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• Performance: unable to complete analytics in a reasonable period of time  

• Scalability: data set sizes limit their ability to perform analytics  

• Storage capacity: need to support multiple uses and accommodate peak 
usage periods without over-provisioning resources 

• Reliability: critical 

• Easy deployment and manageability at scale: no skills to manage large 
data sets so they derive value 

Motivation for 2 tiers 
Big Data Adds Big Challenges to HPC 

“Big Data Storage: Benefits from the Lessons Learned in High Performance Computing”   
ESG, December 2014   
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• Storage Disk Arrays become obsolete as: 

– Flash replaces disk for +100x performance (flash array faster than disk array) 

– Cloud replaces disk for +100x capacity (object store scales unlimited) 
 

• Moving older/cold data to cloud is becoming today’s reality 

– Cloud approaching $0 for data at rest  

– Capacity disks from arrays move to the cloud, leaving the Array as a Flash only Fast Tier, on-
premise 

• We can no longer package Performance and Capacity in one Storage Array 

– Split the two, hence 2 Tiers (Fast Tier and Capacity Tier) 
 

 
  

 

Problem Solved by 2 tiers 
As The 2nd Platform Evolves Towards The 3rd… 

  Game Changer! 
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HOW DID WE GET HERE? 

• HPC Burst Buffers and PLFS 

• DOE Fast Forward Project 

• Emerging Technologies and Evolving Workloads 
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Burst buffer overview 
 Fast flash storage tier between CN’s and scratch 

– On CN, ION, or storage array 

– Our focus has been on ION  
▪ Simple, hardware async, aggregation, separation of failure domains, co-

processing of data streams 

– But our software allows BB to be anywhere 

 Purpose 
– Checkpointing 

▪ Dump memory in 3-15 mins 

▪ N-N or N-1 using PLFS 

– Out of core 

– Staging ground 

– Pipelining data between disparate process groups 
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DOE - Fast Forward Project overview 

 Sponsored by 7 leading US national labs 

 Exascale goal by 2020 

 RFP elements CPU, Memory and Filesystem  

 One storage project was selected 
– Intel/Whamcloud, EMC and HDF5 

▪ With support for Graph analytics ACG application 

– PLFS Burst Buffer – renamed IOD - essential for the project 
done by EMC 

 Completed June 2014 
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EXASCALE FAST FORWARD 
ARCHITECTURE 
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IOD: A non-POSIX* interface to persistent data 
 Burst Buffer space management on IO Nodes (IONs) 

– Persist, purge, pre-stage, reorganize 

– Co-processing analysis on in-transit data 

– Query and reorganize data placement  

 Object storage 
– Arrays for semantic storage of multi-dimensional structured data 

– Blobs for traditional sequences of bytes 

– Key-value stores for smaller get/put operations 

– Containers instead of directories 

 Transactions: atomic operations across sets of objects 

 Asynchronous operations operates in background (optional) 

 List IO all the way through the stack 
– Reduce trips across network 

– Everything fully asynchronous with distributed transactions 

– Reads, writes, commits, unlink, etc across sets of objects 

* Currently Morphed as basis of 2 tiers architecture 
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Transactions: Key for FF Project 

 Group sets of operations across sets of objects into 
one atomic operation 

 Allow versions (“views”) for readers 

 Lend themselves well to time-series analysis 

 Provide eventual consistency for time-skewed 
distributed processes 

 Allow efficient incremental overwrite  
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One step of 
computation 

16 steps of 
computation 
per checkpoint 
or transaction 

From the earliest to 
the latest write to the 
checkpoint, all procs 
are stopped/blocked 

Between steps  
there is data 
dependency  

The 4 “idle” triangles show the 
potential resources  that we can 
leverage to do computing 

TYPICAL MPI IO CHECKPOINT 
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When one CN finish 
writing its part of 
checkpoint, it can 
continue computing. 

No “idle” triangle. 

TRANSACTIONAL CHECKPOINT 
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TRANSACTIONAL COMPARED TO MPI IO 

Transactional MPI File IO 

Open Independently Global barrier implied 

Write Simple POSIX like API Complicated, maybe optimized by shuffling data 

Close Committed independently Global barrier implied 

Read Readable TID means data 
is complete 

Data integrity ensured by sync() and execution 
order 
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DISTRIBUTED ASYNCHRONOUS TRANSACTIONS 
C
o
m

p
u
te

 
N

o
d
e
s
 

IO
N

: 
F
la

s
h
-

b
a
s
e
d
 B

u
rs

t 
B
u
ff

e
rs

 

GPUs GPUs 

Parallel File System 



14 © Copyright 2015 EMC Corporation. All rights reserved. 

THREE IOD OBJECT TYPES 

• Blobs 
– Data Files will be stored as such 

• Arrays 
– When stored, they are “flattened” into a blob 

• KV Stores 
– Namespace metadata may be stored here as well such as 

value length 



15 © Copyright 2015 EMC Corporation. All rights reserved. 

EMERGING TECHNOLOGIES 
• New PCIe flash arrays 

• New flash technology close to memory latency 

• New faster interconnect fabrics & RDMA 

• Improved HDFS performance 

• Myriad of new Open Source Object Stores: Swift, S3 

• New Data analytics and other in-memory apps 

• New Analytics engines: Spark 
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• More and more storage closer and closer to apps 
– PCIe attached FLASH, FLASH on chip, etc. 

• New storage interfaces 
– KV and object store 

• Workloads adapting to the above 
– Or forcing it . . . 

• Increased market pressures for open source and 
SDS 

EVOLVING WORKLOADS 
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• File systems aren’t scalable! 
> Object storage are 

• Object systems aren’t usable! 
> File system interfaces on top of object stores 

 

• What have we gained? 
– Decoupled storage systems (2Tier) 
– Performance of flash, scalability of object 
– Flexible interfaces 
– Relaxed protocols for applications not needing POSIX semantics 
– Evolutionary on-ramp for slow 2nd platform transformation into 3rd 
– An architecture that allows “Dynamically Loaded Namespaces” 

EVOLUTION OF HPC LEADS TO EMC 2 
TIERS 
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• Disaggregate the monolithic memory / storage / IO Stack and recast it into 
loosely coupled “Fast Tier” and “Capacity Tier” 

 

• 2 Tiers is Software Defined Storage 

 

• 2 Tiers is all about independent Scaling: 

– Scale-out Performance for Fast Tier, O(1,000) 

– Hyperscale Size for Capacity Tier, O(100,000) 

 

• 2 Tiers on New Platforms Infrastructure  Perfect fit for New Big Data Apps 

– Seamless support for legacy POSIX Apps 

2 Tiers Was Designed For New SW/HW  
Platforms 
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• Software Defined Storage module running on any HW and Compute Fabric 

• Fast Tier provides 
– POSIX API and POSIX semantics for single node jobs (read returns last write() data) 

– POSIX API and NFS semantics for multi-node jobs (read returns last flush() or close() data) 

• Each Job runs in its own Dynamically Loadable Namespace 

• Both Data and Metadata are tiered; Policy Engine: 
– Write Data and Metadata to the Object Store on Close and Flush 

– Encapsulate the Namespace and Evict it with the Data to the Object Store, on Job Completion 
(default) 

– Allow user to set the alternative Encapsulation and Eviction Policy 

• Fast Tier provides High Availability 

• Capacity Tier provides Data Protection Features 

 
 

Behavior Characteristics Of 2 Tiers 
Key Features 
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2 TIERS IOD ARCHITECTURE 
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• I/O Forwarding and Function Shipping 
– IOFSL client with FUSE as POSIX API on the CN’s  

– IOFSL server with PLFS and direct IO to Linux local FS 

– Re-direction of IO calls from client to the server that owns the data 

– Use fast RDMA transport protocol for data transfers 

– Manages space on flash on behalf of application  

• IOD service module running either on CN’s locally or on ION’s 
– Provide data and metadata tiering between FT and CT 

– Use containers for maximum availability of service on failures 

– Use MDHIM as KV store for namespace management on FT  

– Support transactions for POSIX semantic 

• Dynamically Loadable Namespace Module based on PLFS 
– Loaded by Job Scheduler before job start from CT Object Store to FT Cluster FS 

– Stored as Job Object on CT at end of run and purged from FT 

– Registered in persistent storage Job History table 

• Job Scheduling module for data and metadata scheduling and resource allocation 
 

 

Main Building Blocks Of 2 Tiers 
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IOFSL IO Forwarding Solution 
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Changes to IOFSL for 2 Tiers 
Performance Optimizations 

FUSE & IOFSL Client 
• Optimized FUSE for adaptive 

operation for small/large IO’s 
– Achieve 98% of native performance 

• IOFSL changes  

– RDMA layer optimizations 

– State Machine additions 

– ZOIDFS API for POSIX (~94% 
compliance) 

– Multi-server support 

– Added purge and data management 
functions transparent to app 

– Support IOD and KV store API  

 

IOFSL server 
• IOFSL IOstore support for PLFS 

• I/O redirect to other IOD nodes 

• POSIX Function Shipping 

• Pipelining reordering IO request for 
read consistency 
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Isilon, ViPR 
Data Lakes 

Note: Compute Server interconnect should be RDMA, for  
         best performance 

Local Fast Tier SDS Example 
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EMC IOD Software Layers – POC 
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Dynamically Loaded Namespace 
 Describe Metadata Only! 

 Allow FT is not cluttered by Metadata for all Data stored in CT 
(unlike HSM solutions) 

 Show Two Different Options for Splitting SN into DLN’s  

 Maintain a single gigantic namespace on capacity tier  

 “Page” sub-trees into fast tier as required for application 
working sets 

 Paging means between storage tiers; not between memory 
and storage 
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HOW DYNAMICALLY LOADED NAMESPACE 

IndexFS/BatchFS pioneered techniques! 
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Logical View of the Namespace 
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How is it physically stored?   
1. In flattened compressed objects that IOD serializes/pickles?   
2. In a KV store like MDHIM/LevelDB/ShashwatKV? 
3. In one or more actual FS’s like OneFS/ext.n/zfs/xfs? 
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DLN’s into Fast Tier 
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COMBINING TACHYON & 2 TIERS IOD 
 FUTURE RESEARCH 

• Tachyon is already a Tiering file system 
– It attempts to serve the file system from memory 
– Tiering with a disk file system as necessary 

• EMC IOD is already a Tiering file system 
– It attempts to serve the file system from Flash 
– Tiering with a cloud object store/ViPR as necessary 

• Main research opportunities 
– Extend Tachyon memory with IOD on FT 

• Tachyon no longer tiers at all.  IOD does Tiering as directed by scheduler. 

– Replace Tachyon interface to file system with IOD/HDFS 
• This creates three tiers: memory, flash, object 

– Add IOD transactional IO to Tachyon 
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FUTURE RESEARCH WORK 
• IO Forwarding between ION/IOD 

• MDHIM extension and performance optimizations for namespace 
and ACL 

• PLFS modes complete implementation 
 Small files read and POSIX operations completion 

 Extension for flat file support (N-N) for non-MPI apps 

 Merge all the modes under a single umbrella of PLFS 

• Memory management for IOD using multi-tiered memory 
architectures (Intel DDR4) 

• Implementation of full POSIX support for Burst Buffers using IOFSL 
server semantics 

• Integration of IndexFS with 2 tiers (unimplemented functions and 
PLFS small files) 

• Selection and Integration with Job Scheduler SW   

 




