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Abstract

Self-securingstorage turns storage devicesinto active parts of an intrusion survival strategy. From behinda thin
storage interface(e.g., SCSlor CIFS),a self-securingstorage servercanwatd storage requestskeepa recod of all
storage activity, and preventcompomisedclientsfrom destoying stored data. This paperdescribeghreewaysself-
securingstorage enhancesn administator’s ability to detect,diagnose and recover from client systemntrusions.
Fir st, storage-basedntrusiondetectionoffers a new observatiorpoint for noticing suspectctivity. Secondpost-hoc
intrusion diagnosisstarts with a plethora of normally-unavailableénformation. Finally, post-intrusionrecovery is
reducedo restartingthe systemwith a pre-intrusionstorage image retainedby the server Combinedthesefeatutres
canimprovean organizations ability to survivesuccessfutligital intrusions.
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1 Intr oduction

Digital intrusionsare a fact of moderncomputing. While new securitytechnologiesnay make
themmoredifficult andlessfrequent,ntrusionswill occuraslong assoftwareis buggyandusers
arefallible. Oncean intruderinfiltratesthe system,he cangenerallygain control of all system
resourcesincludingits storageaccessights (completerights,in the caseof anOSaccessindpcal
storage).Crafty intruderscanusethis controlto hide their presencewealen systemsecurity and
manipulatesensitve data. Becausestorageactsasa slave to authorizedprinciples,evidenceof
suchactionscangenerallybe hidden. In fact, solittle of the systemstateis trustworthy after an
intrusionthata common“recovery” approachs to reformatlocal storageye-installthe OS from
scratchandrestoreusers’datafrom a pre-intrusionbackup.

Self-securingstorageis an exciting new technologyfor enhancingntrusionsurvival by en-
ablingthe storagedevice to safgguarddataevenwhenthe hostOSis compromisedlt capitalizes
on the fact that storageseners (whetherfile seners, disk array controllers,or even IDE disks)
run separateoftwareon separaténardware. This opensthe doorto senerembeddedecuritythat
cannotbedisabledby ary software(eventhe OS)runningon clientsystemgFigurel). Of course,
suchsenershave a narrav view of systemactuity, so they cannotdistinguishlegitimate users
from clever impostors.But, from behindthe thin storagenterface,a self-securingstoragesener
canactwely look for suspiciousbehaior, retainan auditlog of all storagerequestsand prevent
both destructionand undetectabléamperingof storeddata. The latter goalsare achieved by re-
tainingall versionsof all data;insteadof over-writing old datawhena wRITE commands issued,
thestoragesener “simply” createsanew versionandkeepsboth. Togethemwith theauditlog, the
sener-retainedversionsrepresent completehistory of systemactiity from the storagesystems
point of view.

This paperdescribeshow self-securingstorageimprovesintrusionsurvival by safeguarding
storeddataandproviding new informationregardingstorageactiities before during,andafterthe
intrusion. Specifically it focuseson threewaysthat self-securingstoragecontritutes: helpingto
morequickly detectintrusions,providing easilyaccessiblenformationfor diagnosingntrusions,
andsimplifying andspeedingup post-intrusiorrecovery.

First, a self-securingstoragesener canassistwith intrusiondetectionby watchingfor suspi-
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Figurel: Self-securingstorage. The storagenterfaceprovidesa thin perimeterbehindwhich a storagesener can
obsene requestsand safgguarddata. Note that this samepicture works for both block protocols,suchas SCSlor
IDE/ATA, anddistributedfile systemprotocols,suchasNFS or CIFS. Thus,self-securingstoragecould be realized

within mary storageseners,includingfile seners,disk arraycontrollers,andevendisk drives.

ciousstorageactvity. By design,a storagesener seesall requestandstoreddata,soit canissue
alertsaboutsuspiciousstorageactiity asit happensSuchstorage-basedntrusion detectioncan
quickly andeasily notice several commonintruderactions,suchas manipulatingsystemutilities
(e.g.,to add backdoors)r tamperingwith auditlog contents(e.g.,to concealevidence). Such
actiities areexposedo the storagesystemevenwhentheclient systems OSis compromised.
Second,after an intrusion hasbeendetectedand stopped,self-securingstorageprovides a
wealth of informationto securityadministratorsvho wish to analyzean intruder's actions. In
currentsystemslittle informationis availablefor estimatingdamage(e.g.,whatinformationthe
intruder might have seenand what datawas modified) and determininghow he gainedaccess.
Becausantruderscan directly manipulatedataand metadatan corventionalsystemsthey can
remove or obfuscatdracesof suchactwvity. With self-securingstoragejntrudersiosethis ability—
in fact,attemptgo do thesethingsbecomeobviousredflagsfor intrusiondetectionanddiagnosis

efforts. Although technicalchallengesemainin performingsuchanalysesthey will startwith



muchmoreinformationthanforensictechniquesanusuallyextractfrom currentsystemg32].

Third, self-securingstoragecan speedup and simplify the intrusion recovery process. In
today’s systemsfull recovery usuallyinvolvesreformatting reinstallingthe OS from scratchand
loadinguserdatafrom back-uptapes.Thesestepsaretakento remove backdoorsor Trojanhorses
that may have beenleft behindby the intrudet Given senermaintainedversions,on the other
hand,an administratorcansimply copy-forwad the pre-intrusionstate(both systembinariesand
userdata)in a singlestep.Further all work doneby the usersincethe securitybreachremainsin
the historypool, allowing incrementalalbeitpotentiallydangerousjecovery of importantdata.

In a previouspaper[29], we introducedself-securingstorageandevaluatedts feasibility. We
shavedthat, undera variety of workloads,a smallfraction of the capacityof moderndisk drives
is sufficient to hold severalweeksof completestoragehistory. With a prototypeimplementation,
we also demonstratedhat the performanceoverheadof keepingthe completehistory is small.
This paperbuilds onthe previouswork by exploring theintrusionsurvival featuresof self-securing
storage.

Theremaindeof this paperis organizedasfollows. Section2 overviens self-securingtorage
andits feasibility. Section3 describesiow it enablestorage-basemtrusiondetection.Section4
describesiow it contributesto post-hocanalysisof intrusions.Section5 describesiow it simpli-
flesthe post-intrusiorrecovery process.Section6 discusse®penchallengesn realizingthe full
potentialof self-securingstorage.Section7 approacheself-securingstoragefrom the attacler’'s
viewpoint by discussindhow they canmodify their behaior in responseFinally, Section8 sum-

marizesthis papers contributions.

2 Self-SecuringStorage

Thegoalof self-securingstorageas to enhancentrusionsurvivability by embeddingecurityfunc-
tionality into storageseners. Runningin a separatesystem,this functionality remainsin place
evenwhenclient OSesor useraccountsarecompromised.Thatis, self-securingstorageutilizes
the storageinterfaceasa protectionboundary From behindthis boundary a self-securingstor
agedevice canwatchfor suspiciousactvity, retainan auditlog of storagerequestsand prevent

the destructionand undetectabléamperingof storeddata. Datasurvival is ensuredoy retaining



all previous versionsof files for a guaranteec&mountof time, calledthe detectionwindow For
intrusionsdetectedwithin this window of time, the completestoragehistory is availablefor in-
trusion diagnosisand recovery. This sectiondescribeghe architecturein more detail, presents
somesecurity-relateddministrationissuesandsummarizesesultsfrom feasibility analysesand

experimentswith a prototypeimplementation.

2.1 Additional security perimeter

In conventionalsystemsthe storagesystemactsasa slave to hostoperatingsystemsgiving the
OSescompleteresponsibilityfor the protectionof storeddata. As a result,compromisectlient
systemsandestry dataeitherdirectly or by masqueradingsa legitimateuser

Insteadof relying on the OS for protection,the storagedevice (whethera local disk or a
remotesener) shouldprotectthe datathatit stores,ndependenbf ary protectionthatthe client
OSprovides.Thearchitectureof acomputersystenmsupportghisideasincethestoragesystems a
separatgieceof hardware,runningseparateodefrom the OS,andthe two entitiescommunicate
via asimpleinterfaceof well-definedcommandge.g.,SCSI,NFS, CIFS). This placesthe storage
devicein anidealpositionto provide protectionfor thesystemsdata.Additionally, sinceit already
storeshe systems dataandseesall requestsit hassufficientinformationto safeguardthe data.

Modernstoragesystemsalsohave significantresourceshatthey candraw from to implement
this protection. They have very large capacitiesthat can be leveragedto increasesecurity by
maintainingmultiple versionsof storeddata. Thesedevices also have memoryand processing
power that can be utilized to examineand act upon storagerequestindependenbf the current
stateof the host CPU and OS. Theseresourcesan be usedto protectthe systems$ datafrom
unauthorizeachangesn away thatwill notinterferewith avalid, runningsystem.To accomplish
this, the storagadevice mustview all storageoperationsvith suspicionyetnotattemptto second-

guesgheintentionsof the OS.

2.2 Data protection

To accomplisithegoalof enhancingntrusionsurvivability, the storagedevice takesbothanactive

andpassve role. The storagedevice canuseits processingpower andmemoryto actively watch



the storagerequestsaandissuealerts(or take correctve action)if it noticessuspectctvity. This
active role candecreasehe time it takesto detectintrusionsbecauseat addsa new pointin the
computersystemfrom which to performintrusiondetection.

The self-securingstoragedevice seesall storagerequestsand passvely maintainsan audit
log of theserequests.This auditlog allows the systemadministratorto view the type, order and
potentiallythe originatorof eachrequest.Thestoragelevice maintaingheauditlog internallyand
exportsit to authorizectlientsin aread-onlymanner This allows the administrator(or authorized
entity) to view the storagerequestsbut not changeor modify thelog.

In additionto the auditlog of storagerequeststhe device keepsall versionsof all datathat
arewritten. With eachwrite or deleterequestthe currentversionof thefile or directoryis updated
to reflectthe new state,andthe old versionis saredin the device’s history pool for a guaranteed
amountof time. The old versionsof files anddirectoriescannotbe modifiedor removedfrom the
device until they expire from the detectionwindow anadministratorconfiguredamountof time.
Spaceon the storagedevice is logically divided into three sections: currentdata, history pool,
andfree space.The size of the history pool grows or shrinks,asnecessaryto hold the datathat
hasnot yet expired from the detectionwindow. The maintenancef the history informationis
handledentirely within the storagedevice, transparento the restof the system. This historical
informationcanbe usedto view (andrecover) ary versionof ary file thatstill resideswithin the
history pool, allowing quick post-intrusionrecovery. Recaorery from this historicaldatais done
via a copy forward operation(as opposedo rolling back the stateof the file or device). This
preventsthe destructionof intermediateversions,allowing incrementakecovery and safeuse of
copy forwardby normalusers.

To implementthe capabilitiesdescribedabove, a storagedevice musthave a large capacity
(commonon moderndisk drives)andthe processingpower necessaryo maintainthe history pool
andauditlog. Thesecharacteristicare present,and self-securingstoragecan be embeddedn,
smartdisk drives[35], storagearrays,and file seners. The latter two (storagearraysandfile
seners)arein wide usetodayandrequireonly the appropriatesoftwareto becomeself-securing
storagedevices. Thereis a spectrumof systemghat could benefitfrom this self-securingech-
nology, andary storagedevice thathasthe requiredprocessingapabilitiesandexistsasa largely

single-purposalevice (to reduceexposureto intrusion of the storagedevice) would be a good



candidate.

Liu, etal. have proposeda methodof isolating attaclers, via versioning,at the file system
level [15]. Their methodreliesuponanintrusiondetectionsystemto identify suspicioususersin
real-time.Thefile systenforkstheversiontreesto sandboxsuspiciousiserauntil theadministrator
verifiesthe legitimagy of the users’actions. If donewithin the file sener, this isolationmethod
would be a form of self-securingstorage althoughit doesendangeiour goal of not interfering
with avalid, running system,unlessthe intrusiondetectionmechanisnyields no falsepositives.
Specifically sincesuspiciousisersmodify differentversionsof files from regularusersijt creates

adifficult reinteggration[18, 31] problem,shouldthe updatese judgedlegitimate.

2.3 Administration issues

While self-securingstorageas ableto protectdatain anearlytransparentvay, it introducesseveral
administratve issues.Theseadditionalcompleities mustbe properlymanagedor self-securing
storageto beeffective.

Secure administrati ve control: Self-securingstoragedevices must have a secure,out-of-
bandinterfacefor handlingadministratve taskssuchasconfigurationandintrusionrecovery. This
interfacemustusestrongauthenticationo ensureghatrequestgannotbeforgedby the OSor other
processe®n potentially compromisedlient systems. This precautionis necessarypecausdhe
administratve interface(necessarilypermitscommandshataredestructve to data.For example,
settingthe lengthof the detectionwindow is handledvia this interface.If anintruderwereableto
changethelengthof the detectiorwindow, he could erasedatafrom the history pool by shrinking
it.

Although strongauthenticationis critical for this interface, confidentialitymay be lessso.
Sincehistory datacanbe viewed andthe auditlog readwith this interface,someprivacy concerns
arise.However, mostorganizationstill employ file systemgshatdonotencrypttheirnormaltraffic,
thusit is unclearwhetherthereis a needto obscurehe dataat this point.

Administrative alerts(for intrusion detection)poseanotherinterestingproblem. The chan-
nel thatis usedfor this device-to-administratocommunicatiormust, at a minimum, be tamper

evident. This is necessaryo preventthe intruderfrom successfullypreventing the alertsfrom



reachingthe administrator The administratormay alsowish to hide the factthatan alertwasis-
suedat all. Shemay evenwish to hide the presencef the communicationchannelcompletely
Theseconcernglay asignificantrole in theimplementatiorof theadministratve controlchannel.

The administratve interfacemay be implementedn a numberof ways. For example,there
could be a dedicatecadministratve terminalconnection.For network-attachedstorage(e.qg.,file
seners),onecanusecryptographyandwell-protectedadministratve keys. For disksattachedo
hostsystemsa securecommunicationchannelbetweena smartdisk drive and a remoteadmin-
istrationconsolecanbe createdoy cryptographicallytunnelingcommandghroughthe host’s OS.
No matterwhich interfaceis chosenijt mustbethe casethatobtaining“superuser’privilegeson a
clientcomputersystemis not suflicientto gainadministratve accesgo the storagedevice.

Settingthe detectionwindow: Thestoragedevice’s detectionwindow is the configurablepa-
rameterthatdetermineghe durationof historyavailablefor detectingdiagnosingandrecovering
from intrusions. For this reasonijt is desirablethatthe window be very long. On the otherhand,
morehistory requiresmoredisk capacity Our studiesindicatethat, with currentdisk technology
configuringthe detectionwindow for betweeroneweekandonemonthof history providesarea-
sonablebalancdor alarge variety of workloads.The sizeof theresultinghistorypoolis up to the
total numberof byteswritten or deletedduring the detectionwindow. Cross-ersiondifferencing
andcompressioranreducethe historypool size[27].

Denial of sewice: Aswith any systemanintrudercanfill upthestoragecapacityandprevent
forward progresduy the system.Suchdenial-of-servicas easyto detectonceit occurs,but with
self-securingstorageit requirescarefuladministratve intervention. Specifically restoringthe sys-
temaftersuchanattackrequirestrue deletionof files or versionsfrom the historypoolin orderto
freespace Suchdeletioninterfereswith the basicgoalsof self-securingstoragesoadministratve
privilegesandcarearerequired.

Additionally, corventionalfile systemsaisespaceqjuotasto preventa singleuserfrom usinga
disproportionate@mountof storage.This concepicanbe utilized for self-securingtorageaswell,
but it would needto be modifiedto alsocontainaratequota. This secondquotawould boundthe
averagerateatwhich a usercanwrite data.Suchratequotasarenot likely to completelysolve the
problem.However, they couldallow the device to detectalik ely attackandthrottle the offending

useror client machine.This might provide sufficient time for an administratorto reactbeforeall



freespaceas consumed.

Privacy and inability to delete Someuserswill objectto beingunableto deletefiles when-
ever they want, but allowing usersto permanentlhdeletetheir files (without waiting for the detec-
tion window to elapse)wvould opena pathfor intrudersto destry data. The chosencompromise
betweenthe needfor securityandthe users’desirefor privagy is to allow usersto mark files as
“unrecoverable’. Suchfiles would be retainedin the device like normal, but could only be re-
trieved from the history pool by the administratoyr not the user This preventsan intruder (who
couldmasqueradasanormaluser)from recoveringthefile, but it still allowstheadministratoto
completelyrecover after anintrusion. While someusersmay objectto it beingretainedat all, it
is often possiblefor anadministratoto recover a deletedile in a corventionalsystemaswell [7].
Also, if thefile wasstoredon the systemfor ary reasonabléengthof time, it is likely thatit was

bacledup for disasterecovery, makingit unlikely thata normalusercouldforcedeletion[11].

2.4 Prototype system

To evaluatethe conceptsaandfeasibility of self-securingstoragea prototypesystemwasdesigned
andimplemented.The prototypeactsasa self-securingNFS sener. It maintainsanauditlog and
historypool asdescribedabove. The prototyperunsasa userlevel procesontheLinux operating
system. Unmodifiedclient systemscanusethe sener asa standard\NFS version2 [30] sener,
while the self-securingstoragefeaturesareprovidedtransparently

Our previous work [29] evaluatedthe two main costsof self-securingstorage: spacecon-
sumptionof the history pool andperformanceverheadf comprehensie versioning.To evaluate
the spaceconsumptionthe write bandwidthsof severalfile systemworkloadswere examinedto
determinethe lengthof time thatthe history canberetainedn real ernvironments.The workloads
studiedwerea setof AFS seners[28], asingleNFSsener usedby a dozenresearcherf24], and
local andremotefile systemactivity of a collectionof Windows NT computersusedfor scientific
processingdevelopment,and administratve tasks[34]. Basedon the volume of write traffic in
theseervironments,it is possibleto keepbetweenl0 and 90 daysworth of historyin 20% of a
50 GB diskdrive.

Theperformancef ourprototypesystemwascomparedo severalotherNFSimplementations



andfound to perform comparablyon macro-benchmarksMore detailedbenchmarkingshoved
that maintainingthe audit log resultsin a 1%—-3% performanceoverhead,and maintainingthe
historicalversionsof datacanbe donewith lessthan10% performanceverhead.

We view thesesmall performanceand capacitycostsas acceptablegiven the benefitsde-

scribedin theremaindeof this paper

3 Storage-basedntrusion Detection

Most intrusiondetectionsystemsconcentraten host-base@dndnetwork-basedletectionof secu-
rity compromise$2, 16, 19, 22]. Host-basedletection from its vantagepoint within the system,
examineshost-specifianformation(suchassystemcalls[10]) for signsof intrusionor suspicious
behaior. Network-basedletectionconcernstself with the network traffic to, andfrom, the hosts
beingwatched.The storagesystemis anadditionalpointin the computersystemthatcanbeused
asavantagepointfor intrusiondetection.

Many intrudersmodify storeddata. For instance they may wish to cover ary tracesleft by
thesystenmpenetrationinstall Trojanprogramgo capturepassverds,install abackdoorfor future
re-entry or tamperwith datafiles for the purposeof sabotageThesemodificationswill bevisible
to the storagesystemsincetheintruderis usingand/ormodifying the datathatresideshere. The
storagesystemcanwatchthis streamof requestgor abnormalitiesandissuealerts.

Although the world view that a storagesener seesis incomplete,two featurescombineto
provide a well-positionedplatform for enhancingntrusiondetectionefforts. First, sincestorage
senersareindependentf client OSes,they cancontinueto look for intrusionsafter the initial
compromise whereasa host-basedsystemwould normally be subverted. Second,since most
computersystemsiependn persistenstorageo function, it will oftenbedifficult for anintruder
to avoid causingstorageactiity thatcanbe capturecandanalyzed.

This sectiondiscussedour behaiors that could be detectedvia a storage-baseadtrusion
detectiorsystem It thendiscussesiow oneof theseclassegwatchingfor dataor attribute modifi-
cation)fits into our prototypesystem.Thesectionconcludeswvith thetopic of how a storagedevice

mightrespondo a suspiciousvent.



3.1 Detectioncapabilities

Thereare several forms of storageactvity that a self-securingstoragesystemmight monitor for
maliciousbehaior. Theserangefrom watchingmetadataperationssuchaspermissioror times-
tampmodification,to verifying the internalconsisteng of datafiles. Of course eachcomeswith
somecostin processingatndmemoryresourcesln configuringa self-securingstoragesystemone
mustbalancedetectionefforts with performancesostsfor the particularoperatingervironment.
This sectiondescribeseveralsignalsthatstorage-baseithtrusiondetectioncanmonitor: data
andattributemodificationsupdatepatternsstructuraichangeso contentandcontentchangesnd

additions.

3.1.1 Data/attrib ute modification

As thesimplestexample,aself-securingtoragesener canwatchfor suspectyetauthorizedmod-
ificationsto dataor attributes. Suchmodificationscanbe detectedon-the-fly beforethe storage
device processesachrequestFor suspecbperationsthedevice canissueanalertimmediately It
couldevendelaythe updateuntil thealertis processedSuchmonitoringcaneasilydetectchanges
to systemexecutablesmodification of static accesspermissionsor ownership,and backwards
changedo timestamp®f sensitvefiles.

In conventionalsystemssimilar functionalitycanbeimplementedrzia achecksummingitility
(e.q., Tripwire [12]) that periodically compareghe currentstoragestateagainsta pre-generated
referencedatabasetoredelsavhere. Self-securingstoragegoesbeyond this currentapproachn
four ways: (1) it allows real-timedetection(2) it avoidsthe compleity of constructingmaintain-
ing, andprotectinga referencedatabaseg(3) for local storagejt avoidsrelying ontheclient OSto
dothecheckswhichasuccessfuintrudercoulddisableor subvert,and(4) it cannoticeshort-term
changessuchastimestamprollback, which would not be seenif they occurredoetweenwo peri-
odic checks.Althoughdetectiorof file modificationstill requirescreationof arule setto designate

allowed/prohibitednodificationsthe above four benefitsaresignificant.
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3.1.2 Update patterns

Someimportantfiles are manipulatedoy a single applicationor systemcomponentjn a well-
definedway. For instance systemlog files areusuallytreatedasappend-onlyduring normalop-
eration,and they may be periodically “rotated” This rotation consistsof renamingthe current
log file to an alternatename(e.g.,l ogfil e tol ogfi | e. 0) andcreatinga new “current” log
file. Any deviation in the updatepatternof eitherthe currentlog file or the previouslog files is
suspicious.Similar behaior is sometimesharacteristiof systempassverd files (the editing of
/ et c/ passwd pairedwith editingof / et ¢/ shadow) andevenword processindiles (their use
of backupandtemporaryfiles).

While the log file behaior abose can be watchedto thwart an intrudertrying to cover his
tracks,evenlesstamperrevealingscenariosuchastheword processoexamplearestill beneficial.
Any measurethat senesto restrictthe non-exposingactionsof a systemintruderincreaseghe
likelihood of the intruder making a mistake and exposingtheir presence.The examplesabove
accomplishthis by forcingtheintruderto usethesametemporaryfilesandbackupfilesin amanner
thatis consistentwith the behaior of the actualapplication. This “raisesthe bar” for intruders
wishingto remainundetected.

In general,mary applicationsaccessstoragein a well-definedmanner Thesepatternsof
accesat the storagedevice will be areflectionof the applications requestsThis presentanop-
portunityfor moregeneralinomalydetectiorbasedn how agivenfile is normallyaccessedT his
couldbe donein a mannersimilar to watchingsystemcalls[10] or having rulesregardingthe ex-
pectedbehaior of applicationd13]. Deviation from the normalpatterncouldindicateanintruder
or malicioususerattemptingto subvert the normal methodof accessing givenfile. Anomaly

detectionwithin storageaccesgatternds aninterestingtopic for subsequentesearch.

3.1.3 Contentintegrity

Someimportantfiles have a well-definedstructure. For instancea UNIX systempassvord file,
suchas/ et ¢/ passwd, consistf asetof records.Eachrecordis delimitedby aline-break.and
therecordseachconsistof exactly sevenfields,colonseparatedSincea storagesystemhasaccess

to all datathatis written, it canverify thatthe datacontainedvithin write requestss consistentvith
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therulesgoverningtheinternalstructureof thefile. Of courseto performthis typeof verification,
thedevice mustunderstandheformatof eachfile it needgo verify. Thus,it couldonly beusedfor
asmallsetof files—thosdiles thatarecritical to the system$ operation put areallowedto change
duringnormaloperation.

For “simple” file structuressuchas/ et ¢/ passwd, performingthis verificationwith each
write is alow-overheadperation Datafile formats however, canbearbitrarily complex. Complex
structuresnay necessitataccessingdjacenfile blocks(otherthanthosecurrentlybeingwritten)
to have sufficientcontext to verify thefile’s structure causinga significantperformancempactif it
is performedduringeverywrite. This creates performancers. securitytradeof madeby deciding
which files to verify andhow oftento verify them. In practice,therearelikely to be few critical

files for which contentintegrity verificationis utilized.

3.1.4 Suspiciouscontent

As the contentrepository the storagedevice canwatchfor the appearancef suspiciousstorage
content. The mostobvious suspiciouscontentto look for is the appearancef a known virus,

detectablevia its signature.Several high-endstorageseners(e.g.,from EMC [17] and Network

Appliance[21]) now includesupportfor internalvirus scanning By executingthe scanswithin the

storagesen\er, virusescannotdisablethe scannergvenafterinfectingclients.

Two otherexamplesof suspiciousontentarelarge numbersof “hidden” files or emptyfiles.
Hiddenfiles have namesthat are not displayedby normaldirectory listing interfaces,andtheir
usemay indicatethatan intruderis usingthe systemasa storagerepository A large numberof
emptyfiles or directoriesmay indicatean attemptto exploit a raceconditionby inducinga time-

consumingdirectorylisting, searchpr removal [3, 23].

3.2 Example: modification detection

As aconcreteaxample,our prototypeself-securingNFS sener hadbeenextendedo supportrule-
baseddetectionof suspecimaodifications. This work focuseson metadatachangesanddetecting
datamodification,enforcingarule-setvery similar to Tripwire [12]. Theadministratoraddsrules

via the secureadministratve interface,andtheserulesareverified during the processingf each
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Metadata
inodemodificationtime datamodificationtime
accesgime file permissions
link count device number
file owner inodenumber
file type file group
file size

Data
ary modification | appendbnly

Tablel: Attrib ute list — Rulescanbe establishedo watchtheseattributesin real-timeon afile-by-file basis.

storagerequest.Thecurrentlist of attributesthatcanbewatchedareshaovn in Tablel.

The administratorsuppliedrules are of the form: {pathname attribute-list}—designating
which attributesshouldnot changeor the particularfile. Theserulesarethenaddedo the storage
device’sinternalrule table.As a performanceptimization the aggrgatesetof rulesthatapplyto
a particularfile arestoredin thatfile’s inode. This allows efficient verificationof the rulessince
theinodeis readprior to ary file accessthusreducingtherule verificationto a simpleflag com-
parison.In additionto watchingthefile, all parentdirectorieg(up to theroot) mustbe watchedfor
namespaceoperationghatcouldaffect thewatchedfile (e.g.,RENAME of a parentdirectory).

Whena violation is detectedthe globalrule tableis consultedandthe full pathnameof the
file aswell asthe offendingoperatioraresentto theadministratorIn this situation,theglobalrule
tablemustbe consultedo reconstructhe pathnamesincemultiple rules(dueto hardor soft links)

may applyto the samefile.

3.3 Detectionresponse

Thereare several actionsthat a self-securingstoragedevice could performupondetectingsuspi-
ciousactvity. Possibleresponsesangefrom issuinganadministratve alertto full-scaleinterven-
tion. Whenchoosingthe properresponsethe administratormustweigh the benefitsof an actve
responsegainstheincorvenienceandpotentialdamagecausedy falsealarms.

In additionto alertingthe administratorthe device cantake stepsto minimize the potential
damagéy attemptingo slowv down theintruder Thisis possiblebecaus¢hedevice canartificially

increasdherequestateny anddecreas¢he datathroughputo theclientor userthatis suspected
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of foul play. Thiscanprovideincreasedime for amorethoroughresponseand,while it cancause
someanngancein falsealarmsituations,it is unlikely to causedamagan mostscenarios.The
device could even dery a requestentirely whenit would violate one of the rules, althoughthis

actionmustbeweighedcarefullysincea falsealarmwould lik ely causeapplicationgo fail.

3.4 Additional benefits

Self-securingstorages characteristiceanalsohelp administratorsonfigurerulesandinvestigate
alerts. Whencreatingrules aboutstorageactuity for usein detection,the auditlog andversion
historycanbe usedto testnew rulesfor false-posities. They canalsobe usedto investigatealerts
of suspiciousehaior (i.e.,checkfor supportingevidencewithin the history).

As well, becausehehistoryis retainedall formsof detectiondescribedabove canbedelayed
until thedeviceis idle. This would allow the device to avoid performanceenaltiedor expensve
checksby acceptinga potentiallylongerdetectionateng.

Self-securingstorageorovidesa new approactho intrusiondetectiornthatis complementaryo

currentapproachesyet canbe effective asa stand-aloneystem.

4 Diagnosisof Intrusions

Onceanintrusionis detectedandstoppedthe administratorwould lik e to understandvhat hap-
pened.Thereareseveral goalsof post-intrusiondiagnosis.Thesegoalsincludedetermininghow
theintrudergainedaccesgo the systemwhenthey gainedaccessandwhatthey did oncethey got
in.

In currentsystemsthe administratoris poorly equippedio answerthesequestionsecause,
onceanintrudergainscontrol of the computersystemno informationcanbetrusted;the intruder
hasthe ability to eraseandobfuscatancriminatingevidence. As a result,administratorsisually
performonly a cursoryreview of the post-intrusionsystem,hopingthat the intruder overlooked
someobviously incriminatingevidence.

The administratorwho wishesto dig deeperinto the systemin searchof answersto these
guestiongs facedwith adauntingtask. First,shemustscourthefree spaceof thestoragesystemn

searclof diskblocksfrom deleteddataandlog filesthathave notyetbeenoverwritten;simplifying
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this taskhasbeenthe focusof severalforensictool developerd9, 14, 20]. Secondandfar more
difficult, shemustthenpiecetogetherthis incompleteinformationandform hypothesesboutthe
detailsof theintrusion;thisis, atbest,ablackart.

Self-securingstoragehasthe ability to brightenthis dismalpicture. It makesavailablealarge
amountof informationthatwaspreviously very difficult or impossibleto obtain. This information
providesseveralnew diagnosisopportunitiesby highlighting systemlog file tampering,exposing
modificationsmadeby the intruder and potentiallyallowing the captureof the intruder’s exploit

tools.

4.1 Post-morteminformation

Self-securingstoragemaintainsan audit log of all requestsand keepsthe old versionsof files.

Therefore the administratolis no longerrelegatedto working with just the remainingfragments
after anintrusion. The administratomow hasthe ability to view the sequencef storageevents
aswell asthe entirestateof storageat arny pointin time duringthe intrusion. This historymeans
thatthe pre-diagnosigorensicseffort is no longerneededecausehe storagesystemretainsthis

informationautomatically

Becauseself-securingstorageremoves the needfor the forensicseffort, performingpost-
intrusiondiagnosigs no longeranall-or-nothingproposition. Theforensicseffort thatwasprevi-
ouslyrequiredmeantthatonly in extremesituationswould anintrusionbeinvestigatedseriously
With all of thestorageanformationimmediatelyavailable,theadministratocanspendanappropri-
ateamounf effort interpretingpost-mortemnformation,with nearzeroinvestedn pre-diagnosis
forensics.

Self-securingstoragealsotakesintrusiondiagnosisout of thecritical path. Sincetheintrusion
stateis saszed within the history data,diagnosiscanbe startedafter post-intrusionrecovery. The
administratorcan return the systemto operationquickly, and then utilize the history for actual
diagnosis.This relievessomeof the pressurghatconstrainghe amountof time andeffort thatan

administratoiis ableto putinto diagnosis.
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4.2 Newdiagnosisopportunities

Following anintrusion, the administratons left with mary questions.Her goal is to determine
exactly what happenedso that she can assesghe damageand ensurethat the intrusion is not

repeatedSomeof the mary questionsheseekdo answerare:
1. How did theintrudergetin?
2. Whendid theintrusionstart?
3. Whattoolswereused?
4. Whatdatawaschanged?
5. Whatdatawasseen?
6. Whattaintedinformationwaspropagatedhroughthe system?
7. Why wasthe systemattacled?

Self-securingstorageassistghe administratolin answeringhe above questiondy providing pre-
viously unavailable insight into storageactiity. The restof this sectionprovides examplesof
informationthatis now available.

Highlighting audit log tampering: It is commonfor intrudersto tamperwith log files in
an attemptto cover their tracks. With self-securingstoragenot only is it possibleto tell thatthe
tamperingoccurred[25, 26], but the administratorcan locateand retrieve the exact entriesthat
were erasedr modified. This meansthat whenan intruderattemptsto concealtheir actionsby
doctoringlog files, they are,in fact,doingjustthe opposite.

Capturing exploit tools: It is alsocommonfor intrudersto loadandrun exploit toolslocally
afterthey initially gainentry. This canbe donefor severalreasonssuchassubsequenphaseof
a multi-stageintrusion, Trojan programsto capturepassverds, or exploit tools that canbe used
to attackothermachines.Normally written to thefile systemprior to beingexecutedthesetools
are automaticallycapturedand presered by self-securingstorage. The captureof suchexploit
tools and“root kits” makesit easierto find the intruder’s point of entryinto the systemandthe

weakness(ethey exploited[33].
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Exposing modifications: In additionto capturingexploit tools, any changego systemfiles
andexecutablesreobviousbasedn the storagedevice’s auditlog. This allows theadministrator
to seethe scopeof damageto the OS and other sensitve systemsoftware. The storagedevice
tracksand“exposes’evenlegitimatesoftwareupdategnadeby the administratomunlessan out of
bandmethodis usedto coordinatehosespecificmodificationge.g.,via thesecuredadministratve
interface). Additionally, the device appliesits own timestampgo modifications,in additionto
thosesuppliedby client systemsThis allows a clearpictureof the sequencef eventsevenwhen
theintrudermay have manipulatedhe creationmodification,or accesgimesof files [8].

Recording reads Sincethe sener’s auditlog recordsall READ and WRITE operationsthe
administratorcan estimatethe real damagehat may have beendoneby the intruder For exam-
ple, the storagelog allows oneto boundthe setof files readby a systemandthe likelihoodthat
the intruderhasreadspecificconfidentialfiles. Additionally, the log canassistthe administrator
in determiningwhetherintrudermodifiedfiles werereadby legitimateusers. This allows herto
gaugethe potentialspreadof mis-information plantedby the intruderfor sabotageurposesilt is
importantto notethatthis is only an approximationsincethe client systems cachecanobscure
somestoragerequests.lt does,however, provide a way of gaugingintrusiondamagethat previ-
ously could not be measuredat all. This even providesinformationfor inferring the intruder’s
motivation for attackingthe system. With a more completeview of the intruder’s actions,the
administratothasa greaterchanceof determiningwhetherthe intentwasespionagesabotageor
merely“entertainment.

Self-securingstorageprovidesa new window into the scopeof damageandtheintentionsof a
digital intruder Thisinformationcanbeinvaluablein determiningthe impactof the compromise,
preventing future intrusions,and catchingthoseresponsible.Clearly, muchfuture researchand
experiencewill be neededo createpost-mortemdiagnosistools that exploit the nenv wealth of

informationprovidedby self-securingstorage.

5 Recovery from Intrusions

Intrusiondetectionandpost-intrusiordiagnosisarepartsof agoodcomputersecuritystratgy. An

efficient and effective plan for recovery, however, is a necessity Maintaining well-administered
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andup-to-datesystemswill minimizetheoccurrencef intrusions but they will inevitably happen,
soit is critical thatrecovery be efficientandthorough.

In corventionalsystemsjntrusionrecovery is difficult andtime-consumingin termsof both
systemdown-time andadministratortime. It requiresa significantamountof the administrators
time becauseahereare mary, errorprone stepsinvolved in returninga compromisedccomputer

systemto a safestate.Self-securingstoragewith its historyinformation,facilitatesthis task.

5.1 Restoration of pre-intrusion state

All storagein a corventionalsystemis suspectfter anintrusionhasoccurred. As a result, full
recovery necessitatesviping all informationvia a reformatof the storagedevice, re-installing
the operatingsystemfrom its distribution media,andrestoringusers’datafrom the mostrecent
pre-intrusionbackup. Shortcuttingthesestepscanresultin taintedinformationremainingin the
systemyetfollowing thesestepsresultsin significantdown-time andincorvenienceo users.
Self-securingstorageaddresseshis unfortunatesituationin several ways. First, all pre-
intrusionstateis presered on the device. Therefore,oncediagnosisyields an approximatdime
for theintrusion,therestoredescribedabove canbea singlestepfor theadministratorissuingthe
copyforward commando bring forward the systemstatefrom beforethe intrusion). Secondthe
granularityof the restorationis not limited to the mostrecentbackup;ary or all files canbere-
storedfrom arbitrarily closeto thetime of theintrusion. Third, restorationn self-securingstorage
is non-destructie. Theadministratocanquickly returnthesystento a safestatesothatusersamay
utilize the computersystemwhile preservingall storagehistory (includingary intrusionevidence

therein)in thestoragesener. Theadministratomaythenperformdetaileddiagnosisatherleisure.

5.2 Performanceof restoration

To investigatethe time requiredto returna systemto operation,we gatheredracesof all NFS
actiity to ourlocalNFSsenerandreplayedhemagainsour prototypesystem Wethenmeasured
the amountof time requiredto copy forward the entire stateof the device from variouspointsin
the past.

The prototypeself-securing\NFS sener usedfor this experimentwasa dual 600 MHz Pen-
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| Days | Files | MB | Timew/rsync(s) | Timew/auditlog(s) |
1 7 7.3 3208 26.4
2 349 34.4 3311 139.0
3 359 66.8 3324 167.5
4 361 76.2 3350 198.4
5 362 66.8 3329 208.3
6 362 66.8 3325 212.6

Table2: Recovery statistics— This tablesummarizesheresultsof completelyrestoringthe stateof the NFS sener
asa function of the detectionlateng. Thetimesshavn arebasedon usingeitherr sync or the datain the device’s
auditlog to createthelist of files thatmustbe copiedforward. Thelargedifferences dueto r sync executinga STAT
on everyfile atboththe currenttime andtherecovery time—atotal of approximatelys45,000calls.

tium Il systemrunningRedHatLinux 6.1 usingkernelversion2.2.20.Thetraceswerecollected
from anNFSversion2 sener, runningLinux 2.2. ThetracedNFSsener supportgheresearctlef-
forts of approximately80 graduatestudentsfacultyandstaf. Thesenercontainedcapproximately
66.5 GB of capacityof which 33.5 GB was consumeddy 272, 521 files. The workload on the
senerwasmainly generatedby codedevelopmentandword processingctuvities of the supported
users.

To evaluateboththe numberof files andbytesof data(dueto legitimateuse)thatthe admin-
istratormay have to recover, aninitial snapshobf thefile systemwascopiedonto the prototype
system followedby thefirst day’s worth of actiity. The stateof the storagesystenmwasreturned
to the original conditionby copying forward the snapshostate. During this processthe time to
recover the initial state,the numberof affectedfiles, andthe total size of the affectedfiles were
recorded.This experimentwasconductedor eachof onethroughsix daysof actwvity, eachtime
beginningwith the original snapshot.

Two differentmethodsveretestedfor selectingthefiles to recover. The first methodutilized
ther sync [4] programto synchronizehe currentsystenstatewith the pre-intrusioncopy of data.
Ther sync applicatiorwasconfiguredo selecfilesbasedntheirattributes,causingt to retrieve
the attributesof all files on the device at boththe currenttime andat the recovery time, leadingto
alarge overheador just building thelist of filesto recover. Creatingthisinitial list required3184
seconds—anty only checkingthe attributes,this methodis vulnerableto manipulationof thefile
modificationtimes. The secondmethodusedto createthis list of files to recover is by usingthe

device’s auditlog. This secondmethodis muchfaster requiringonly 71 secondgo determinethe
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Figure2: Files modified — Shaws the total numberof userfiles thatmustbe restoredo returnto the pre-intrusion

stateasafunction of the detectionatengy.

list of files for the completesix daysworth of changes.In additionto beingfaster this second
methodis not susceptibldo timestampmanipulation.Theresultsaresummarizedn Table2.

Basedon Figure 2, it is obvious that very few files needto be restoredrelative to the total
numberof files thatweremodified. Thisis because large numberof files aretransient Filesthat
werecompletelycreatedhendeletedbetweertherecovery time andthe currenttime neednot be
copiedforward.

To projectthe amountof datathatwould needto berecoveredfor longerdetectionlatencies,
we examineda snapshobf over 10000 file systemdrom desktopcomputersat Microsoft Corpo-
ration[6]. Thesnapshotontainsalisting of all files, their size,andmodificationtimesfor eachof
the systems.Basedon the last-modifiedtime of the files, we canprojectthe numberof files that

would needto berestoredasafunctionof thedetectionateng. Theresultsareshavnin Figure3.
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Figure 3: Fraction of files modified — Shaws the fraction of files that were modifiedin the examinedMicrosoft

systemsasa functionof the numberof days.Theaveragenumberof files perfile systemwasapproximatelyl 3, 000.

Theresultsareshavn asa fractionof thetotal numberof files stored.

Basedon the playbackdata,we can estimatethe amountof time that would be requiredto
restorea “typical” oneof thesedesktopsystems.Looking at only the time requiredto restorethe
files, the copy forward executedat a rate of 2.55files per secondon our prototypesystem. This
meansthat one week worth of changescould be copiedforward in: %535000 = 683 seconds.

Likewise, the systemcould berestoredo its stateasof onemonthagoin: 22323000 — 1219 sec-
onds. We believe thatthe “in-time” performanceof out prototypecanbe improved, significantly

increasingherateof recovery beyond2.55files persecond.

5.3 Presewation of user data

In additionto removing the intruder and restoringthe systemto a safe state,an administrator
is often underconsiderablepressureo retain a recentversionof users’work—a versionfrom

afterthe systemwascompromisedIn corventionalsystemsthe mechanic®f doingthisinvolves
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finding separatenediaon which to temporarilystorethe users’data,thenperformingthe normal
reformat,reinstall,restore andfinally restoringthis recentversionof the users’data. Therealso
existsthe challengeof determiningwhetherthis datais safeto keepatall sincetheintrudercould
have modifiedit.

Self-securingstorageobviatesthe mechanicaktepsby automaticallyretainingthe users’re-
centwork. While this providesthe opportunityfor the administratorto easilyrestoreit, thereis
still somequestionaboutthe authenticityof this data. The questionof intrudertampering,while
still very difficult to answeyis onestepcloserdueto the availability of the storagesystems ver-
sion history. The versionhistory canshav the sequencef modificationsto the dataaswell as,
in the caseof a network-attachedtoragedevice, the client anduserwho madethe modifications.
This provides additionalinformationfor tamperinginvestigationsthoughthey will remainvery
difficult.

Additionally, in currentsystemstheadministratois left with only two choicesvhenrestoring
agivenfile: usethe current,potentially-tainteddataor usethe mostrecentbackup,losing all in-
termediatavork. Self-securingstoragegorovidesthe opportunityto restoreary versionin between
thosetwo extremesaswell. This canbebeneficialin situationswherethe datawas(or might have
been)modifiedby theintruder;theadministratoiis ableto restoreheversionfrom justprior to the
tamperingandneednotloseall changesCarefulvalidationof userdatais still tootime-consuming

to useon all data,but it canbe performedon anas-neededasisfor importantdatafiles.

5.4 Application-specificrecovery

With only theaboveinformation,it is possibleto accomplishrecovery of datain areasonabléash-
ion. However, without examiningthe contentsof files, it is difficult to determinewhatapplication
level changewvasmade.

Givenatool thatunderstandthe contentf afile, it would bepossibleto, in somesituations,
untanglechangesmadeby a legitimate userand an intruder within a singlefile. For instance,
the intruder may have planteda macrovirus within a word processingdocument. A tool that
understandshe format of suchfiles could remove the virus while leaving the other dataintact.

Modern virus detectorsare able to handlethis specificcase,but in general,this soundslike a
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dauntingtask—creatin@pplication-specificecoverytoolsfor datafiles. However, asmallnumber
of applicationscreatemostfiles in a givensystem.Thereforeafew suchutilities will cover most
of thedata.

An additionalusefor theseapplication-specificecovery toolsis for bootstrappingecovery
anddiagnosif complex programssuchasdatabase<onsidera databasapplicationthatmain-
tainsalog of operationscapableof undoingor redoingits operations. A recovery tool could po-
tentially validatethe contentsf the databasagainsthe database’log, ensuringhatarny changes
madeto the databaseontentsveremadethroughthe properinterface. Thedatabase'built-in val-
idationandauditingcouldthenbe usedto dig deepelinto the changesknowing thatthe database
log informationis consistenwith the actualdatabasecontents. Ammann, et al. have already
approachedhe problemof remaving undesirabléout committedtransactiongrom databasefl],
assuminghatarny malicioustransactionsiave beeninsertedvia the normaldatabasénterfaceqas

opposedo accessingaw storage).

6 Discussion

This sectiondiscussesomeremainingissuesinvolved in using self-securingstorageto detect,
diagnoseandrecover from intrusions.

Audit log accuracy. Theinformationstoredin the device’s auditlog is derived from thein-
formationcontainedn the storageprotocol. As aresult,informationabouttherequestes identity
is only asgoodasthe guaranteegprovided by the storageprotocolitself. For instancejf protocol
requestxanbe forged,theseforgedrequestwill be addedto the auditlog asseenby the storage
sener. Whenpresentthis limitation is inherentin thechoiceof storageconfiguration.Thisis only
relevantto network-attachedself-securingstoragedevices. Locally-attachedlisksreceve all of
theircommandd$rom asingleOS,which doesnot provide ary userspecificinformationin storage
requests.

Tracking tainted data: Theauditlog maintainedon the device shavs not only thefiles that
were written after an intrusion, but also which clients or userssubsequentlyead (potentially)
intrudertainteddata.While it is possibleto considersubsequentrrites (of differentfiles) by those

clientsandusersassuspectaswell, the possiblesetof tainteddatais likely to grow very large.
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Also, the probability that a file is affectedvia a specific WRITE decreasesvith eachiteration.
Additionally, it is not possibleto completelytracktainteddata,sinceit may have beentransmitted
to otherfiles in the systemvia externalmethodge.g.,printoutsor word-of-mouthamongusers).

Additional OSinformation: The additionof a smallnumberof additionalfieldsinsideeach
storageequestvould greatlyincreaseheutility of theauditlog. Forinstanceif eachrequestvere
taggedwith theprocesdD andnameof the procesghatis makingtherequestijt is mucheasieito
determing(during both detectionanddiagnosis)\whethera givenaccessvasbenign. Additional,
usefulinformationwould be an indication of the purposeof a READ operation. In currentfile
systemsa READ operationfor dataretrieval looks nearlyidenticalto a readfor the purposeof
executing.

Client caches File systemcachesn client systemsobscuretraffic thatwould otherwisebe
seenby thestoragesener. Thecachesffectively actasafilter causingheauditlog to only havea
partialview of the OS’s storageactivity. For example,readcachesanobscurehe propagatiorof
intrudertainteddatasinceit is likely to bein theclient’s cache.This dangelis smallerin somefile
systemssuchasNFSversion2, thatperformaggressie “freshness’checksprior to returningthe
cachedcontentsof afile. Thisfreshnesgheckis visible to the storagesystemandthe window of
vulnerability during which the freshnesgheckis not necessarys small (a few seconds) Client-
sidewrite cachesrealsoaproblemsinceshort-livedfilesthatarewritten, read,anddeletedquickly
may never be transmittedo the storagedevice. In this case the existenceof thefile maynever be
known to the storagesystem.It would not have ary associate@ntriesin theauditlog norversions
in the history pool. This presentsa larger problemfor diagnosissinceit meansthat temporary

files maybelost.

7 Hiding From Self-SecuringStorage: The Game Continues

Self-securingstoragehasthe potentialto exposeintrudersandtheir actionsby explicitly watching
at a new point in the system. We expectit to work very well initially, andlessso asintruders
learnaboutself-securingtorageandits capabilities.Thatis, we expectcleverintruders(andthose
that borrow their tools) to modify their behaior in an attemptto mitigate the benefitsthat self-

securingstorageprovides. This sectionexploressomepotentialactionsthatintrudersmight take
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in anattemptto avoid detectioror thwart attemptsat diagnosisandrecovery. We notethatthosein
thewhite hatsgaingroundwhenintrudersmustchangdacticsandavoid corvenientactions.Thus,
we alsodiscusssomeramificationsof thesenew behaiors ontheintrudersthemseles.

Minimize log file evidence In a systemprotectedoy self-securingstoragejt is not possible
for anintruderto tampemwith log files oncethey arewritten. Usingtheself-securingstoragedevice
for systemlog files functionsmuchlike a remotelogging sener. If intruderswish to hide their
presencaandactions,this limits the typesof attacksandexploits thatthey canusein their initial
compromiseof the system.Oncethey gain control of the system,however, they canmanipulate
theloggingfacilitiesto preventinformationfrom enteringthelog. This canbe madea non-triial
activity. If they wish to avoid detectionthey mustfilter log entriesthatthey generatgasa result
of theirmaliciousactiities), but they mustallow normalentriesto continueto belogged.Filtering
too muchor too little will be detectable Additionally, it may be possibleto correlatesystemlog
entriesandstoragdog entries furthercomplicatingthefiltering process.

UseRAM-based file systems Oneway of preventingcaptureof exploit toolsandutilities is
to storethemin a RAM disk insteadof the usualfile systemthatis kepton self-securingstorage.
Theproblemwith this approachs thatthe datathatis writtenis not persistentanda simplereboot
of themachinewill wipe it out. While thiswill eraseheevidence,it will alsoeraseary backdoor
or Trojanexecutableshatwereleft behind.

Manipulate memory images Sinceoverwriting of systemexecutabless easilydetectable,
oneway to createa backdoowersionof a (long running)programwould beto directly modify it’s
memoryimage.Thiswouldleave notracesonthestoragesystembutis likely to bedifficult to do.
Additionally, the modificationscould be erasedy restartingthe application[5].

Tamper slowly: If the intruderis ableto avoid having his action(s)detecteduntil afterthe
detectionwindow elapsesself-securingstoragewill be of little helpin diagnosingandrepairing
the damage.An intruderthatis willing to make small changesver a large amountof time can
increasehis chance®f successTheproblemthatthis createdor anattacleris thatit takesalarge
amountof time to tamperwith a significantamountof data.

Redirect file systemrequests Oncetheintruderis ableto compromisehe OS, he canma-
nipulatethe file systemcodein the kernelin sucha way thatrequestdor onefile areredirected

to another For example,he canusethis to redirectrequestgrom a legitimate systemexecutable
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to a Trojan versionof the sameprogram. While self-securingstoragewould not view this asa
changeto the systemexecutable(and not issuean alert), the Trojan executablewill be captured,
andthe true executableremainsintact. Again, sincethis stratgy doesnot modify arny of thetrue
executablesarebootwill solvetheproblem.

Encrypt tools: To preventcaptureof exploit tools,theintrudercanusetoolsthatarewritten
to disk in an encryptedform anddecryptedust prior to execution(in a similar mannerto some
viruses). The decryptionkey can be held in memoryof the affected system(at a well-known
location). As long asthe key is presentand correct,the tools canbe used,but by remaoving or
changingthe key, it would not be possibleto recover the true contentsof the exploit tools stored
onthecompromisedystem.While this preventscapturethekey is necessarilystoredin avolatile
location,hencearestartof the systemwill clearit, renderingthetoolsuseless.

Usea network loader: The attacler could utilize a network loadingutility thatwould read
anexecutabladirectly into memoryandexecuteit. This avoidsthefile systemall togetheybut is,
again,not persistent.

Theseexamplesshow thatit is possibleto dodgesomeaspect®f self-securingstorage How-
ever, they alsoshov thatdoingsorequiresalevel of expertiseandeffort not necessaryor corven-

tional systems.

8 Conclusion

This paperdescribehow storagesenerscanbeusedaseffective toolsfor intrusionsurvival. Self-
securingstoragecontributesto the systemadministrators ability to effectively dealwith digital
intrusionsby providing a new locationfor intrusiondetection,preservingevidenceto help with

diagnosisandsafeguardingdatato allow rapid, effective post-intrusiorrecovery.
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