
PA

RALL
EL DATA LABORATO

R
Y

C
A

R
N

EGIE MELLON UNIV
ERSI

T
Y

AN INFORMAL PUBLICATION FROM

ACADEMIA’S PREMIERE STORAGE

SYSTEMS RESEARCH CENTER

DEVOTED TO ADVANCING THE

STATE OF THE ART IN STORAGE

SYSTEMS AND INFORMATION

INFRASTRUCTURES.

PDL Packet
THE

T H E N E W S L E T T E R O N P D L A C T I V I T I E S A N D E V E N T S • F A L L 2 0 0 3
http://www.pdl.cmu.edu/

CONTENTS

PDL CONSORTIUM
MEMBERS

EMC Corporation

Hewlett-Packard Labs

Hitachi, Ltd.

IBM Corporation

Intel Corporation

Microsoft Corporation

Network Appliance

Panasas, Inc.

Oracle Corporation

Seagate Technology

Sun Microsystems

Veritas Software Corporation

Automating Storage Management 1

Director’s Letter 2

New PDL Faculty 3

Year in Review 4

Recent Publications 5

Database I/O Optimization 8

PDL News .. 10

Proposals & Defenses 13

Toward Better File Searching 14

Self-* Storage
Greg Ganger & Joan Digney

Human administration of storage systems is a large and growing issue in modern
IT infrastructures. We are exploring new storage architectures that integrate
automated management functions and simplify the human administrative task.
Self-* storage systems (pronounced “self-star”— a play on the unix shell wild-card
character) are self-configuring, self-organizing, self-tuning, self-healing, self-man-
aging systems of storage bricks. Borrowing organizational ideas from corporate
structure and technologies from AI and control systems, self-* storage should sim-
plify storage administration, reduce system cost, increase system robustness, and
simplify system construction.

The Self-* Storage Architecture
Dramatic simplification of storage administration requires that associated functionalities
be designed into the storage system from the start and integrated throughout the
design. System components must continually collect information about ongoing
tasks and regular evaluation of configuration and workload partitioning must occur,
all within the context of high-level administrator guidance. The self-* storage project
is designing an architecture from a clean slate to explore such integration. The high-
level system architecture is shown in Figure 1.

The Brick-based Storage
Infrastructure. We envision
self-* storage systems
composed of networked
“intelligent” storage bricks,
each consisting of CPU(s),
RAM, and a number of
disks; example brick de-
signs provide 0.5-5 TB of
storage with moderate lev-
els of reliability, availability,
and performance. Each
storage brick (a "worker")
self-tunes and adapts its
operation to its observed
workload and assigned
goals. Data redundancy
across and within storage
bricks provides fault toler-
ance and creates opportu-
nities for automated
reconfiguration to handle
many problems. Out-of-
band supervisory pro-
cesses assign datasets and
goals to workers, track

Continued on page 12

hierarchy

Management

I/O request

routing

complaints
Goal specification &

Performance
information &

delegation

I/O requests & replies

Administrator
Supervisors

Workers
(storage

bricks)

Routers

Clients

Figure 1: Architecture of self-* storage. At the top of the diagram is the
management hierarchy, concerned with the distribution of goals and
the delegation of storage responsibilities from the system administrator
down to the individual worker devices. The path of I/O requests from
clients, through routing nodes, to the workers for service is shown at
the bottom. Note that the management infrastructure is logically
independent of the I/O request path, and that the routing is logically
independent of the clients and the workers.

T H E P D L P A C K E T

The Parallel Data Laboratory

School of Computer Science

Department of ECE

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3891

VOICE 412•268•6716

FAX 412•268•3010

PUBLISHER

Greg Ganger

EDITOR

Joan Digney

The PDL Packet is published once per year
and provided to members of the PDL
Consortium. Copies are given to other
researchers in industry and academia as
well. A pdf version resides in the
Publications section of the PDL Web pages
and may be freely distributed.
Contributions are welcome.

COVER ILLUSTRATION

Skibo Castle and the lands that com-prise
its estate are located in the Kyle of
Sutherland in the northeastern part of
Scotland. Both ‘Skibo’ and ‘Sutherland’ are
names whose roots are from Old Norse,
the language spoken by the Vikings who
began washing ashore reg-ularly in the
late ninth century. The word ‘Skibo’
fascinates etymologists, who are unable
to agree on its original meaning. All agree
that ‘bo’ is the Old Norse for ‘land’ or
‘place.’ But they argue whether ‘ski’
means ‘ships’ or ‘peace’ or ‘fairy hill.’

Although the earliest version of Skibo
seems to be lost in the mists of time, it
was most likely some kind of fortified
building erected by the Norsemen. The
present-day castle was built by a bishop
of the Roman Catholic Church. Andrew
Carnegie, after making his fortune,
bought it in 1898 to serve as his sum-mer
home. In 1980, his daughter, Mar-garet,
donated Skibo to a trust that later sold
the estate. It is presently being run as a
luxury hotel.

2 T H E P D L P A C K E T

FROM THE DIRECTOR’S CHAIR

G r e g G a n g e r

Hello from fabulous Pittsburgh!
2003 has been an exciting year in the Parallel
Data Lab, with a number of projects maturing
and contributing to a broad, new research initia-
tive in automated storage administration. Along
the way, two faculty and several new students
joined the Lab, several students spent summers

with PDL Consortium companies, and several students won new Fellowships
(one each from Intel, NSF, and DoD).
The PDL continues to pursue a broad array of storage systems research, from
the underlying devices to the applications that rely on storage. The past year
brought excellent progress in existing projects and the initiation of exciting new
ones. Let me highlight a few things.
The biggest development has been the initiation of a major new project called
Self-* Storage, which explores the design and implementation of self-organiz-
ing, self-configuring, self-tuning, self-healing, self-managing systems of stor-
age bricks. For years, PDL Retreat attendees have been pushing us to attack
“storage management of large installations,” and this project is our response.
With generous equipment donations from the PDL Consortium companies, we
hope to put together and maintain 100s of terabytes of storage to be used by
ourselves and other CMU researchers (e.g., in data mining, astronomy, and
scientific visualization). Of course, the research challenge is to make the sys-
tem almost entirely self-*, so as to avoid the traditional costs of storage admin-
istration —deploying a real system will allow us to test our ideas in practice.
Towards this end, we are designing the Self-* Storage architecture with a clean-
slate, integrating management functions throughout. In realizing the design, we
are combining a number of recent and ongoing PDL projects (e.g., freeblock
scheduling, PASIS, and self-securing storage) and ramping up efforts on new
challenges such as block-box device and workload modeling, automated deci-
sion making, and automated diagnosis.
PDL's push into database storage management has also produced an exciting
new project: Fates. A Fates-based database storage manager transparently
exploits select knowledge of the underlying storage infrastructure to automati-
cally achieve robust, tuned performance. As in Greek mythology, there are
three Fates: Atropos, Clotho, and Lachesis. The Atropos volume manager stripes
data across disks based on track boundaries and exposes aspects of the result-
ing parallelism. The Lachesis storage manager utilizes track boundary and par-
allelism information to match database structures and access patterns to the
underlying storage. The Clotho dynamic page layout allows retrieval of just the
desired table attributes, eliminating unnecessary I/O and wasted main memory.
Altogether, the three Fates components simplify database administration, in-
crease performance, and avoid performance fluctuations due to query interfer-
ence. Other database systems projects are exploring benchmarking techniques,
automatic physical database design, and new software architectures for robust
load management.
The self-securing devices project has made great strides. Highlighted in 2002
by several news organizations, this project adapts medieval warfare notions to
the defense of networked computing infrastructures. In a nutshell, devices are
augmented with relevant security functionality and made intrusion-independent
from client OSes and other devices. This architecture makes systems more
intrusion-tolerant and more manageable when under attack. The self-securing
devices vision has brought with it many interesting challenges and a healthy

P A R A L L E L D A T A

L A B O R A T O R Y

FALL 2003

CONTCONTCONTCONTCONTACTACTACTACTACT USUSUSUSUS
WEB PAGESWEB PAGESWEB PAGESWEB PAGESWEB PAGES

PDL Home: http://www.pdl.cmu.edu/

Please see our web pages at
http://www.pdl.cmu.edu/PEOPLE/

for further contact information.

FFFFFACULACULACULACULACULT YT YT YT YT Y

Greg Ganger (director)
412•268•1297

ganger@ece.cmu.edu
Anastassia Ailamaki

natassa@cs.cmu.edu
Anthony Brockwell

abrock@stat.cmu.edu
Christos Faloutsos

christos@cs.cmu.edu
Garth Gibson

garth@cs.cmu.edu
Seth Goldstein

seth@cs.cmu.edu
Mor Harchol-Balter

harchol@cs.cmu.edu
Chris Long

chrisl@cs.cmu.edu
Todd Mowry

tcm@cs.cmu.edu
Adrian Perrig

adrian@ece.cmu.edu
Mike Reiter

reiter@cmu.edu
Mahadev Satyanarayanan

satya@cs.cmu.edu
Srinivasan Seshan
srini@cmu.edu

Dawn Song
dawnsong@ece.cmu.edu

Chenxi Wang
chenxi@ece.cmu.edu

Hui Zhang
hui.zhang@cs.cmu.edu

STSTSTSTSTAFF MEMBERSAFF MEMBERSAFF MEMBERSAFF MEMBERSAFF MEMBERS
Karen Lindenfelser

(pdl business administrator)
412•268•6716

karen@ece.cmu.edu
Stan Bielski

Mike Bigrigg
John Bucy

Joan Digney
Gregg Economou

Ken Tew
Linda Whipkey

STUDENTSSTUDENTSSTUDENTSSTUDENTSSTUDENTS

Michael Abd-El-Malek
Mukesh Agrawal
Kinman Au
Shimin Chen
Garth Goodson
John Linwood Griffin
Stavros Harizopoulos
James Hendricks
Andrew Klosterman
Chris Lumb
Amit Manjhi
Michael Mesnier
Jim Newsome
Spiros Papadimitriou
Stratos Papadomanolakis
Adam Pennington
Ginger Perng

David Petrou
Brandon Salmon
Raja Sambasivan

Jiri Schindler
Steve Schlosser
Minglong Shao

Vlad Shkapenyuk
Shafeeq Sinnamohideen

Craig Soules
John Strunk

Eno Thereska
Niraj Tolia

Mengzhi Wang
Ted Wong
Jay Wylie

Shuheng Zhou

3

FROM THE DIRECTOR’S CHAIR

NEW PDL FACULTY

Anthony Brockwell
Dr. Anthony Brockwell, Assistant Professor in the
Dept. of Statistics at Carnegie Mellon, received his
Ph.D. in Statistics and Electrical Engineering from
the University of Melbourne in 1998. He joined the
PDL in June to collaborate on our Self-* Storage
project. Dr. Brockwell’s research interests are pri-
marily in the areas of dynamical systems and Baye-
sian computational methods. He is particularly in-
terested in the analysis and control of nonlinear and

non-Gaussian systems, and in associated computational methods such as
particle filtering and Markov chain Monte Carlo. Dr. Brockwell has pub-
lished articles in such journals as SIAM Journal on Control and Optimiza-

Continued on page 4

source of funding. We have continued our exploration of how to build and
exploit network interface software for containing compromised client systems,
and explored in depth a new way of detecting intruders: storage-based intru-
sion detection. Storage devices are uniquely positioned to spot some common
intruder actions (e.g., scrubbing audit logs and inserting backdoors), making
this an exciting new concept.

Other ongoing PDL projects are also producing cool results. For example, the
PASIS project has produced a family of efficient and scalable consistency pro-
tocols that support a wide range of fault models that require no change to the
server infrastructure. A new project has begun exploring the use of context
information for assigning attributes to files to enable effective attribute-based
searches. We have built a working freeblock scheduling system and API in
FreeBSD, and are using it for research activities such as continuous disk reor-
ganization; it will also be a core component of each self-* storage brick. De-
centralized caching is being explored in several contexts, including wide-area
systems that opportunistically utilize CAS overlays and NFS clusters that dy-
namically shed load by replicating read-only files. This newsletter and the PDL
website offer more details and additional research highlights.

On the education front: This Spring, for the third time, we offered our new
storage systems course to undergraduates and masters students at Carnegie
Mellon. Topics span the design, implementation, and use of storage systems,
from the characteristics and operation of individual storage devices to the OS,
database, and networking techniques involved in tying them together and mak-
ing them useful. The base lectures were complemented by real-world exper-
tise generously shared by 8 guest speakers from industry, including several
members of the SNIA Technical Council. We continue to work on the book,
and several other schools have already picked up and started teaching similar
storage systems courses. We view providing storage systems education as criti-
cal to the field’s future; stay tuned.

I’m always overwhelmed by the accomplishments of the PDL students and
staff, and it’s a pleasure to work with them. As always, their accomplishments
point at great things to come.

4 T H E P D L P A C K E T

YEAR IN REVIEW

NEW PDL FACULTY

tion, Journal of Time Series Analy-
sis and Journal of Computational and
Graphical Statistics.

Mahadev
Satyanarayanan

At long last,
Satya has join-
ed the PDL!
Long renown-
ed as a leading
researcher in
distributed file
s y s t e m s ,
Satya’s re-
search has giv-
en us many of

the principles on which today’s and
tomorrow’s files systems are based.

Key ideas from the Coda file system,
which supports disconnected and
bandwidth-adaptive operation, have
been incorporated by Microsoft into
the IntelliMirror component of Win-
dows. Another outcome of his re-
search is Odyssey, a set of open-
source operating system extensions
for enabling mobile applications to
adapt to variation in critical resources
such as bandwidth and energy. Coda
and Odyssey are building blocks in
Project Aura, a research initiative at
Carnegie Mellon to build a distraction-
free ubiquitous computing environ-
ment. Earlier, Satyanarayanan was a

Continued from page 3

October 2003
11th Annual PDL Retreat and
Workshop.

September 2003

Jiri Schindler presented two
papers at VLDB in Berlin:
“Lachesis: Robust Database
Storage Management Based on
Device-specific Performance
Characteristics,” and “Matching
Database Access Patterns to
Storage Characteristics,” which
won the Ph.D. Workshop’s Best
Paper Award.
Christos Faloutsos gave the
keynote talk “Next Generation
Data Mining Tools: Power laws
and self-similarity for graphs,
streams and traditional data” at
ECML, Dubrovnik, Croatia.
Spiros Papadimitriou presented
“Adaptive, Hands-Off Stream
Mining” at VLDB.

August 2003

Greg visited Intel in Portland, OR,
to present Self-* Storage.
Adam Pennington presented
“Storage-based Intrusion Detec-
tion” at USENIX Security ’03 in
Washington, DC.

Chris Long organized a Birds of a
Feather session on “Security and
Usability” at the USENIX
Security Symposium in Washing-
ton, DC.
Christos Faloutsos gave a tutorial
on “Mining Time Series Data” at
ICML 2003, Washington DC.
Jiri Schindler successfully
defended his PhD dissertation
titled “Matching Application
Access Patterns to Storage
Device Characteristics.”

July 2003
Greg visited HP, Microsoft and
Veritas in CA and presented
Self-* Storage.

June 2003
Brandon Salmon presented
“A Two-Tiered Software Archi-
tecture for Automated Tuning of
Disk Layouts” at the AASMS
Workshop in San Diego, CA.
Greg also attended.
Christos Faloutsos presented a
tutorial on “Internet Research
meets Data Mining: Current
Knowledge and New Tools” at
SIGMETRICS 2003, San Diego.
Niraj Tolia attended the Usenix
Annual Technical Conference in

San Antonio, TX and presented
the paper “Opportunistic Use of
Content Addressable Storage for
Distributed File Systems.”

May 2003
Craig Soules spoke on “Why
Can’t I Find My Files? New
Methods for Automating At-
tribute Assignment” at HotOS in
Lihue, HI. Greg also attended.
Greg attended the AFSOR
program review in Colorado and
presented Self-Securing Devices
Adam Pennington spent the
summer interning at Seagate in
Pittsburgh; Brandon Salmon
interned at Microsoft Research,
and Craig Soules interned with
HP Labs.

April 2003
Craig Soules presented “Meta-
data Efficiency in Versioning File
Systems” at FAST 03; Greg and
many other PDL students also
attended.
Fifth annual PDL Industry Visit
Day.
Chris Long co-organized the
Workshop on Human-Computer

Continued on page 19

principal architect and implementor of
the Andrew File System (AFS), which
has been commercialized by IBM.

Dr. Satyanarayanan is the Carnegie
Group Professor of Computer Science
at Carnegie Mellon University. He is
currently serving as the founding di-
rector of Intel Research Pittsburgh,
which focuses on software systems
for distributed data storage. He is the
founding Editor-in-Chief of IEEE Per-
vasive Computing. He received his
Ph.D. in Computer Science from Car-
negie Mellon, after completing
Bachelor’s and Master’s degrees
from the Indian Institute of Technol-
ogy, Madras. He is also a Fellow of
the ACM and the IEEE.

FALL 2003 5

RECENT PUBLICATIONS

Lachesis: Robust Database
Storage Management Based on
Device-specific Performance
Characteristics

Schindler, Ailamaki & Ganger

VLDB 03, Berlin, Germany, Sept 9-
12, 2003.

Database systems work hard to tune
I/O performance, but do not always
achieve the full performance poten-
tial of modern disk systems. Their
abstracted view of storage compo-
nents hides useful device-specific
characteristics, such as disk track
boundaries and advanced built-in firm-
ware algorithms. This paper presents
a new storage manager architecture,
called Lachesis, that exploits and
adapts to observable device-specific
characteristics in order to achieve and
sustain high performance. For DSS
queries, Lachesis achieves I/O effi-
ciency nearly equivalent to sequential
streaming even in the presence of
competing random I/O traffic. In ad-
dition, Lachesis simplifies manual con-
figuration and restores the optimizer’s
assumptions about the relative costs
of different access patterns expressed
in query plans. Experiments using
IBM DB2 I/O traces as well as a pro-
totype implementation show that
Lachesis improves standalone DSS
performance by 10% on average.
More importantly, when running con-
currently with an on-line transaction
processing (OLTP) workload,

Lachesis improves DSS performance
by up to 3X, while OLTP also exhibits
a 7% speedup.

A Two-Tiered Software
Architecture for Automated
Tuning of Disk Layouts

Salmon, Thereska, Soules & Ganger

First Workshop on Algorithms and
Architectures for Self-Managing Sys-
tems. In conjunction with Federated
Computing Research Conference
(FCRC). San Diego, CA. June 11,
2003.

Many heuristics have been developed
for adapting on-disk data layouts to
expected and observed workload
characteristics. This paper describes
a two-tiered software architecture for
cleanly and extensibly combining such
heuristics. In this architecture, each
heuristic is implemented independently
and an adaptive combiner merges their
suggestions based on how well they
work in the given environment. The
result is a simpler and more robust
system for automated tuning of disk
layouts, and a useful blueprint for other
complex tuning problems such as
cache management, scheduling, data
migration, and so forth.

Efficient Consistency for
Erasure-coded Data via
Versioning Servers

Goodson, Wylie, Ganger & Reiter

Carnegie Mellon University Techni-
cal Report CMU-CS-03-127, April
2003.

This paper describes the design, imple-
mentation and performance of a fam-
ily of protocols for survivable, decen-
tralized data storage. These protocols
exploit storage-node versioning to ef-
ficiently achieve strong consistency
semantics. These protocols allow era-
sure-codes to be used that achieve
network and storage efficiency (and
optionally data confidentiality in the
face of server compromise). The pro-
tocol family is general in that its pa-
rameters accommodate a wide range

of fault and timing assumptions, up to
asynchrony and Byzantine faults of
both storage-nodes and clients, with
no changes to server implementation
or client-server interface. Measure-
ments of a prototype storage system
using these protocols show that the
protocol performs well under various
system model assumptions, numbers
of failures tolerated, and degrees of
reader-writer concurrency.

A Human Organization Analogy
for Self-* Systems

Strunk & Ganger

First Workshop on Algorithms and
Architectures for Self-Managing Sys-
tems. In conjunction with Federated
Computing Research Conference
(FCRC). San Diego, CA. June 11,
2003.

The structure and operation of human
organizations, such as corporations,
offer useful insights to designers of
self-* systems (a.k.a. self-managing
or autonomic). Examples include
worker/supervisor hierarchies, avoid-
ance of micro-management, and com-
plaint-based tuning. This paper ex-
plores the analogy, and describes the
design of a self-* storage system that
borrows from it.

Exposing and Exploiting Internal
Parallelism in
MEMS-based Storage

Schlosser, Schindler, Ailamaki &
Ganger

Carnegie Mellon University Techni-
cal Report CMU-CS-03-125, March
2003.

MEMS-based storage has interesting
access parallelism features. Specifi-
cally, subsets of a MEMStore’s thou-
sands of tips can be used in parallel,
and the particular subset can be dy-
namically chosen. This paper de-
scribes how such access parallelism
can be exposed to system software,
with minimal changes to system in-

OPTIMIZER

EXECUTION

STORAGE Manager

I/O
requests

buffers

parsed SQL query

query plan
Configuration
parameters

Query optimization and execution in a typical
DBMS. Continued on page 6

6 T H E P D L P A C K E T

. . .

Desktops,
servers,

etc.

Firewall
and

NIDS

.

. . .

Wide

 Area

 Network

Local

Area

Network

. . .

Desktops,
servers,

etc.

Firewall
and

NIDS

.

. . .

Wide

 Area

 Network

Local

Area

Network

SSNI

SSNI

SSNI

SSNI

SSNI

SSNI

(A)

(B)

RECENT PUBLICATIONS

terfaces, and utilized cleanly for two
classes of applications. First, back-
ground tasks can utilize unused paral-
lelism to access media locations with
no impact on foreground activity. Sec-
ond, two-dimensional data structures,
such as dense matrices and relational
database tables, can be accessed in
both row order and column order with
maximum efficiency. With proper
table layout, unwanted portions of a
table can be skipped while scanning
at full speed. Using simulation, we
explore performance features of us-
ing this device parallelism for an ex-
ample application from each class.

Data Page Layouts for Relational
Databases on Deep Memory
Hierarchies

Ailamaki, DeWitt & Hill

The VLDB Journal 11(3), 2002.

Relational database systems have tra-
ditionally optimized for I/O perfor-
mance and organized records sequen-
tially on disk pages using the N-ary
Storage Model (NSM) (a.k.a., slotted
pages). Recent research, however, in-
dicates that cache utilization and per-
formance is becoming increasingly
important on modern platforms. In this
paper, we first demonstrate that in-
page data placement is the key to high
cache performance and that NSM
exhibits low cache utilization on mod-
ern platforms. Next, we propose a new
data organization model called PAX
(Partition Attributes Across), that sig-
nificantly improves cache perfor-
mance by grouping together all val-
ues of each attribute within each page.
Because PAX only affects layout in-
side the pages, it incurs no storage
penalty and does not affect I/O be-
havior. According to our experimen-
tal results (which were obtained with-
out using any indices on the partici-
pating relations), when compared to
NSM (a) PAX exhibits superior cache
and memory bandwidth utilization, sav-
ing at least 75% of NSM’s stall time
due to data cache accesses, (b) range

selection queries and updates on
memory-resident relations execute 17-
25% faster, and (c) TPC-H queries
involving I/O execute 11-48% faster.
Finally, we show that PAX performs
well across different memory system
designs.

Self-* Storage: Brick-based
Storage with Automated
Administration

Ganger, Strunk & Klosterman

Carnegie Mellon University Techni-
cal Report, CMU-CS-03-178, August
2003.

This white paper describes a new
project exploring the design and imple-
mentation of “self-* storage systems:”
self-organizing, self-configuring, self-
tuning, self-healing, self-managing
systems of storage bricks. Borrow-
ing organizational ideas from corpo-
rate structure and automation tech-
nologies from AI and control systems,
we hope to dramatically reduce the
administrative burden currently faced
by data center administrators. Further,
compositions of lower cost compo-
nents can be utilized, with available
resources collectively used to achieve
high levels of reliability, availability, and
performance.

Finding and Containing Enemies
Within the Walls with Self-
securing Network Interfaces

Ganger, Economou & Bielski

Carnegie Mellon University Techni-
cal Report CMU-CS-03-109, January
2003.

Self-securing network interfaces
(NIs) examine the packets that they
move between network links and host
software, looking for and potentially
blocking malicious network activity.
This paper describes how self-secur-
ing network interfaces can help ad-
ministrators to identify and contain
compromised machines within their
intranet. By shadowing host state,

self-securing NIs can better identify
suspicious traffic originating from that
host, including many explicitly de-
signed to defeat network intrusion
detection systems. With normalization
and detection-triggered throttling, self-
securing NIs can reduce the ability of
compromised hosts to launch attacks
on other systems inside (or outside)
the intranet. We describe a prototype
self-securing NI and example scan-
ners for detecting such things as TTL
abuse, fragmentation abuse, “SYN
bomb” attacks, and random-propaga-
tion worms like Code-Red.

Object-Based Storage

Mesnier, Ganger & Riedel

IEEE Communications Magazine, v.41
n.8 pp 84-90, August 2003.

Storage technology has enjoyed con-
siderable growth since the first disk
drive was introduced nearly 50 years
ago, in part facilitated by the slow and
steady evolution of storage interfaces

Continued from page 5

Continued on page 7

Self-securing network interfaces. Self-securing network interfaces. Self-securing network interfaces. Self-securing network interfaces. Self-securing network interfaces. (A)
shows the conventional network security
configuration, wherein a firewall and a NIDS
protect LAN systems from some WAN attacks.
(B) shows the addition of self-securing NIs,
one for each LAN system.

FALL 2003 7

RECENT PUBLICATIONS

(SCSI and ATA/IDE). The stability of
these interfaces has allowed continual
advances in both storage devices and
applications, without frequent changes
to the standards. However, the inter-
face ultimately determines the func-
tionality supported by the devices, and
current interfaces are holding system
designers back. Storage technology
has progressed to the point that a
change in the device interface is
needed. Object-based storage is an
emerging standard designed to ad-
dress this problem. In this article we
describe object-based storage, stress-
ing how it improves data sharing, se-
curity, and device intelligence. We also
discuss some industry applications of
object-based storage and academic
research using objects as a founda-
tion for building even more intelligent
storage systems.

Why Can’t I Find My Files? New
Methods for Automating
Attribute Assignment

Soules & Ganger

Proceedings of the Ninth Workshop
on Hot Topics in Operating systems,
USENIX Association, May 2003.

This paper analyzes various algorithms
for scheduling low priority disk drive
tasks. The derived closed form solu-
tion is applicable to a class of greedy
algorithms that includes a variety of
background disk scanning applica-
tions. By paying close attention to
many characteristics of modern disk
drives, the analytical solutions achieve
very high accuracy — the difference
between the predicted response times
and the measurements on two differ-
ent disks is only 3% for all but one
examined workload. This paper also
proves a theorem which shows that
background tasks implemented by
greedy algorithms can be accom-
plished with very little seek penalty.
Using greedy algorithm gives a 10%
shorter response time for the fore-
ground application requests and up to
a 20% decrease in total background

task run time compared to results from
previously published techniques.

Storage-based Intrusion
Detection: Watching Storage
Activity For Suspicious Behavior

Pennington, Strunk, Griffin, Soules,
Goodson & Ganger

12th USENIX Security Symposium,
Washington, D.C., Aug 4-8, 2003. An
early version is available as Carnegie
Mellon University Technical Report
CMU-CS-02-179, September 2002.

Storage-based intrusion detection al-
lows storage systems to watch for
data modifications characteristic of
system in-trusions. This enables stor-
age systems to spot several common
intruder actions, such as adding
backdoors, inserting Trojan horses,
and tampering with audit logs. Fur-
ther, an intrusion detection system
(IDS) embedded in a storage device
continues to operate even after client
systems are compromised. This pa-
per describes a number of specific
warning signs visible at the storage
interface. Examination of 18 real in-
trusion tools reveals that most (15) can
be detected based on their changes
to stored files. We describe and evalu-
ate a prototype storage IDS, embed-
ded in an NFS server, to demonstrate
both feasibility and efficiency of stor-
age-based intrusion detection. In par-
ticular, both the performance overhead
and memory required (152 KB for
4730 rules) are minimal.

A Case for Staged Database
Systems

Harizopoulos & Ailamaki

In proceedings of the First Interna-
tional Conference on Innovative Data
Systems Research (CIDR), Asilomar,
CA, January 2003.

Traditional database system architec-
tures face a rapidly evolving operat-
ing environment, where millions of
users store and access terabytes of

data. In order to cope with increasing
demands for performance, high-end
DBMS employ parallel processing
techniques coupled with a plethora of
sophisticated features. However, the
widely adopted, work-centric, thread-
parallel execution model entails sev-
eral shortcomings that limit server
performance when executing
workloads with changing require-
ments. Moreover, the monolithic ap-
proach in DBMS software has lead
to complex anddifficultto extend de-
signs. This paper introduces a staged
design for high-performance, evolv-
able DBMS that are easy to tune and
maintain. We propose to break the
database system into modules and to
encapsulate them into self-contained
stages connected to each other
through queues. The staged, data-cen-
tric design remedies the weaknesses
of modern DBMS by providing solu-
tions at both a hardware and a soft-
ware engineering level.

Adaptive, Hands-Off Stream
Mining

Papadimitriou, Brockwell &
Faloutsos

Carnegie Mellon University SCS
Technical Report CMU-CS-02-205.
Also published in Proceedings VLDB
03, Berlin, Germany, Sept 9-12, 2003.

Sensor devices and embedded proces-
sors are becoming ubiquitous, espe-
cially in measurement and monitoring
applications. Automatic discovery of
patterns and trends in the large vol-
umes of such data is of paramount
importance. The combination of rela-

Continued from page 6

Continued on page 16

11

m1

module 1

IN

poisson

CPU

. . .
OUT1N

mN

module N

1i : time to load module i

mi: mean service time when
 module i is already loaded

A production-line model for staged servers.

8 T H E P D L P A C K E T

Figure 2: Operations performed by each
component of the database system, showing
the content of a single memory frame at each
stage of a data request during query execution.

buffer
pool

disk 0

payload data directly placed

via scatter/gather I/O

access to payload

disk array

page hdr

Buffer Pool Manager

OPERATORS

disk 1

Lachesis

Storage Manager

Atropos

Logical Volume Mgr

requests for pages with a
subset of attributes (payload)

storage inteface exposes efficient
access to non-contiguous blocks

Clotho

(tblscan, idxscan, ...)

DATABASE QUERY EXECUTION WITH FATES

Current database systems use data lay-
outs that can exploit unique features of
only one level of the memory hierar-
chy (cache/main memory or on-line
storage). Such layouts optimize for the
predominant access pattern of one
workload (e.g., DSS), while trading off
performance of another workload type
(e.g., OLTP). Achieving efficient execu-
tion of different workloads without this
trade-off or the need to manually re-tune
the system for each workload type is
still an unsolved problem. The “Fates”
database system project answers this
challenge.

The primary goal of the project is to
achieve efficient execution of com-
pound database workloads at all levels
of a database system memory hierar-
chy. By leveraging unique characteris-
tics of devices at each level, the Fates
database system can automatically
match query access patterns to the re-
spective device characteristics, which
eliminates the difficult and error-prone
task of manual performance tuning.

Borrowing from the Greek mythology
of The Three Fates–Clotho, Lachesis,
and Atropos–who spin, measure, and
cut the thread of life, the three compo-
nents of our database system (bearing
the Fates’ respective names) establish
proper abstractions in the database
query execution engine. These abstrac-

tions cleanly separate the functionality
of each component (described below)
while allowing efficient query execution
along the entire path through the data-
base system.

The main feature of the Fates database
system is the decoupling of the in-
memory data layout from the on-disk
storage layout. Different data layouts at
each memory hierarchy level can be
tailored to leverage specific device char-
acteristics at that level. An in-memory
page layout can leverage L1/L2 cache
characteristics, while another layout can
leverage characteristics of storage de-
vices. Additionally, the storage-device-
specific layout also yields efficient I/O
accesses to records for different query
access patterns. Finally, this decoupling
also provides flexibility in determining
what data to request and keep around
in main memory.

Traditional database systems are forced
to fetch and store unnecessary data as
an artifact of a chosen data layout. The
Fates database system, on the other
hand, can request, retrieve, and store just
the needed data, catering to the needs
of a specific query. This conserves stor-
age device bandwidth, memory capac-
ity, and avoids cache pollution—all of
which improves query execution time.

Scatter/gather I/O facilitates efficient
transformation from one layout into an-
other and creates an organization ame-
nable to the individual query needs on-
the-fly. In addition to eliminating ex-
pensive data copies, these I/Os match
explicit storage device characteristics,
ensuring efficient execution at the stor-
age device. Finally, thanks to proper ab-
stractions established by each Fate,
other database system components
(e.g., the query optimizer or the lock-
ing manager) remain unchanged.

CLOTHO

Clotho ensures efficient query execu-
tion at the cache/main-memory level
and figures at the inception of a request
for particular data. When the data de-
sired by a query is not found in the buffer

pool, Clotho creates a skeleton of a page
in a memory frame describing what data
is needed and how to lay it out.

The page layout builds upon a cache-
friendly layout, called PAX [1], which
groups data into minipages, where each
minipage contains the data of only a
single attribute (table column). Align-
ing records on cache line boundaries
within each minipage and taking advan-
tage of cache prefetching logic im-
proves the performance of scan opera-
tions without sacrificing full-record ac-
cess.

Clotho adjusts the position and size of
each minipage within the frame. It
matches the minipage size to the (mul-
tiple of) block size of the storage de-
vice, provided by Atropos, and decides
which minipages to store within a single
page based on the needs of a given
query. Hence, minipages within a single
memory frame contain only the at-
tributes needed by that query. The re-
maining attributes constituting the full
record, but not needed by the query, are
never requested.

The skeleton page inside the memory
frame includes a header that lists the at-
tributes and the range of records to be
retrieved from the storage device and

Continued on page 9

Figure 1: The Fates database system
architecture. Efficient transformation of on-disk
layout to in-memory page layout is achieved
by DMA and scatter/gather I/O.

Jiri Schindler, Minglong Shao, Steve Schlosser, Anastassia Ailamaki & Greg Ganger

issue disk I/Os

p_hdr

p_hdr

BUFFER POOL Manager

SCAN Operator

Lachesis STORAGE Manager

Atropos LV Manager

allocate memory frame

get next page

generate volume requests

generate disk requests

fill page header

SchemaID

PageID

p_hdr

FALL 2003 9

DATABASE QUERY EXECUTION WITH FATES

stored in that frame. Clotho marks the
set of attributes needed by the query in
the page header (i.e., the payload) and
identifies the range of records to be put
into the page. Hence, the page header
serves as a request from Clotho to
Lachesis to retrieve the desired data.

LACHESIS

The Lachesis database storage manager
handles the mapping and access to
minipages located within the LBNs of
on-line storage devices. Utilizing stor-
age device-provided performance char-
acteristics and matching query access
patterns (e.g., sequential scan) to these
hints, Lachesis constructs efficient I/Os.
It also sets scatter/gather I/O vectors that
allow direct placement of individual
minipages to proper memory frames
without unnecessary memory copies.

Explicit relationships between indi-
vidual logical blocks (LBNs), estab-
lished by Atropos, allow Lachesis to
devise a layout that groups together a
set of related minipages. This grouping
ensures that all attributes belonging to
the same set of records can be accessed
in parallel, while a particular attribute
can be accessed with efficient sequen-
tial I/Os. The relationships between
LBNs serve as hints that let Lachesis
construct I/Os that Atropos can execute
efficiently.

The layout and content of each
minipage is transparent to both Lachesis
and Atropos. Lachesis merely decides
how to map each minipage to LBNs to
be able to construct a batch of efficient
I/Os. Atropos in turn, cuts these batches
into individual disk I/Os comprising the
exported logical volume. It does not
care where the data will be placed in
memory; this is decided by the scatter/
gather I/O vectors set up by Lachesis.

ATROPOS

Atropos is a disk array logical volume
manager that offers efficient access in
both row- and column-major orders. For
database systems, this translates into ef-
ficient access to complete records as
well as scans of an arbitrary number of

Continued from page 8

table attributes. By utilizing features built
into disk firmware and a new data lay-
out, Atropos delivers the aggregate
bandwidth of all disks for accesses in
both majors, without penalizing small
random I/O accesses.

The basic allocation unit in Atropos is
the quadrangle, which is a collection of
logical volume LBNs. A quadrangle
spans the entire track of a single disk
along one dimension and a small num-
ber of adjacent tracks along the other
dimension. Each successive quadrangle
is mapped to a different disk, much like
a stripe unit of an ordinary RAID group.
Hence, the RAID 1 or RAID 5 data pro-
tection schemes fit the quadrangle lay-
out naturally.

Atropos stripes contiguous LBNs
across quadrangles mapped to all disks.
This provides aggregate streaming
bandwidth of all disks for table accesses
in column-major order (e.g., for single
attribute scans). With quadrangle
“width” matching disk track size, se-
quential accesses exploits the high effi-
ciency of track-based access [2].

Accesses in the other major order (i.e.
row-major order), called semi-sequen-
tial, proceed to LBNs mapped diago-
nally across a quadrangle, with each

LBN on a different track. Issuing all
requests together to these LBNs allows
the disk’s internal scheduler to service
the request with the smallest position-
ing cost first, given the current disk head
position. Servicing the remaining re-
quests does not incur any other posi-
tioning overhead thanks to the diago-
nal layout. Hence, this semi-sequential
access pattern is much more efficient
than reading some randomly chosen
LBNs spread across the set of adjacent
tracks of a single quadrangle.

Semi-sequential quadrangle access is
used for retrieving minipages with all
attributes comprising a full record. If the
number of minipages/attributes does fit
into a single quadrangle, the remaining
minipages are mapped to a quadrangle
on a different disk. Using this mapping
method, several disks can be accessed
in parallel to retrieve full records effi-
ciently.

SUMMARY

Fates is the first database system that
leverages the unique characteristics of
each level in the memory hierarchy. The
decoupling of data layouts at the cache/
main-memory and on-line storage lev-
els is possible thanks to carefully or-
chestrated interactions between each
Fate. Properly designed abstractions
that hide specifics, yet allow the other
components to take advantage of their
unique strengths achieve efficient query
execution at all levels of the memory
hierarchy.

REFERENCES

[1] A. Ailamaki, D. J. DeWitt, M. D.
Hill, M. Skounakis: Weaving Relations
for Cache Performance. Proc. of VLDB,
169-180. Morgan Kaufmann, 2001.

[2] J. Schindler, J. L. Griffin, C. R.
Lumb, G.R. Ganger. Track-aligned Ex-
tents: Matching Access Patterns to Disk
Drive Characteristics. Conf. on File and
Storage Technologies, 259-274. Usenix
Association, 2002.

0

0

12

24

36

48

60

72

84

4 parity

parity

parity

8

52

104

48 56

96

108

120

132

96 100

disk 0 disk 1 disk 2 disk 3

A1-A4

r0:r99

A1-A4

r100:r199

A1-A4

r200:r299

A5-A8

r0:r99

A5-A8

r100:r199

A5-A8

r200:r299

A9-A12

r0:r99

A9-A12

r100:r199

A9-A12

r200:r299

quadrangle 0 quadrangle 1 quadrangle 2 quadrangle 3

quadrangle 7quadrangle 6quadrangle 4 quadrangle 5

quadrangle 8 quadrangle 9 quadrangle 10 quadrangle 11

Figure 3: Mapping of database table with 12
attributes onto Atropos logical volume with
quadrangles. Each quadrangle holds 4
attributes with 100 records each. The dashed
arrow line shows efficient semi-sequential
access for retrieving complete records.

10 T H E P D L P A C K E T

AWARDS & & & & & OTHER PDL NEWS

September 2003
Ganger & the PDL Awarded
Equipment Grants from IBM
and Intel
IBM Corporation and Intel Corpora-
tion have each generously donated
over $80K in equipment to provide an
early testbed for PDL’s new Self-*
Storage project. The article on page 1
describes Self-* Storage.

September 2003
NSF Grant to Fund Self-* Stor-
age Research
PDL researchers have received a $1.5
million NSF grant to pursue the Self-*
Storage project, which seeks to cre-
ate large-scale self-managing, self-
organizing, self-tuning storage systems
from generic servers. The project PI
is Greg Ganger (ECE and CS; Direc-
tor of PDL), and the co-PIs are
Natassa Ailamaki (CS), Anthony
Brockwell (Statistics), Garth Gibson
(CS), and Mike Reiter (ECE and CS).

September 2003
Congratulations Natassa and
Babak!
Natassa Ailamaki and Babak Falsafi
are thrilled to announce the arrival of
their daughter Niki Falsafi, who was
born at Magee Women’s Hospital at
7:44 a.m. on September 27.

September 2003
5 CMU Professors Receive NSF
Grant to Study Drinking Water
Quality and Security*
Faculty members Jeanne VanBriesen,
Civil and Environmental Engineering

(CEE), Christos Faloutsos, Computer
Science, Anastassia Ailamaki, Com-
puter Science, Mitch Small, CEE and
Engineering and Public Policy, and
Paul Fischbeck, Social and Decision
Sciences, have received a National
Science Foundation grant of $1.5 mil-
lion for a new project called “SEN-
SORS: Placement and Operation of
an Environmental Sensor Network to
Facilitate Decision Making Regarding
Drinking Water Quality and Security.”
*From CMU newspaper The Tartan, Sept.
8, 2003.

August 2003
Ted and Addie Marry!

Ted Wong and Addie Tyler were mar-
ried on Aug 9, 2003 in the Sage Chapel
at Cornell University in Ithaca, New
York. Ted will be defending his dis-
sertation on October 24, and then he
and Addie are moving to the Palo Alto
area in California where Ted will be
working at IBM.

June 2003
Congratulations to Jiri and
Katrina!
Jiri Schindler and Katrina Van Dellen
were married at The Wiley Inn in
Peru, Vermont on June 7, 2003. Jiri
successfully defended his PhD disser-
tation on August 22 and will be mov-

ing to the Boston area soon to work
at EMC.

July 2003

Jiri Schindler Receives Best
Paper Award at VLDB Workshop

Jiri Schindler’s paper “Matching Da-
tabase Access Patterns to Storage
Characteristics,” co-authored with
Anastassia Ailamaki and Greg Ganger,
has received the award for Best Pa-
per in the VLDB 2003 PhD Work-
shop from among 34 submissions. Jiri
will present his paper at the VLDB
PhD Workshop, co-located with
VLDB 2003 (29th Conference on
Very Large Databases) in Berlin in
September. The VLDB 2003 PhD
Workshop brings together PhD stu-
dents working on topics related to the
VLDB Conference series, to present
and discuss their research in a con-
structive and international atmosphere.
This paper is available on our publi-
cations page.

May 2003
John Linwood Griffin Receives
Intel Fellowship
Our congratulations to John Linwood
Griffin, who has been selected as a
recipient of a 2003-04 Intel Founda-
tion PhD Fellowship Award. The fel-
lowship will cover John’s full tuition,
fees, and stipend for the year. Addi-

Continued on page 11

FALL 2003 11

States with tal-
e n t e d ,
d o c t o r a l l y
trained Ameri-
can men and
women who
will lead state-
of-the-art re-
search projects
in disciplines
having the greatest payoff to national
security requirements.” Since the
program’s inception 14 years ago, ap-
proximately 1,800 fellowships have
been awarded from about 28,500 ap-
plications received. James’ fellowship
is supported by the Air Force Office
of Scientific Research (AFOSR) and
covers his full tuition and required fees
during that term. Fellows have no mili-
tary or other service obligations, and
must be working towards a PhD.

February 2003

Welcome Michelle!
Michelle Liu was born to Mengzhi
Wang and Honliang Liu on February
2, 2003 at 7 lbs. 9 oz. and 17.2 inches.
It looks like she is already following
her Mom’s footsteps into computer re-
lated research.

January 2003
Chris Long and Greg Ganger
Receive Funding from C3S
Chris Long and Greg Ganger have
been awarded seed funding from the
Center for Computer Security (C3S)
at Carnegie Mellon for their project
“Access Control for the Masses.”
The project will fall within a new PDL
research area dealing with Better User
Interfaces.

AWARDS & & & & & OTHER PDL NEWS

tionally, the fel-
lowship pro-
vides John with
an Intel-based
laptop and a
mentor who
will act as a link
between the
student and
those people
pursuing rel-

evant research at Intel. The fellow-
ship does not involve an internship;
rather, it is targeted at Ph.D. candi-
dates within 18 months of degree
completion. Approximately 35 candi-
dates are selected annually for the
award from a very competitive field.

May 2003

Brandon Salmon Awarded NSF
Graduate Research Fellowship*

The winners of
this year’s Na-
tional Science
F o u n d a t i o n
(NSF) Gradu-
ate Research
Fellowships in-
clude Electrical
and Computer
Engineering
(ECE) students Jennifer Morris and
Brandon Salmon. The NSF’s Gradu-
ate Research Fellowship funds three
years of graduate study, including a
$27,500 stipend for the first 12 months
and an annual tuition allowance of
$10,500, paid to the university. This
year’s contest was the most competi-
tive in recent history: 7,788 applicants
vied for 900 fellowships.

*CMU 8 1/2 x 11 News, May 1, 2003.

May 2003

James Hendricks Awarded
National Defense Fellowship

Congratulations to James Hendricks,
who has been awarded a National
Defense Science and Engineering
Graduate (NDSEG) Fellowship. The
prevailing goal of this highly competi-
tive program is “to provide the United

Continued from page 10
February 2003

Congrats to Chris & Alexis
Long!

Robert Nicholas Long joined his par-
ents Chris and Alexis on Feb. 16, 2003!
What a bright and happy looking little
fellow.

October 2002
Welcome to
the Newest
Seshan!
Srini Seshan and
his wife Asha wel-
comed their first
baby on October
1, 2002. Sanjay
Seshan was 7lbs.
2oz. and 20 3/4
inches long at
birth. In the photo
at 11 months of
age, it looks like
he has grown
quite a bit since
then!

Bruce Worthington of Microsoft discussing
research with Steve Schlosser, Jiri Schindler,
Brandon Salmon & Craig Soules.

12 T H E P D L P A C K E T

SELF-* STORAGE

their performance and reliability status,
and exchange information with human
administrators. Dataset assignments
and redundancy schemes are dynami-
cally adjusted based on observed and
projected performance and reliability.
We refer to self-* collections of stor-
age bricks as storage constellations.

Administration and Organization. At
the top level, a self-* storage system
will still require human administrators
to provide guidance, approve procure-
ment requests, physically install and
repair equipment, and provide high-
level goals for the system. A self-* stor-
age system will need an administrative
interface to provide information and
offer solutions to the human adminis-
trator when problems arise or trade-
offs (e.g., between performance and
reliability) are faced. A self-* adminis-
trative interface should also help ad-
ministrators decide when to acquire
new components, which would then
be automatically integrated into the
self-* constellation.

The supervisors, processes playing an
organizational role in the infrastructure,
form a management hierarchy. They
dynamically tune dataset-to-worker
assignments, redundancy schemes for
given datasets, and router policies. The
hierarchy of supervisor nodes controls
data partitioning and request distribu-
tion among workers, with the objec-
tive of partitioning data and goals
among its subordinates (workers or
lower-level supervisors) such that, if
its children meet their assigned goals,
the goals for the entire subtree will be
met. By communicating goals down
the tree, a supervisor gives its subordi-
nates the ability to assess their own per-
formance relative to goals as they in-
ternally tune; the supervisors need not
concern themselves with details of how
subordinates meet their goals. The top
of the hierarchy interacts with the sys-
tem administrator, receiving high-level
goals for datasets and providing status
and procurement requests. Additional
internal services, referred to as admin-
istrative assistants, are also needed for
a self-* constellation to function. Ex-
amples include event logging for prob-
lem diagnosis, directory services to help

translate component/service names to
their locations in the network, and se-
curity services.

Data Access and Storage. Workers
store data and routers ensure that I/O
requests are delivered to the appropri-
ate workers for service. Thus, self-*
clients interact with a self-* router to
access data. We envision two types of
self-* clients. Trusted clients are con-
sidered a part of the system, and may
be physically co-located with other
components (e.g., router instances);
examples are file servers or databases
that use the self-* constellation as back-
end storage. Untrusted clients are modi-
fied to support the self-* constellation's
internal protocols; they interact directly
with self-* workers, via self-* rout-
ers, with access privileges verified on
each request.

An important part of a self-* router’s
job is correctly handling accesses to
data stored redundantly across storage
nodes. Doing so requires a protocol to
maintain data consistency and liveness
in the presence of failures and
concurrency. Since they will have flex-
ibility in deciding which servers should
handle certain requests, self-* routers
will also have a role in dynamic load
balancing as they deliver client requests
to the appropriate workers, particularly
when new data are created and when

READ requests access redundant data.
Doing so requires metadata for track-
ing current storage assignments, con-
sistency protocols for accessing redun-
dant data, and choices for routing re-
quests.

Self-* workers will service requests for
and store assigned data. We expect
them to have the computation and
memory resources needed to internally
adapt to their observed workloads by,
for example, reorganizing on-disk
placements and specializing cache poli-
cies. Workers will also handle storage
allocation internally, both to decouple
external naming from internal place-
ments and to allow support for internal
versioning, since they will keep histori-
cal versions (e.g., snapshots) of all data
to assist with recovery from dataset
corruption. Although the self-* storage
architecture would work with work-
ers as block stores (like SCSI or IDE/
ATA disks), we believe they will work
better with a higher-level abstraction
(e.g., objects or files), which will pro-
vide more information for adaptive spe-
cializations. Self-* workers must also
provide support for a variety of main-
tenance functions, including crash re-
covery, integrity checking, and data
migration.

Continued from page 1

Continued on page 20

Figure 2: “Head-end” servers bridge external clients into the self-* storage constellation.

 head-end 1

WRITE (D)

head-end N

READ(D)

user group 1

user group N

bridges into the storeunmodified user systems

self-* storage
constellation

FALL 2003 13

PROPOSALS & & & & & DEFENSES

PH.D. DISSERTATION
Matching Application Access
Patterns to Storage Device
Characteristics

Jiri Schindler, ECE
August 22, 2003

Thesis statement: “With sufficient in-
formation, a storage manager can ex-
ploit unique storage device character-
istics to achieve better, more robust I/
O performance. This information can
be abstract from device specifics, de-
vice-independent, and yet expressive
enough to allow a storage manager to
tune its access patterns to a given de-
vice.”

This dissertation contends that stor-
age device resources are not utilized
to their full potential because too much
is hidden behind their high-level stor-
age interfaces. Current storage inter-
faces do not convey sufficient infor-
mation to the storage manager to en-
able it to make informed decisions
leading to the most efficient use of
the storage device. To bridge the in-
formation gap between hosts and stor-
age devices, the storage device should
explicitly state its performance char-
acteristics. Using this static informa-
tion, a storage manager can take ad-
vantage of the device’s unique
strengths and avoid inefficient access
patterns.

MS THESIS
A Framework for Implementing
Background Storage Applica-
tions using Freeblock Schedul-
ing

Eno Thereska, ECE
August 2003

There are many disk maintenance
tasks that are required for robust sys-
tem operation but have loose time
constraints. Such “background” tasks
need to complete within a reasonable
amount of time, but are generally in-
tended to occur during otherwise idle
time. Examples include cache write-

back, defragmentation, backup, integ-
rity checking, virus scanning, report
generation, tamper detection, and in-
dex generation. Developers of such
applications have had no clean way
of designing these applications. The
main reason for that is the traditional
lack of “trust” applications have had
on storage devices to do what is best
for the application, with consequences
reflected in the narrow interfaces be-
tween the two.

We introduce a framework for imple-
menting background storage applica-
tions by adding a new asynchronous
interface to the storage device. Ap-
plications register background tasks
through the interface and the storage
device notifies them of their comple-
tion. The storage device uses
freeblock scheduling together with idle
time detectors to guarantee that the
background applications will make
good progress independent on the load
of the system and without impacting
the foreground workload. This frame-
work is described and evaluated in the
context of two real applications, a
snapshot-based backup and a cache
cleaner.

MS THESIS
Storage-based Intrusion Detec-
tion: Watching Storage Activity
For Suspicious Behavior

Adam Pennington, ECE
August 2003

Please see the abstract of the paper
of the same name on pg. 7 for an out-
line of this thesis.

MS THESIS
Opportunistic Use of Content
Addressable Storage for
Distributed File Systems

Niraj Tolia, ECE
May 2003

Please see the abstract of the paper
of the same name on pg. 17 for an
outline of this thesis.

THESIS PROPOSAL
Efficient, Flexible Consistency
for Highly Fault Tolerant Storage
Garth Goodson, ECE
August 18, 2003

Fault-tolerant storage systems spread
data redundantly across a set of stor-
age-nodes in an effort to preserve and
provide access to data despite fail-
ures. One difficulty created by this ar-
chitecture is the need for a consistent
view, across storage-nodes, of the
most recent update. Such consistency
is made difficult by concurrent up-
dates, partial updates made by clients
that fail, and failures of storage-nodes.
This thesis will demonstrate how to
achieve scalable, highly fault-tolerant
storage systems by leveraging an ef-
ficient and flexible family of strong
consistency protocols enabled by
server versioning. In particular, the
design of block-based storage systems
and file systems will be evaluated. The
storage protocol is made space-effi-
cient through the use of erasure codes
and made scalable by offloading work
from the storage-nodes to the clients.
The protocol family is flexible in that
it covers a broad range of system
model assumptions with no changes
to the client-server interface, server
implementations, or system structure.
Each protocol scales with its require-
ments—it only does work necessitated
by the system and fault models.

THESIS PROPOSAL
Staged Database Systems

Stavros Harizopoulos, SCS
April 24, 2003

Thesis Statement: “By organizing and
assigning system components into
self-contained stages, database sys-
tems can exploit instruction and data
commonality across concurrent re-
quests thereby increasing throughput.
Furthermore, staged database systems
are more scalable, easier to extend,

Continued on page 18

14 T H E P D L P A C K E T

INFERRING ATTRIBUTES FROM CONTEXT

As storage capacity continues to in-
crease, users find it increasingly dif-
ficult to manage their files using tra-
ditional directory hierarchies. At-
tribute-based naming enables power-
ful search and organization tools for
ever-increasing user data sets. How-
ever, such tools are only useful in
combination with accurate attribute
assignment. Existing systems rely on
user input and content analysis, but
they have enjoyed minimal success.
We propose several new approaches
to automatically assigning attributes
to files through context analysis, a
technique that has been successful in
the Google web search engine. With
extensions like application hints (e.g.,
web links for downloaded files) and
inter-file relationships, it should be
possible to infer useful attributes for
many files, making attribute-based
search tools more effective.

Existing Organizational Tools

As storage capacity increases, the
amount of data belonging to an indi-
vidual user increases accordingly.
Soon, storage capacity will reach a
point where there will be no reason
for a user to ever delete old content
— in fact, the time required to do so
would be wasted. The challenge has
shifted from deciding what to keep to
finding particular information when
it is desired. To meet this challenge,
we need to improve our approach to
personal data organization.

Today, most systems provide a tree-
like directory hierarchy to organize
files. Although this is easy for most
users to understand, it does not pro-
vide the flexibility required to scale
to large numbers of files. In particu-
lar, the strict hierarchy provides only
a single categorization with no cross-
referenced information.

Alternatives to the standard directory
hierarchy systems generally assign
attributes to files, providing the abil-
ity to cluster and search for files by
their attributes. An attribute can be
any metadata that describes the file,
although most systems use keywords

or <category, value> pairs. The key
challenge is assigning useful, mean-
ingful attributes to files.

Unfortunately, the two most prevalent
methods of attribute assignment, user
input and content analysis, have been
largely unsuccessful. Although users
often have a good understanding of
the files they create, it can be time-
consuming and unpleasant to distill
that information into the right set of
keywords. As a result, users are un-
derstandably reluctant to do so. On
the other hand, content analysis takes
none of the user’s time, and can be
performed entirely in the background
to eliminate any potential perfor-
mance penalty. However, the com-
plexity of language parsing, com-
bined with the large number of pro-
prietary file formats and non-textual
data types, restricts the effectiveness
of content analysis.
Context-based Attributes
Early web search-engines, (e.g.
Lycos), relied upon user input (user
submitted web pages) and content
analysis (word counts, word proxim-
ity, etc.). Although valuable, the suc-
cess of these systems has been
eclipsed by the success of Google.

To provide better search results,
Google utilizes two forms of context
analysis. First, it uses the text associ-
ated with a link to determine attributes
for the linked site. This text gives the
context of both the creator of the link-
ing site and the user who clicks on
the link at that site. The more times
that a particular word links to a site,
the higher that word is ranked for that
site. Second, Google uses the actions
of a user after a search to decide what
the user wanted from that search. For
example, if a user clicks on the first
four links of a given search, and then
does not return, it is likely that the
fourth link was the best match, pro-
viding the user’s context for those
search terms.

Unfortunately, Google’s approach to
indexing does not translate directly
into the realm of file systems. Much

of the information that Google relies
on does not exist within a file system.
Also, Google’s query feedback
mechanism relies on two properties:
users are normally looking for the
most popular sites when they perform
a query, and they have a large user
base that will repeat the same query
many times. Conversely, in file sys-
tems, users usually search for files
that have not been accessed in a long
time, because they usually remember
where recently accessed files reside,
and there is generally only a single
user for each set of files, making it
unlikely that frequent queries will be
generated for any given file.

Context-based Attributes in File
Systems
We are investigating four approaches
to automatically gathering context
information for use in file systems.
The first two focus on gathering at-
tributes when a file is created or ac-
cessed. The second two focus on
propagating attributes among related
files to increase the coverage of at-
tribute assignment. Together, these
techniques should categorize a much
broader set of files than creation-
based attribute assignment alone.

Application assistance: Although
computers provide a vast array of
functionality, most people use their
computer for a limited set of tasks
using a small set of applications that,
in turn, access and create most of the
user’s files. Modifying these applica-
tions to provide hints about the user’s
context could provide invaluable at-
tribute information.

Existing user input: Although most
users are not willing to input addi-
tional information, they are willing to
choose a directory and name for their
files. Each of the sub-directories
along the path and the file name it-
self probably contain context infor-
mation that can be used to assign at-
tributes. For example, if the user
stores a file in “/home/papers/FS/At-
tribute-based/Semantic91.ps,” then it

Continued on page 15

Craig Soules & Greg Ganger

FALL 2003 15

INFERRING ATTRIBUTES FROM CONTEXT

is likely that they believe the file is a
“paper” having to do with “FS,” “at-
tribute-based,” and “semantic.”

User access patterns: As users access
their files, the pattern of their accesses
provides a set of temporal relation-
ships between files. A possible use of
this information is to help propagate
information between related files. For
example, accessing “SemanticFS.ps”
and “Gopal.ps” followed by updating
“related.tex” may indicate a relation-
ship between the three files. Subse-
quently, accessing “related.tex” and
creating “FindingFiles.ps” may indi-
cate a transitive relationship.

Inter-file content analysis: Content
analysis will continue to be an impor-
tant part of automatically assigning
attributes. In addition to existing per-
file analysis techniques, our focus on
creating context-based connections
between files suggests another source
of attributes: content-based relation-
ships. For example, some current file
systems use hashing to eliminate du-
plicate blocks within a file system, or
even locate similarities on non-block
aligned boundaries. Such content
overlap could also be used to identify
related files, by treating files with
large matching data sets as related.
Similarly, users (or the system) will
often keep several slightly different
versions of a file. Although these files
generally contain differences, often
the inherent information contained
within does not change (e.g., a user
may keep three instances of their re-
sume, each focused for a different
type of job application). This gives the
system two opportunities for content
analysis. First, content comparison can
identify related files. Second, by per-
forming content analysis solely on the
differences between versions, it may
be possible to determine version-spe-
cific attributes, making it easier for
users to locate individual version in-
stances.

Prototype Evaluation System

Figure 1 shows an overview of a pro-
totype system for evaluating context-

based attribute assignment schemes.
The system is composed of four main
parts: the tracer, the application inter-
face, the analyzer, and the database.
The tracer keeps a trace of all file
system activity in the system. Any file
system calls made by applications are
tracked and stored in a file for later
offline analysis. This allows a single
system to employ a variety of differ-
ent analysis techniques. The applica-
tion interface allows applications to
pass context information into the sys-
tem, such as email header informa-
tion or link information from a web
browser. This information is used by
the analyzer to generate attributes for
files. The analyzer combines applica-
tion information, and offline trace
analysis to generate attributes for
files. All updated attribute informa-
tion is passed to the database, which
provides the search interface to the
application. It allows applications to
locate files using the file attributes
assigned by the analyzer. Feedback
from the search results is pushed to
the analyzer for further attribute re-
finement.
This design could include multiple da-
tabases. In order to compare the
results of different trace analysis al-
gorithms, the analyzer could maintain
a database for each, and users could

compare the results of the different
approaches. For more information on
this project see Soules [1] or the PDL
project page at www.pdl.cmu.edu/
AttributeNaming/.

References
[1] Craig A.N. Soules, Greg Ganger.
Why Can’t I Find My Files? New
methods for automating attribute as-
signment. Proceedings of the Ninth
HotOS Workshop, USENIX Associa-
tion, May 2003.

Figure 1: A prototype system for evaluating context-based attribute assignment schemes.

Continued from page 14

Applications Database

Analyzer

Application Interface

Operating System

Tracer

File System

Young Professor Tim Ganger teaching the ECE
18-746 storage systems class.

16 T H E P D L P A C K E T

RECENT PUBLICATIONS

tively limited resources (CPU,
memory and/or communication band-
width and power) poses some inter-
esting challenges. We need both pow-
erful and concise "languages" to rep-
resent the important features of the
data, which can (a) adapt and handle
arbitrary periodic components, includ-
ing bursts, and (b) require little
memory and a single pass over the
data.

This allows sensors to automatically
(a) discover interesting patterns and
trends in the data, and (b) perform
outlier detection to alert users. We
need a way so that a sensor can dis-
cover something like "the hourly phone
call volume so far follows a daily and
a weekly periodicity, with bursts
roughly every year," which a human
might recognize as, e.g., the Mother's
day surge. When possible and if de-
sired, the user can then issue explicit
queries to further investigate the re-
ported patterns.

In this work we propose AWSOM
(Arbitrary Window Stream mOdeling
Method), which allows sensors oper-
ating in remote or hostile environments
to discover patterns efficiently and
effectively, with practically no user
interventions. Our algorithms require
limited resources and thus can be in-
corporated in individual sensors, pos-
sibly alongside a distributed query pro-
cessing engine. Updates are per-
formed in constant time, using sub-
linear (in fact, logarithmic) space.
Existing, state of the art forecasting
methods (AR, SARIMA, GARCH,
etc) fall short on one or more of these
requirements. To the best of our
knowledge, AWSOM is the first
method that has all the above charac-
teristics.

Experiments on real and synthetic
datasets demonstrate that AWSOM
discovers meaningful patterns over
long time periods. Thus, the patterns
can also be used to make long-range
forecasts, which are notoriously diffi-
cult to perform automatically and ef-
ficiently. In fact, AWSOM outper-

forms manually set up auto-regressive
models, both in terms of long-term
pattern detection and modeling, as
well as by at least 10x in resource
consumption.

Location-based Node IDs:
Enabling Explicit Locatlity in
DHTs

Zhou, Ganger & Steenkiste
Carnegie Mellon University School of
Computer Science Technical Report
CMU-CS-03-171, August 2003.

Current peer-to-peer systems based
on DHTs struggle with routing local-
ity and content locality because of
random node ID assignment. To ad-
dress these issues, we promote the
use of location-based node IDs to
encode physical topology and improve
routing. This gives applications explicit
knowledge about and control over
data locality at a coarse-grain. Appli-
cations can place content in particu-
lar regions or route towards a close
replica. Schemes to address the diffi-
culties that ensue, particularly load
imbalance, are discussed.

GEM: Graph EMbedding for
Routing and Data-Centric
Storage in Sensor Networks
Without Geographic Information

Newsome & Song

Proceedings of the First ACM Con-
ference on Embedded Networked
Sensor Systems (SenSys 2003). No-
vember 5-7, 2003, Redwood, CA.

The widespread deployment of sen-
sor networks is on the horizon. One
of the main challenges in sensor net-
works is to process and aggregate data
in the network rather than wasting
energy by sending large amounts of
raw data to reply to a query. Some
efficient data dissemination methods,
particularly data-centric storage and
information aggregation, rely on effi-
cient routing from one node to another.
In this paper we introduce GEM
(Graph EMbedding for sensor net-

works), an infrastructure for node-to-
node routing and data-centric storage
and information processing in sensor
networks. Unlike previous ap-
proaches, it does not depend on geo-
graphic information, and it works well
even in the face of physical obstacles.
In GEM, we construct a labeled graph
that can be embedded in the original
network topology in an efficient and
distributed fashion. In that graph, each
node is given a label that encodes its
position in the original network topol-
ogy. This allows messages to be effi-
ciently routed through the network,
while each node only needs to know
the labels of its neighbors. To demon-
strate how GEM can be applied, we
have developed a concrete graph em-

Continued from page 7

Continued on page 17

[0:25] [26:50] [51:75] [76:100]

[0:100]

S D

[0:50] [51:100]

Naive Tree

4 hops

[0:25] [26:50] [51:75] [76:100]

[0:100]

S D

[0:50] [51:100]

Smart Tree

3 hops

[0:25] [26:50] [51:75] [76:100]

[0:100]

S D

[0:50] [51:100]

VPCR

2 hops

Virtual polar coordinate routing for VPCS. A
packet is routed from S to D using the three
routing algorithms. Smart Tree and VPCR use
a 1-hop neighborhood.

FALL 2003 17

RECENT PUBLICATIONS

bedding method, VPCS (Virtual Po-
lar Coordinate Space). In VPCS, we
embed a ringed tree into the network
topology, and label the nodes in such
a manner as to create a virtual polar
coordinate space. We have also de-
veloped VPCR, an efficient routing al-
gorithm that uses VPCS. VPCR is the
first algorithm for node-to-node rout-
ing that guarantees reachability, re-
quires each node to keep state only
about its immediate neighbors, and
requires no geographic information.
Our simulation results show that
VPCR is robust on dynamic networks,
works well in the face of voids and
obstacles, and scales well with net-
work size and density.

Opportunistic Use of Content
Addressable Storage for
Distributed File Systems

Tolia, Kozuch, Satyanarayanan,
Karp, Bressoud & Perrig

Proceedings USENIX Annual Tech-
nical Conference, General Track
2003: 127-140, June 9-14, San Anto-
nio, TX.

Motivated by the prospect of readily
available Content Addressable Stor-
age (CAS), we introduce the concept
of file recipes. A file's recipe is a first-
class file system object listing content
hashes that describe the data blocks
composing the file. File recipes pro-
vide applications with instructions for
reconstructing the original file from
available CAS data blocks. We de-
scribe one such application of reci-
pes, the CASPER distributed file sys-
tem. A CASPER client opportunisti-
cally fetches blocks from nearby CAS
providers to improve its performance
when the connection to a file server
traverses a low-bandwidth path. We
use measurements of our prototype
to evaluate its performance under
varying network conditions. Our re-
sults demonstrate significant improve-
ments in execution times of applica-
tions that use a network file system.
We conclude by describing fuzzy

block matching, a promising technique
for using approximately matching
blocks on CAS providers to reconsti-
tute the exact desired contents of a
file at a client.

Metadata Efficiency in a
Comprehensive Versioning File
System

Soules, Goodson, Strunk & Ganger

2nd USENIX Conference on File and
Storage Technologies, San Francisco,
CA, Mar 31- Apr 2, 2003.

A comprehensive versioning file sys-
tem creates and retains a new file ver-
sion for every WRITE or other modi-
fication request. The resulting history
of file modifications provides a de-
tailed view to tools and administrators
seeking to investigate a suspect sys-
tem state. Conventional versioning

systems do not efficiently record the
many prior versions that result. In
particular, the versioned metadata they
keep consumes almost as much space
as the versioned data. This paper ex-
amines two space-efficient metadata
structures for versioning file systems
and describes their integration into the
Comprehensive Versioning File Sys-
tem (CVFS). Journal-based metadata
encodes each metadata version into
a single journal entry; CVFS uses this
structure for inodes and indirect
blocks, reducing the associated space
requirements by 80%. Multiversion b-
trees extend the per-entry key with a
timestamp and keep current and his-
torical entries in a single tree; CVFS
uses this structure for directories, re-
ducing the associated space require-
ments by 99%. Experiments with
CVFS verify that its current-version
performance is similar to that of non-
versioning file systems. Although ac-
cess to historical versions is slower
than conventional versioning systems,
checkpointing is shown to mitigate this
effect.

Byzantine-tolerant
Erasure-coded Storage

Goodson, Wylie, Ganger & Reiter

Carnegie Mellon University SCS
Technical Report CMU-CS-03-187,
September, 2003.

This paper describes a decentralized
consistency protocol for survivable
storage that exploits data versioning
within storage-nodes. Versioning en-
ables the protocol to efficiently pro-
vide linearizability and wait-freedom
of read and write operations to era-
sure-coded data in asynchronous en-
vironments with Byzantine failures of
clients and servers. Exploiting
versioning storage-nodes, the proto-
col shifts most work to clients. Reads
occur in a single round-trip unless cli-
ents observe concurrency or write
failures. Measurements of a storage
system using this protocol show that

Continued from page 16

Continued on page 19

1. File Read

4. CAS Request

5. CAS Reply

F
il
e

 W
ri
te

s

CAS

Storage

Jukebox

Recipe

Server

Coda
File

Server

Server

Coda

Client

Proxy

Client

LAN Connection

W
A

N
 C

o
n

n
e

c
ti
o

n

2
.

R
e

c
ip

e
 R

e
q

u
e

s
t

3
.

R
e

c
ip

e
 R

e
s
p

o
n

s
e

6
.

M
is

s
e

d
 B

lo
c
k
 R

e
q

u
e

s
t

7
.

M
is

s
e

d
 B

lo
c
k
 R

e
s
p

o
n

s
e

System diagram.

18 T H E P D L P A C K E T

PROPOSALS & & & & & DEFENSES

and more readily fine-tuned than tra-
ditional database systems.”

Database system architectures face
a rapidly evolving operating environ-
ment where millions of users store and
access terabytes of data. To cope with
increasing demands for performance
high- end DBMS employ parallel pro-
cessing techniques coupled with a
plethora of sophisticated features.
However, the widely adopted work-
centric thread-parallel execution
model entails several shortcomings
that limit server performance, the
most important being failure to exploit
instruction and data commonality
across concurrent requests. More-
over, the monolithic approach in
DBMS software has lead to complex
designs which are difficult to extend.

This thesis introduces a staged design
for high-performance, evolvable
DBMS that are easy to fine-tune and
maintain. I propose to break the data-
base system into modules and encap-
sulate them into self-contained stages
connected to each other through
queues. The staged, data-centric de-
sign remedies the weaknesses of mod-
ern DBMS by providing solutions at
(a) the hardware level: it optimally
exploits the underlying memory hier-
archy, and (b) at a software engineer-
ing level: it is more scalable, easier to
extend, and more readily fine-tuned
than traditional database systems.

THESIS PROPOSAL

Using MEMS-based Storage
Devices in Computer Systems
Steve Schlosser, ECE
June 5, 2003

MEMS-based storage is an interest-
ing new technology that promises to
bring fast, non-volatile, mass data stor-
age to computer systems. MEMS-
based storage devices (MEMStores)
themselves consist of several thousand
read/write tips, analogous to the read/
write heads of a disk drive, which read
and write data in a recording medium.
This medium is coated on a moving

rectangular surface that is positioned
by a set of MEMS actuators. Access
times are expected to be less than a
millisecond with power consumption
10–100X less than a low-power disk
drive, while streaming bandwidth and
volumetric density are expected to be
around those of disk drives.

We are starting to exploring how
MEMStores would best be used in
computer systems and how those sys-
tems should adapt to their differences
as compared to disks. For example,
existing operating system policies are
tuned for disks, including request
scheduling, data layout, and power
conservation. Also, given the perfor-
mance, capacity, and non-volatility of
MEMStores, they represent a new,
intermediate member of the memory
hierarchy. My thesis is that most of
these aspects can conform, with little
penalty, to disk-like policies and us-
ages.

Because MEMStores perform basi-
cally like fast disks, with only a few
exceptions, they can be treated by sys-
tems as such. My dissertation will
show that for most workloads, the
same linear logical block abstraction
that is used for disk drives is appro-
priate for MEMStores. The benefit of
using the same abstraction is that
MEMStores can be easily integrated
into computer systems with little or
no change.

THESIS PROPOSAL

D-SPTF: Decentralized Schedul-
ing for Storage Bricks

Christopher Lumb, ECE
August 19, 2003
Distributed Shortest-Positioning Time
First (D-SPTF) is a request distribu-
tion protocol for decentralized systems
of storage servers.

D-SPTF exploits high-speed intercon-
nects to dynamically select which
server, among those with a replica,
should service each read request. In
doing so, it simultaneously balances
load, exploits the aggregate cache

capacity, and reduces positioning times
for cache misses. For network laten-
cies of up to 0.5ms, D-SPTF performs
as well as would a hypothetical cen-
tralized system with the same collec-
tion of CPU, cache, and disk re-
sources. Compared to existing decen-
tralized approaches, such as hash-
based request distribution, D-SPTF
achieves up to 50% higher through-
put and adapts more cleanly to heter-
ogenous server capabilities.

THESIS PROPOSAL

Autonomous Spatio-Temporal
Data Mining

Spiros Papadimitriou, SCS
May 5, 2003

The goal of data mining is to facilitate
the extraction of useful information
from large collections of data. Thus,
eliminating the requirement of user
intervention is essential. We propose
to develop fast tools for spatio-tem-
poral data mining towards that goal.
We have completed work in the area
of spatio-temporal data mining and, in
particular, outlier detection and time
series modeling. These provide suffi-
cient evidence that we can improve
upon previous techniques.

THESIS PROPOSAL
Prefetching and Locality
Optimizations for Database
Memory Hierarchy Performance

Shimin Chen, SCS
May 2, 2003

Database performance studies have
been traditionally focused on I/O per-
formance. Recently, researchers have
shown that, on traditional disk-oriented
databases, roughly 50% or more of the
execution time in memory is wasted
due to cache misses. Therefore, to
exploit the full power of modern com-
puter systems requires optimizing both
cache and disk performance in the
memory hierarchy, which together

Continued from page 13

Continued on page 20

FALL 2003 19

RECENT PUBLICATIONS

the protocol scales well with the num-
ber of failures tolerated, and that it
outperforms a highly-tuned instance
of Byzantine-tolerant state machine
replication.

Robustness Hinting for
Improving End-to-End
Dependability

Bigrigg

Second Workshop on Evaluating and
Architecting System Dependability
(EASY). In conjunction with
ASPLOS-X. Sunday, 6 October 2002,
San Jose, California, U.S.A.

File systems make unreasonable at-
tempts to provide data to the point that
they will block an application instead
of passing the error on to the applica-
tion to handle. Transient problems
such as network congestion or out-
ages and heavily loaded systems or
denial of service attacks can lead to
failure-like situations. Alternative
mechanisms have been developed for
the file system to trade performance

for robustness in an attempt to always
guarantee full availability of data.
These mechanisms may not be nec-
essary, as the application programmer
may have already accounted for such
situations. By hinting to the file sys-
tem the application’s ability to handle
errors it is possible for the file system
to make better resource allocation de-
cisions and improve end-to-end de-
pendability.

Data Staging on Untrusted
Surrogates

Flinn, Sinnamohideen, Tolia &
Satyanarayanan

Proceedings 2nd USENIX Confer-
ence on File and Storage Technolo-
gies (FAST03), Mar 31-Apr 2, 2003,
San Francisco, CA.

We show how untrusted computers
can be used to facilitate secure mo-
bile data access. We discuss a novel
architecture, data staging, that im-
proves the performance of distributed
file systems running on small, storage-

Continued from page 17

YEAR IN REVIEW

Continued from page 4

Interaction and Security Systems
in Fort Lauderdale, FL.

March 2003
Christos Faloutsos presented a
tutorial on “Data Mining the
Internet” at INFOCOM, San
Francisco, CA.

January 2003
Over the past term, several
visitors have contributed to our
Storage Systems course, includ-
ing: Dave Anderson, Seagate;
Steve Kleiman, NetApp; Ric
Wheeler, EMC; Harald Skardal,
NetApp; Jim Hughes,
StorageTek; Richie Lary, Inde-
pendent Consultant; and Mark
Carlson, Sun.
Stavros Harizopoulos presented
“A Case for Staged Database

Systems” at the First Interna-
tional Conference on Innovative
Data Systems Research (CIDR),
in Asilomar, CA.

December 2002

Greg Ganger chaired the session
on Decentralized Storage Sys-
tems at OSDI in Boston, MA.
Timmy Ganger gave a guest
lecture in 15-712 (Advanced OS
and Distributed Systems).
Ted Wong presented “Verifiable
Secret Redistribution for Archive
Systems” at the First Interna-
tional IEEE Security in Storage
Workshop.

November 2002

SDI Speaker: Richard Golding,
then of Panasas, Inc., spoke on

“The Palladio Project: A Surviv-
able, Scalable Distributed Storage
System.”
DB Seminar Speaker: C. Mohan
of IBM on “Future directions in
Data Mining: Streams, Networks,
Self-similarity and Power Laws.”
Christos Faloutsos gave the
keynote talk at CIKM in
McLean, VA and was also an
invited speaker at the NSF
NGDM Workshop in Baltimore,
MD and the N.A.S. Workshop in
Washington, DC.

October 2002

SDI Speaker: John Wilkes of HP
Labs on “Travelling to Rome—
QoS Specifications for Auto-
mated Storage System Manage-
ment.”

limited pervasive computing devices.
Data staging opportunistically
prefetches files and caches them on
nearby surrogate machines. Surro-
gates are untrusted and unmanaged:
we use end-to-end encryption and se-
cure hashes to provide privacy and
authenticity of data and have designed
our system so that surrogates are as
reliable and easy to manage as pos-
sible. Our results show that data stag-
ing reduces average file operation la-
tency for interactive applications run-
ning on the Compaq iPAQ hand-held
by up to 54%.

Give PDL storage systems researchers snow
and a plastic chair and see what happens!

20 T H E P D L P A C K E T

PROPOSALS & & & & & DEFENSES

Continued from page 18

have not been well studied for data-
base systems before. My thesis is that
prefetching and locality optimizations
can effectively improve both cache and
disk performance of database systems
and that differences between the
cache-to-memory and the memory-to-
disk gap play a significant role in the
design and choice of specific
prefetching and locality optimization
techniques.
To validate my thesis, I revisit two
important classes of database algo-
rithms, B+tree index algorithms and
join algorithms. In my preliminary
work, I have exploited cache
prefetching to improve search and
range scan operations of main
memory B+trees. I have studied
fractal prefetching B+trees, which are
a new type of B+trees that optimize
both cache and disk performance. In
fractal prefetching B+trees, smaller
cache-optimized trees are embedded
in disk pages to improve data locality
for index search. Both cache
prefetching and I/O prefetching are
used to improve performance. I have
worked on improving hash join cache

performance by exploiting inter-tuple
parallelism through prefetching. For
my proposed future work, I will be fo-
cusing on utilizing history information
to improve join performance. Since
updates are relatively infrequent com-
pared to joins in DSS and OLAP en-
vironments, it is possible to use his-
tory information about matching tuples
to guide and improve future join per-
formance. In contrast to previous
studies with join indices, I want to
analyze the history information to
identify data locality in the joining re-
lations and then improve join perfor-
mance by exploiting the data locality
and using prefetching.

THESIS PROPOSAL

Prototyping Without
Prototyping: Evaluating hypo-
thetical storage components in
real systems

John Linwood Griffin, ECE
August 1, 2003

For my dissertation research I am con-
tinuing our investigation into the utility

and capabilities of timing-accurate
storage emulation (TASE).

Our previous work demonstrates that
TASE is feasible for evaluating both
evolutionary changes (faster platter
speeds; modified firmware algo-
rithms) and revolutionary changes
(MEMS-based technology) to storage
devices.

Several interesting questions remain
before this new storage evaluation
technique can be fully utilized by re-
searchers and developers. For ex-
ample, an emulator may have to mea-
sure and deal with variable externally-
induced timing errors during an ex-
periment. How can an evaluator rest
assured that the emulator is correctly
compensating for these errors? As
another example, an emulator may
need to keep data in RAM in order to
provide per-request data before each
request completes. How can an emu-
lator meet such deadlines when the
experimental working set is larger
than the emulator's RAM?

Ursa Minor and Ursa Major

In order to effectively explore how our
ideas will simplify storage administra-
tion, it is essential that operational sys-
tems be built and deployed. The Paral-
lel Data Lab has been developing tech-
nologies relevant to the self-* storage
architecture for several years, allow-
ing us to build a prototype relatively
quickly. Our initial focus will be on
implementing the data protection as-
pects, embedding instrumentation, and
enabling experimentation with perfor-
mance and diagnosis.

Our first prototype, named Ursa Mi-
nor, will be approximately 15 TB spread
over 45 small-scale storage bricks. The
main goal of this first prototype is rapid
(internal) deployment to learn lessons

SELF-* STORAGE

Continued from page 12

for the design of a second, larger-scale
instantiation of self-* storage. Ursa
Major will be a large-scale (~1 PB) stor-
age constellation, called Ursa Major. Its
data storage capacity will be available
to research groups around Carnegie
Mellon (e.g. groups involved data min-
ing and scientific visualization) who rely
on large quantities of storage for their
work. We are convinced that such de-
ployment and maintenance is necessary
to evaluate self-* storage’s ability to
simplify administration for system
scales and workload mixes that tradi-
tionally present difficulties. As well, our
use of low-cost hardware and imma-
ture software will push the boundaries
of fault-tolerance and automated recov-
ery mechanisms, which are critical for
storage infrastructures. From the per-

spective of their users, our early self-*
constellations will look like really big,
really fast, really reliable file servers (ini-
tially NFS version 3). The decision to
hide behind a standard file server inter-
face was made to reduce software ver-
sion complexities and user-visible
changes-user machines can be unmodi-
fied, and all bug fixes and experiments
can happen transparently behind a stan-
dard file server interface. The result-
ing architecture is illustrated in Figure
2. Direct, untrusted client access will
be added over time.

For more information, please see the
Self-* Storage project page at
http://www.pdl.cmu.edu/SelfStar/.

