaded Namespaces”

EVOLUTION OF HPC LEADS TO EMC 2
TIERS

18 © Copyright 2015 EMC Corporation. All rights reserved.

• Disaggregate the monolithic memory / storage / IO Stack and recast it into
loosely coupled “Fast Tier” and “Capacity Tier”

• 2 Tiers is Software Defined Storage

• 2 Tiers is all about independent Scaling:

– Scale-out Performance for Fast Tier, O(1,000)

– Hyperscale Size for Capacity Tier, O(100,000)

• 2 Tiers on New Platforms Infrastructure Perfect fit for New Big Data Apps

– Seamless support for legacy POSIX Apps

2 Tiers Was Designed For New SW/HW
Platforms

19 © Copyright 2015 EMC Corporation. All rights reserved.

• Software Defined Storage module running on any HW and Compute Fabric

• Fast Tier provides
– POSIX API and POSIX semantics for single node jobs (read returns last write() data)

– POSIX API and NFS semantics for multi-node jobs (read returns last flush() or close() data)

• Each Job runs in its own Dynamically Loadable Namespace

• Both Data and Metadata are tiered; Policy Engine:
– Write Data and Metadata to the Object Store on Close and Flush

– Encapsulate the Namespace and Evict it with the Data to the Object Store, on Job Completion
(default)

– Allow user to set the alternative Encapsulation and Eviction Policy

• Fast Tier provides High Availability

• Capacity Tier provides Data Protection Features

Behavior Characteristics Of 2 Tiers
Key Features

20 © Copyright 2015 EMC Corporation. All rights reserved.

2 TIERS IOD ARCHITECTURE

Compute
Nodes

IOD Cluster
Nodes

Object
Store

POSIX Application
Object Store

Swift/S3 FUSE

IOFSL Client

RESTful SYNCer

Data tiering

IOFSL Server

IOD: I/O Dispatcher

Flash
Array

POSIX

High Speed
Fabric (RDMA)

Ethernet
1/10/40 GbE

POSIX apps IOD
cluster FS

Object Store
Swift/S3

21 © Copyright 2015 EMC Corporation. All rights reserved.

• I/O Forwarding and Function Shipping
– IOFSL client with FUSE as POSIX API on the CN’s

– IOFSL server with PLFS and direct IO to Linux local FS

– Re-direction of IO calls from client to the server that owns the data

– Use fast RDMA transport protocol for data transfers

– Manages space on flash on behalf of application

• IOD service module running either on CN’s locally or on ION’s
– Provide data and metadata tiering between FT and CT

– Use containers for maximum availability of service on failures

– Use MDHIM as KV store for namespace management on FT

– Support transactions for POSIX semantic

• Dynamically Loadable Namespace Module based on PLFS
– Loaded by Job Scheduler before job start from CT Object Store to FT Cluster FS

– Stored as Job Object on CT at end of run and purged from FT

– Registered in persistent storage Job History table

• Job Scheduling module for data and metadata scheduling and resource allocation

Main Building Blocks Of 2 Tiers

22 © Copyright 2015 EMC Corporation. All rights reserved.

IOFSL IO Forwarding Solution

CN3

Application

Zoidfsclient

CN2

Application

Zoidfsclient

CN1

POSIX App

IOFSL client

IOD1

IOFSL Server

RESTful
API

IOD2

IOFSL Server

ViPR or AWS
Object Store

Fast Fabric 1/10/40 GbE

ViPR/S3 BMI Protocol

IOD Cluster

ext4
flash

RESTful
API

ext4
flash

SYNCer

SYNCer

IOD/PLFS

IOD/PLFS

Compute Cluster

FUSE

TCP Protocol

23 © Copyright 2015 EMC Corporation. All rights reserved.

Changes to IOFSL for 2 Tiers
Performance Optimizations

FUSE & IOFSL Client
• Optimized FUSE for adaptive

operation for small/large IO’s
– Achieve 98% of native performance

• IOFSL changes

– RDMA layer optimizations

– State Machine additions

– ZOIDFS API for POSIX (~94%
compliance)

– Multi-server support

– Added purge and data management
functions transparent to app

– Support IOD and KV store API

IOFSL server
• IOFSL IOstore support for PLFS

• I/O redirect to other IOD nodes

• POSIX Function Shipping

• Pipelining reordering IO request for
read consistency

24 © Copyright 2015 EMC Corporation. All rights reserved.

Isilon, ViPR
Data Lakes

Note: Compute Server interconnect should be RDMA, for
 best performance

Local Fast Tier SDS Example

App

SIO

EMC IOD

Flash

App

SIO

EMC IOD

Flash

App

SIO

EMC IOD

Flash

App

SIO

EMC IOD

Flash

25 © Copyright 2015 EMC Corporation. All rights reserved.

App

EMC IOD

Flash
Array

App

EMC IOD

App

EMC IOD

App

EMC IOD

Isilon, ViPR
Data Lakes

Flash
Array

RDMA

Network Fast Tier SDS Example

26 © Copyright 2015 EMC Corporation. All rights reserved.

EMC IOD Software Layers – POC

PLMS

...

...

User Space

Kernel

Hardware

IOFSL Client

Compute Node IOD Container

Isilon,
ViPR

POSIX Application

RDMA Network

FUSE

PLFS

IOFSL Server

RDMA Network

PCIe
Flash
Array

IOD
CORE
SVCS

HDFS PCIe

Parallel Log Metadata
Service (Namespace)

Parallel Log File
Service (File Data)

27 © Copyright 2015 EMC Corporation. All rights reserved.

Dynamically Loaded Namespace
 Describe Metadata Only!

 Allow FT is not cluttered by Metadata for all Data stored in CT
(unlike HSM solutions)

 Show Two Different Options for Splitting SN into DLN’s

 Maintain a single gigantic namespace on capacity tier

 “Page” sub-trees into fast tier as required for application
working sets

 Paging means between storage tiers; not between memory
and storage

28 © Copyright 2015 EMC Corporation. All rights reserved.

HOW DYNAMICALLY LOADED NAMESPACE

IndexFS/BatchFS pioneered techniques!

29 © Copyright 2015 EMC Corporation. All rights reserved.

Logical View of the Namespace

CT

D

E

H

I

J

K

B

C

F

G

/

A

How is it physically stored?
1. In flattened compressed objects that IOD serializes/pickles?
2. In a KV store like MDHIM/LevelDB/ShashwatKV?
3. In one or more actual FS’s like OneFS/ext.n/zfs/xfs?

30 © Copyright 2015 EMC Corporation. All rights reserved.

DLN’s into Fast Tier

FT

CT

D

E

H J

K

B

C

F

G

/

A

I

JobF
DLN OID

OF1
OF2

OF3
OF4

OFn

OH1
OH2

OH3
OH4

OHk

OJ1

OJ2

OJ3

OJ4

OJu

JobB
DLN OID

OB1
OB2
OB3
OB4
OBi

OD1
OD2
OD3

OD4
ODj

Fast Tier
Expanded
FS View H J

K

F

G 1 2 3 4 n

I 1 2 3 4 n 1 2 3 4 n

JobF DLN

D

E

B

C 1 2 3 4 n

1 2 3 4 n

JobB DLN

Capacity Tier Logical NS View Object Store View of DLN objects

Job OID

 JobB DLN OID

 JobF DLN OID

Job Table In Flash

31 © Copyright 2015 EMC Corporation. All rights reserved.

COMBINING TACHYON & 2 TIERS IOD
 FUTURE RESEARCH

• Tachyon is already a Tiering file system
– It attempts to serve the file system from memory
– Tiering with a disk file system as necessary

• EMC IOD is already a Tiering file system
– It attempts to serve the file system from Flash
– Tiering with a cloud object store/ViPR as necessary

• Main research opportunities
– Extend Tachyon memory with IOD on FT

• Tachyon no longer tiers at all. IOD does Tiering as directed by scheduler.

– Replace Tachyon interface to file system with IOD/HDFS
• This creates three tiers: memory, flash, object

– Add IOD transactional IO to Tachyon

32 © Copyright 2015 EMC Corporation. All rights reserved.

IO
N

C
N

Spark-Tachyon-HDFS/RDMA
Application

Tachyon

HDFS
RDMA Transport

BMI

BMI FShipper

IOD; Objects

Flash PCIe HDFS

ViPR

IOD will control data movement. App will run
unchanged like on a “faster” HDFS.
See HDFS to Orange FS JNI (Clemson
University).

33 © Copyright 2015 EMC Corporation. All rights reserved.

FUTURE RESEARCH WORK
• IO Forwarding between ION/IOD

• MDHIM extension and performance optimizations for namespace
and ACL

• PLFS modes complete implementation
 Small files read and POSIX operations completion

 Extension for flat file support (N-N) for non-MPI apps

 Merge all the modes under a single umbrella of PLFS

• Memory management for IOD using multi-tiered memory
architectures (Intel DDR4)

• Implementation of full POSIX support for Burst Buffers using IOFSL
server semantics

• Integration of IndexFS with 2 tiers (unimplemented functions and
PLFS small files)

• Selection and Integration with Job Scheduler SW

