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Abstract

Self-securingstorage turns storage devicesinto activeparts of an intrusion survival strategy. From behinda thin
storage interface(e.g., SCSIor CIFS),a self-securingstorage servercanwatch storage requests,keepa record of all
storage activity, andpreventcompromisedclientsfromdestroyingstoreddata. Thispaperdescribesthreewaysself-
securingstorage enhancesan administrator’s ability to detect,diagnose, and recover from client systemintrusions.
First, storage-basedintrusiondetectionoffersa new observationpoint for noticingsuspectactivity. Second,post-hoc
intrusion diagnosisstartswith a plethora of normally-unavailableinformation. Finally, post-intrusionrecovery is
reducedto restartingthesystemwith a pre-intrusionstorage image retainedby theserver. Combined,thesefeatures
canimprovean organization’sability to survivesuccessfuldigital intrusions.
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1 Intr oduction

Digital intrusionsarea fact of moderncomputing. While new securitytechnologiesmay make

themmoredifficult andlessfrequent,intrusionswill occuraslong assoftwareis buggyandusers

are fallible. Oncean intruder infiltrates the system,he cangenerallygain control of all system

resources,includingits storageaccessrights(completerights,in thecaseof anOSaccessinglocal

storage).Crafty intruderscanusethis control to hidetheir presence,weakensystemsecurity, and

manipulatesensitive data. Becausestorageactsasa slave to authorizedprinciples,evidenceof

suchactionscangenerallybe hidden. In fact, so little of the systemstateis trustworthy afteran

intrusionthata common“recovery” approachis to reformatlocal storage,re-installtheOSfrom

scratch,andrestoreusers’datafrom apre-intrusionbackup.

Self-securingstorageis an exciting new technologyfor enhancingintrusionsurvival by en-

ablingthestoragedevice to safeguarddataevenwhenthehostOSis compromised.It capitalizes

on the fact that storageservers (whetherfile servers,disk arraycontrollers,or even IDE disks)

run separatesoftwareon separatehardware.This opensthedoorto server-embeddedsecuritythat

cannotbedisabledby any software(eventheOS)runningonclientsystems(Figure1). Of course,

suchservershave a narrow view of systemactivity, so they cannotdistinguishlegitimateusers

from clever impostors.But, from behindthe thin storageinterface,a self-securingstorageserver

canactively look for suspiciousbehavior, retainan audit log of all storagerequests,andprevent

both destructionandundetectabletamperingof storeddata. The latter goalsareachievedby re-

tainingall versionsof all data;insteadof over-writing old datawhena WRITE commandis issued,

thestorageserver “simply” createsa new versionandkeepsboth.Togetherwith theaudit log, the

server-retainedversionsrepresenta completehistoryof systemactivity from thestoragesystem’s

point of view.

This paperdescribeshow self-securingstorageimprovesintrusionsurvival by safeguarding

storeddataandproviding new informationregardingstorageactivitiesbefore,during,andafterthe

intrusion. Specifically, it focuseson threewaysthatself-securingstoragecontributes:helpingto

morequickly detectintrusions,providing easilyaccessibleinformationfor diagnosingintrusions,

andsimplifying andspeedingup post-intrusionrecovery.

First, a self-securingstorageserver canassistwith intrusiondetectionby watchingfor suspi-
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Figure1: Self-securingstorage.Thestorageinterfaceprovidesa thin perimeterbehindwhich a storageserver can

observe requestsandsafeguarddata. Note that this samepictureworks for both block protocols,suchasSCSIor

IDE/ATA, anddistributedfile systemprotocols,suchasNFS or CIFS.Thus,self-securingstoragecouldberealized

within many storageservers,includingfile servers,disk arraycontrollers,andevendiskdrives.

ciousstorageactivity. By design,a storageserver seesall requestsandstoreddata,soit canissue

alertsaboutsuspiciousstorageactivity asit happens.Suchstorage-basedintrusiondetectioncan

quickly andeasilynoticeseveralcommonintruderactions,suchasmanipulatingsystemutilities

(e.g., to addbackdoors)or tamperingwith audit log contents(e.g., to concealevidence). Such

activitiesareexposedto thestoragesystemevenwhentheclient system’sOSis compromised.

Second,after an intrusion hasbeendetectedand stopped,self-securingstorageprovides a

wealth of information to securityadministratorswho wish to analyzean intruder’s actions. In

currentsystems,little informationis availablefor estimatingdamage(e.g.,what informationthe

intruder might have seenand what datawas modified) anddetermininghow he gainedaccess.

Becauseintruderscandirectly manipulatedataandmetadatain conventionalsystems,they can

removeor obfuscatetracesof suchactivity. With self-securingstorage,intruderslosethisability—

in fact,attemptsto do thesethingsbecomeobviousredflagsfor intrusiondetectionanddiagnosis

efforts. Although technicalchallengesremainin performingsuchanalyses,they will startwith
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muchmoreinformationthanforensictechniquescanusuallyextractfrom currentsystems[32].

Third, self-securingstoragecan speedup and simplify the intrusion recovery process. In

today’ssystems,full recoveryusuallyinvolvesreformatting,reinstallingtheOSfrom scratch,and

loadinguserdatafrom back-uptapes.Thesestepsaretakento removebackdoorsor Trojanhorses

that may have beenleft behindby the intruder. Given server-maintainedversions,on the other

hand,anadministratorcansimply copy-forward thepre-intrusionstate(bothsystembinariesand

userdata)in a singlestep.Further, all work doneby theusersincethesecuritybreachremainsin

thehistorypool, allowing incremental(albeitpotentiallydangerous)recoveryof importantdata.

In a previouspaper[29], we introducedself-securingstorageandevaluatedits feasibility. We

showedthat,undera varietyof workloads,a small fractionof thecapacityof moderndisk drives

is sufficient to hold severalweeksof completestoragehistory. With a prototypeimplementation,

we also demonstratedthat the performanceoverheadof keepingthe completehistory is small.

Thispaperbuildsonthepreviouswork by exploringtheintrusionsurvival featuresof self-securing

storage.

Theremainderof thispaperis organizedasfollows. Section2 overviewsself-securingstorage

andits feasibility. Section3 describeshow it enablesstorage-basedintrusiondetection.Section4

describeshow it contributesto post-hocanalysisof intrusions.Section5 describeshow it simpli-

fies thepost-intrusionrecovery process.Section6 discussesopenchallengesin realizingthe full

potentialof self-securingstorage.Section7 approachesself-securingstoragefrom theattacker’s

viewpoint by discussinghow they canmodify their behavior in response.Finally, Section8 sum-

marizesthis paper’scontributions.

2 Self-SecuringStorage

Thegoalof self-securingstorageis to enhanceintrusionsurvivability by embeddingsecurityfunc-

tionality into storageservers. Runningin a separatesystem,this functionality remainsin place

evenwhenclient OSesor useraccountsarecompromised.That is, self-securingstorageutilizes

the storageinterfaceasa protectionboundary. From behindthis boundary, a self-securingstor-

agedevice canwatchfor suspiciousactivity, retainan audit log of storagerequests,andprevent

the destructionandundetectabletamperingof storeddata. Datasurvival is ensuredby retaining
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all previous versionsof files for a guaranteedamountof time, calledthe detectionwindow. For

intrusionsdetectedwithin this window of time, the completestoragehistory is availablefor in-

trusion diagnosisand recovery. This sectiondescribesthe architecturein more detail, presents

somesecurity-relatedadministrationissues,andsummarizesresultsfrom feasibility analysesand

experimentswith a prototypeimplementation.

2.1 Additional security perimeter

In conventionalsystems,the storagesystemactsasa slave to hostoperatingsystems,giving the

OSescompleteresponsibilityfor the protectionof storeddata. As a result,compromisedclient

systemscandestroy dataeitherdirectly or by masqueradingasa legitimateuser.

Insteadof relying on the OS for protection,the storagedevice (whethera local disk or a

remoteserver) shouldprotectthedatathat it stores,independentof any protectionthat theclient

OSprovides.Thearchitectureof acomputersystemsupportsthis ideasincethestoragesystemis a

separatepieceof hardware,runningseparatecodefrom theOS,andthetwo entitiescommunicate

via a simpleinterfaceof well-definedcommands(e.g.,SCSI,NFS,CIFS).Thisplacesthestorage

devicein anidealpositionto provideprotectionfor thesystem’sdata.Additionally, sinceit already

storesthesystem’sdataandseesall requests,it hassufficient informationto safeguardthedata.

Modernstoragesystemsalsohavesignificantresourcesthatthey candraw from to implement

this protection. They have very large capacitiesthat can be leveragedto increasesecurityby

maintainingmultiple versionsof storeddata. Thesedevicesalso have memoryandprocessing

power that canbe utilized to examineandact uponstoragerequestsindependentof the current

stateof the host CPU and OS. Theseresourcescan be usedto protect the system’s datafrom

unauthorizedchangesin a way thatwill not interferewith a valid, runningsystem.To accomplish

this, thestoragedevicemustview all storageoperationswith suspicion,yetnotattemptto second-

guesstheintentionsof theOS.

2.2 Data protection

To accomplishthegoalof enhancingintrusionsurvivability, thestoragedevicetakesbothanactive

andpassive role. Thestoragedevice canuseits processingpower andmemoryto actively watch
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thestoragerequestsandissuealerts(or take corrective action)if it noticessuspectactivity. This

active role candecreasethe time it takesto detectintrusionsbecauseit addsa new point in the

computersystemfrom which to performintrusiondetection.

The self-securingstoragedevice seesall storagerequestsandpassively maintainsan audit

log of theserequests.This audit log allows thesystemadministratorto view thetype,order, and

potentiallytheoriginatorof eachrequest.Thestoragedevicemaintainstheauditlog internallyand

exportsit to authorizedclientsin a read-onlymanner. Thisallows theadministrator(or authorized

entity) to view thestoragerequests,but not changeor modify thelog.

In additionto the audit log of storagerequests,the device keepsall versionsof all datathat

arewritten. With eachwrite or deleterequest,thecurrentversionof thefile or directoryis updated

to reflectthenew state,andtheold versionis saved in thedevice’s historypool for a guaranteed

amountof time. Theold versionsof files anddirectoriescannotbemodifiedor removedfrom the

device until they expire from thedetectionwindow, anadministrator-configuredamountof time.

Spaceon the storagedevice is logically divided into threesections:currentdata,history pool,

andfree space.Thesizeof thehistory pool grows or shrinks,asnecessary, to hold thedatathat

hasnot yet expired from the detectionwindow. The maintenanceof the history information is

handledentirely within the storagedevice, transparentto the restof the system. This historical

informationcanbeusedto view (andrecover) any versionof any file thatstill resideswithin the

history pool, allowing quick post-intrusionrecovery. Recovery from this historicaldatais done

via a copy forward operation(as opposedto rolling back the stateof the file or device). This

preventsthe destructionof intermediateversions,allowing incrementalrecovery andsafeuseof

copy forwardby normalusers.

To implementthe capabilitiesdescribedabove, a storagedevice musthave a large capacity

(commononmoderndiskdrives)andtheprocessingpowernecessaryto maintainthehistorypool

andaudit log. Thesecharacteristicsarepresent,andself-securingstoragecanbe embeddedin,

smartdisk drives [35], storagearrays,and file servers. The latter two (storagearraysand file

servers)arein wide usetodayandrequireonly theappropriatesoftwareto becomeself-securing

storagedevices. Thereis a spectrumof systemsthat could benefitfrom this self-securingtech-

nology, andany storagedevice thathastherequiredprocessingcapabilitiesandexistsasa largely

single-purposedevice (to reduceexposureto intrusion of the storagedevice) would be a good
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candidate.

Liu, et al. have proposeda methodof isolatingattackers,via versioning,at the file system

level [15]. Their methodreliesuponanintrusiondetectionsystemto identify suspicioususersin

real-time.Thefile systemforkstheversiontreesto sandboxsuspicioususersuntil theadministrator

verifiesthe legitimacy of the users’actions. If donewithin the file server, this isolationmethod

would be a form of self-securingstorage,althoughit doesendangerour goal of not interfering

with a valid, runningsystem,unlessthe intrusiondetectionmechanismyields no falsepositives.

Specifically, sincesuspicioususersmodify differentversionsof files from regularusers,it creates

adifficult reintegration[18, 31] problem,shouldtheupdatesbejudgedlegitimate.

2.3 Administration issues

While self-securingstorageis ableto protectdatain anearlytransparentway, it introducesseveral

administrative issues.Theseadditionalcomplexities mustbeproperlymanagedfor self-securing

storageto beeffective.

Secure administrati ve control: Self-securingstoragedevices must have a secure,out-of-

bandinterfacefor handlingadministrativetaskssuchasconfigurationandintrusionrecovery. This

interfacemustusestrongauthenticationto ensurethatrequestscannotbeforgedby theOSor other

processeson potentiallycompromisedclient systems.This precautionis necessarybecausethe

administrative interface(necessarily)permitscommandsthataredestructive to data.For example,

settingthelengthof thedetectionwindow is handledvia this interface.If anintruderwereableto

changethelengthof thedetectionwindow, hecoulderasedatafrom thehistorypoolby shrinking

it.

Although strongauthenticationis critical for this interface,confidentialitymay be lessso.

Sincehistorydatacanbeviewedandtheaudit log readwith this interface,someprivacy concerns

arise.However, mostorganizationsstill employ file systemsthatdonotencrypttheirnormaltraffic,

thusit is unclearwhetherthereis aneedto obscurethedataat thispoint.

Administrative alerts(for intrusiondetection)poseanotherinterestingproblem. The chan-

nel that is usedfor this device-to-administratorcommunicationmust,at a minimum, be tamper-

evident. This is necessaryto prevent the intruder from successfullypreventing the alertsfrom
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reachingtheadministrator. Theadministratormayalsowish to hide the fact thatanalertwasis-

suedat all. Shemay even wish to hide the presenceof the communicationchannelcompletely.

Theseconcernsplayasignificantrole in theimplementationof theadministrativecontrolchannel.

The administrative interfacemay be implementedin a numberof ways. For example,there

couldbea dedicatedadministrative terminalconnection.For network-attachedstorage(e.g.,file

servers),onecanusecryptographyandwell-protectedadministrative keys. For disksattachedto

hostsystems,a securecommunicationchannelbetweena smartdisk drive anda remoteadmin-

istrationconsolecanbecreatedby cryptographicallytunnelingcommandsthroughthehost’s OS.

No matterwhich interfaceis chosen,it mustbethecasethatobtaining“superuser”privilegeson a

client computersystemis not sufficient to gainadministrativeaccessto thestoragedevice.

Settingthe detectionwindow: Thestoragedevice’sdetectionwindow is theconfigurablepa-

rameterthatdeterminesthedurationof historyavailablefor detecting,diagnosing,andrecovering

from intrusions.For this reason,it is desirablethat thewindow bevery long. On theotherhand,

morehistoryrequiresmoredisk capacity. Our studiesindicatethat,with currentdisk technology,

configuringthedetectionwindow for betweenoneweekandonemonthof historyprovidesa rea-

sonablebalancefor a largevarietyof workloads.Thesizeof theresultinghistorypool is up to the

total numberof byteswritten or deletedduringthedetectionwindow. Cross-versiondifferencing

andcompressioncanreducethehistorypool size[27].

Denial of service: As with any system,anintrudercanfill upthestoragecapacityandprevent

forwardprogressby thesystem.Suchdenial-of-serviceis easyto detectonceit occurs,but with

self-securingstorage,it requirescarefuladministrativeintervention.Specifically, restoringthesys-

temaftersuchanattackrequirestruedeletionof files or versionsfrom thehistorypool in orderto

freespace.Suchdeletioninterfereswith thebasicgoalsof self-securingstorage,soadministrative

privilegesandcarearerequired.

Additionally, conventionalfile systemsusespacequotasto preventa singleuserfrom usinga

disproportionateamountof storage.Thisconceptcanbeutilized for self-securingstorageaswell,

but it would needto bemodifiedto alsocontaina ratequota.This secondquotawould boundthe

averagerateat whichausercanwrite data.Suchratequotasarenot likely to completelysolve the

problem.However, they couldallow thedevice to detecta likely attackandthrottle theoffending

useror client machine.This might provide sufficient time for anadministratorto reactbeforeall
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freespaceis consumed.

Privacy and inability to delete: Someuserswill objectto beingunableto deletefiles when-

ever they want,but allowing usersto permanentlydeletetheir files (without waiting for thedetec-

tion window to elapse)would opena pathfor intrudersto destroy data.Thechosencompromise

betweenthe needfor securityandthe users’desirefor privacy is to allow usersto mark files as

“unrecoverable.” Suchfiles would be retainedin the device like normal,but could only be re-

trieved from the history pool by the administrator, not the user. This preventsan intruder(who

couldmasqueradeasanormaluser)from recoveringthefile, but it still allowstheadministratorto

completelyrecover afteran intrusion. While someusersmayobjectto it beingretainedat all, it

is oftenpossiblefor anadministratorto recovera deletedfile in aconventionalsystemaswell [7].

Also, if thefile wasstoredon thesystemfor any reasonablelengthof time, it is likely that it was

backedup for disasterrecovery, makingit unlikely thatanormalusercouldforcedeletion[11].

2.4 Prototypesystem

To evaluatetheconceptsandfeasibility of self-securingstorage,a prototypesystemwasdesigned

andimplemented.Theprototypeactsasa self-securingNFSserver. It maintainsanaudit log and

historypoolasdescribedabove. Theprototyperunsasauser-level processontheLinux operating

system. Unmodifiedclient systemscanusethe server asa standardNFS version2 [30] server,

while theself-securingstoragefeaturesareprovidedtransparently.

Our previous work [29] evaluatedthe two main costsof self-securingstorage:spacecon-

sumptionof thehistorypoolandperformanceoverheadof comprehensiveversioning.To evaluate

thespaceconsumption,thewrite bandwidthsof severalfile systemworkloadswereexaminedto

determinethelengthof time thatthehistorycanberetainedin realenvironments.Theworkloads

studiedwerea setof AFS servers[28], a singleNFSserver usedby a dozenresearchers[24], and

local andremotefile systemactivity of a collectionof Windows NT computersusedfor scientific

processing,development,andadministrative tasks[34]. Basedon the volumeof write traffic in

theseenvironments,it is possibleto keepbetween10 and90 daysworth of history in 20% of a

50 GB diskdrive.

Theperformanceof ourprototypesystemwascomparedto severalotherNFSimplementations
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andfound to performcomparablyon macro-benchmarks.More detailedbenchmarkingshowed

that maintainingthe audit log resultsin a 1%–3%performanceoverhead,and maintainingthe

historicalversionsof datacanbedonewith lessthan10%performanceoverhead.

We view thesesmall performanceand capacitycostsas acceptable,given the benefitsde-

scribedin theremainderof this paper.

3 Storage-basedIntrusion Detection

Most intrusiondetectionsystemsconcentrateon host-basedandnetwork-baseddetectionof secu-

rity compromises[2, 16, 19, 22]. Host-baseddetection,from its vantagepoint within thesystem,

examineshost-specificinformation(suchassystemcalls[10]) for signsof intrusionor suspicious

behavior. Network-baseddetectionconcernsitself with thenetwork traffic to, andfrom, thehosts

beingwatched.Thestoragesystemis anadditionalpoint in thecomputersystemthatcanbeused

asavantagepoint for intrusiondetection.

Many intrudersmodify storeddata. For instance,they may wish to cover any tracesleft by

thesystempenetration,installTrojanprogramsto capturepasswords,installabackdoorfor future

re-entry, or tamperwith datafiles for thepurposeof sabotage.Thesemodificationswill bevisible

to thestoragesystemsincetheintruderis usingand/ormodifying thedatathatresidesthere.The

storagesystemcanwatchthis streamof requestsfor abnormalitiesandissuealerts.

Although the world view that a storageserver seesis incomplete,two featurescombineto

provide a well-positionedplatform for enhancingintrusiondetectionefforts. First, sincestorage

serversare independentof client OSes,they cancontinueto look for intrusionsafter the initial

compromise,whereasa host-basedsystemwould normally be subverted. Second,sincemost

computersystemsdependon persistentstorageto function,it will oftenbedifficult for anintruder

to avoid causingstorageactivity thatcanbecapturedandanalyzed.

This sectiondiscussesfour behaviors that could be detectedvia a storage-basedintrusion

detectionsystem.It thendiscusseshow oneof theseclasses(watchingfor dataor attributemodifi-

cation)fits into ourprototypesystem.Thesectionconcludeswith thetopicof how astoragedevice

might respondto asuspiciousevent.
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3.1 Detectioncapabilities

Thereareseveral forms of storageactivity that a self-securingstoragesystemmight monitor for

maliciousbehavior. Theserangefrom watchingmetadataoperations,suchaspermissionor times-

tampmodification,to verifying theinternalconsistency of datafiles. Of course,eachcomeswith

somecostin processingandmemoryresources.In configuringaself-securingstoragesystem,one

mustbalancedetectioneffortswith performancecostsfor theparticularoperatingenvironment.

Thissectiondescribesseveralsignalsthatstorage-basedintrusiondetectioncanmonitor: data

andattributemodifications,updatepatterns,structuralchangesto content,andcontentchangesand

additions.

3.1.1 Data/attrib ute modification

As thesimplestexample,aself-securingstorageservercanwatchfor suspect,yetauthorized,mod-

ificationsto dataor attributes. Suchmodificationscanbe detectedon-the-fly, beforethe storage

deviceprocesseseachrequest.For suspectoperations,thedevicecanissueanalertimmediately. It

couldevendelaytheupdateuntil thealertis processed.Suchmonitoringcaneasilydetectchanges

to systemexecutables,modificationof static accesspermissionsor ownership,and backwards

changesto timestampsof sensitivefiles.

In conventionalsystems,similar functionalitycanbeimplementedvia achecksummingutility

(e.g.,Tripwire [12]) that periodicallycomparesthe currentstoragestateagainsta pre-generated

referencedatabasestoredelsewhere. Self-securingstoragegoesbeyond this currentapproachin

four ways:(1) it allowsreal-timedetection,(2) it avoidsthecomplexity of constructing,maintain-

ing, andprotectinga referencedatabase,(3) for local storage,it avoidsrelying on theclient OSto

dothechecks,whichasuccessfulintrudercoulddisableor subvert,and(4) it cannoticeshort-term

changes,suchastimestamprollback,which would not beseenif they occurredbetweentwo peri-

odicchecks.Althoughdetectionof file modificationstill requirescreationof arulesetto designate

allowed/prohibitedmodifications,theabove four benefitsaresignificant.
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3.1.2 Updatepatterns

Someimportantfiles are manipulatedby a single applicationor systemcomponent,in a well-

definedway. For instance,systemlog files areusuallytreatedasappend-onlyduringnormalop-

eration,and they may be periodically “rotated.” This rotationconsistsof renamingthe current

log file to an alternatename(e.g.,logfile to logfile.0) andcreatinga new “current” log

file. Any deviation in the updatepatternof eitherthe currentlog file or the previous log files is

suspicious.Similar behavior is sometimescharacteristicof systempassword files (theeditingof

/etc/passwd pairedwith editingof /etc/shadow) andevenwordprocessingfiles (theiruse

of backupandtemporaryfiles).

While the log file behavior above canbe watchedto thwart an intruder trying to cover his

tracks,evenlesstamper-revealingscenariossuchasthewordprocessorexamplearestill beneficial.

Any measurethat serves to restrict the non-exposingactionsof a systemintruder increasesthe

likelihoodof the intruder makinga mistake andexposingtheir presence.The examplesabove

accomplishthisby forcingtheintruderto usethesametemporaryfilesandbackupfilesin amanner

that is consistentwith the behavior of the actualapplication. This “raisesthe bar” for intruders

wishingto remainundetected.

In general,many applicationsaccessstoragein a well-definedmanner. Thesepatternsof

accessat thestoragedevice will bea reflectionof theapplication’s requests.This presentsanop-

portunityfor moregeneralanomalydetectionbasedonhow agivenfile is normallyaccessed.This

couldbedonein a mannersimilar to watchingsystemcalls[10] or having rulesregardingtheex-

pectedbehavior of applications[13]. Deviation from thenormalpatterncouldindicateanintruder

or malicioususerattemptingto subvert the normalmethodof accessinga given file. Anomaly

detectionwithin storageaccesspatternsis aninterestingtopic for subsequentresearch.

3.1.3 Content integrity

Someimportantfiles have a well-definedstructure.For instance,a UNIX systempassword file,

suchas/etc/passwd, consistsof asetof records.Eachrecordis delimitedby a line-break,and

therecordseachconsistof exactlysevenfields,colonseparated.Sinceastoragesystemhasaccess

to all datathatis written,it canverify thatthedatacontainedwithin write requestsis consistentwith

11



therulesgoverningtheinternalstructureof thefile. Of course,to performthis typeof verification,

thedevicemustunderstandtheformatof eachfile it needsto verify. Thus,it couldonly beusedfor

asmallsetof files—thosefiles thatarecritical to thesystem’soperation,but areallowedto change

duringnormaloperation.

For “simple” file structures,suchas/etc/passwd, performingthis verificationwith each

write is alow-overheadoperation.Datafile formats,however, canbearbitrarilycomplex. Complex

structuresmaynecessitateaccessingadjacentfile blocks(otherthanthosecurrentlybeingwritten)

to havesufficientcontext to verify thefile’sstructure,causingasignificantperformanceimpactif it

is performedduringeverywrite. Thiscreatesaperformancevs.securitytradeoff madeby deciding

which files to verify andhow often to verify them. In practice,therearelikely to be few critical

files for whichcontentintegrity verificationis utilized.

3.1.4 Suspiciouscontent

As the contentrepository, the storagedevice canwatchfor the appearanceof suspiciousstorage

content. The most obvious suspiciouscontentto look for is the appearanceof a known virus,

detectablevia its signature.Severalhigh-endstorageservers(e.g.,from EMC [17] andNetwork

Appliance[21]) now includesupportfor internalvirusscanning.By executingthescanswithin the

storageserver, virusescannotdisablethescannersevenafterinfectingclients.

Two otherexamplesof suspiciouscontentarelargenumbersof “hidden” files or emptyfiles.

Hiddenfiles have namesthat arenot displayedby normaldirectory listing interfaces,andtheir

usemay indicatethatan intruderis usingthesystemasa storagerepository. A large numberof

emptyfiles or directoriesmay indicateanattemptto exploit a raceconditionby inducinga time-

consumingdirectorylisting, search,or removal [3, 23].

3.2 Example: modification detection

As aconcreteexample,ourprototypeself-securingNFSserverhadbeenextendedto supportrule-

baseddetectionof suspectmodifications.This work focuseson metadatachangesanddetecting

datamodification,enforcinga rule-setvery similar to Tripwire [12]. Theadministratoraddsrules

via thesecureadministrative interface,andtheserulesareverifiedduring theprocessingof each
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Metadata
inodemodificationtime datamodificationtime
accesstime file permissions
link count devicenumber
file owner inodenumber
file type file group
file size

Data
any modification appendonly

Table1: Attrib ute list – Rulescanbeestablishedto watchtheseattributesin real-timeon a file-by-file basis.

storagerequest.Thecurrentlist of attributesthatcanbewatchedareshown in Table1.

The administrator-suppliedrules are of the form:
�
pathname, attribute-list� —designating

whichattributesshouldnotchangefor theparticularfile. Theserulesarethenaddedto thestorage

device’s internalrule table.As aperformanceoptimization,theaggregatesetof rulesthatapplyto

a particularfile arestoredin that file’s inode. This allows efficient verificationof the rulessince

the inodeis readprior to any file access,thusreducingtherule verificationto a simpleflag com-

parison.In additionto watchingthefile, all parentdirectories(up to theroot) mustbewatchedfor

namespaceoperationsthatcouldaffect thewatchedfile (e.g.,RENAME of aparentdirectory).

Whena violation is detected,the global rule tableis consultedandthe full pathnameof the

file aswell astheoffendingoperationaresentto theadministrator. In thissituation,theglobalrule

tablemustbeconsultedto reconstructthepathnamesincemultiple rules(dueto hardor soft links)

mayapplyto thesamefile.

3.3 Detectionresponse

Thereareseveralactionsthata self-securingstoragedevice couldperformupondetectingsuspi-

ciousactivity. Possibleresponsesrangefrom issuinganadministrativealertto full-scaleinterven-

tion. Whenchoosingtheproperresponse,theadministratormustweigh thebenefitsof anactive

responseagainsttheinconvenienceandpotentialdamagecausedby falsealarms.

In additionto alertingthe administrator, the device cantake stepsto minimize the potential

damageby attemptingto slow down theintruder. Thisis possiblebecausethedevicecanartificially

increasetherequestlatency anddecreasethedatathroughputto theclientor userthatis suspected
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of foul play. Thiscanprovideincreasedtimefor amorethoroughresponse,and,while it cancause

someannoyancein falsealarmsituations,it is unlikely to causedamagein mostscenarios.The

device could even deny a requestentirely when it would violate oneof the rules,althoughthis

actionmustbeweighedcarefullysincea falsealarmwould likely causeapplicationsto fail.

3.4 Additional benefits

Self-securingstorage’s characteristicscanalsohelpadministratorsconfigurerulesandinvestigate

alerts. Whencreatingrulesaboutstorageactivity for usein detection,the audit log andversion

historycanbeusedto testnew rulesfor false-positives.They canalsobeusedto investigatealerts

of suspiciousbehavior (i.e.,checkfor supportingevidencewithin thehistory).

As well, becausethehistoryis retained,all formsof detectiondescribedabovecanbedelayed

until thedevice is idle. This would allow thedevice to avoid performancepenaltiesfor expensive

checksby acceptingapotentiallylongerdetectionlatency.

Self-securingstorageprovidesanew approachto intrusiondetectionthatis complementaryto

currentapproaches,yet canbeeffectiveasastand-alonesystem.

4 Diagnosisof Intrusions

Oncean intrusionis detectedandstopped,theadministratorwould like to understandwhathap-

pened.Thereareseveralgoalsof post-intrusiondiagnosis.Thesegoalsincludedetermininghow

theintrudergainedaccessto thesystem,whenthey gainedaccess,andwhatthey did oncethey got

in.

In currentsystems,the administratoris poorly equippedto answerthesequestionsbecause,

onceanintrudergainscontrolof thecomputersystem,no informationcanbetrusted;theintruder

hastheability to eraseandobfuscateincriminatingevidence.As a result,administratorsusually

performonly a cursoryreview of the post-intrusionsystem,hopingthat the intruderoverlooked

someobviously incriminatingevidence.

The administratorwho wishesto dig deeperinto the systemin searchof answersto these

questionsis facedwith adauntingtask.First,shemustscourthefreespaceof thestoragesystemin

searchof diskblocksfrom deleteddataandlog filesthathavenotyetbeenoverwritten;simplifying
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this taskhasbeenthe focusof several forensictool developers[9, 14, 20]. Second,andfar more

difficult, shemustthenpiecetogetherthis incompleteinformationandform hypothesesaboutthe

detailsof theintrusion;this is, atbest,ablackart.

Self-securingstoragehastheability to brightenthis dismalpicture.It makesavailablea large

amountof informationthatwaspreviouslyverydifficult or impossibleto obtain.This information

providesseveralnew diagnosisopportunitiesby highlightingsystemlog file tampering,exposing

modificationsmadeby the intruder, andpotentiallyallowing thecaptureof the intruder’s exploit

tools.

4.1 Post-morteminformation

Self-securingstoragemaintainsan audit log of all requestsandkeepsthe old versionsof files.

Therefore,theadministratoris no longerrelegatedto working with just the remainingfragments

after an intrusion. The administratornow hasthe ability to view the sequenceof storageevents

aswell astheentirestateof storageat any point in time duringthe intrusion. This historymeans

that thepre-diagnosisforensicseffort is no longerneededbecausethestoragesystemretainsthis

informationautomatically.

Becauseself-securingstorageremoves the needfor the forensicseffort, performingpost-

intrusiondiagnosisis no longeranall-or-nothingproposition.Theforensicseffort thatwasprevi-

ously requiredmeantthatonly in extremesituationswould anintrusionbeinvestigatedseriously.

With all of thestorageinformationimmediatelyavailable,theadministratorcanspendanappropri-

ateamountof effort interpretingpost-morteminformation,with near-zeroinvestedin pre-diagnosis

forensics.

Self-securingstoragealsotakesintrusiondiagnosisoutof thecritical path.Sincetheintrusion

stateis saved within the history data,diagnosiscanbe startedafterpost-intrusionrecovery. The

administratorcan return the systemto operationquickly, and then utilize the history for actual

diagnosis.This relievessomeof thepressurethatconstrainstheamountof time andeffort thatan

administratoris ableto put into diagnosis.
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4.2 New diagnosisopportunities

Following an intrusion, the administratoris left with many questions.Her goal is to determine

exactly what happenedso that shecan assessthe damageand ensurethat the intrusion is not

repeated.Someof themany questionssheseeksto answerare:

1. How did theintrudergetin?

2. Whendid theintrusionstart?

3. Whattoolswereused?

4. Whatdatawaschanged?

5. Whatdatawasseen?

6. Whattaintedinformationwaspropagatedthroughthesystem?

7. Why wasthesystemattacked?

Self-securingstorageassiststheadministratorin answeringtheabovequestionsby providing pre-

viously unavailable insight into storageactivity. The rest of this sectionprovides examplesof

informationthatis now available.

Highlighting audit log tampering: It is commonfor intrudersto tamperwith log files in

anattemptto cover their tracks.With self-securingstorage,not only is it possibleto tell that the

tamperingoccurred[25, 26], but the administratorcan locateandretrieve the exact entriesthat

wereerasedor modified. This meansthat whenan intruderattemptsto concealtheir actionsby

doctoringlog files, they are,in fact,doingjust theopposite.

Capturing exploit tools: It is alsocommonfor intrudersto loadandrun exploit toolslocally

after they initially gainentry. This canbedonefor severalreasons,suchassubsequentphasesof

a multi-stageintrusion,Trojan programsto capturepasswords,or exploit tools that canbe used

to attackothermachines.Normally written to thefile systemprior to beingexecuted,thesetools

areautomaticallycapturedandpreserved by self-securingstorage. The captureof suchexploit

tools and“root kits” makesit easierto find the intruder’s point of entry into the systemandthe

weakness(es)they exploited[33].
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Exposing modifications: In additionto capturingexploit tools, any changesto systemfiles

andexecutablesareobviousbasedon thestoragedevice’saudit log. Thisallows theadministrator

to seethe scopeof damageto the OS andothersensitive systemsoftware. The storagedevice

tracksand“exposes”evenlegitimatesoftwareupdatesmadeby theadministratorunlessanout of

bandmethodis usedto coordinatethosespecificmodifications(e.g.,via thesecuredadministrative

interface). Additionally, the device appliesits own timestampsto modifications,in addition to

thosesuppliedby client systems.This allows a clearpictureof thesequenceof eventsevenwhen

theintrudermayhavemanipulatedthecreation,modification,or accesstimesof files [8].

Recording reads: Sincethe server’s audit log recordsall READ andWRITE operations,the

administratorcanestimatethe real damagethat may have beendoneby the intruder. For exam-

ple, the storagelog allows oneto boundthe setof files readby a systemandthe likelihoodthat

the intruderhasreadspecificconfidentialfiles. Additionally, the log canassisttheadministrator

in determiningwhetherintruder-modifiedfiles werereadby legitimateusers.This allows her to

gaugethepotentialspreadof mis-information,plantedby theintruderfor sabotagepurposes.It is

importantto notethat this is only an approximationsincethe client system’s cachecanobscure

somestoragerequests.It does,however, provide a way of gaugingintrusiondamagethat previ-

ously could not be measuredat all. This even provides information for inferring the intruder’s

motivation for attackingthe system. With a more completeview of the intruder’s actions,the

administratorhasa greaterchanceof determiningwhetherthe intentwasespionage,sabotage,or

merely“entertainment.”

Self-securingstorageprovidesanew window into thescopeof damageandtheintentionsof a

digital intruder. This informationcanbeinvaluablein determiningtheimpactof thecompromise,

preventingfuture intrusions,andcatchingthoseresponsible.Clearly, muchfuture researchand

experiencewill be neededto createpost-mortemdiagnosistools that exploit the new wealthof

informationprovidedby self-securingstorage.

5 Recovery fr om Intrusions

Intrusiondetectionandpost-intrusiondiagnosisarepartsof agoodcomputersecuritystrategy. An

efficient andeffective plan for recovery, however, is a necessity. Maintainingwell-administered
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andup-to-datesystemswill minimizetheoccurrenceof intrusions,but they will inevitably happen,

soit is critical thatrecoverybeefficientandthorough.

In conventionalsystems,intrusionrecovery is difficult andtime-consuming,in termsof both

systemdown-timeandadministratortime. It requiresa significantamountof theadministrator’s

time becausethereare many, error-pronestepsinvolved in returninga compromisedcomputer

systemto asafestate.Self-securingstorage,with its historyinformation,facilitatesthis task.

5.1 Restoration of pre-intrusion state

All storagein a conventionalsystemis suspectafter an intrusionhasoccurred.As a result, full

recovery necessitateswiping all information via a reformatof the storagedevice, re-installing

the operatingsystemfrom its distribution media,andrestoringusers’datafrom the mostrecent

pre-intrusionbackup. Shortcuttingthesestepscanresult in taintedinformationremainingin the

system,yet following thesestepsresultsin significantdown-timeandinconvenienceto users.

Self-securingstorageaddressesthis unfortunatesituation in several ways. First, all pre-

intrusionstateis preserved on the device. Therefore,oncediagnosisyieldsan approximatetime

for theintrusion,therestoredescribedabovecanbeasinglestepfor theadministrator(issuingthe

copyforward commandto bring forwardthesystemstatefrom beforetheintrusion).Second,the

granularityof the restorationis not limited to the mostrecentbackup;any or all files canbe re-

storedfrom arbitrarily closeto thetimeof theintrusion.Third, restorationin self-securingstorage

is non-destructive. Theadministratorcanquickly returnthesystemto asafestatesothatusersmay

utilize thecomputersystem,while preservingall storagehistory(includingany intrusionevidence

therein)in thestorageserver. Theadministratormaythenperformdetaileddiagnosisatherleisure.

5.2 Performanceof restoration

To investigatethe time requiredto returna systemto operation,we gatheredtracesof all NFS

activity to ourlocalNFSserverandreplayedthemagainstourprototypesystem.Wethenmeasured

theamountof time requiredto copy forward theentirestateof thedevice from variouspointsin

thepast.

The prototypeself-securingNFS server usedfor this experimentwasa dual 600 MHz Pen-
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Days Files MB Time w/ rsync (s) Time w/ audit log (s)
1 7 7.3 3208 26.4
2 349 34.4 3311 139.0
3 359 66.8 3324 167.5
4 361 76.2 3350 198.4
5 362 66.8 3329 208.3
6 362 66.8 3325 212.6

Table2: Recovery statistics– This tablesummarizestheresultsof completelyrestoringthestateof theNFSserver
asa functionof thedetectionlatency. The timesshown arebasedon usingeitherrsync or thedatain thedevice’s
auditlog to createthelist of files thatmustbecopiedforward.Thelargedifferenceis duetorsync executinga STAT

on everyfile at boththecurrenttimeandtherecoverytime—atotalof approximately545,000calls.

tium III system,runningRedHatLinux 6.1usingkernelversion2.2.20.Thetraceswerecollected

from anNFSversion2 server, runningLinux 2.2. ThetracedNFSserversupportstheresearchef-

fortsof approximately30graduatestudents,facultyandstaff. Theservercontainedapproximately

66.5 GB of capacityof which 33.5 GB wasconsumedby ������������	 files. The workloadon the

serverwasmainlygeneratedby codedevelopmentandwordprocessingactivitiesof thesupported

users.

To evaluateboththenumberof files andbytesof data(dueto legitimateuse)that theadmin-

istratormayhave to recover, an initial snapshotof thefile systemwascopiedonto theprototype

system,followedby thefirst day’s worth of activity. Thestateof thestoragesystemwasreturned

to theoriginal conditionby copying forward thesnapshotstate.During this process,the time to

recover the initial state,the numberof affectedfiles, andthe total sizeof the affectedfiles were

recorded.This experimentwasconductedfor eachof onethroughsix daysof activity, eachtime

beginningwith theoriginalsnapshot.

Two differentmethodsweretestedfor selectingthefiles to recover. Thefirst methodutilized

thersync [4] programto synchronizethecurrentsystemstatewith thepre-intrusioncopy of data.

Thersync applicationwasconfiguredto selectfilesbasedontheirattributes,causingit to retrieve

theattributesof all files on thedevice at boththecurrenttime andat therecovery time, leadingto

a largeoverheadfor just building thelist of files to recover. Creatingthis initial list required
�	
���
seconds—andby only checkingtheattributes,thismethodis vulnerableto manipulationof thefile

modificationtimes. Thesecondmethodusedto createthis list of files to recover is by usingthe

device’saudit log. This secondmethodis muchfaster, requiringonly ��	 secondsto determinethe
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Figure2: Files modified – Shows thetotal numberof userfiles thatmustberestoredto returnto thepre-intrusion

stateasa functionof thedetectionlatency.

list of files for the completesix daysworth of changes.In additionto beingfaster, this second

methodis not susceptibleto timestampmanipulation.Theresultsaresummarizedin Table2.

Basedon Figure2, it is obvious that very few files needto be restoredrelative to the total

numberof files thatweremodified.This is becausea largenumberof filesaretransient.Filesthat

werecompletelycreatedthendeletedbetweentherecovery time andthecurrenttime neednot be

copiedforward.

To projecttheamountof datathatwould needto berecoveredfor longerdetectionlatencies,

we examineda snapshotof over 	
������� file systemsfrom desktopcomputersat Microsoft Corpo-

ration[6]. Thesnapshotcontainsa listing of all files, theirsize,andmodificationtimesfor eachof

thesystems.Basedon the last-modifiedtime of thefiles, we canprojectthenumberof files that

wouldneedto berestoredasa functionof thedetectionlatency. Theresultsareshown in Figure3.
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Figure3: Fraction of files modified – Shows the fraction of files that weremodifiedin the examinedMicrosoft

systems,asa functionof thenumberof days.Theaveragenumberof filesperfile systemwasapproximately����������� .

Theresultsareshown asa fractionof thetotal numberof filesstored.

Basedon the playbackdata,we canestimatethe amountof time that would be requiredto

restorea “typical” oneof thesedesktopsystems.Looking at only thetime requiredto restorethe

files, the copy forward executedat a rateof 2.55files per secondon our prototypesystem.This

meansthat one week worth of changescould be copiedforward in: �����! #"����%$%$%$& � '%' (
) ��
 seconds.

Likewise,thesystemcouldberestoredto its stateasof onemonthagoin: � & �%*+"����%$%$%$& � '%' ( 	���	
, sec-

onds. We believe that the “in-time” performanceof out prototypecanbe improved,significantly

increasingtherateof recoverybeyond2.55filespersecond.

5.3 Preservation of userdata

In addition to removing the intruder and restoringthe systemto a safestate,an administrator

is often underconsiderablepressureto retain a recentversionof users’work—a versionfrom

afterthesystemwascompromised.In conventionalsystems,themechanicsof doingthis involves
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finding separatemediaon which to temporarilystoretheusers’data,thenperformingthenormal

reformat,reinstall,restore,andfinally restoringthis recentversionof theusers’data. Therealso

existsthechallengeof determiningwhetherthis datais safeto keepat all sincetheintrudercould

havemodifiedit.

Self-securingstorageobviatesthemechanicalstepsby automaticallyretainingtheusers’re-

centwork. While this providesthe opportunityfor the administratorto easilyrestoreit, thereis

still somequestionabouttheauthenticityof this data. Thequestionof intrudertampering,while

still very difficult to answer, is onestepcloserdueto theavailability of thestoragesystem’s ver-

sion history. The versionhistory canshow the sequenceof modificationsto the dataaswell as,

in thecaseof a network-attachedstoragedevice, theclient anduserwho madethemodifications.

This providesadditionalinformationfor tamperinginvestigations,thoughthey will remainvery

difficult.

Additionally, in currentsystems,theadministratoris left with only two choiceswhenrestoring

a givenfile: usethecurrent,potentially-tainteddataor usethemostrecentbackup,losingall in-

termediatework. Self-securingstorageprovidestheopportunityto restoreany versionin between

thosetwo extremesaswell. Thiscanbebeneficialin situationswherethedatawas(or mighthave

been)modifiedby theintruder;theadministratoris ableto restoretheversionfrom justprior to the

tamperingandneednot loseall changes.Carefulvalidationof userdatais still tootime-consuming

to useon all data,but it canbeperformedon anas-neededbasisfor importantdatafiles.

5.4 Application-specificrecovery

With only theaboveinformation,it is possibleto accomplishrecoveryof datain areasonablefash-

ion. However, without examiningthecontentsof files, it is difficult to determinewhatapplication

level changewasmade.

Givena tool thatunderstandsthecontentsof afile, it wouldbepossibleto, in somesituations,

untanglechangesmadeby a legitimate userandan intruder within a single file. For instance,

the intruder may have planteda macrovirus within a word processingdocument. A tool that

understandsthe format of suchfiles could remove the virus while leaving the otherdataintact.

Modern virus detectorsare able to handlethis specificcase,but in general,this soundslike a
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dauntingtask—creatingapplication-specificrecoverytoolsfor datafiles. However, asmallnumber

of applicationscreatemostfiles in a givensystem.Therefore,a few suchutilities will cover most

of thedata.

An additionalusefor theseapplication-specificrecovery tools is for bootstrappingrecovery

anddiagnosisof complex programs,suchasdatabases.Consideradatabaseapplicationthatmain-

tainsa log of operations,capableof undoingor redoingits operations.A recovery tool couldpo-

tentiallyvalidatethecontentsof thedatabaseagainstthedatabase’s log, ensuringthatany changes

madeto thedatabasecontentsweremadethroughtheproperinterface.Thedatabase’sbuilt-in val-

idationandauditingcouldthenbeusedto dig deeperinto thechanges,knowing thatthedatabase

log information is consistentwith the actualdatabasecontents. Ammann,et al. have already

approachedtheproblemof removing undesirablebut committedtransactionsfrom databases[1],

assumingthatany malicioustransactionshavebeeninsertedvia thenormaldatabaseinterfaces(as

opposedto accessingraw storage).

6 Discussion

This sectiondiscussessomeremainingissuesinvolved in usingself-securingstorageto detect,

diagnose,andrecover from intrusions.

Audit log accuracy: The informationstoredin thedevice’s audit log is derivedfrom the in-

formationcontainedin thestorageprotocol.As aresult,informationabouttherequester’s identity

is only asgoodastheguaranteesprovidedby thestorageprotocolitself. For instance,if protocol

requestscanbeforged,theseforgedrequestswill beaddedto theaudit log asseenby thestorage

server. Whenpresent,this limitation is inherentin thechoiceof storageconfiguration.This is only

relevant to network-attachedself-securingstoragedevices. Locally-attacheddisksreceive all of

theircommandsfrom asingleOS,whichdoesnotprovideany user-specificinformationin storage

requests.

Tracking tainted data: Theaudit log maintainedon thedevice shows not only thefiles that

were written after an intrusion, but also which clients or userssubsequentlyread(potentially)

intruder-tainteddata.While it is possibleto considersubsequentwrites(of differentfiles)by those

clientsandusersassuspectaswell, the possiblesetof tainteddatais likely to grow very large.
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Also, the probability that a file is affectedvia a specific WRITE decreaseswith eachiteration.

Additionally, it is notpossibleto completelytracktainteddata,sinceit mayhavebeentransmitted

to otherfiles in thesystemvia externalmethods(e.g.,printoutsor word-of-mouthamongusers).

Additional OS information: Theadditionof a smallnumberof additionalfieldsinsideeach

storagerequestwouldgreatlyincreasetheutility of theauditlog. For instance,if eachrequestwere

taggedwith theprocessID andnameof theprocessthatis makingtherequest,it is mucheasierto

determine(duringbothdetectionanddiagnosis)whethera givenaccesswasbenign. Additional,

useful information would be an indication of the purposeof a READ operation. In currentfile

systems,a READ operationfor dataretrieval looks nearly identical to a readfor the purposeof

executing.

Client caches: File systemcacheson client systemsobscuretraffic thatwould otherwisebe

seenby thestorageserver. Thecacheseffectively actasafilter causingtheauditlog to only havea

partialview of theOS’s storageactivity. For example,readcachescanobscurethepropagationof

intruder-tainteddatasinceit is likely to bein theclient’scache.Thisdangeris smallerin somefile

systems,suchasNFSversion2, thatperformaggressive “freshness”checksprior to returningthe

cachedcontentsof afile. This freshnesscheckis visible to thestoragesystem,andthewindow of

vulnerabilityduringwhich the freshnesscheckis not necessaryis small (a few seconds).Client-

sidewritecachesarealsoaproblemsinceshort-livedfilesthatarewritten,read,anddeletedquickly

mayneverbetransmittedto thestoragedevice. In this case,theexistenceof thefile mayneverbe

known to thestoragesystem.It wouldnothaveany associatedentriesin theauditlog norversions

in the history pool. This presentsa larger problemfor diagnosis,sinceit meansthat temporary

filesmaybelost.

7 Hiding From Self-SecuringStorage: The GameContinues

Self-securingstoragehasthepotentialto exposeintrudersandtheiractionsby explicitly watching

at a new point in the system. We expect it to work very well initially, and lessso as intruders

learnaboutself-securingstorageandits capabilities.Thatis, weexpectclever intruders(andthose

that borrow their tools) to modify their behavior in an attemptto mitigatethe benefitsthat self-

securingstorageprovides. This sectionexploressomepotentialactionsthat intrudersmight take
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in anattemptto avoid detectionor thwartattemptsatdiagnosisandrecovery. Wenotethatthosein

thewhitehatsgaingroundwhenintrudersmustchangetacticsandavoid convenientactions.Thus,

wealsodiscusssomeramificationsof thesenew behaviors on theintrudersthemselves.

Minimize log file evidence: In a systemprotectedby self-securingstorage,it is not possible

for anintruderto tamperwith log filesoncethey arewritten. Usingtheself-securingstoragedevice

for systemlog files functionsmuchlike a remotelogging server. If intruderswish to hide their

presenceandactions,this limits the typesof attacksandexploits that they canusein their initial

compromiseof the system.Oncethey gaincontrol of thesystem,however, they canmanipulate

theloggingfacilitiesto preventinformationfrom enteringthelog. This canbemadea non-trivial

activity. If they wish to avoid detection,they mustfilter log entriesthat they generate(asa result

of theirmaliciousactivities),but they mustallow normalentriesto continueto belogged.Filtering

too muchor too little will bedetectable.Additionally, it maybepossibleto correlatesystemlog

entriesandstoragelog entries,furthercomplicatingthefiltering process.

UseRAM-based file systems: Oneway of preventingcaptureof exploit toolsandutilities is

to storethemin a RAM disk insteadof theusualfile systemthat is kepton self-securingstorage.

Theproblemwith thisapproachis thatthedatathatis written is notpersistent,andasimplereboot

of themachinewill wipe it out. While this will erasetheevidence,it will alsoeraseany backdoor

or Trojanexecutablesthatwereleft behind.

Manipulate memory images: Sinceoverwriting of systemexecutablesis easilydetectable,

oneway to createabackdoorversionof a (long running)programwouldbeto directlymodify it’ s

memoryimage.Thiswould leavenotracesonthestoragesystem,but is likely to bedifficult to do.

Additionally, themodificationscouldbeerasedby restartingtheapplication[5].

Tamper slowly: If the intruder is ableto avoid having his action(s)detecteduntil after the

detectionwindow elapses,self-securingstoragewill beof little help in diagnosingandrepairing

the damage.An intruderthat is willing to make small changesover a large amountof time can

increasehischancesof success.Theproblemthatthiscreatesfor anattacker is thatit takesa large

amountof time to tamperwith asignificantamountof data.

Redirect file systemrequests: Oncethe intruderis ableto compromisetheOS,hecanma-

nipulatethe file systemcodein the kernelin sucha way that requestsfor onefile areredirected

to another. For example,hecanusethis to redirectrequestsfrom a legitimatesystemexecutable
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to a Trojan versionof the sameprogram. While self-securingstoragewould not view this asa

changeto the systemexecutable(andnot issueanalert), theTrojanexecutablewill be captured,

andthetrueexecutableremainsintact. Again, sincethis strategy doesnot modify any of thetrue

executables,a rebootwill solve theproblem.

Encrypt tools: To preventcaptureof exploit tools,the intrudercanusetools thatarewritten

to disk in an encryptedform anddecryptedjust prior to execution(in a similar mannerto some

viruses). The decryptionkey can be held in memoryof the affectedsystem(at a well-known

location). As long asthe key is presentandcorrect,the tools canbe used,but by removing or

changingthekey, it would not bepossibleto recover the truecontentsof theexploit toolsstored

onthecompromisedsystem.While thispreventscapture,thekey is necessarilystoredin avolatile

location,hencea restartof thesystemwill clearit, renderingthetoolsuseless.

Usea network loader: The attacker couldutilize a network loadingutility thatwould read

anexecutabledirectly into memoryandexecuteit. This avoidsthefile systemall together, but is,

again,notpersistent.

Theseexamplesshow thatit is possibleto dodgesomeaspectsof self-securingstorage.How-

ever, they alsoshow thatdoingsorequiresa level of expertiseandeffort notnecessaryfor conven-

tional systems.

8 Conclusion

Thispaperdescribeshow storageserverscanbeusedaseffectivetoolsfor intrusionsurvival. Self-

securingstoragecontributesto the systemadministrator’s ability to effectively dealwith digital

intrusionsby providing a new location for intrusiondetection,preservingevidenceto help with

diagnosis,andsafeguardingdatato allow rapid,effectivepost-intrusionrecovery.
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