
Using context to assist in

personal file retrieval

CRAIG A. N. SOULES

August 25, 2006

CMU–CS–06-147

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh PA

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis committee

Prof. Gregory R. Ganger, Chair
Prof. Jamie Callan
Dr. Jim Gemmell (Microsoft Research)
Prof. Christopher Olston

c© 2006 Craig A. N. Soules

This work was funded in part by the past and present members and companies of the PDL Consortium
(including APC, EMC, Equallogic, Hewlett-Packard, Hitachi, IBM, Intel, Microsoft, Network Appliance,
Oracle, Panasas, Seagate, Sun, and Symantec), and by USENIX. This material is based on research sponsored
in part by the Air Force Research Laboratory, under agreement number F49620–01–1–0433.

ii · Using context to assist in personal file retrieval

To my father.

iv · Using context to assist in personal file retrieval

Abstract

Personal data is growing at ever increasing rates, fueled by a growing market for personal
computing solutions and dramatic growth of available storage space on these platforms.
Users, no longer limited in what they can store, are now faced with the problem of organizing
their data such that they can find it again later. Unfortunately, as data sets grow the
complexity of organizing these sets also grows. This problem has driven a sudden growth
in search tools aimed at the personal computing space, designed to assist users in locating
data within their disorganized file space.

Despite the sudden growth in this area, local file search tools are often inaccurate. These
inaccuracies have been a long-standing problem for file data, as evidenced by the downfall of
attribute-based naming systems that often relied on content analysis to provide meaningful
attributes to files for automated organization.

While file search tools have lagged behind, search tools designed for the world wide web
have found wide-spread acclaim. Interestingly, despite significant increases in non-textual
data on the web (e.g., images, movies), web search tools continue to be effective. This is
because the web contains key information that is currently unavailable within file systems:
context. By capturing context information, e.g., the links describing how data on the web is
inter-related, web search tools can significantly improve the quality of search over content
analysis techniques alone.

This work describes Connections, a context-enhanced search tool that utilizes temporal
locality among file accesses to provide inter-file relationships to the local file system. Once
identified, these inter-file relationships provide context information, similar to that available
in the world wide web. Connections leverages this context to improve the quality of file
search results. Specifically, user studies with Connections see improvements in both precision
and recall (i.e., fewer false-positives and false-negatives) over content-only search, and a
live deployment found that users experienced reduced search time with Connections when
compared to content-only search.

v

vi · Using context to assist in personal file retrieval

Acknowledgments

This work would not have been possible without the help and support of many individu-
als. As my adviser, Greg Ganger taught me how to read, write, and pursue research. His
constant encouragement and near-miraculous ability to always find time for his students
have made working with him a true pleasure. As members of my committee, Jamie Callan,
Jim Gemmell, and Chris Olston helped to shape the direction of this work, filled in many
of the gaps in my knowledge, and helped steer me toward solutions. Anind Dey was also
invaluable in helping me design and execute the online user study for this work.

Throughout graduate school I’ve had the good fortune to work with a large number of
excellent colleagues. When I first arrived, Garth Goodson, John Strunk, Mike Scheinholtz,
and Jiri Schindler helped to get me on my feet. As the years progressed, my discussions
and interactions with many students at CMU, particularly Mike Abd-el-Malek, John Griffin,
David Petrou, Brandon Salmon, Steve Schlosser, Eno Thereska, and Jay Wylie, have always
been both enjoyable and educational. I also thank M. Satyanarayanan for opening my eyes
to research.

The Parallel Data Lab has been a great source of feedback from its many industry
sponsors and has fostered a strong, collaborative environment for its many students. I thank
Garth Gibson for founding the PDL and its current director, Bill Courtright, for continuing
its excellent tradition. The PDL has also brought me into contact with a number of staff
members, without whom my life would have been far more frustrating. Particularly, I thank
Joan Digney, Karen Lindenfelser, and Linda Whipkey for their help throughout the years.

My life would not be the same without the many friends I have made here in Pittsburgh.
My close friends Bryan Jacobs and Jeremy Richardson have kept my life both interesting
and entertaining. The many other people of note include Sarah Aerni, Dan Arp, Erik Degel-
man, Court Heller, Reagan Heller, Maureen McGranahan, Dan Reed, Wil Paredes, Kevin
Peterson, Rachel Schlosser, Reed and Erika Taylor, Shawn Wall, Marshal Warfield, and Ben
Ziskind. I also thank the many instructors and students I’ve interacted with at Oom Yung
Doe, and the members of the mechanical engineering softball team captained by Bryan
Smith.

Finally, I thank my mother, Aline Soules, for her unwavering support throughout the
years.

vii

viii · Using context to assist in personal file retrieval

Contents

Figures xiii

Tables xv

1 Introduction 1
1.1 The landscape today . 1
1.2 Context . 2
1.3 Thesis statement . 2
1.4 Problem breakdown . 3

1.4.1 Temporal locality . 3
1.4.2 Connections . 3
1.4.3 Evaluating utility . 4

1.5 Contributions . 4
1.6 Outline . 5

2 Background an related work 7
2.1 Organization: hierarchies and attributes . 7

2.1.1 Attribute-based naming systems . 8
2.1.2 The world wide web . 9
2.1.3 Summary (Organization) . 9

2.2 Search: content analysis techniques . 9
2.2.1 File system search . 10
2.2.2 Web search . 11
2.2.3 Summary (Search) . 12

2.3 Inter-file relationships . 12
2.4 Context-aware computing . 13

2.4.1 Data organization and retrieval . 13
2.4.2 Personalized search . 14
2.4.3 Data mining . 15
2.4.4 Machine learning . 15
2.4.5 Summary (Context-aware computing) 15

2.5 Wrap-up . 16

ix

x · Using context to assist in personal file retrieval

3 Context-enhanced search 17
3.1 Architectural overview . 17

3.1.1 Content-only search . 18
3.1.2 Context-enhanced search . 19
3.1.3 Alternate methods . 20

3.2 Identifying inter-file relationships . 21
3.2.1 Basic successor models . 21
3.2.2 Probability graphs . 21
3.2.3 Relation graphs . 22
3.2.4 Trade-offs . 24
3.2.5 Summary (Identifying inter-file relationships) 25

3.3 Searching relationships . 25
3.3.1 Weight cutoff . 26
3.3.2 Path length . 27
3.3.3 Trade-offs . 27

3.4 Ranking the results . 27
3.4.1 Basic Breadth First Expansion (Basic-BFE) 28
3.4.2 Web ranking algorithms . 29
3.4.3 Super-nodes . 30
3.4.4 Trade-offs . 32

3.5 Wrap-up . 32

4 Connections 33
4.1 Tracing . 33

4.1.1 Linux . 33
4.1.2 Microsoft Windows . 36

4.2 Database layout and interaction . 37
4.3 Content-only search tools . 38
4.4 Wrap-up . 40

5 Utility evaluation 41
5.1 Methodology . 41

5.1.1 Offline study . 41
5.1.2 Online study . 44

5.2 Overview . 45
5.2.1 Offline results . 46
5.2.2 Online results . 53
5.2.3 Wrap-up . 55

6 Performance evaluation 57
6.1 Indexing performance . 57
6.2 Space utilization . 58
6.3 Querying performance . 60

Contents · xi

6.4 Wrap-up . 61

7 Sensitivity analysis 63
7.1 Parameter sensitivity . 63

7.1.1 Indexing parameters . 64
7.1.2 Search parameters . 69
7.1.3 Ranking algorithms . 70

7.2 Alternate content analysis . 75
7.3 Existing user input . 79
7.4 Graph growth on result quality . 80
7.5 Wrap-up . 82

8 Conclusions 85
8.1 Contributions and limitations . 85
8.2 Future work . 86

Bibliography 87

xii · Using context to assist in personal file retrieval

Figures

3.1 Architecture of content-only search . 18
3.2 Architecture of context-enhanced search . 19
3.3 Generalized successor model . 23
3.4 Relation graph example . 26

4.1 Linux tracer components . 34

5.1 Average precision/recall curve over all queries in the offline user study . . . 47
5.2 Breakdown of non-text versus text-only queries 48

6.1 Growth of the relation graph space utilization 58
6.2 Growth of the number of links per node in the relation graph 59
6.3 Growth of the number of nodes in the relation graph 60

7.1 Sensitivity to the isolation level . 64
7.2 Sensitivity to the access filter . 65
7.3 Sensitivity to the window size . 67
7.4 Sensitivity to the edge direction . 68
7.5 Sensitivity to the path length . 69
7.6 Sensitivity to the weight cutoff from 0% to 3% 70
7.7 Sensitivity to the weight cutoff from 3% to 20% 71
7.8 Sensitivity to alpha . 72
7.9 PageRank methodology comparison . 73
7.10 HITS methodology comparison . 74
7.11 Super node detection . 75
7.12 Super node distribution . 76
7.13 Super node detection with weight cutoff 0.1% 77
7.14 Combining context with alternate content analysis tools 78
7.15 Using a strict boolean AND to identify content results 79
7.16 Using pseudo-relevance feedback to identify content results 80
7.17 Applying existing user input from the directory hierarchy 81
7.18 Effect of graph growth on result quality . 82
7.19 Effect of graph growth on result quality given new classification 83

xiii

xiv · Using context to assist in personal file retrieval

Tables

4.1 Traced calls in Linux . 35
4.2 Traced calls in Microsoft Windows . 37

5.1 Log entries generated by the online user study interface 45
5.2 Precision and recall at set cutoffs from the offline user study 46
5.3 Overview at cutoff of 30 results . 49
5.4 List of query terms for each of the 34 queries 50
5.5 Reported demographic information . 54
5.6 Results of the online user study . 55

6.1 Average query performance for each machine 61

xv

xvi · Using context to assist in personal file retrieval

1 Introduction

In a perfect world, file systems would be omniscient, helping users organize, locate, and
access their data so that they could always find what they want when they want it, acting
almost like a personal assistant. Unfortunately, we are far from this ideal today. In fact,
information management is one of the largest problems in computing today, as can be
seen in the amount of time, money, and effort spent by both companies and individuals in
addressing this problem.

And, the problem continues to grow. As computers become more pervasive, users gen-
erate and store more data, increasing the complexity of both organization and retrieval.
Increases in network connectivity have improved both data accessibility and simplified data
sharing, at the trade-off of users having to organize and retrieve more data across more
locations.

1.1 The landscape today

Despite these increasing complexities, the interface of today’s file systems are no different
than they were thirty years ago. They provide only a mapping between a name and a piece
of associated data (i.e., a file), leaving users unassisted with the task of organizing their
data in such a way that they can find it again when it is needed. While this may have
been sufficient in the past, recent increases in both the power and capacity of personal
computers have drastically increased the amount of data generated by the average user,
while simultaneously removing the need to delete old data. As our computers move from
being bookshelves to being libraries, they must also move from being pieces of furniture to
being librarians.

Before a file system can begin to assist the user in organizing or finding their data, it
must first understand the data that it stores. What do a file’s contents represent? How will
the file be used? How and when will a user access the file? What is the file’s relationship to
both other files and user tasks? Without being able to answer these questions, the system
will never be able to accurately determine or satisfy a user’s information need.

One potential solution to this problem is attribute-based naming. Attribute-based nam-
ing systems allows users to classify each file with multiple attributes [35, 38, 67]. Once in
place, these attributes provide the system with an understanding of a file’s properties, giving
it a chance to answer the questions posed above. Unfortunately, there remains the problem
of generating useful and accurate attributes, as it is unrealistic and inappropriate to require

1

2 · Using context to assist in personal file retrieval

users to proactively provide accurate and useful classifications. To make attribute-based
naming systems viable, there must be methods to automatically classify files, and, in fact,
this requirement has led most systems to employ search tools over hierarchical file systems
rather than change their underlying methods of organization.

The most prevalent automated classification method today is content analysis: examin-
ing the contents and pathnames of files to determine attributes that describe them. Systems
using attribute-based naming, such as the Semantic file system [35], use content analysis
to automate attribute assignment. Search tools, such as Google Desktop [36], use content
analysis to map user queries to a ranked list of files. However, a file’s contents can only an-
swer the first of the questions posed above, and then only for the files containing structured,
indexable content (e.g., text). The problem then is finding additional sources of information
that can provide information, automatically, to the system.

1.2 Context

Context is “the interrelated conditions in which something exists or occurs” [76]. Examples
of a file’s context include other concurrently accessed files, the user’s current task, even the
user’s physical location — any actions or data that the user associates with the file’s use.
A recent study [71] showed that most users organize and search their data using context.
For example, a user may group files related to a particular task into a single directory,
or search for a file by remembering what other files they were accessing at the time. Such
contextual relationships may be impossible to gather from a file’s contents. Further, context
information can begin to answer many of the outstanding questions that the system must
answer to properly organize and search data. This work proposes to utilize context to help
users retrieval their data from ever increasing data sets.

1.3 Thesis statement

This thesis will develop methods for automatically gathering attributes from context infor-
mation and applying them to organization and search. Specifically, the thesis of this work
is:

Automatically gathered context information can provide more attributes to
more files than per-file content analysis alone. This increase in information will,
in turn, improve the effectiveness of file indexing and search tools.

This thesis is validated with the following steps:

(1) I show that additional context-based file attributes, in the form of inter-file relation-
ships, can be automatically identified from file system activity.

(2) I confirm the feasibility of context-enhanced search by developing a working search
tool, Connections, that combines context and content information to provide file search
results.

1.4 Problem breakdown · 3

(3) I show that the added context attributes provided in Connections improve the quality
of file search results through two user studies that compare context-enhanced search
to traditional content-only search.

1.4 Problem breakdown

This thesis shows that context information that is automatically identified by the system
can be utilized to improve the quality of file search tools. This requires: a source of context,
methods for gathering information and identifying the context of individual files, a system
that utilizes this context in file search, and a methodology for evaluating the quality of the
system.

Specifically, this work uses temporal locality as its source of context. It describes Con-
nections, a context-enhanced search tool that uses inter-file relationships identified from
temporal locality to (1) identify additional relevant results for user queries (increasing re-
call) and (2) re-rank the results to place more relevant results earlier (increasing precision).

1.4.1 Temporal locality

Temporal locality is a way that many individuals use to recall events and items. “What was I
doing when I last had my keys?” “I downloaded that file when I got back from my meeting.”
“I know I was working on my report when I read that paper.” By connecting items that are
accessed nearby in time, Connections can leverage these connections to behave in similar
ways. Presented with the meeting or the report, Connections can locate related items such
as the downloaded file or the related paper.

Despite the potential of temporal locality, it cannot work alone. In the examples above,
Connections required a start point (such as the meeting or report) to locate the desired
files. Connections identifies these starting points by leveraging existing content-only search
tools, using the results provided by such a tool as starting points. Connections enhances
these results by identifying other files that are closely related to these starting points.
Furthermore, Connections uses the strength of these relationships to identify which results
are most relevant to the current search. This is important because (1) content-only search
is imperfect, and some of the starting points may be invalid, thus identifying the set of most
strongly related results can help to eliminate some of the incorrect starting points, and (2)
if many content-only results that appear less relevant, but are strongly related by context,
they should likely be ranked higher in the results.

1.4.2 Connections

Connections gathers information about temporal locality using system level traces of the
file system. It employs these traces to build a relation graph that describes the relationships
among a user’s files. At query time, Connections first runs a content-only search to identify
starting points, and then accessed the relation graph to locate additional related files and
re-rank results.

4 · Using context to assist in personal file retrieval

The key questions for building Connections become (1) how does Connections translate
system-level information into user beliefs about how their data is temporally related, (2)
how does Connections utilize these relationships to locate related data from a set of start-
ing points, and (3) how does Connections re-rank the complete set of results. Additional,
questions include the mechanics of how Connections gathers file system traces and stores
the relation graph.

1.4.3 Evaluating utility

Unlike many performance metrics (e.g., run time, transactions per second, etc.), utility
cannot be measured objectively. Because the results of a search are specific to the user’s
data and context, the quality of those results are subjective to that user.

This work evaluates Connections through two user studies. The first study looks at recall
and precision, two metrics traditionally used to evaluate the quality of information retrieval
systems. Recall measures the ratio of correct results returned to total correct results in the
system. Precision measures the ratio of correct results returned to total number of results
returned. The higher the recall, the more correct results returned to the user, and the
higher the precision, the fewer incorrect results returned to the user. Comparing the recall
and precision of two systems can show which more effectively reduces these false-negatives
and false-positives. The second study examines questions about user experienced utility.
Specifically, can Connections’s context-enhanced search result in more successful, faster
searches? By logging user behavior with both content-only and context-enhanced search
tools, along with surveys regarding success and retry rates, this study can answer questions
about user-perceived utility.

1.5 Contributions

In the course of proving the above thesis, this work provides the following key contributions:

(1) A set of algorithms for identifying temporal inter-file relationships and using them to
extend and re-rank the results of traditional content-only search tools.

(2) A framework for implementing and evaluating techniques for adding context knowl-
edge to traditional content-only search tools.

(3) Connections, a working context-enhanced search tool for both Linux and Windows
that utilizes the above-mentioned algorithms and framework.

(4) An analysis of Connections using these two studies that shows the increased effective-
ness of using context information in file search.

(5) A performance analysis of Connections showing that the computational and space-
utilization overheads of context-enhanced search are small.

1.6 Outline · 5

The key advantages of Connections’s context-enhanced search are its abilities to (1)
locate more relevant items for most searches, increasing average recall, (2) locate relevant
items that contain little or no parsable contents (e.g., multimedia files), increasing both
recall and precision significantly for non-text searches, and (3) its ability to distinguish the
most relevant results from a set of textual results with closely ranked confidence values,
providing slightly increased average precision for textual searches.

The key limitations of Connections’s context-enhanced search are (1) it requires a large
warm-up period (several months) to learn a user’s behavior before it can be useful in search,
(2) the large potential for false-positives means that the most successful algorithms only
locate data that the user has created or modified, and (3) because it does not gather
keywords from context, it relies soley on content-analysis to provide relevant starting points
in the graph to perform its expansion and re-ranking, which in some environments may be
difficult or impossible. Further discussion of these limitations, and possible ways to combat
them in the future, can be found in Chapter 8.

1.6 Outline

The remainder of this dissertation is organized as follows. Chapter 2 describes the related
research that has led to this work, as well as important ongoing work from other areas
that both motivates this work, and has the potential to further enhance this work in the
future. Chapter 3 outlines the framework for combining temporal context with content
analysis, and describes the algorithms for identifying, searching, and ranking results with
context. Chapter 4 describes the details of Connections design and implementation. Chap-
ter 5 describes the two user studies’s methodologies and uses them to evaluate the utility of
context-enhanced search as experienced by users. Chapter 6 evaluates the performance and
space-utilization overheads of Connections’s context-enhanced search. Chapter 7 provides
a discussion of the sensitivity of the algorithm parameter settings, and the qualitative ef-
fects of changing the underlying components within Connections (e.g., the source of content
information). Chapter 8 concludes and describes potential areas of future work.

6 · Using context to assist in personal file retrieval

2 Background an related work

My thesis builds on research from file systems, information retrieval, and human computer
interaction. This chapter describes systems and research that laid roadwork for this work,
as well as related work that approaches the problem of data organization and retrieval (or
similar problems) from different (and often complementary) angles.

The chapter is broken into three sections: organization, search, and context-aware com-
puting. Within each, I describe key pieces of related work and then summarize their con-
tributions and how they relate to context-enhanced search.

2.1 Organization: hierarchies and attributes

Shortly after the advent of persistent storage devices in the 1950s came the need for digital
filing systems. Although the very first file systems provided only a flat namespace, this
was quickly replaced with a hierarchical scheme, designed to mirror physical filing systems.
Within such a system, collections of files are collated within a single named directory.
These directories can be recursively collated into parent directories, forming a tree of named
directories that eventually will lead the user to a particular file.

Today’s file systems [18, 57, 66] are nearly identical to the first file systems of the 1960s:
hierarchical, named directory trees. Unfortunately, as seen in library systems [7], as storage
systems grow larger and larger, strict hierarchical filing schemes begin to fail. Although
many hierarchical file systems provide some level of cross-tree linking that can augment the
strict hierarchy, these links are difficult to maintain in the face of file updates and removals,
making them an imperfect solution to this problem. Many believe that we are at a point
with personal storage where the rapid growth in available storage (removing the need for
file removal), combined with the increased uses for personal computing (resulting in more
files being created), is creating a scenario in which current hierarchical file systems will no
longer be sufficient.

This realization led to the idea of attribute-based naming. In attribute-based naming
systems, files are tagged with particular keywords or tuples that identify categorical infor-
mation about the file. For example, this thesis might be tagged with 〈author:Craig Soules〉
or perhaps the keyword 〈context-enhanced search〉. Once files are assigned attributes, the
system can leverage these attributes to provide automated organization (e.g., a virtual
directory hierarchy) and improved search mechanisms.

7

8 · Using context to assist in personal file retrieval

2.1.1 Attribute-based naming systems

One of the first systems to implement attribute-based naming was the Semantic file sys-
tem [35]. The Semantic file system maintained both a traditional hierarchy and a set of
[category:keyword] tuples with each file. Users could access files either through the tradi-
tional hierarchy or using virtual directories created for a particular category. For example,
a user could create a virtual directory for the category “author,” and within it would be
created a directory for each existing keyword of that category (e.g., Craig Soules). Virtual
directories could be created recursively, allowing the user to hone in on a particular file
or set of files. Tuples in the Semantic file system were assigned either directly by users or
through automated background tasks, called transducers, that examined the contents of
files to identify accurate attributes.

The Semantic file system implements one way that a traditional hierarchy can be merged
with attribute-based naming, and researchers have explored a wide variety of other mergings
between these organizational schemes. For example, multi-structured naming uses Venn
diagrams to describe the attributes that make up a file’s namespace [67]. This flexible
scheme allows the integration of both flat and hierarchical namespaces.

The HAC file system extends on the ideas of the Semantic file system by allowing users
to associate arbitrary content queries with virtual directories, and then saving the specific
results of the query with that directory so that it can be modified by the user manually [38].
This allows users to create directories on particular topics quickly, by starting with a search
and then modifying the results to suit the desired organization.

The BeOS file system (BeFS) allowed users and applications to create external indexes
of files using a particular attribute [34]. For example, an email application might create an
index that associates each email file with the author of that email, allowing users to quickly
search and sort these files for a particular author’s emails.

Prospero provides per-user namespaces that are generated using a combination of hier-
archies and user-programmed queries, called “filters” [60]. This allows users to place shared
documents along different paths in their personal namespace, hopefully making it easier to
locate data later.

The Presto document system uses an attribute tagging scheme similar to the Semantic
file system, but instead of virtual directories, provides a variety of graphical user interfaces
designed to assist the user in organizing and finding data using these attributes [26]. At-
tributes are also assigned on a per-user basis, allowing personalization of data organizations,
combining the ideas of the Semantic file system and Prospero to a degree.

The pStore system proposes to combine many of the techniques of previous attribute-
based naming systems with semantic information such as file relationships, dependencies,
and access patterns [80]. Although they propose a design for storing and retrieving such
data, the acquisition of semantic clues is left as an open question.

2.2 Search: content analysis techniques · 9

2.1.2 The world wide web

The world wide web is, perhaps, the largest distributed naming system in existence. To help
manage this namespace, the web combines a hierarchical naming scheme with hyperlinks [12].
Hyperlinks provide a form of attribute-based naming by assigning keywords within one
document to another document in the hierarchy. As users explore the web, they can locate
the data they are looking for by following the attributes found within various hyperlinks.
Hyperlinks also provide a secondary organization to the web, linking together documents by
topic, rather than by hierarchical location. Still, although hyperlinks provide a very intuitive
navigational structure, one of the key advances in the broad usability of the world wide web
has been accurate search tools (a topic discussed further in Section 2.2.2).

Further extensions to the web, such as the Semantic Web [13], provide mechanisms for
embedding self-describing attributes about the data within pages. These attributes resemble
more closely the attribute-based naming systems from the realm of file systems, by storing
attributes with the data they describe, rather than within the pointers to the data as is
done with hyperlinks.

Similarly, Harvest [14] gathers attribute information from pages and stores them sepa-
rately from the document contents, allowing search tools to access the attributes exclusively.
This reduces the network overheads for indexing and allows page creators to add additional
attributes not gathered directly from content.

2.1.3 Summary (Organization)

Although many proposals exist for attribute-based naming, very few commercial file systems
have implemented any such features, and use of these features are almost non-existant. In the
world wide web, several proposals exist for extending web pages with attribute information,
but, although these proposals have been in place for almost 15 years, use of these extensions
is not yet commonplace.

I believe the reason that attribute-based naming has been unable to gain traction is
two-fold. First, implementation of attribute-based naming is more complex than traditional
hierarchies (as evidenced by the extended time-to-market of projects such as WinFS [78]).
Second, once in place, existing attribute-based naming systems rely on only two mechanisms
as sources of attribute information: user input and content analysis (e.g., transducers).
Unfortunately, user input is often time-consuming and unpleasant, which dissuades users
from actually performing this task. As a result, much of the community has refocused its
efforts on external search tools, using content analysis as the basis of such tools.

2.2 Search: content analysis techniques

Search tools take in attributes, often keywords, and display results that they believe are
relevant to those keywords. This section outlines search tools from both file systems and
the world wide web, and describes how context has the potential to improve the results of
traditional content-only search systems.

10 · Using context to assist in personal file retrieval

2.2.1 File system search

One of the first file system search tools, still in use today, is the UNIX tool grep. Grep scans
the contents of files for particular terms or expressions, reporting the line on which they were
found. Other tools, such as find, were added to traverse the namespace and match terms or
expressions against file pathnames. Although their functionality is indispensable, tools such
as grep scan the entire contents of files on each invocation, leading to poor performance
when searching through large data sets.

Glimpse addresses this problem by combining grep with an index of keywords [54].
When a user performs a search, Glimpse first consults the index, which indicates a subset
of files that contain the keyword. It then runs grep over this (hopefully) smaller subset of
files. By narrowing or widening the size of the subsets within the index (potentially even
considering sections of large files), the user (or system administrator) can make a trade-off
between index size and search performance. This kind of indexing for performance is now
commonplace among search tools.

As search tools such as grep have grown into the modern information retrieval tools of
current research, the content analysis techniques have grown both more accurate and more
complex. Tools such as Lemur [49] and Terrier [73] combine several of the latest advance-
ments in content analysis to provide accurate, ranked results. Often, these tools perform
best when experts generate the queries using the full power of their expressive query in-
terfaces [58]. Although the underlying techniques of these systems are not directly relevant
to this work, the results they generate form the basis of my context-enhanced search. As
a result, further improvements in these tools are complementary to my approach; as they
become more accurate, so does context-enhanced search (this is discussed further in Chap-
ter 7.2). Furthermore, finding ways to tie the content analysis tools more closely to context
analysis could result in improvements in query accuracy (as discussed in Chapter 3.1.3),
and this is an interesting area for future work.

Recently, several commercial tools have been released that harness modern information
retrieval techniques, including Google Desktop [36], Yahoo! Desktop search [37], and Win-
dows Desktop search [77]. The emergence of commercial tools indicates that the increases
in user data sets are creating a demand for accurate search facilities on personal computers,
underscoring the importance of this issue.

Although the focus of most information retrieval systems is specifically on plain-text
analysis, some search tools (e.g., LXR [51] and CScope [70]) use an understanding of content
structure (in these examples C code) to provide directed search for particular usages of terms
(e.g., finding function calls vs. function definitions). Also, these kinds of structure-specific
analysis techniques can often be integrated with existing plain-text analysis. For example,
tools such as Apple’s Spotlight [8] and Google Desktop allow external tools to parse specific
document types (e.g., Postscript or instant messenger logs) and integrate their contents
with the rest of the index.

2.2 Search: content analysis techniques · 11

2.2.2 Web search

Although the structure of the web has the potential to make browsing for information
easy, there remains the problem of locating an appropriate starting point at which to begin
browsing. As a result, some of the most visited websites today are web search engines.

The original web search engines, such as Lycos [52, 56], Yahoo! [82], and Altavista [5],
applied the same techniques used today in file system search. They combined user sub-
mitted information with text analysis (e.g., word frequency, inverse document frequency)
and structural analysis (e.g., heavier weights to words in titles, headers, etc.). However, as
discussed above, the web contains another important source of attributes: hyperlinks.

One of the first systems to make use of hyperlinks was WebGlimpse [53]. WebGlimpse
used hyperlinks to define neighborhoods: the set of pages within a particular link distance
from the currently viewed page. Using this idea, WebGlimpse allowed users to narrow their
search to within their current neighborhood. The key insight of WebGlimpse was that a
neighborhood makes up part of a user’s context, and, by leveraging that, the user may find
what they are looking for more quickly.

Shortly after the advent of WebGlimpse, two techniques emerged that used the link
structure of the entire web to combine content and link analysis in web search: HITS and
PageRank.

The key insight of HITS is that the web primarily contains two kinds of pages: hubs and
authorities. Hubs are pages that contain links outward to many authorities (e.g., a page
with a list of auto manufacturers). Authorities are pages that are referred to by many hubs
(e.g., the official Ford web site). This recursive definition is inherent in the design of the
HITS algorithms [46]. When a user performs a search using HITS, it first locates a starting
set of pages using traditional content analysis techniques. Using this as a starting set, HITS
next gathers a super-set of pages that are within a single hop of the starting set. It then runs
a recursive algorithm that assigns hub and authority rankings to each page in the super-set.

PageRank uses hyperlinks by treating the structure of the web as a Markov model [16]. It
then calculates the stationary probabilities of the model and assigns the probabilities at each
node as the PageRank, or “importance,” of that particular page. This probability indicates
the likelihood of that a user randomly browsing the web will land on the given page, thus
pages with incoming links from other “important” pages will have a high importance. When
a user performs a search, the system can first locate pages that match on content, and then
can rank them using their PageRank.1

The Google web search engine combines PageRank with both traditional content analysis
and two other novel techniques. The first is to use the text of hyperlinks as classifications
for the linked page, thus making use of the linker-assigned attributes within hyperlinks. The
second is to watch the behavior of users who access the results of their search to gather
implicit user feedback. For example, if a user performs a search and then begins to browse
the results, clicking on the first link, then the second, then the third, it is likely that after

1Although this is one likely use for PageRank, the actual merging of content analysis with PageRank in
systems that use it, such as Google, has not been published.

12 · Using context to assist in personal file retrieval

clicking on that final link they found what they were looking for. Using this information, it
may be possible to improve the ranking of pages that match the given query terms.

More recently, groups have begun exploring ways to further exploit the graph structure
of the web to propagate information among related pages. Closely related to my work
is the work on relevance score propagation and term frequency propagation [62, 68, 69],
that propagate attributes of a given page to other pages through a given graph structure
(such as the hyperlink structure or site-map). Study of this area has shown that attribute
propagation can improve retrieval accuracy on the web. It is not surprising, then, that the
similar algorithms used in this work also improve the retrieval accuracy in local file systems.
The challenge in local file systems is identifying a graph structure that can accurately map
the relationships between files.

2.2.3 Summary (Search)

Over the last 40 years, information retrieval has grown from simple expression matching
to an entire field of study. In file systems, content analysis, and specifically text analysis,
makes up the bulk of existing systems. However, in the world wide web, some of the biggest
improvements in search quality haven’t come directly from content analysis, but instead
from user-provided classifications in the form of hyperlinks.

What hyperlinks provide, that content analysis cannot, is context. The Merriam-Webster
dictionary defines context as “the parts of a discourse that surround a word or passage and
can throw light on its meaning” [76]. On the web, the keywords in a hyperlink identify the
context of the linked website by identifying (1) how the creator of the link thinks about the
linked site, and (2) how a user clicking on the link will think about the linked site.

Unfortunately, current file systems do not include hyperlinks, making it difficult, if not
impossible, to apply the search techniques used on the world wide web. My work tackles
this problem (to an extent) by identifying inter-file relationships from user access patterns.
Unlike hyperlinks, these relationships do not contain keywords, but they can be leveraged
in similar ways.

In the next two sections, I will describe work from other areas of file systems that utilizes
inter-file relationships and work from context-aware computing that uses various forms of
context to achieve similar goals.

2.3 Inter-file relationships

Although no explicit linking between files exists within file systems today, work in both
prefetching and cache hoarding indirectly identify inter-file relationships. File prefetching
aims to hide storage latencies by predicting what the user will access next and reading it
into the cache before they request it. Cache hoarding attempts to predict what the user will
access next to hide network latencies (or provide access to network data during disconnected
operation) and thus requires a similar prediction algorithm.

Most file system allocation policies attempt to improve locality among related files and
their metadata by placing files in the same directory nearby one another on disk [30, 57].

2.4 Context-aware computing · 13

However, researchers found that these groupings do not always match to the access patterns
of users and applications. This is because directories do not always capture the context of
users and applications.

One way to address this problem is through prediction schemes that use temporal local-
ity, rather than spatial locality, to correlate common user access patterns with individual
user contexts [6, 39, 47, 48]. Such systems keep a history of file access patterns using succes-
sor models: access models that predict the next access based on the most recent accesses.
If a sequence of accesses matches one of the stored successor models, the system assumes
that the user’s context matches this model and prefetches the specified data.

My work explores using a variety of techniques similar to those used in prefetching
and cache hoarding to enhance file organization and search. Further details on existing
algorithms for generating successor models and their contributions to the algorithms used
in context-enhanced search are described in Chapters 3.2.1 and 3.2.2.

2.4 Context-aware computing

Context-aware systems utilize context information to tailor services to particular users.
Context within a computer system has many definitions [25], including information such as
location (e.g., gps, relational distance), environmental conditions (e.g., weather, lighting),
and time (e.g., time of day, relational accesses).

Much of the work in context-aware computing falls under the label of “ubiquitous com-
puting” [19, 25]. Still, many research projects utilize context to aid organization and search.
The potential benefits of this for personal file search were made clear by a recent study of
user search behavior, which showed that individuals often use context to guide their search,
rather than specific content keywords [71].

2.4.1 Data organization and retrieval

One approach to context-based data organization is to integrate attribute-based naming
more closely with the system’s user-interface. Projects such as Haystack [63] and MyLifeBits [32]
provide interfaces designed to quickly group and tag files with attributes. These systems also
provide mechanisms for integrating various forms of application assistance, some of which
provide context similar to some of the ubiquitous computing work described above [33].

Although a file’s context is generally separate from its contents, several researchers have
leveraged content-similarity to identify contextual groupings among files. Scatter/Gather [23]
uses content-similarity techniques to scatter a collection into clusters. A user can select
particular clusters of interest, which are then gathered into a single sub-index, and then re-
scattered into further refined clusters. This process is repeated recursively until the user’s
information need is satisfied. Grokker is a commercial search tool that utilizes a similar
form of content-similarity [40]. It combines clustering with a novel drill-down interface that
allows users to hone in on particular groupings quickly.

Another potential source of context information is the existing metadata within hierar-
chical file systems, such as access time and permissions. Several projects treat metadata as

14 · Using context to assist in personal file retrieval

attributes, and use them to help organize and search a user’s data. The Lifestreams search
tool [29] ranks its search results using the latest access time of the file. This provides the
user with a visual representation of the temporal context of the presented files. By seeing
other files accessed nearby in time, users may be able to more quickly locate what they are
searching for. Stuff I’ve Seen [27] uses context information already stored by the file system
(e.g., access time, thumbnails, author, etc.) to enhance both the content search and the
presentation of results. This work was the predecessor to the commercial Windows Desktop
Search [77].

2.4.2 Personalized search

Another way to leverage context is to identify the user’s current context, and use that as a
clue toward retrieving information relevant to the task at hand [45]. Below is a sampling of
some of the most relevant related work.

As mentioned earlier, much of the work in ubiquitous computing is focused on identifying
a user’s current context to assist with tasks and communication. One such project that was
aimed more toward file search is the Rememberance Agent [65], which identifies the context
of the user from the contents of recently accessed files. By feeding relevant keywords from
these files into a content search engine, the Agent can supply the user with a set of files
potentially related to their current activity. The Jimminy system [64] extended this idea by
using information about the user’s environment (e.g., physical location) to locate relevant
notes and information to help with the user’s current task.

The work of Czerwinski, et. al., uses the content of currently viewed web-pages to retrieve
additional pages with similar contents [24]. Their tool combines this automated retrieval
with an interface that provides thumbnails of related pages allowing users to quickly scan
them for potentially useful items. Teevan, et. al., identified the user’s context using a com-
bination of their local data set (gathered from a content index of their data) and recent
web activity (searches, visited URLs, etc.) [72]. Using this profile, they could direct searches
toward particular topics of interest to the user.

The Lumiere project [42] identified a user’s current context from their recent actions,
and uses this data to provide the user with help information. By developing and training
a Bayesian network for predicting common user tasks, the system could identify if a user
may need help (e.g., if they appear to be attempting something unsuccessfully) and can
suggest actions to assist the user with their task. A simplified version of this work was
integrated with the Microsoft Office Assistant (i.e., Clippy). The drawback of this approach
is the amount of training data required to successfully determine the user’s context. This
problem is exacerbated in the case of context-based search, since the interaction of the user
with the file system is not restricted by a well-structured interface. It might be possible to
exploit this kind of application-based context-prediction for common user applications to
further enhance the context-based search described in this thesis, but this is left as an area
of future work.

2.4 Context-aware computing · 15

2.4.3 Data mining

Data mining is a broad field that covers most activities that attempt to identify behaviors or
correlations within data sets. By some definitions, web search techniques such as PageRank,
as well as my work on context-enhanced search, fall under the domain of data mining.
Outside of link analysis, perhaps the most closely related work to context-enhanced search
is the area of identifying association rules across time-series data [3, 4, 28, 43, 61, 74]. Much
of this work focuses on finding sets of items with some minimum support, based on the
number of transactions in the data that contain the set. Theoretically, the set of association
rules between files could form a graph of inter-file relationships for use in context-enhanced
search. The problem with this approach is that, just as in traditional successor models,
this work aims to find the most prevalent relationships, which may not always be the most
important for a given search. Although it might be possible to modify existing approaches
to more broadly capture context (as I have done with successor models in this work), this
is left as possible future work.

Perhaps a more fruitful application would be to use some of the clustering work from
data mining [15, 31, 41] to collate search results before they are returned to the user, similar
to systems such as Clusty [21] and Grokker [40]. One of the potential drawbacks of context-
enhanced search is the increased number of results returned to the user. Although my work
has found that proper ranking can reduce false-positives, such clustering techniques may
further reduce the effect of false-positives by helping users quickly eliminate sets of closely
related, irrelevant results.

2.4.4 Machine learning

Most machine learning work focuses on classifying items using attributes associated with the
items identified from pre-classified training data [59]. The difficulty with applying machine
learning to the problem of inter-file relationships is gathering accurate training data; most
users are unwilling (and perhaps unable) to properly identify accurate relationships among
a large set of files.

However, machine learning could play an important role in refining existing information
about submitted queries. For example, just as on web systems, when a user submits a query,
the interactions of the user with the results set can be traced to identify which results are
most likely to be accurate. This data could then be used to train a system to help identify
correct results in future queries.

2.4.5 Summary (Context-aware computing)

Context is powerful tool for more accurately identifying a user’s information need, especially
in the world wide web, where contextual clues are readily available. Unfortunately, in the
local file system, the relational context available in the web does not exist. As a result,
most researchers have instead focused on utilizing available content information (including
content similarity) and file system attributes.

16 · Using context to assist in personal file retrieval

My work uses temporal locality to provide the relational context missing from local file
systems. Once in place, these inter-file relationships are a complementary source of context
that can be used to enhance most (if not all) of the work described above.

2.5 Wrap-up

As our need for improved data organization and search has increased in recent years, the
focus of researchers has shifted toward techniques that extend the flexibility and personal-
ization of local file storage and search. Context is a tool that many believe can significantly
improve the quality of such systems, and recent studies back this idea strongly. My work
combines techniques from various existing systems to introduce a new form of context, inter-
file relationships, to local file search. Once in place, these contextual relationships have the
potential to extend or replace many of the sources of context used in related systems.

3 Context-enhanced search

While context has many potential forms and uses, this dissertation focuses on using contex-
tual relationships identified from user access patterns to enhance traditional content-only
search. This chapter begins with a description of a specific architecture of context-enhanced
search and discusses some of the trade-offs inherent in its design. It then describes each of
the three algorithms required by this architecture.

3.1 Architectural overview

My architecture for context-enhanced search was designed with two goals in mind. The
first goal is for the interface presented to the user to remain unchanged when moving from
content-only search to context-enhanced search. This simplifies offline analysis, because
the tools for querying and result analysis are the same for both systems. It also simplifies
online studies, since the underlying search tool can be changed with no user-visible interface
change.

The second goal is for content analysis and search to be decoupled from additional
context analysis and search. There are four reasons for this. First, by keeping the two
components separate, the benefits of contextual relationships are clearer. If they were in-
tertwined, its possible that modifications made to the content analysis component could
improve the results in some undetectable fashion, and thus any measured benefits could not
be strictly attributed to context analysis. Second, this separation makes it easier to test the
system with varied content analysis methods, since underlying mechanisms are agnostic to
the surrounding context analysis techniques. Third, this decoupling simplifies analysis of
the performance and space utilization overheads of context analysis by presenting a clear
delineation between the two analysis techniques. Fourth, if benefits can be gained within
a decoupled framework, it may be possible to use contextual relationships for other tasks
without additional modifications.

The remainder of this section (1) overviews the design of existing content-only search
tools, (2) describes the added components required for context-enhanced search that meet
the requirements described above, and (3) discusses the trade-offs of our design choices.

17

18 · Using context to assist in personal file retrieval

File system

UserApplications

Content−based
Search

Results Query

Figure 3.1: Architecture of content-only search

3.1.1 Content-only search

Figure 3.1 illustrates a traditional content-only search tool. Users interact with the search
tool by submitting queries using some well-defined query language. The search tool then
consults either the file contents or a pre-computed index derived from file contents, ranks
the results, and returns this ranked list of results to the user.

In many search tools, the query language is a list of keywords. However, more advanced
search tools provide extensive, descriptive query languages that, when exploited by query
experts, have been shown to improve the results of user queries [17, 58]. Because one of the
goals of context-enhanced search is to mimic the interface to content-only search tools, it is
important that my system allow any form of query desired by the underlying content-only
search tool.

For performance reasons, many content-only search tools perform content analysis of-
fline, storing the results of the analysis in a pre-computed index that can be consulted at
query time. For context-enhanced search to match the query speed of content-only search
as closely as possible, it should also make judicious use of offline indexing.

3.1 Architectural overview · 19

Tracer

File system

User

Relation
Graph

Content−based
Search

Applications

Results

Results

Query

Context−enhanced Search

Figure 3.2: Architecture of context-enhanced search

3.1.2 Context-enhanced search

Figure 3.2 illustrates the changes required to provide context-enhanced search within the
same framework as existing content-only search tools while keeping it separated from the
internal workings of such tools. Just as in Figure 3.1, the user submits queries to the system
using a well-defined query language. Queries are then submitted to the content-only search
tool, which processes the request in the same fashion as before, returning a ranked list of
results. These results are then fed into a relation graph that stores contextual relationships.
These relationships are identified from user accesses gathered by a transparent tracing
component that sits between applications and the file system. The relation graph uses the
contextual relationships to extend the content-only results with additional contextually
related results and to re-rank the entire set of results before returning them to the user.

This design meets the previously stated goals. Because the query language is interpreted
by the content-only search tool, it remains unchanged, allowing context-enhanced search
to support unmodified query languages. Because traces are gathered independently of the
queries, they can be processed offline to create a query-optimized relation graph. This design
also provides a strict decoupling between content and context analysis by performing each
in serial.

The additional components required by context analysis, the tracer and the relation

20 · Using context to assist in personal file retrieval

graph, introduce three required algorithms. The first is a method for identifying contextual
relationships from traces. The second is a method for extending the provided content-only
results with additional contextual results using these relationships. The third is a method
for ranking results based on the provided contextual relationships. Sections 3.2, 3.3, and 3.4
provide details on these algorithms.

3.1.3 Alternate methods

I chose the requirements for context-enhanced search in this work on the basis that the goal
of this thesis is not to provide the ultimate answer on combining context with search, but
rather to explore the potential benefits of such a combination. The result is that, while my
approach is both flexible and easy to measure, there are many other approaches to merging
content and context, some of which might provide more accurate search results. This section
describes a few such approaches.

The architecture described above extends the results of content-only search, but the
system could instead extend the content index, using contextual links to propagate the con-
tent attributes of files to related neighbors. The success of work on weight propagation on
the world-wide-web (described in Chapter 2.2.2) suggests that such an approach could be
successful in personal file systems if given an accurate relationship structure. Furthermore,
the query speed of the system is likely to be better, since the relation graph manipulation
steps are all included in the indexing. The drawback of such an approach is that by integrat-
ing the relation graph with the content index, incremental updates are far more difficult.
Without separating the two components, its difficult to distinguish which attributes were
generated from content and which from context without reindexing all of the file contents
from scratch. It could be possible to tag context attributes directly and remove them before
re-indexing, but this would likely increase indexing time because attributes would have to
be re-propagated after each re-indexing.

Another potential design is to integrate contextual relationships with the network models
used in most content-only search tools [10]. In these systems, documents are connected to
terms through probabilistic links. Issued queries result in a directed acyclic graph (DAG)
that connect the query to the specific query terms and then to the relevant documents.
Context could be used to add an additional layer to the DAG that connects documents to
other documents.

By tying content and context more closely, it might be possible to extend existing query
languages to incorporate context information more directly, potentially improving search
accuracy. Furthermore, closer ties between content and context would likely improve query
speed. However, this kind of tight coupling breaks the requirements of my system, as it
would be difficult to isolate the advantages of the various changes to the system. Therefore,
I am leaving this technique as future work.

3.2 Identifying inter-file relationships · 21

3.2 Identifying inter-file relationships

The first algorithm required by the context-enhanced architecture takes the traces of user
activity as input and use them to identify the contextual relationships among individual
files. I propose using methods similar to those employed by successor models that identify
a probabilistic graph of inter-file relationships from temporal locality.

3.2.1 Basic successor models

As mentioned in Chapter 2.3, prefetching and cache hoarding use successor models to iden-
tify common patterns from user actions. The belief is that these common patterns match
to user tasks, and thus a user repeating a previously seen task will perform actions that
match the identified pattern.

The most basic successor models try to identify the next file access using history infor-
mation. Models such as first-successor or last-successor make a prediction based on a single
previously seen sequence. In the first-successor model, the first time the system sees an
access to file it will generate a permanent prefetching rule. For example, if the first access
to file A is in the sequence 〈A, B〉, the system will create a rule that always prefetches B
after an access to A. In the last-successor model, the system will update the prefetching
rule based on the most recently seen sequence. For example, if a later access sequence of
〈A, C〉 is seen, a last-successor system would update its rule to prefetch C after A in the
future. More complex models, such as k-of-n, create prefetching rules using cumulative his-
tory information, in this case choosing a successor that was seen at least k times out of the
last m accesses to the file.

The key objective of these models is to identify the next access to be performed in the
system. As a result, these models are built to capture short-term behavior of the system.
Conversely, my work is interested in long-term behaviors that capture common user tasks.

3.2.2 Probability graphs

A more long-term approach, developed by Griffioen and Appleton [39], identifies a probability
graph from traces of system activity. Each file in the system is represented as a node in the
graph, and links indicate successive accesses seen in the trace. Probabilities of transitions
are calculated as the weight of a given link divided by the total outgoing weight from a
node.

Because the probability graph is used to identify data for prefetching, it is only interested
in successive accesses. As a result, many of the choices made when generating the graph are
directed toward this task. Their system creates a single graph for the entire system, because
this most closely models the accesses seen by the shared storage subsystem. This system
only examines accesses over very short periods of time (generally less than 100 milliseconds),
because larger periods of time become less effective for prefetching. Because their system
is focused on predicting for read-ahead, it only considers exec() and open() calls, relying
on the common application behavior of reading the entire contents of a file after an open()

22 · Using context to assist in personal file retrieval

call. Finally, it only considers temporally ordered connections (i.e., file ’A’ leads to file ’B’),
since the reverse link is of little use for prefetching prediction.

3.2.3 Relation graphs

The differences in objectives between my work and file prefetching led me to consider a
super-set of graph creation algorithms that may be better suited to identifying relationships
that make up user tasks, rather than just successive accesses. To explore the space of such
relation graphs, I developed a parametrized model that provides four knobs that affect graph
creation: isolation level, window size, edge direction, and access filter.

The isolation level specifies attributes that make up separate threads of control. For
example, the isolation level could be set on the user id, meaning that interleaved accesses
between users would not create links between their files. Alternately, the isolation level
could be set on the process id, avoiding interleaved accesses between separate processes. The
isolation level can also specify attributes that result in the formation of separate graphs.
For example, the system may want separate graphs for each user’s files based on an inode’s
owner id.

The window size specifies how many unique file accesses to consider when creating
links in the graph. The window size is defined by two variables: a count that limits the
number of trace entries considered together and a time that limits the temporal distance of
accesses in the trace. Files accessed within the window are connected through links in the
graph as determined by the edge direction and access filter (described below). The window
is maintained as a FIFO queue of files, with files re-accessed within a window being re-
queued but not generating additional links. In traditional probability graphs, the window
size is set to have a count of two (examining only successive accesses) and a time of 10-100
milliseconds. In relation graphs, both the count and the time are generally much larger to
more accurately capture full user tasks.

The edge direction specifies whether relationships are strictly ordered. If edges are di-
rected, then they maintain the temporal ordering found in probability graphs. If edges are
undirected, then the causal nature of temporal ordering is lost (potentially allowing tasks
to be captured more accurately). For example, a user reading in a piece of code, and then
writing that code to another file indicates information flow forward in time, but without
indicating that in the graph, the causality is lost.

The access filter specifies which system calls are of interest and how relationships are
formed between them. Specifically, it categorizes the files associated with a system into
two classes: input and output. When a file is classified as an input, it is placed into the
window. When a file is classified as an output, a link is created from all of the inputs in the
window to the output (if a link already exists, then the weight of the link is incremented).
For example, in traditional probability graphs only exec() and open() calls are considered
and are classified as both input and output (i.e., they always form relationships). Another
possibility might be to consider only read() and write() calls, with read() calls classified
as inputs and write() calls classified as outputs (i.e., a causal relationship is assumed from
read() to write()). This approach would result in a sequence like read(A), read(B),

3.2 Identifying inter-file relationships · 23

�������������
�������������
�������������
�������������

��

��

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�
 �������

�������
�������
�������

�������
�������
�������
������� ���

���
���
���

�������
�������
�������
�������

��

��

Relation GraphAccess
Filter

Isolation
Level

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
����� ���

���
���
���
���

���
���
���
���
���

��

��

Trace
Ti

m
e

Context Model

Context Model

Output

Context Model

Input Window

Figure 3.3: Generalized successor model

write(C) forming links from A to C and B to C, but not A to B.
Figure 3.3 illustrates the framework for the modified successor models used in this work,

showing how each of the four components described above fit into the system. On the left
is the trace of accesses seen in the system, which is scanned in time order, and on the right
is a set of relation graphs created from the traces.

Each entry is first passed through the isolation level de-multiplexer, which decides which
context model the access belongs to. Within the context model, the entry is next passed
through the access filter. The access filter marks each file in the entry as being an input, an
output, both, or neither. These classifications allow the filter to specify the causal relation-
ship of files in the trace. If the access filter does not classify a file as either an input or an
output, it is dropped. If a file is classified as an input, it is placed into the input window
(limited by the window size). If a file is an output, a link is added from each of the files in the
input window to the output file (or if a link already exists, its weight is incremented), shown
as dashed arrows in the relation graph. The distinction between input and output files is
made to maintain temporal ordering in the case where directed links are used. Classifying
files as both inputs and outputs removes the causal relationships between different access
types (e.g., write() calls could point to read() calls), but not the temporal causality that
is specified by the link direction.

It is interesting to note that by setting the parameters correctly, the original probability
graphs can still be created. Specifically, they are created when there is a single context
model, an input window size of 2, an access filter that considers exec() and open() calls

24 · Using context to assist in personal file retrieval

to be both inputs and outputs, and directed links.

3.2.4 Trade-offs

Although flexible in design, relation graphs still cannot capture certain kinds of relation-
ships. This section outlines several of the draw-backs and trade-offs inherent in my relation
graph model.

Behavioral knowledge

Because the relation graph is a summary of user actions, some of the semantic knowledge
contained within the original sequence of user actions is lost. Specifically, flattening long
sequences of actions into a single graph may result in a loss of some causal relationships,
since the context of one sequence may get hidden by other, stronger contexts for overlapping
sets of files. For example, a sequence of events such as 〈A,B,C,B,C,E〉 may be the common
behavior of an application when the user is using files A and E, but when flattened in the
graph, the connection between A and E may be diminished by the connection from A to B
and C, particularly if B and C are heavily connected to many other files.

Potentially, choosing an appropriate window size may help to diminish the problems
associated with this kind of application behavior, but it is insufficient alone. The search
and ranking algorithms described in Sections 3.3 and 3.4 try to alleviate this problem, but
a better understanding of particular application behavior could further reduce its effects.
Potential areas of future work to automatically identify application behavior are briefly
described in Chapter 8.

Hyperlinks

The design of the relation graph is similar to the graph of pages on the world wide web
but, unlike the web, fails to capture keywords that are relevant to each of the links in the
graph. While the information in the graph is still valuable, there could be added value by
finding methods to convert these links into hyperlinks (i.e., links with associated keywords).
Because of the breadth of potential techniques and its tangential nature to the goal of this
thesis, examining how to capture, assign, and utilize such keywords is left as future work.

Hysteresis

Another problem with maintaining a relation graph is that it is very difficult to perform
hysteresis, because the link weights are not attributed with any particular time.1 This
makes it impossible to decay weights on a per-link basis, and, if the entire graph were
decayed during each update, infrequently accessed files would eventually lend no weight to
the rankings, even when they should.

1Hysteresis is also a problem in traditional probability graphs and, because of the same difficulties, has
never been fully addressed [39].

3.3 Searching relationships · 25

As a result, the approach discussed in this thesis does not eliminate links from the
graph until search time. While this does not appear to pose problems for storage space (as
discussed in Chapter 6.2), there is a potential problem that a user’s context for a file may
change over time. This shift in context can result in reduced accuracy of the relation graph
and is discussed in Chapter 7.4.

The decision to avoid link weight normalization also has ramifications for the searching
and ranking algorithms that are briefly discussed in Sections 3.3 and 3.4. In fact, some of the
choices in the design of these algorithms were made to account for this potential problem.

Existing systems

Because the relation graph is built using trace data, there are two potential problems for
existing systems. The first is that trace information may not be available in some systems,
rendering this technique impossible. The second is that, even if traces can be gathered,
there is currently no method to retro-fit relation information to an existing system. This
means that files that are not accessed in the future cannot be located using contextual clues.
Although it might be possible to attempt to retrofit identified behaviors from existing traces
to untraced files, such predicted user behavior could result in inaccurate relationships.

3.2.5 Summary (Identifying inter-file relationships)

Despite some of the drawbacks discussed above, relation graphs provide a computationally
simple, yet effective, method for identifying and storing inter-file relationships. In most
cases, the design of the relation graph erred on the side of flexibility and simplicity in order
to provide a computationally feasible implementation, while allowing room for exploration
of a variety of techniques. Although there may be better techniques, starting with these
provides intuition as to which areas are worth closer examination and will likely produce
the most future gains.

3.3 Searching relationships

The second algorithm required by context-enhanced search is a method of extending the re-
sults of a content-only search with additional contextually related files. The goal of context-
enhanced search is to find files that are contextually relevant to the keywords presented by
the user. Conceptually, some, if not all, of the files located using content-only search should
be relevant to the user’s information need, as has been shown in previous file search work.
As such, files contextually related to those results should also have relevance to the user’s
information need.

My approach to finding contextually related files is to take the results of a content-only
search as input, and perform a breadth-first expansion on the relation graph, using the inputs
as starting points in the graph. After the expansion is complete, the resulting nodes form a
smaller result graph, which contains only the nodes found during the search and the links
between them.

26 · Using context to assist in personal file retrieval

A

C

B

D

E

G

F

100

8

2 8 65

7

Figure 3.4: Relation graph example

My algorithm limits the number of files in the result graph using two parameters: a
weight cutoff and a path length. Limiting the search serves two important functions. The
first is to reduce the computational complexity of the ranking algorithm by limiting the
number of files it must consider. The second is to reduce the number of false positives in
the results that are returned to the user.

3.3.1 Weight cutoff

The goal for the weight cutoff is to avoid following incorrectly formed connections between
files. Incorrect connections form from cases such as user context switches (i.e., the user starts
working on an unrelated file for some reason), “launcher” applications (e.g., a shell launches
an application which opens a file, but the shell is unrelated to the file), or configuration files
(e.g., a text editor’s configuration file is unrelated to the files being edited).

The weight cutoff deals primarily with user context switches, by ignoring transient,
“lightweight” links. Initially, lightweight was defined to be a scalar value based on the
number of times the link had been seen. However, because the relation graph’s link weights
are never normalized (see Section 3.2.4), a single number cannot capture the concept of
lightweight across all nodes in the graph. For example, if a user accesses file A frequently
and file B infrequently, then, over time, the invalid links created for file A may outweigh
the valid links created for file B.

As a result, the weight cutoff instead uses link weight ratios, which act as an online
normalization method. Each link is assigned two ratios: (1) its weight compared to the
outgoing weight of its source node, and (2) its weight compared to the incoming weight of
its sink node. These two ratios are then compared against a cutoff ratio. If both ratios fall
beneath the cutoff, then the link is ignored during the search. This addresses the example
above, because the total weight of file A would be significantly higher than the total weight
of file B.

3.4 Ranking the results · 27

Figure 3.4 illustrates an example relation graph. Assuming that D is the starting point
of a search, consider the link from D to B. In this case, both the outgoing and incoming
ratios are 20%. Thus, if the weight cutoff is set above 20%, the link would be ignored during
search.

The choice to only drop links for which both ratios beneath the cutoff was made to avoid
cutting all incoming links to a given node. For example, consider the link from E to F in
Figure 3.4. In this case, although the outgoing ratio is only 5%, the incoming ratio is 100%.
Thus, even if the link’s outgoing ratio is beneath the cutoff, it may be best to keep the
link, since there would be no other way to locate that node during a search. This presents
a trade-off: the decision to err on the side of keeping these links forces the system to rely
more on the ranking algorithm to cull false-positives, since more incorrect nodes are likely
to be found during a search.

3.3.2 Path length

The goal for the path length is to avoid including files from the relation graph that are are
too far removed from the context of the original content-only search results. It is specified as
the maximum number of steps to take from a content-only result node during the breadth-
first expansion. Although the ranking algorithm will generally rank these “too-distant” files
low in the results, omitting them from the ranking process can, in some cases, significantly
reduce the computational overhead of the ranking algorithm.

3.3.3 Trade-offs

An alternative to these search parameters would be to always consider the entire relation
graph during any search, and trust the ranking algorithm to provide the user with the
most relevant data first. The advantage of such an approach is that it doesn’t proactively
remove potential paths of interest from the search space. Assuming that false-positives
can be successfully pruned during ranking, such an approach might improve the quality of
returned results.

The disadvantage of such an approach is that the query processing time of such a system
would grow with the size of the relation graph. By introducing parameters on the search
space, a system can limit the effect of graph size on query performance by tuning the weight
cutoff, path length, and number of content-only results considered. This gives the system
tunable knobs to make a direct trade-off between accuracy and performance.

3.4 Ranking the results

Once the search algorithm has identified the result graph, the ranking algorithm orders
the files in the graph to present the user with the most relevant results first. Traditionally,
content-only systems use methods such as term frequency and inverse document frequency to
identify which files most accurately represent the specified keywords; however, with context-

28 · Using context to assist in personal file retrieval

enhanced search, many of the resulting documents contain none of the keywords, making
these techniques insufficient.

A solution to this problem is to combine the confidence provided with the content-
only search results with the link structure of the result graph to identify the most relevant
documents. I considered two basic approaches. The first is to use the followed path weights
to propagate confidence values from the content-only results to contextually related files.
The second is to use existing web ranking algorithms that utilize link structure to rank
results.

3.4.1 Basic Breadth First Expansion (Basic-BFE)

Basic-BFE uses the rankings provided by content-search to guide the rankings of contextu-
ally related items. Close relations, and relations with multiple paths to them, will receive
more weight than distant relations with few incoming paths. Intuitively, this matches the
user’s activity: if a file is rarely used in association with content-matched files, it will receive
a low rank, and vice-versa.

Because link weights are assigned based on frequency, and different applications ac-
cess files at different rates (even when performing similar tasks), Basic-BFE tries to limit
this variability in its algorithms. Specifically, it uses an alpha parameter, described in the
equations below, that is designed to reduce link weight variability.

Let N be the set of all nodes in the result graph, P be the path length used to generate
the result graph, and α be a tunable parameter. Each n ∈ N is assigned a weight wn0 by
the content-based search scheme. If a file is not ranked by content analysis, then wn0 = 0.
The following algorithm is then run for P iterations.

Let Em be the set of all incoming edges to node m. Let enm ∈ Em be the percentage of
the outgoing edge weight at n for a given edge from n to m. Assuming that this is the ith

iteration of the algorithm, then let:

wmi
=

∑

enm∈Em

wn(i−1)
· [enm · α + (1 − α)] (3.1)

The value wmi
represents all of the weight pushed to node m during iteration i of the

algorithm, and α dictates how much to trust the specific weighting of an edge. After all
runs of the algorithm, the total weight of each node is then:

wn =
P∑

i=0

wni
(3.2)

This sum, wn, represents the contributions of all contextual relationship paths to node
n plus the contribution of its original content ranking. The set of nodes in N are then sorted
by weight from highest to lowest to create the final ranking.

As an example of how the algorithm works, assume that the graph in figure 3.4 is the
result graph, the path length is 2, the weight cutoff is 10%, α = 0.25, and the content-based

3.4 Ranking the results · 29

search returns wD0 = 4 and wB0 = 2. Consider wB. On the first pass of the algorithm, wB1

is updated based on wD0 and wE0 . In this case, wE0 = 0, so only wD0 affects its value:

wB1 = 4 · [(2/10) · 0.25 + 0.75] = 3.2 (3.3)

On the second pass, wE1 = 3.8 (using the formula from above) and wD1 = 0 , thus:

wB2 = 3.8 · [(8/113) · 0.25 + 0.75] = 2.92 (3.4)

The final weight wB is then the sum of these weights, 2 + 3.2 + 2.92 = 8.12.

3.4.2 Web ranking algorithms

This dissertation considers two web ranking algorithms: PageRank and HITS. Although
other algorithms could be considered, the objective of this work is not to make an exhaustive
study of the available ranking algorithms, but to show the value of context-enhanced search
and to understand which classes of algorithms are likely to succeed based on the structure
of the relation graph.

PageRank

PageRank is the ranking algorithm used by the Google web search engine [16]. It takes
the graph of hyperlinks in the web and calculates the principal eigenvector of a stochastic
transition matrix describing this graph. This eigenvector describes the probabilities for
reaching a particular node on a random walk of the graph. This probability is referred to
as a page’s PageRank.

This dissertation uses an implementation of the Power method described in [44] to cal-
culate the PageRank of each file in the relation graph. Unfortunately, Google’s method of
merging content search results with PageRank is not clearly documented2, thus I imple-
mented three possible uses for a file’s PageRank.

The first implementation, PR-only, ignores the content rankings, and uses only PageR-
ank to rank the files within the result graph. The second implementation, PR-before, applies
a file’s PageRank to its content-based ranking (i.e., take the product of the original ranking
and the PageRank as the new ranking) and then runs the Basic-BFE algorithm. The third
implementation, PR-after, runs the Basic-BFE algorithm and then applies the PageRank
to the final results.

HITS

The HITS algorithm attempts to locate authority and hub nodes within a graph. Authority
nodes are those with incoming links from many hub nodes, while hub nodes are those with
outgoing links to many authority nodes. In the web, authorities are analogous to pages
linked many times for a particular topic (e.g., the official CNN web site), while hubs are

2“Finally, the IR score is combined with PageRank to give a final rank to the document.”[16]

30 · Using context to assist in personal file retrieval

analogous to pages with lists of links to authorities (e.g., a page with links to all news
websites).

HITS identifies authorities and hubs using three steps. First, it runs a content-based
search to locate an initial set of nodes. Second, it creates a sub-graph of the relation graph
by locating all nodes with incoming/outgoing links from/to the starting nodes. Third, it
runs a recursive algorithm to locate the “principal eigenvectors of a pair of matrices Mauth

and Mhub derived from the link structure” [46]. These eigenvectors indicate the authority
and hub probabilities for each node.

This dissertation considers two separate implementations of HITS. The first implemen-
tation, HITS-original, runs an unmodified version of HITS using the relation graph. The
second implementation, HITS-new, begins with the result graph derived in Section 3.3,
and then runs only the third part of the HITS algorithm. The evaluation in Chapter 7.1
examines both the hub and authority rankings of each implementation.

3.4.3 Super-nodes

Due to the behavior and interaction of many applications, the relation graphs generated by
the algorithms in Section 3.2.3 often contain nodes that are strongly connected but have
little relevance to the user. For example, the bash login shell maintains a history file that
tracks recently executed commands. Because it is updated every time a user performs an
action, it becomes strongly connected to many files over time.

These super-nodes can mislead graph-based ranking algorithms into believing that they
and their neighbors are more relevant than they should be. For example, most web ranking
algorithms are designed to find authority pages that are heavily referenced by other pages
on the web, which can match closely with the behavior exhibited by super-nodes.3 To try to
reduce the misleading nature of super-nodes, I examined four ways of modifying the Basic-
BFE ranking algorithm to detect them and weaken their relevance: PR-detect, clique-detect,
stddev-detect, and percentile-detect.

The PR-detect algorithm uses the PageRank algorithm to try to detect super-nodes. As
mentioned above, web-ranking algorithms tend to rank super-nodes highly, because super-
nodes mimic some of the behaviors of authority nodes on the web. PR-detect is similar to
the PR-after scheme described in Section 3.4.2, except that instead of taking the product
of the original rank and the PageRank, PR-detect takes the quotient.

The clique-detect algorithm uses the “clustering coefficient” [75] of the graph formed by
a node and its neighbors to try to detect super-nodes. The clustering coefficient of this graph
is a measure of how close the node and its neighbors are to forming a clique.4 Equation 3.5
gives the formal definition of the clustering coeffcient Cn of the graph formed by node n
and its neighbors. Let Mn be the set of neighbors of node n.

3Full discussion of the adverse affects of super-nodes can be found in Chapter 7.1.
4For simplicity purposes, links in the relation graph are treated as undirected when creating the graph

of a node and its neighbors.

3.4 Ranking the results · 31

Cn =
|Mn| +

∑
m∈Mn

|Mn

⋂
Mm|

(|Mn|)2 − |Mn|
(3.5)

A node’s clustering coefficient is thus defined as the ratio of the number of links between
it and its neighbors to the number of links that would exist if it and its neighbors formed a
clique. The intuition behind this approach is that super-nodes will form very poor cliques
with their neighbors because many of their neighbors will be unrelated and, thus, not
connected to each other. Ideally, taking the product of a node’s clustering coefficient and
its original rank should reduce the relevance of super-nodes.

The stddev-detect algorithm uses the number of links connected to a node to try to
detect super-nodes. In this approach, the system calculates both the average number of
links going to and from each node in the relation graph and the standard deviation. It
then penalizes links coming from or going to nodes that exceed the average by one or more
standard deviations, with the number of deviations for node n being notated as Doutn and
Dinn

, respectively. Specifically, it applies a penalty β for each deviation above the average,
modifying equation 3.1 to be equation 3.6:

wmi
=

∑

enm∈Em

wn(i−1)
· βDoutn · βDinm · [enm · α + (1 − α)] (3.6)

This reduces the effect of super-nodes by reducing both their relevance from incoming
links (βDinm) and their effect on the relevance of their neighbors (βDoutn). The potential
drawback of this approach is that the use of standard deviation relies on the assumption
that the distribution of link counts is Gaussian.

The percentile-detect algorithm, like stddev-detect, also uses the number of links con-
nected to a node to try to detect super-nodes, but instead penalizes only those nodes with
link counts that are part of the 95th percentile and above. Specifically, it applies a penalty
β as shown in equation 3.7:

wmi
=

∑

enm∈Em

wn(i−1)
· βoutn · βinm

· [enm · α + (1 − α)] (3.7)

In the normal case, β = 1, thus there is no penalty to most nodes. Nodes above the 95th
percentile for outgoing or incoming links are penalized by β = β95 while nodes above the
99th percentile are penalized by β = β99.

While exploring algorithms for reducing the effect of super-nodes on relevance, I chose
to only modify the Basic-BFE algorithm. The main reason for this was that the Basic-BFE
algorithm outperformed the other ranking schemes during my evaluation; I believed that,
by modifying the best performing scheme, I would likely end up with the best possible
end result. Of the algorithms that I examined, the last three, clique-detect, stddev-detect,
and percentile-detect, could be applied to the web-ranking algorithms. The clique-detect
algorithm could be applied unmodified, while the stddev-detect and percentile-detect could
be used to modify link probabilities before running PageRank or HITS. Examination of
these applications is left as future work.

32 · Using context to assist in personal file retrieval

3.4.4 Trade-offs

Despite the breadth of ranking algorithms described above, the collection explored here is far
from exhaustive. As the exploration of context-enhanced search continues, the distinction in
behavior that differentiates web search from file system search may become clearer, helping
to identify how existing web techniques can be more successfully applied to file system
search. Furthermore, as related web ranking techniques such as relevance propagation are
studied more, it may be useful to integrate these techniques more closely with the algorithms
I have described above.

3.5 Wrap-up

This chapter describes an architecture and set of algorithms for implementing context-
enhanced search, with the goal of being able to explore the effects of applying context on
both the utility and performance of personal file system search. Each set of algorithms also
provides various parameters that enable more thorough exploration of the space of context-
enhanced search, with the goal of understanding which techniques are most effective in
satisfying user queries. The next chapter describes two implementations of this architecture,
describing details of the components that gather and store the data required by context-
enhanced search.

4 Connections

To evaluate context-enhanced search, I built Connections, an implementation of the context-
enhanced search architecture described in Chapter 3. The key components of the implemen-
tation are the tracer that gathers system call traces from the system, the database for storing
and querying the relation graph, and the content analysis system.

4.1 Tracing

To run Connections under both Linux and Microsoft Windows requires a separate tracing
infrastructure for each system. In both cases, the tracing component logs file system calls
to a file that can later be read by the indexing component of Connections; however, the
specific details of each implementation differ.

4.1.1 Linux

The Linux implementation of Connections was developed to explore the parameter space
of the algorithms described in Chapter 3. As such, the tracing component was designed to
capture as much information as possible, providing the widest array of information.

Architecture

Figure 4.1 illustrates the Linux tracing infrastructure. The Linux tracer is implemented
as a kernel module that intercepts calls between the application and the file system by
interposing wrapper calls on the kernel’s system call table.1 It runs under both 2.4 and 2.6
versions of Linux, although a kernel patch is required under 2.6 kernels to export the system
call table to loaded modules.

My tracing module is similar in design to other Linux tracing tools, such as the Linux
Trace Toolkit [81]. When a call is first seen, a timestamp is generated and space is reserved
in the trace buffer for that call. When the call is completed, missing arguments (such as
the return value) are filled in and stored in the buffer. Once a certain threshold of data has
been gathered, data is flushed from the buffer to a trace file stored in the file system. A
virtual device driver provides applications with an interface to control the tracer: deciding

1To allow for file descriptor reconstruction, the tracer also watches some process management calls such
as fork() and exec().

33

34 · Using context to assist in personal file retrieval

Applications

Trace
Buffer

StoreReserve

Trace
File

Tracer

Linux Kernel

Flush

File System

Control
Device

Figure 4.1: Linux tracer components

which calls should be traced, setting the size of the trace buffer, and starting/stopping the
tracing.

The key difference between my module and most other tracing tools for Linux is that my
module will block applications to avoid missing trace entries, rather than discarding entries.
Although this can reduce system performance, I chose to err on the side of having complete
information. Furthermore, using a trace buffer of 1 MB made such blocking extremely
infrequent. As such, the overheads of my Linux tracer are similar to those of other tracing
systems (less than 2.5% when measuring system call events) [81].

State reconstruction

The watched calls are listed in Table 4.1. Because Linux’s file system interface follows
POSIX guidelines, all data accesses are made through file descriptors. As such, Connections
must recreate the system’s process state, when scanning the trace, to match file descriptors
to file names.

The traced “Process Management” and “File Descriptor Management” calls are used for
this purpose. While scanning a trace, Connections maintains the set of active processes as
well as the file descriptors and working directory associated with each. Using the “Process
Management” calls, Connections tracks file descriptors passed to child processes through
fork() calls, implicit close() calls caused by process execve() and exit(), and working
directory updates through chdir() and chroot() calls. Using the “File Descriptor Manage-
ment” calls, Connections tracks the file name of newly created file descriptors by combining

4.1 Tracing · 35

System Call Description

File descriptor management

open(), creat() Opens a file, returning a file descriptor
close() Closes a given file descriptor
dup(), dup2() Copies a file descriptor

Data access

read(), readv(), pread() Reads data from a file through a file descriptor
write(), writev(), pwrite() Writes data to a file through a file descriptor
truncate(), ftruncate() Removes data from a file

Directory management

link() Creates a link to a file in a directory
mkdir() Creates a new direcotry and links it
mknod() Creates a link to a device interface
rename() Relinks a file
rmdir() Unlinks a directory
symlink() Creates a soft link to a file
unlink() Unlinks a file
getdents(), readdir() Reads entries from a directory
readlink() Reads the contents of a soft link

Metadata management

access(), chmod(), fchmod() Read/write the permission bits of a file
chown(), lchown(), fchown() Write the ownership of a file
utime(), utimes() Read/write timestamps of a file
stat(), lstat(), fstat() Read all of a file’s metadata

Process management

fork(), vfork(), clone() Fork a process
exit() Exit a process
execve() Execute a file’s contents in this process
chdir(), fchdir() Change the working directory of a process
chroot() Change the root directory of a process

Table 4.1: Traced calls in Linux

36 · Using context to assist in personal file retrieval

the working directory of the process with the name passed to open() and creat() calls,
and uses dup() and close() calls to track the active file descriptors for each process.

Filtering

The access filter described in Chapter 3.2.3 must choose how it filters based on the available
system calls. As such, the Linux version of Connections implements three access filters: open,
read/write, and all-calls. The open filter treats executed files of execve() and files accessed
by open() calls as both inputs and outputs, similarly to traditional probability graphs. The
read/write filter treats files accessed by read() calls as inputs and files accessed by write()
calls as outputs. The all-calls filter uses all of the data access, directory management, and
metadata management calls, treating calls that read information as inputs and calls that
write information as outputs. Specifically, files accessed by read(), access(), utime(), and
stat calls, as well as the starting file of link(), rename, and symlink calls, are treated
as inputs; files accessed by write(), truncate(), chmod(), chown(), utimes(), as well
as the newly created file of link(), rename, and symlink calls, are treated as outputs.

4.1.2 Microsoft Windows

Unlike the Linux implementation, the Microsoft Windows implementation of Connections
was designed specifically for the online study described in Chapter 5. As such, its tracing
infrastructure is designed to minimize overheads and to target the specific information
required for the parameter settings used in the online study.

Architecture

To trace Microsoft Windows machines, Connections uses VTrace, a publicly available tracing
tool developed by Jacob Lorch that runs under Windows 2000, Windows XP, and Windows
2003 Server [50]. The general architecture of VTrace is similar to the Linux tracer, but
VTrace has more flexibility in calls that it can trace and can also trace events passed from
user-space applications.

To reduce the overheads of tracing and the size of trace files, Connections uses a modified
version of VTrace that removes all calls not associated with the file system. Further, due to
the frequency at which Windows accesses system files, Connections’s modified VTrace also
provides an option to filter file system calls at the tracing layer based on a user-defined set
of directories.

State reconstruction

The watched calls are listed in Table 4.2. Data accesses in Microsoft Windows use file
handles, similar in behavior to POSIX file descriptors. Unlike the Linux tracer, however,
VTrace performs some of the state reconstruction at trace time. Specifically, it keeps an
internal table of recently seen file handles. Any handle not in the table seen during tracing
is resolved to a full file path, and a special FileName trace entry is made to map the file

4.2 Database layout and interaction · 37

System Call Description

Read() Reads data from a file through a file handle
Write() Writes data to a file through a file handle
ProcessCreate() Create a new process from a given executable file
FileName Indicates the full file path of a newly seen file handle

Table 4.2: Traced calls in Microsoft Windows

handle to the resolved path. This removes the need for Connections to track file handles as
they are duplicated or passed to child processes.2 Thus, instead of reconstructing the entire
system state, Connections only keeps a mapping from 〈pid, file handle〉 pairs to file names,
updated by FileName entries. The file names for all other entries can then be identified by
consulting the file handle table.

Filtering

The Windows version of Connections implements a read/write filter that acts similarly to
the Linux read/write filter. The read/write filter treats files accessed by Read() calls as
inputs and files accessed by Write() calls as outputs. Although it would have been possible
to implement other filtering schemes, the purpose of the Microsoft Windows implementation
was for use in the online study described in Chapter 5, and thus it was optimized for the
chosen parameters.

4.2 Database layout and interaction

Connections implements the relation graph using BerkeleyDB to store and retrieve the rela-
tionships. BerkeleyDB implements tables using a fast, b-tree implementation that maintains
ACID properties.

Connections maintains five tables in the database. The FileID table maps full file paths
(stored as arbitrary strings) to node IDs (stored as 4 byte integers). The IDFile table maps
node IDs to full file paths. Note that the data storage for the FileID and IDFile tables are
shared, with separate indexes (one index on the node ID, the other on the file path). The
NodeOut table maps node IDs to a structure describing the outgoing links from that node.
The NodeIn table maps node IDs to a structure describing the incoming links to that node.
The PageRank table maps node IDs to the PageRank of that node in the graph (stored
as a 4 byte floating point value). The structure used to store link information in both the
NodeOut and NodeIn tables is an array of tuples containing a 4 byte weight and 4 byte
node ID.

2Although already present in VTrace, this file name reconstruction also simplified the implementation of
user-defined directory filtering.

38 · Using context to assist in personal file retrieval

During indexing, Connections updates the tables to reflect the new inter-file relation-
ships identified using the algorithm described in Chapter 3.2.3. The FileID and IDFile tables
are updated only when new files are accessed by the user, with node IDs being assigned
in sequential order. During trace analysis, Connections maintains a cache of identified rela-
tionships. After trace analysis is complete (or if the indexing system runs low on memory)
the NodeOut and NodeIn tables are updated from the cache. Once the NodeOut table has
been fully updated, Connections uses it to run PageRank analysis, updating the values in
the PageRank table.

During querying, Connections consults the tables to run the searching and ranking
algorithms described in Chapters 3.3 and 3.4. The first step of a query is to convert the list
of results from content analysis from file names into node IDs using the FileID table. The
second step is to run the search algorithm, consulting both the NodeOut and NodeIn tables
to perform weight cutoff while performing the breadth-first expansion. The third step is to
run the ranking algorithm, using either the NodeOut table (in the case of Basic-BFE and
HITS) and/or the PageRank table (in the case of PageRank). The fourth step is to convert
the node IDs back into file paths to return to the user.

4.3 Content-only search tools

Although Connections’s context-enhanced search is algorithmically agnostic to the under-
lying content analysis tool, its current implementation is designed to take input from Indri
(version 2.1) [49]. The Indri toolkit is a research-driven content-only analysis system devel-
oped primarily for web search. I chose Indri because it uses many of the latest techniques
in information retrieval, has performed well at the TREC conference for several years [2, 1],
has a publicly available code-base, provides confidence values on its ranked results, and
provides a mechanism to tag documents with searchable metadata. Also, Indri’s flexible
query language allows exploration of alternate content analysis techniques without having
to change the underlying tools; and, although designed for the web, Indri performs no link
analysis, making it an ideal candidate for use in Connections.

The drawback of Indri is that its web-oriented design makes assumptions about data
contents and the utility of information such as file names and paths. As such, Connections
required two modifications to Indri’s indexing process: identifying which files contained
indexable content (to avoid polluting the index with binary data) and indexing not only a
file’s contents but also its file name and path (this is especially important in the case were
a file’s contents cannot be indexed).

To identify which files were content-indexable, I made use of the Unix file command.
The file program identifies a file’s contents using a combination of file system metadata
information to identify special file types (e.g., symlinks or empty files), magic number tests
to identify file types with common header formats, and content analysis to identify files
with console-readable contents. Any files that were identified as containing parsable text3

3This includes Indri-parsable formats such as text, PDF, MS PowerPoint, MS Word, HTML and XML.

4.3 Content-only search tools · 39

were included in the content-indexing process. All other files had only their file name and
path included in the index.

To index a file’s name and path, I made use of Indri’s searchable metadata feature. I
modified Indri’s indexing process to take the path of the file and decompose it into a set of
words broken on non-alphanumeric character boundaries. Each of these words were included
into the file’s metadata under the “filepath” heading, providing a searchable “filepath” index
that could be used during querying.

To make queries agnostic to the underlying content analysis technique at use, queries
were provided as a set of keywords k1 through kn and an optional set of file types. For
example, a user searching for photos of a birthday party might use the keywords 〈birthday
party〉 and the file types 〈jpeg, gif, bmp〉. The methodology for mapping keyword queries
to the underlying query technique are described below for the three techniques explored in
Chapter 7.2.

#weight(1.0 #combine(k1, ..., kn) 2.0 #combine(k1.filepath, ..., kn.filepath)) (4.1)

Equation 4.1 describes Connections’s default mechanism for mapping keyword queries to
Indri’s underlying query language. The #combine() operator considers each of the keywords
with equal weight when satisfying the query. The #weight() operator considers each portion
of the query with different, specified weights. In this case, all keywords are considered
equally, and the files’ contents are given half as much weight as the files’ names. The file
type filter was applied following the search using a boolean OR operation (i.e., any file with
one of the matching file types was displayed).

#band(k1 ... kn) (4.2)

Equation 4.2 describes how Connections maps keyword queries into an Indri query that
simulates the behavior of Glimpse [54]. This query uses a boolean AND operator to find
files that have contents matching each of the keywords in the query. Just as in Glimpse, this
query ignores filenames entirely. The file type filter was applied following the search using
a boolean OR operation (i.e., any file with one of the matching file types was displayed).

The last content analysis technique explored uses the query translation described in
Equation 4.1, but adds Indri’s implementation of pseudo-relevance feedback [79, 10]. Pseudo-
relevance feedback uses content similarity to identify additional keywords that are relevant
among top-ranked results. These additional keywords are then used to modify and re-rank
the content results before they are passed to the relation graph. The two parameters required
are the number of results to consider for content similarity and the maximum number of
additional terms to generate, for which Connections uses Indri’s default values: 10 and 20,
respectively.

40 · Using context to assist in personal file retrieval

4.4 Wrap-up

Connections is a flexible, cross-platform context-enhanced search tool designed specifically
for comparing context-enhanced search to traditional content-only search. The next two
chapters evaluate Connections using offline analysis methods and an online user study.

5 Utility evaluation

The performance of any search tool has two aspects. The first is the utility of the search
tool (can users find what they are looking for?), and the second is the speed with which it
performs. This chapter deals with the the utility of context-enhanced search both in terms
of result quality and user experience, Chapter 6 evalutes the performance overheads of
context-enhanced search, and Chapter 7 evaluates the sensitivity of the system to changes
in the underlying parameter settings and algorithms.

The utility evalution includes the results of two user studies: an offline study performed
with Linux users and an online study performed with Windows users. The advantage of
offline analysis is that a wider array of schemes can be compared with far less user interaction
than is required in online analysis. The advantage of online analysis is that aspects of a
user’s interaction with the tool can be studied, as opposed to strict recall and precision
based metrics.

This chapter is divided into two sections. The first section describes the evaluation
methodology for both studies, including how user information is gathered and the metrics
used. The second section overviews the results from each study, describing the advantages
of context-enhanced search.

5.1 Methodology

The methodologies for the two user studies differ significantly. The first study, which I
refer to as the offline study, was designed to gather information required for traditional
information retrieval metrics (i.e., recall and precision). This study also focused on metrics
that could be evaluated independently of user behavior, providing a way to analyze the
sensitivity of the system to different parameters and algorithms. The second study, which I
refer to as the online study, was designed to gather information required to answer questions
more related to the user’s interaction with the system over time (e.g., average success rate,
average search time), focusing more on the utility experienced by the user.

5.1.1 Offline study

To compare the utility of content-only search to context-enhanced search, the offline study
borrowed and adapted evaluation techniques from information retrieval [10]. Traditionally,
content-only search tools are evaluated using large public corpora of data, such as archived

41

42 · Using context to assist in personal file retrieval

newswire data or collections of publicly accessible websites. Queries are generated by experts
and evaluated by individuals familiar with the material. These “oracle” results are then
compared to the results generated by the system under evaluation.

Unfortunately, three subtle differences make file system search, and especially context-
enhanced search, more difficult to evaluate. First, because the data is personal, only its
owner can create meaningful queries and act as expert for evaluating a query and generating
“oracle” results. Second, the nature of the queries (searching for old data) demand that
traces exist over a long period of time; Connections cannot provide context-enhanced results
if it has no traces that describe the usage of the desired data. Third, queries for data that
are not accessed during the trace period provide no information about the accuracy of
context-enhanced search. Because we already know that context-enhanced search cannot
assist in these cases, it is preferable that users generate queries for data accessed during the
trace period, placing additional constraints on the query generation process.

Metrics

Recall and precision measure the effectiveness of the search system in matching the oracle
results. A system’s recall is the number of relevant documents retrieved divided by the total
number specified by the oracle. A system’s precision is the number of relevant documents
retrieved divided by the total number of documents retrieved.

Unfortunately, only the user of a system knows their data well enough to act as oracle
for their queries, and the users in this study were not willing to examine every file in their
systems to find all of the correct results for each query. To account for this, I used a technique
taken from information retrieval known as pooling [10]. Pooling combines the results from
a number of different search techniques, generating a set of results with good coverage of
relevant files. Users then specify the correct results from this smaller set, generating the
oracle results for each query. The potential disadvantage of pooling is that there may be
valid results that are not included in the set presented to the user and, thus, will not be
marked as correct by the user. Fortunately, while this will potentially skew the recall of all of
the systems under comparison higher (since they will appear to include a higher percentage
of correct results), the relative comparison between systems is still valid (since they are all
measured against the same standard).

For this study, I pooled the first hundred results from a number of different runs of
Connections with wide variety of indexing and searching parameters, including the default
settings being evaluated, and presented them to users.1 Users then chose the relevant doc-
uments from this pooled set of files to create the oracle.

I compare the recall and precision of different systems using two techniques. The first
technique is to examine the recall/precision curve of each system. This curve plots the
precision of the two systems at each of 11 standard recall levels (0% - 100% in 10% incre-
ments) [10]. At each recall level n, the curve plots the highest precision seen between n and
n + 1. If a given recall level is not achieved for a given query, its precision at that level is

1Specifically, all of the parameters explored in section 7.

5.1 Methodology · 43

reported as 0%. To calculate the user-averaged recall/precision values over a set of queries,
the precision of each query at a given recall level is calculated, the precision of the queries
for a given user are averaged, and then the individual user results are averaged across all
users. Examining this curve shows how well a system ranks the results that it generates.

The second technique is to examine the recall and precision of each system with fixed
numbers of results.2 Most search systems present only a few results to the user at a time
(e.g., a page with the first 10 results), requiring prompting from the user for more results.
For example, result cutoffs of 10, 20, and 30 may map to 1, 2, or 3 pages of results, after
which many users may give up or try a different query. Examining the recall and precision at
low result cutoffs indicates how quickly a user could locate relevant data with the system.
Examining the recall and precision at the last returned result shows how many relevant
results can be located using the system. In this case, results are examined until either (1)
recall reaches 100% or (2) all results returned by the system are considered.

Experimental setup

To gather context data, I traced the desktop computers of six computer science researchers
for a period of two years. Users submitted and evaluated queries at two points during this
time, once after six months of tracing and again after two years of tracing, for a total of 52
queries. After evaluation, 18 of these queries were discarded because neither Connections
nor Indri returned correct results within the first 30, leaving a total of 34 usable queries.

Queries were in the keyword query format used by Connections and were mapped to
Indri using the technique described in Chapter 4.3. The default parameter settings of Con-
nections’s relation graph search algorithm were a path length of 3 and a weight cutoff
of 2%. The default ranking algorithm was Basic-BFE with an α setting of 0.5 and the
percentile-detect super-node detection algorithm with β95 = 10−2 and β99 = 10−4.3

Using the traces, I generated two relation graphs for each user, one from the first six
months of traces and one from the entire two years of traces, using the following default
parameters: a 30 second relation window, a directed edge style, and a read/write operation
filter.4

To match the content index with the context index, I built two content indexes for Indri,
the first using the state of the user’s data after the initial six months of tracing and the
second using the state of the user’s data after the entire two years of tracing. I chose to
only index files from the user’s specified home directories, with the assumption that most
users create and store their files in that location. Furthermore, indexing this data alone, as
opposed to the entire file system, reduces Indri’s false positive rate.

2Assuming that the system returns this many results and hasn’t already reached 100% recall before
reaching the cutoff.

3I chose these settings after performing the sensitivity analysis described in Section 7.1.
4Again, I chose these settings after performing the sensitivity analysis described in Section 7.1.

44 · Using context to assist in personal file retrieval

5.1.2 Online study

The online study moves away from the traditional information retrieval metrics of precision
and recall and instead focuses on metrics that measure user-percieved improvements. This
choice was precipitated by two aspects of the online system. First, because the system’s
interface was designed to act as a traditional file search tool, I wanted to minimize any
additional interactions required from the user. Because having the user mark all correct
results in the system is more effort-intensive than allowed, it was impossible to get accurate
precision and recall numbers for a search. Second, gathering all of the results required
for pooling can often be quite computationally intensive and, if the search tool performed
poorly, users would be far less likely to use it.

Metrics

The online study uses four metrics to measure how a user percieves the search tool’s utility.
The first metric (and perhaps most relevant) is whether or not a search was successful; i.e.,
did the user find what they were looking for? If the user can more often find what they are
searching for, then the tool is more useful. The second metric is the amount of time spent
examining results. This indicates how quickly the system can find correct results for the
user; if two systems have identical success rates, but system A allows the user to succeed
in half the time, then system A is likely percieved as being more useful. The third metric
is the number of results examined while scanning the results. Similarly to the amount of
time spent searching, if the number of results examined is fewer for successful searches,
then it is likely that the user found what they were looking for with less effort. The fourth
metric is the retry rate: how many unsuccessful searches are performed (in sequence) before
a successful search is completed? Often, a user performing an unsuccessful search will try
the search again with slightly different, but synonymous, keywords. This metric helps to
measure how accurately a system can match the keywords provided by the user to the data
they desire.

Exerimental setup

The online study was run in three phases. During the first phase, users were presented
with the results of content-only search; by mimicking the behavior of traditional file system
search tools, this phase allowed the users to become familiar with the interface of the tool
without altering expectations about the tool’s returned results. During the second phase,
users were presented with the results of the context-enhanced search; this phase measured
the utility of the returned results at a point when users were already familiar with the
search interface. During the third phase, users were again presented with the results of the
content-only search; this phase measured the effect of switching back to content-only search,
ensuring that the utility seen in phase two was not due to increased familiarity with the
tool. Users were informed about the techniques being studied and the study methodology,
but were not informed as to the length of phases or which phase was active.

5.2 Overview · 45

Entry Description

OPEN Start time of the query.
VIEW Viewing a particular range of results.
CLICK Double-clicking or copying a particular result.
SURVEY User specified success/failure, and re-query attempts.

Table 5.1: Log entries generated by the online user study interface

Given that keyword queries are agnostic to the underlying retrieval technique (as dis-
cussed in Chapter 4), I was able to provide a query interface for Microsoft Windows that
could transparently run a query on either Connections or Indri. Once users had submitted
a query, results were displayed as sets of ten results, with “next” and “prev” buttons for
navigation. Users could double-click results to open a file or copy a result’s location into the
clipboard. When the user closed the result list, a final window would open, surveying them
to determine if the query was a success or failure and offering them a chance to perform a
new query. Simultaneously, the query interface logged all user actions to gather information
required to calculate the metrics described above.

Table 5.1 lists the different log entries generated by the query interface. When a user
first submits a query, the interface generates an OPEN entry, marking the time of the
query. Whenever the interface displays a set of results to the user (directly after a query
or whenever the “next” or “prev” button is clicked), it generates a VIEW entry, specifying
which results were displayed. Whenever a user double-clicks or copies a result, the interface
generates a CLICK entry, specifying which result was accessed. After the user completes
the survey, the interface generates a SURVEY entry, specifying success or failure and if the
user attempted another query.

These four entries are sufficient to calculate each of the four metrics described above.
The SURVEY entry logs success rates as specified by the user. The amount of time spent
examining the results of a particular query can be estimated by subtracting the timestamp
of the OPEN entry (always the first entry in the log) from that of the SURVEY entry (always
the last entry in the log). The number of results examined is calculated with two values: the
number of items accessed by the user, as logged by CLICK entries, and the number of items
viewed by the user, as logged by VIEW entries. The retry rate is calculated as the number
of successful queries that required more than one query to attain success. Any SURVEY
entry that registers failure is checked for a retry, and the combination of a retry with a
second query log containing an OPEN entry within one minute of the retry is considered a
re-query.

5.2 Overview

The objective of these studies is to explore the utility of context-based inter-file relationships
as applied to search. This section discusses a direct comparison of Connections’s context-

46 · Using context to assist in personal file retrieval

Cutoff Recall % Precision %
Indri Connections Indri Connections

10 24 32 44 52
20 28 40 38 43
30 32 45 34 39
50 39 54 32 36
100 43 58 30 34

Last returned result 45 80 26 27

Table 5.2: Precision and recall at set cutoffs from the offline user study

enhanced search to Indri’s content-only search from the two user studies.

5.2.1 Offline results

Figure 5.1 illustrates the benefits of adding context information to traditional content-only
search, as shown by a precision/recall curve user-averaged over the the 34 queries for both
Indri and Connections. At each recall level, Connections’s context-enhanced search improves
precision by 10% to 20%. A paired t-test across the queries shows a p-value less than .05 for
the precision at each recall level and for the average increase in precision, indicating that
the precision of Connections is “significnatly” higher than that of Indri alone. The result is
two-fold. First, because precision is higher, the user is likely to find what they are looking
for more quickly, since correct results are presented to the user sooner. Second, because
100% recall is achieved more often (thus the higher precision at this level), the user is more
likely to find everything that pertains to a given query.

The advantages of context-enhanced search can also be seen when looking at the pre-
cision and recall at different results cutoffs. Table 5.2 lists the user-averaged precision and
recall of Indri and Connections for the 34 queries at six different result cutoffs. Again, this
shows the improvements provided by context-enhanced search; Connections improves both
recall and precision at each cutoff. Particularly interesting are the results at a cutoff of 10
results and at the last returned result. At a cutoff of 10, Connections improves precision
from 44% to 52%, making it more likely for a user to see a correct result on the first “page”
returned by the system. At the last returned result, Connections improves recall from 45%
to 80%, while still maintaining the same level of precision. This means that, with the same
false-positive rate across results, Connections was able to return more of the results that
the user was interested in for the queries. This makes it more likely that a user could find
all of the data relevant to a given topic.

One of the key advantages of Connections is that it does not rely on file contents to
identify relevant data. As such, it is able to locate relevant results, even when the desired
results do not contain parsable contents (e.g., images, music). Figure 5.2a shows the user-
averaged precision/recall curve for both Indri and Connections over just those queries where

5.2 Overview · 47

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Connections
Indri

Recall % Precision %
Indri Connections

0 56 69
10 54 69
20 43 61
30 36 55
40 33 49
50 29 43
60 18 34
70 14 29
80 12 26
90 10 23
100 9 20

average 28 43

Figure 5.1: Average precision/recall curve over all queries in the offline user study

48 · Using context to assist in personal file retrieval

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Connections
Indri

(a) Overview of non-text searches

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Connections
Indri

(b) Overview of text-only searches

Figure 5.2: Breakdown of non-text versus text-only queries

the correct results include non-texual files. In these cases, Connections’s ability to locate
files that contain no parsable content increases precision by 30% to 40% across all recall
levels.

Conversely, figure 5.2b shows the user-averaged precision/recall curve for both Indri and
Connections over just those queries where the correct results include only files with parsable,
textual contents. In these cases, the benefits of Connections is far less significant, increasing
precision by only 3% to 10%. Although most of Connections’s benefits are derived from its
ability to correctly identify relevant non-texual results, the contexual relationships formed
from repeated user behavior can help to identify the most relevant results from a set of
files. So while it does not find significantly more correct results during text-only searches
(as shown by its only slight improvement in precision at 100% recall) it is able to provide
a slightly more accurate ranking in some cases (thus the improvement in precision at lower
recall levels).

The benefits of Connections, in both cases, stem from its ability to locate results that
are relevant to the user specified keywords, but do not contain the keywords themselves (or
make very infrequent use of them). Connections locates these files because the user accesses
them together with files that do contain the specified keywords. By identifying which of these
new results are most relevant and placing them correctly in the rankings, Connections is
able to successfully combine the new results with the content results, providing not only
higher recall but also higher precision. While this technique is far more effective in the case
where the desired data has no keywords (i.e., non-text data), there are still cases in text-
only queries where the user’s specified keywords do not match the contents of the desired
files. Examples of this behavior from individual queries are discussed below.

5.2 Overview · 49

Category Query Indri Connections
Description Num Results R % P % Results R % P %

Non-text 1 14 0 0 30 100 37
queries 2 8 0 0 29 100 7

3 30 0 0 30 47 23
4 2 25 100 12 38 25
5 0 0 0 18 100 89
6 30 23 10 30 46 20
7 30 12 87 30 13 100
8 30 47 53 30 47 53
9 30 31 37 30 31 37
10 30 50 57 30 50 57
11 30 56 73 30 56 73
12 30 13 27 30 13 27

Text 13 30 17 3 30 33 7
queries 14 30 20 60 30 24 73

15 30 22 93 30 22 93
16 30 20 60 30 24 73
17 30 31 17 30 31 17
18 23 100 30 26 100 27
19 30 0 0 30 1 7
20 30 57 27 30 57 27
21 30 100 3 30 0 0
22 30 20 7 30 60 20
23 30 8 57 30 10 67
24 30 50 3 30 50 3
25 30 15 13 30 15 13
26 30 17 97 30 17 97
27 30 5 30 30 6 37
28 6 75 50 6 75 50
29 30 40 7 30 40 7
30 30 5 17 30 5 17
31 2 100 100 2 100 100
32 1 100 100 1 100 100
33 30 80 40 30 80 40
34 30 25 3 30 25 3

Table 5.3: Overview at cutoff of 30 results

50 · Using context to assist in personal file retrieval

Category Query Query File Types
Description Num Terms (optional)

Non-text 1 postal service mp3
queries 2 songs artist Led Zeppelin mp3

3 15-768 storage systems homework ps, sxw
4 comic strips gif, jpg, png
5 continuous reorg visit day eps, bmp, wmf, ai, pdf
6 dreamcast games
7 attack
8 florence
9 rome
10 venice
11 noel
12 mother

Text 13 able ICAC ps, pdf
queries 14 pasis read write ps, pdf

15 erasure code ps, pdf
16 optimistic versioning ps, pdf
17 USENIX Anaheim California pdf
18 bus ridegold schedule pdf
19 anneka winters
20 wedding marriage 2004
21 train yoga sport
22 ahmer noah
23 Dushyanth
24 Evans
25 fellowship
26 machine learning
27 magpie
28 communists socialists
29 latex guide
30 project management
31 austin cover letter
32 dan ellard protocol
33 relocation package
34 srds lazy verification

Table 5.4: List of query terms for each of the 34 queries

5.2 Overview · 51

Individual queries

To get a sense of how context is improving individual query results, I consider each of the
queries in isolation. Table 5.3 shows the precision and recall of each query at a cutoff of 30
results and table 5.4 lists the query terms for each query. In the case of typed queries (i.e.,
queries 1 through 5 and 13 through 18), the content-only system might have returned no
results of the correct type, but remember that all returned results are used as the basis of
the context-enhanced search, not just those of the matching type. It is also important to
remember that, while many of the queries have identical recall and precision at a cutoff of
30 results, most queries have higher recall under context-enhanced search when more results
are considered (e.g., a cutoff of 100).

For several of the queries, Connections is able to dramatically improve the recall and
precision of the query. This is particularly true in the case of non-textual queries, where
traditional content-analysis techniques are severly limited in their available information. For
example, in queries 1 and 2, the user was searching for music files they had downloaded off
the web. Before the user downloaded the files, the mozilla browser had read cached copies
of the pages the user was visiting. These cached HTML pages were later indexed by Indri,
and lead Connections to identify the desired files. This behavior exhibited by the mozilla
browser also accounts for the success of queries 4, 6 and 22. While it is fortuitous that (1)
the standard mozilla cache was large enough to capture at least one day’s worth of activity,
allowing it to be indexed and (2) the behavior of mozilla was such that it lends itself well to
temporal relationships, these results indicate that application specified relationships could
be a fruitful area of future work.

Another example of how Connections was able to leverage context to identify non-textual
data is shown in query 5. In this case, the user was searching for the image of a poster they
had created. The images and text on the poster in many cases had been taken from already
create text and images (in many cases figures from papers which already had contextual
clues). These files were read in and used to update the poster, creating relationships that
allowed Connections to identify both the poster and related images. A similar connection
from a user’s homework assignment to the desired images is seen in query 3.

In queries 13, 14, 16, and 27 the users were searching for documents related to a particu-
lar topic or project. Despite these documents being content-indexable, Connections was able
to improve both the recall and precision on these queries. The reason for this is that, while
Indri often found all of the desired documents, they did not show up until far beyond the 30
document cutoff. By leveraging usage information, Connections could determine which files
were more relevant, and rank them higher in the results. For example, in query 14, the user
was searching for papers related to a particular project. In some cases, the word “pasis” ap-
peared only in the pathname to the desired file, and was not directly referenced in the text
(and the terms “read” and “write” were very common throughout the user’s documents).
Conversely, “pasis” would show up in the text of related work that referenced the project,
sometimes multiple times, forcing the rank of these less-related documents higher than the
desired documents. Connections was able to leverage the usage patterns to strengthen the
desired documents through the relationships formed between the many files in the “pasis”

52 · Using context to assist in personal file retrieval

directories and the resulting PDF created when the paper was built. A similar result is seen
in query 27, where the user is looking for information about the “magpie” project.

In query 23 the desired files are related to a co-authored paper. While many of the
relevent files are content indexable, just as with the user searching for the poster, some of
the indicated files did not contain the desired keyword (the author name), and thus were
not returned by the content-only system. For example, in this query the user appears to also
be interested in scripts used to generate results for the co-authored paper. The feedback
loop of generating results, creating a graph, and then refining the scripts seen in the traces
allows Connections to identify the scripts as part of the context for the paper, even though
they contain no relevant keywords and reside in a separate directory.

In several of the queries, the benefits of Connections are not with its increased precision,
but instead are related to its increased recall. For example, in queries 8, 9 and 10 the user
was searching for images and text related to particular parts of a trip they took to Italy. In
these queries, Connections identified the most relevant documents as being those returned
by Indri (identified primarily thanks to the user’s well-formed naming scheme), thus the
identical recall and precision at a cutoff of 30 results. However, later results included a
number of additional, related images that were created at the same time, but whose names
did not include the given query term.

Examining some of the queries where Connections was unable to improve search effec-
tiveness (or in some cases reduced it) provides interesting insights. For query 20 the most
relevant files located by Indri were mailbox files. Such “meta-files” are composed of several
smaller sub-units of data. Because the trace data cannot distinguish among relationships for
individual sub-units, these files often have misleading edges, making it difficult for Connec-
tions to provide accurate results. This problem indicates a need for some level of application
assistance (e.g., storing individual emails in separate files). Another important aspect of this
is that because these files often contain a large number of links (due to the diversity of the
context of individual emails), the results returned by Connections are not significantly mod-
ified from the original Indri ranking. Thus, at a cutoff of 30, the performance of the two
systems are very similar.

In query 19, the desired files are related to an individual that the user knows. In this
case, again, the content results are dominated by email cache files, resulting in poor recall
and precision for both systems at a cutoff of 30. Connections has slightly higher recall
because of of the relevant files are updated in conjunction with accesses to many of the other
relevant files. Specifically, these files appear to contain contact information that includes the
requested individual. Updates to other related contacts in these files are made in conjunction
with accesses to other files returned by content. This, in turn, pushes up the relevance of
these two files.

For query 21 one of the search terms had multiple meanings within the user’s data. The
user specified “training” to refer to their workout schedule, but they also happened to be
working on a project related to machine learning that often contained the word “training.”
These disjoint uses of a single word indicate that some level of result clustering could be
useful in presenting results to users. By clustering contextually related results together, the

5.2 Overview · 53

ranks of disjoint sets could potentially be adjusted to include some results from each cluster.

5.2.2 Online results

The online study was run for a total of four months, with the three phases taking two
months, one month, and one month, respectively. Users were located through means of
distribution lists and bulletin board systems at Carnegie Mellon University. Twenty-two
users signed up for the study, although only six used the tool throughout all three phases
of the study.5 The demographics for these six users are listed in Table 5.5.

Table 5.6 describes the statistics gathered during each phase of the study. The first part
of the table lists the total number of queries and the number of query sequences. A query
sequence combines queries that make up a series of retries. The second part of the table
lists the average time spent, pages viewed and results clicked for each query sequence in a
phase. The third part of the table lists the success rate for each sequence, the number of
successful sequences, the percentage of successful sequences that included retries, and the
average number queries in a successful sequence.

While there is not enough data from this study to show significant improvements from
context-enhanced search, the results do suggest three possible take-aways. First, during
phase one of the study, the success rate is lower than during phase two or three. Given that
phases one and three used the same underlying query technique, this suggests that during
phase one, users may have felt unfamiliar with the tool and, over time, became better at
querying with the tool (thus the improvement in success rate and the drop in number of
pages viewed).

Second, the success rates of the context-enhanced phase and the second content-only
phase are the same. The similar success rates between the context and content phases suggest
that, in the Windows environment, context is not significantly increasing the number of files
that a user can find. Anecdotal evidence through user surveys seems to indicate that this
is largely due to the kind of data stored and searched for by users. Most of the users in the
study seemed to be searching for content-indexable data (e.g., Microsoft Word files), with
most of the failures coming from the tool’s inability to search through web and email data.

Third, despite having the same success rates, the phases two and three have different
retry rates. Although most user data could be indexed by content, several of the user
content queries required refinement to achieve success. Context may be reducing the need
for this refinement by identifying the set of files that were most relevant to the user for
those keywords, presenting the correct results to the user without the need for query term
refinement. This is important because, while it does not reduce the time required for an
individual query, it does reduce the number of queries required to find a piece of data,
thus reducing the overall time, page views, and result clicks for a query sequence. This
reduction in time and effort is one of the goals of any search engine and, while more data
will be needed from future studies to confirm these results, the available data is suggestive
of results similar to those of the offline study.

5None of the users from the offline study were included in the online study.

54 · Using context to assist in personal file retrieval

Gender Count
Male 5

Female 1

Computer skill Count
1 0
2 0
3 1
4 1
5 4

Use of computer
in profession Count

1 0
2 0
3 0
4 0
5 6

Age Count
18-25 1
26-35 3
36-45 1
46-55 1

Use of this computer Count
Personal 1
Business 2

Both 3

Hours per day spent
using this computer Count

< 1 1
1-3 0
3-5 1
5-7 0
7+ 4

Table 5.5: Reported demographic information

5.2 Overview · 55

Metric Phase one Phase two Phase three
(Content-only) (Context-enhanced) (Content-only)

Total queries 41 19 18
Query sequences 30 15 12

Time spent per seq. 389s 182s 286s
Pages viewed per seq. 6.8 2.9 5.0
Results clicked per seq. 2.4 1.8 3.2

Sequence success rate 27% 40% 42%
Successful sequences 8 6 5

Sequence retry rate 63% 17% 60%
Queries per success 1.7 1.2 1.8

Table 5.6: Results of the online user study

5.2.3 Wrap-up

The overall results of these two studies is that context information can improve the quality
of a user’s searching. As shown in the offline results, context can improve the recall and
precision of searches by finding more of the data a user is interested in and ranking it
more accurately. Particularly, the largest benefits from Connections was its ability to locate
documents with non-parsable contents (such as images and music) and the increased recall
of related documents that do not directly contain the requested keywords. Similar benefits
of context-enhanced search are suggested by the results of the second study where, even
when most user data is content indexable, the system is able to find the results the user is
interested in and rank them more appropriately with less required user input. These results
also answer the implicit question posed by my thesis statement: Connection’s automatically
gathered context information provides it with more information about each file, which in
turn improves the effectiveness of its file indexing and search.

56 · Using context to assist in personal file retrieval

6 Performance evaluation

In traditional content-only search, the performance costs include time required to scan the
file data to create the index, the space required to store the index, and the time required
to query the index. Similarly, there are three added performance costs of context-enhanced
search: the additional indexing time required to build the relation graph from traces, the
additional disk space required to store the relation graph, and the additional time required to
search the relation graph during a query. In this chapter, I measure each of these overheads,
discuss the source of the overheads, and describe potential methods for reducing these
overheads further.

All performance experiments were run using Linux 2.4.22 on an Intel Xeon 3Ghz with
2GB RAM using a Seagate Barracuda 7200RPM, 250GB disk drive. In all cases, BerkeleyDB
was configured to use a 64MB buffer cache and 2MB log cache. The traces used in these
experiments are the same as those described in Chapter 5 for the offline experiment.

6.1 Indexing performance

In Connections, the indexing phase consists of both content analysis and merging file sys-
tem traces into the relation-graph. Although the startup cost of content indexing is high,
the incremental costs are low enough that many users already accept them. Furthermore,
content-only indexing times can vary widely based on the technique (e.g., 30 to 700 sec-
onds per gigabyte) and are an area of related but tangential ongoing work by a number of
groups [20], and so are not analyzed here. Indri’s reported indexing times were just under
3 minutes per gigabyte [20].

With context analysis, there is no startup cost, because no record of temporal relation-
ships exists initially. To evaluate the incremental cost of context indexing, I measured the
time required to merge each day of traces into the corresponding machine’s relation graph
over the six months of traces. The average indexing time for a single day of traces was 24
seconds with a standard deviation of 24 seconds. The longest observed indexing time was
370 seconds.

These overheads are low enough that we believe most users will find them acceptable.
Even if the machine is constantly in use while powered on, a worst-case 7 minute per-day
indexing time is likely low enough to run in the background with little impact on foreground
work.

57

58 · Using context to assist in personal file retrieval

 0

 50

 100

 150

 200

 1 2 3 4 5 6

S
iz

e
(M

B
)

Months

Machine A
Machine B
Machine C
Machine D
Machine E
Machine F

Figure 6.1: Growth of the relation graph space utilization

6.2 Space utilization

The space utilization of Connections is a combination of the space required by Indri’s
content-only index and the space required to maintain the relation graph. Similarly to
indexing times, the size of content-only indexes can vary widely based on the technique and
are an area of related but tangential ongoing work by a number of groups, and so are not
analyzed here. Indri’s reported index sizes were between 25% and 33% of the original data
size [22].

Because the relation graph is a representation of how a user’s files are connected to each
other, its size cannot grow larger than O(n+n2), where n is the number of files in the user’s
file system. This limit represents a worst-case scenario, where each file is related to every
other file in the system. Thus, the questions to answer are: (1) how much space is required
to maintain the relation graph for a graph of n nodes and m edges, and (2) what are the
growth characteristics for the ratio between n and m? To examine these two questions, I
ran the six months of traces for each system through Connections’s indexing algorithms and
measured the number of nodes, edges, and total space utilization after each day.

Figures 6.1, 6.2, and 6.3 illustrate the size of the relation graph, the average number
of links connected to a node (i.e., link density), and the number of nodes in the relation
graph, respectively, for each traced machine after each month of tracing was added to the
graph. The most noticable result is that the context index is quite small. With user data

6.2 Space utilization · 59

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6

A
ve

ra
ge

 n
um

be
r o

f l
in

ks
 p

er
 n

od
e

Months

Machine A
Machine B
Machine C
Machine D
Machine E
Machine F

Figure 6.2: Growth of the number of links per node in the relation graph

sets ranging from 10 GB to 14 GB in size, even the largest index is only 1% the size of the
smallest data set.

Given the naive design of Connections’s relation graph database, the expected storage
overhead for a node is the size of the mappings from nodeID (8 bytes) to file name (approx-
imately 128 bytes) and back, and the expected storage overhead for an edge is the space
required to store the link (8 bytes) and its weight (8 bytes) for both the incoming and out-
going node. This totals to 144 + (m · 32), where m is the average number of links per node
in the graph. However, this estimate is below the reported sizes; for example, examining
machine E, the estimate at 6 months is 70 MB while the measured size was 107 MB.

The cause of this descrepency in expected size to actual size is a side-effect of Berke-
leyDB’s storage mechanisms. First, indexing the tables incurs a small overhead, although
this is expected to be 5% or less of the data size. Second, because BerkeleyDB uses sector
sized pages, nodes with few links (e.g., a single link) still require 512 bytes to store their
link information. Given the high variability in link counts, this inefficiency accounts for the
additional space used by the database, indicating that this would be an important aspect
to consider in the design of a more space-conserving link database.

In regards to the growth characteristics of the graph, Figure 6.2 indicates that the link
density does not have worst-case linear growth and instead is fairly stable. After some
warm-up period (which is different for each user), the average number of links in the graph
seem to stablize, indicating that hysteresis will likely be more important for result quality

60 · Using context to assist in personal file retrieval

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6

N
od

e
C

ou
nt

 (t
ho

us
an

ds
)

Months

Machine A
Machine B
Machine C
Machine D
Machine E
Machine F

Figure 6.3: Growth of the number of nodes in the relation graph

than for graph size maintenance. The reason for this non-exponential graph growth is that
a user’s working set size does not change much over time. In the worst case, all nodes in
the system could become connected to all others, but users do not access all of their files
concurrently because they can only manage a small subset of their files at once. The result
is a linear growth in graph size, with a constant ratio between nodes and links.

The one exception to this is machine B, where there is a drastic spike in the number of
nodes between months 3 and 4 combined with a corresponding drop in the average number
of links per node. This was caused by the introduction of a large number of of new files
added to the machine, as the user joined ongoing work on a new project. Because the user
did not later access many of the files initially added, the ratio of nodes to links dropped
overall, but the ratio among actively accessed files remained around 100.

6.3 Querying performance

A third overhead introduced by context-enhanced search is the increase in query time caused
by searching through the relation graph and re-ranking results. To measure this overhead,
I measured the execution time of each of the 25 queries, separating the time required for
content querying and context querying. The average query time was 3 seconds, with 1 second
of that used for content querying and 2 seconds of that used for context querying. Despite
this 200% increase in query time, a 3 second query time may be small enough that most

6.4 Wrap-up · 61

Machine Time σ

A 1.8s 0.2
B 0.9s 0.5
C 0.9s 0.5
D 0.6s 0.1
E 5.8s 0.1
F 1.1s 0.2

Table 6.1: Average query performance for each machine

users are willing to accept it. Furthermore, examining the query times of individual relation
graphs indicates that improvements in link storage could have significant improvements in
query performance.

Table 6.1 lists the average context query time for each machine using the default relation
graph generated from the six months of traces for that machine. Interestingly, profiling the
query engine indicates that for all machines, more than 85% of the time is spent on file
I/O (with the I/O time for machine E taking up more than 95% of the time), indicating
that a more efficient on-disk link structure layout could provide significant improvements
in query time. The much lower performance for machine E is caused by cache misses; the
relation graph size of machine E is large enough that queries do not fit entirely within the
64 MB database cache. Increasing the cache size of BerkeleyDB from 64 MB to 256 MB
(thus reducing the load time of the link structure to a single 107 MB disk read) reduces the
average query time on machine E to 1.71 seconds.

6.4 Wrap-up

The performance analysis indicates that most of the overheads in Connections are small and
would have little effect on the deployment of such a system. These results also indicate that
the largest improvements in performance could all be gained by changes to the structure of
the link database. By finding a layout that clusters closely related items and reduces the
space required to store link information, it may be possible to reduce the I/O time involved
with searching and updating the relation graph.

62 · Using context to assist in personal file retrieval

7 Sensitivity analysis

This chapter uses the traces and data gathered during the offline study to examine the
algorithms that make up Connections, providing insight into how contextual relationships
are formed and some of the potential pit-falls of such a system. It begins with a sensitiv-
ity analysis of the specific algorithms within Connections and then discusses the effect of
changes to the underlying content analysis tool, the effect of using user input as a contextual
clue, and the effect of graph growth over time on result quality.

7.1 Parameter sensitivity

One of the design objectives of Connections was flexibility. Providing a large number of
tuning knobs allows experimentation that provides an understanding of how contextual
relationships are formed and which relationships contain useful information for search. To
this end, I ran a sensitivity analysis to answer two questions. First, how sensitive are the
parameter settings to change, i.e., how far can the knobs be turned before they begin to
affect result quality? Second, when the parameters are set outside of the sensitivity bounds,
what changes occur in the graph that affect result quality?

Just as in any retrieval system, there is a tension within Connections between false-
positives and false-negatives. False-positives in Connections are usually caused by super-
nodes, nodes that are highly connected within the relation graph, creating irrelevant rela-
tionships that lead to incorrect results. False-positives have the largest impact on precision
when they appear early in the results (i.e., at low recall levels), because precision is measured
based on the number of examined results.

False-negatives in Connections are usually caused by parameters that are too restrictive,
preventing the system from following relevant paths in the relation graph, thus missing
relevant results. False-negatives have the largest impact on precision at high recall levels for
two reasons. First, lost results are usually the least connected nodes in the relation graph
and, thus, the least relevant (and lowest ranked) of the correct results. Second, missing
results prevent the system from achieving high recall levels, thus dropping precision to 0%
at these levels.

The introduction of super-node detection techniques reduce the sensitivity of the system
to parameter settings by reducing the effect of false-positives created by super-nodes, al-
though large deviations in the parameter settings that significantly increase link counts can
make even relevant nodes look like super-nodes, thus defeating the advantages of super-node

63

64 · Using context to assist in personal file retrieval

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

User ID
Process ID

Access Tree
Indri

Figure 7.1: Sensitivity to the isolation level

detection techniques. The end result is that, when combined with super-node detection, pa-
rameters are surprisingly insensitive to change, although the best performing settings result
in similar performance with or without super-node detection.

Although I ran the full matrix of parameter settings (more than 200,000 parameter
combinations), this section examines the trade-offs within each parameter individually, using
the settings listed in Section 5.1.1 as a baseline. The one exception to this is the use of stddev-
detect as the default super-node detection technique. This was chosen over percentile-detect
because it most effectively reduces the effect of super-nodes in the case where parameters
are set incorrectly. Each of the graphs presented in this section also contains Indri’s content-
only search results as a second comparison point. To better highlight the differences between
the parameter settings, graphs are shown with a precision scale that only goes up to 50%
rather than 100%.

7.1.1 Indexing parameters

The indexing parameters determine how links are formed within the relation graph and
include the isolation level, access filter, window size, and edge direction. Because relevant
links are built up over time, there is a tension within these parameters between ignoring
irrelevant links to avoid false-positives and including links that may become stronger over
time even if they appear irrelevant now.

7.1 Parameter sensitivity · 65

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Read/Read Filter
Open Filter

Read/Write Filter
All-ops Filter

Indri

Figure 7.2: Sensitivity to the access filter

Isolation level: Figure 7.1 illustrates the results of the three different isolation levels
provided by Connections: user ID (the default level), process ID, and access tree. Process ID
and access tree isolation underperform user ID isolation because they miss many important
inter-process interactions that the user invokes based on intent rather than based on direct
application behavior. For example, a user reading PDFs while working on a word document
(e.g., working on a report) would not have their context fully captured by any process-level
isolation technique. Interestingly, while access tree isolation more broadly connects files in
the relation graph, process ID isolation performs slightly better. This is because process
ID and access tree isolation capture many of the same relationships; the output file of one
process in the tree is often the input file for another. However, access tree isolation introduces
many more false positives, since the application-specific files that cause most super-nodes
become more strongly connected in the graph. The result is that the additional false positives
drive down precision. Overall, while more intricate isolation levels may outperform any of
the techniques offered by Connections, it is likely that methods that can identify complete
user “tasks,” rather than only application-specific behaviors, will be more successful.

Access filter: Figure 7.2 illustrates the results of the three different access filters avail-
able in Connections: read/read, open, read/write (the default filter), and all-ops. Of the
four filters, the read/write filter performs the best. This is largely due to the fact that it
introduces the fewest number of false-positives. Although the other filters all have the po-
tential to increase recall further than the read/write filter, the increased noise reduces the

66 · Using context to assist in personal file retrieval

effectiveness of this increased recall.
Interestingly, while intuitively read/read connections could be considered the most use-

ful, in practice the large number of read/read connections in normal system operation
introduce two problems that lead to significantly reduced precision. First, the increase in
extra links flattens the link count distribution making some valid nodes look like super-
nodes (and vice-versa). This renders the super-node detection ineffective; as an anomoly
detector it begins to lump valid nodes and invalid nodes together when they have similar
link counts. Second, the increase in link weights (often for irrelevant connections) reduce
the impact of valid connections. This is a problem because Connections has no techniques
to completely eliminate irrelevant links. The alpha parameter helps to reduce the effect of
incorrect link counts, but it assumes that relative link weights are approximately correct
(i.e., it assumes that links with more weight are more relevant, even if it uses less of the
weight). The introduction of read-read links will sometimes invert this assumption (some
of the irrelevant links have more weight).

As an example of the problems created by read-read links, consider the following two
files, “core” and “submit.ps,” which were returned as results during a read-read search for
query 27. The file “core” is a debugging memory dump of a failed application, and is not
relevant to the search. The file “submit.ps” is a paper marked as relevant to the search by
the user.

In the read-write case, the core file is rarely linked to in the relation graph, because
it is written very infrequently; as such, none of the files found through content point to
“core” with any strength, and so it is never returned. In the read-read case, the core file
has more, heavier links in the relation graph, although not enough to mark it as a super-
node. This is caused by a lengthy debugging session that spans a large number of relation
windows. During the debugging session, accesses to files that are unrelated to “core,” but
relevant to the search terms, cause the creation of misleading links between these two disjoint
contexts. During the search, these misleading links lead from relevant content results to the
irrelevant “core” file. In this particular case, web cache files, auto-save files, mail cache files,
music files, trace files, several pdf files, and a number of other miscellaneous files become
connected to “core,” mostly caused by concurrent tasks (e.g., listening to music, checking
email, browsing the web). Of these connected files, some are marked as relevant by content
search, thus adding the “core” file to the list of results. This problem is further exacerbated
as connections from “core” to other, also unrelated, files are added to the results.

Conversely, the addition of read-read links to the relation graph has little effect on the
connectedness of “submit.ps,” as most of its relevant links were identified from when the
user created (i.e., compiled) the document. The result is that, in the read-read case, “core”
is ranked higher in the results that “submit.ps” because the weight of its links is, in many
cases, higher (the inversion of link weights mentioned above).

Despite this deficiency for search applications, where results must be targeted specifically
to the user’s information need and too many false positives can cause both frustration and
failure, read-read links may be more useful in organizational tasks. For example, read-read
links could present the user with a few different contexts in which “core” or “submit.ps”

7.1 Parameter sensitivity · 67

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

10 seconds
30 seconds

1 minute
2 minute
4 minute

Indri

Figure 7.3: Sensitivity to the window size

could fall, and then the user could select the set of files that are most relevant. The system
could then use this information to group or manage data. Exploring these options, and the
viability of using read-read links in other ways for search, is an area of future work.

The open filter’s reduced precision is caused by the introduction of large numbers of
application-specific relationships. Applications often read a large number of application-
specific files during operation that are irrelevant to the user. Because open() calls are
made before both read()s and write()s, the result is a combination of read-write, read-
read, and write-read relationships. In particular, the introduction of read-read relationships
causes many of the problems discussed above.

The all-ops filter’s reduced precision is caused by irrelevant relationships formed by the
extra information used from the trace. The frequency of some system calls, such as access(),
increase the number of ephemeral links in the graph. This increase in average link counts
impacts the super-node detection (particularly the stddev-detect scheme), increasing the
number of false-positives. Furthermore, this increase in links makes the weight-cutoff more
restrictive (since each link makes up a smaller percentage of the total node weight), often
cutting relevant links, further reducing precision.

Despite these problems, Connections matches or beats Indri with all four filtering
schemes. This indicates that the context information available within the trace contains
useful relationships, and the task is to determine the best method for identifying them.

Window size: Figure 7.3 illustrates the results of using five different window sizes:

68 · Using context to assist in personal file retrieval

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Undirected
Directed

Indri

Figure 7.4: Sensitivity to the edge direction

10 seconds, 30 seconds (the default setting), 1 minute, 2 minutes, and 4 minutes. With
a smaller window size, there are fewer connections between nodes in the relation graph,
resulting in fewer reachable nodes. The result is more false-negatives, reducing the precision
of the system at high recall levels. The reason that windows sizes as small as 10 seconds
still perform well is that (1) many applications batch i/o behavior (e.g., auto-saves) and (2)
the combination of a 10 second window and a path length of three steps is often enough to
capture user behavior (e.g., connecting web-cache files to downloads). With larger window
sizes, files become more densely connected. The increase in link counts eventually begins to
reduce the effectiveness of super-node detection (e.g., 2 minutes), resulting in lower precision
at low recall levels.

Edge direction: Figure 7.4 illustrates the difference between directed (the default
setting) and undirected links in Connections. The drawback of undirected links is that by
discarding the temporal ordering relationships within the trace, it introduces a large number
of additional links in the relation graph. Just as the open filter’s introduction of read-read
relationships increases the number of irrelevant application-specific links in the relation
graph, undirected links create a large number of irrelevant application-specific links through
write-read connections (i.e., inverted read-write connections). Normally, invalid read-write
connections caused by reading application-specific files are ignored, because the read files
are not returned as correct by the content analysis and there are no incoming links to those
nodes. Also, undirected links effectively double the number of links in the graph, making

7.1 Parameter sensitivity · 69

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Path Length: 1
Path Length: 2
Path Length: 3
Path Length: 4
Path Length: 5

Indri

Figure 7.5: Sensitivity to the path length

the weight-cutoff more restrictive (just as in the all-ops filter), cutting relevant links. The
result is an increase in both false-positives and false-negatives that reduce precision at all
recall levels.

7.1.2 Search parameters

The search parameters (path length and weight cutoff) determine which links are taken
from the relation graph when forming the result graph. It is likely that the relation graph
will err toward including too much information, since it is difficult to identify the difference
between ephemeral links and new-but-important links at link creation time. The tension
within the search parameters is between including all of the relevant nodes in the relation
graph without following ephemeral links or links to super-nodes.

Path length: Figure 7.5 illustrates the effect of varying the path length parameter in
Connections from one to five. The default path length in Connections is three, although,
as illustrated in the graph, path lengths of two and four perform similarly. The drawback
of a small path length (e.g., one) is that not enough information is gathered from the
relation graph to properly inform the ranking algorithm. The result is a large number of
false-negatives that reduce the precision of the system, particularly at low recall levels.
The drawback of a large path length (e.g., five) is that the increase in followed paths that
lead through super-nodes results in large numbers of false-positives. Although the super-
node detection mitigates this to a degree, when the path length increases sufficiently, the

70 · Using context to assist in personal file retrieval

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Weight Cutoff: 0%
Weight Cutoff: 0.5%

Weight Cutoff: 1%
Weight Cutoff: 2%
Weight Cutoff: 3%

Indri

Figure 7.6: Sensitivity to the weight cutoff from 0% to 3%

penalties associated with super-nodes must be increased correspondingly to continue to
be effective. Still, despite these potential pitfalls, context-enhanced search still matches or
beats content-only search for all of the path lengths.

Weight cutoff: Figures 7.6 and 7.7 illustrate the effect of varying the weight cutoff
from 0% to 3% and 3% to 20%, respectively. The default weight cutoff in Connections is
2%, although any cutoff between 1% and 4% performs similarly. The drawback of an overly
low weight cutoff (e.g., below 1%) is that the result graph will include a large number of
ephemeral links and links leading through super-nodes, resulting in high numbers of false-
positives. In the case of 0%, the number of false-positives is high enough to also affect the
precision at high recall levels. The drawback of an overly high weight cutoff (e.g., above
5%) is that the result graph is restrictive enough to ignore many of the informative links,
resulting in more false-negatives which reduces the precision of the system at high recall
levels.

7.1.3 Ranking algorithms

The ranking algorithms (Basic-BFE, PageRank, and HITS) determine the order in which
nodes in the result graph are presented to the user. The objective of these algorithms
is to identify the most relevant results based on the strength of relationships within the
result graph and/or relation graph. Because it is easier for the search parameters to remove
ephemoral links than links to super-nodes, the Basic-BFE algorithm also includes three

7.1 Parameter sensitivity · 71

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Weight Cutoff: 3%
Weight Cutoff: 4%
Weight Cutoff: 5%

Weight Cutoff: 10%
Weight Cutoff: 20%

Indri

Figure 7.7: Sensitivity to the weight cutoff from 3% to 20%

methods of detecting super-nodes and reducing their effectiveness.
Basic-BFE: Figure 7.8 illustrates the effect of varying the alpha parameter in the Basic-

BFE algorithm from 0 to 1. The default alpha setting is 0.5, although any setting between
0.25 and 0.75 performs similarly. In the case where alpha is too low (e.g., 0), link weights
are ignored during the ranking. The result is that less relevant links pass more weight,
pushing less relevant results higher in the rankings, reducing the precision at low recall
levels. Interestingly, increasing the weight cutoff reduces the negative effect of low alpha
parameters, further indicating that link weights are inaccurate (and perhaps unimportant)
among relevant links and that the more important task is to identify the relevant links. In
the case where alpha is too high (e.g., 1), the link weight variability caused by application
behavior favors super-nodes, increasing false positives and reducing the rank of relevant
nodes with weaker links, reducing precision across all recall levels.

PageRank: Figure 7.9 illustrates the effect of using PageRank to rank the results
of a context-enhanced search, using the three different techniques discussed in Chapter 3:
PR-only, PR-before, and PR-after. When PageRank is applied alone (as in PR-only), its
performance is similar to that of content-only search. This is because PageRank is designed
to find “authority” pages, which is often undesirable for local file system search.1 Authority

1This is also less relevant on the web because web search does not include an expansion phase as is found
in Connections. By only ranking pages that include the queried terms (or have incoming hyperlinks with
the terms), irrelevant pages with particularly high PageRank are not included in the results.

72 · Using context to assist in personal file retrieval

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Alpha 0
Alpha 0.25

Alpha 0.5
Alpha 0.75

Alpha 1
Content Only

Figure 7.8: Sensitivity to alpha

nodes are usually sinks in the graph (nodes with many incoming links, but few outgoing
links), which in many cases are irrelevant application-specific files that are written but rarely
read (e.g., web-cache files or super-nodes).

When applying PageRank as the initial ranking (often referred to as a non-uniform
prior relevance value) to the results of content-only search, and then applying Basic-BFE
(as in PR-before), the result is similar to Basic-BFE alone. This indicates that the context
information is more relevant than the content rankings and has a tendency to outweigh any
non-uniform priors applied to the content rankings (this is discussed further in Section 7.2).
Conversely, when PageRank is applied after Basic-BFE (as in PR-after), the less accurate
rankings provided by PageRank tend to cancel out the ranking improvement provided by
Basic-BFE. The result is that highly ranked results in Basic-BFE are pushed down in the
ranking, giving it precision similar to that of PageRank only.

HITS: Figure 7.10 illustrates the effect of using HITS to rank the results of a context-
enhanced search, using both the authority and hub rankings for two different techniques:
HITS and Expanded-HITS. Both HITS and Expanded-HITS underperform Basic-BFE. The
reasons for HITS’s reduced performance is similar to that of PageRank’s: application-specific
files that have imbalanced incoming and outgoing links (for authorities and hubs, respec-
tively), particularly super-nodes, outweigh the importance of relevant nodes. Without a
method of super-node detection, these schemes push relevant results lower in the rankings.
This is especially evident when looking at the results of Expanded-HITS (auth), as the

7.1 Parameter sensitivity · 73

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Basic-BFS + SN
PageRank Prior
PageRank Post
PageRank Only

Content Only

Figure 7.9: PageRank methodology comparison

precision actually goes up as more results are introduced.
Super-node detection: Figure 7.11 illustrates the effect of the four different super-

node detection techniques using the default indexing and search parameters. This graph
shows three interesting results. First, with parameters tuned to the best settings, Basic-
BFE alone outperforms both the PR-detect and clique-detect schemes. Because the other
parameter settings sufficiently mitigate most of the effects of super-nodes, these two detec-
tion techniques incorrectly identify valid nodes as super-nodes and falsely penalize them.

Second, PageRank makes a poor super-node detection scheme. PageRank tends to rank
authority nodes highly, however authority nodes are only a portion of the super-nodes in
the graph. Many super-nodes have a large number of both incoming and outgoing links,
meaning they will not become sinks (i.e., authorities) in the relation graph, and in fact, are
ranked quite poorly by PageRank. The result is that this kind of super-node is boosted by
PageRank, enhancing the effects of these super-nodes.

Third, global information from the relation graph (such as used by stddev-detect and
percentile-detect) is more useful than local information from the result graph (such as
used by clique-detect), when the parameter settings are tuned properly. This is because
algorithms using local information, such as clique-detect, will always assume that some of
the nodes in the result graph are super-nodes and potentially penalize correct results. The
result is that clique-detect under-performs stddev-detect with these settings.

Fourth, percentile-detect performs so well because it closely maps to the distribution

74 · Using context to assist in personal file retrieval

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Basic-BFS + SN
HITS (auth)
HITS (hub)

Expanded-HITS (auth)
Expanded-HITS (hub)

Indri

Figure 7.10: HITS methodology comparison

of super-nodes in the graphs. Figure 7.12 shows the distribution of link counts for the
default two-year relation graphs of the six traced machines. The heavy-tailed nature of this
distribution shows that super-nodes are only contained in the most heavily connected nodes,
thus the success of using the 95th and 99th percentile to identify and penalize super-nodes.

Figure 7.13 illustrates the effect of the four super-node detection techniques when the
weight cutoff parameter is dropped to 0.1%. In this case, the indexing and search parameters
do not entirely mask super-node effects, causing the performance of Basic-BFE to drop
significantly. However, stddev-detect and clique-detect still perform well, because they are
able to properly identify and mitigate super-nodes. Percentile-detect’s performance drops
because its parameters need to be tuned based on the effect of super-nodes within the
specific graph. Increasing the beta parameter in this case would improve the performance
of percentile-detect.

By mitigating the effect of super-nodes through detection techniques, Connections is able
to provide a wide range of parameter settings that improve the quality of search results.
These results also indicate that many of the inaccuracies in the relation graph are formed
by misleading application behavior, rather than user behavior. By exploring techniques that
can identify a user’s desired action from an application’s behavior, many of the inaccurate
links could be culled from the relation graph before search time, potentially improving
search quality even further.

7.2 Alternate content analysis · 75

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Basic-BFS
PR-detect

Clique-detect
StdDev-detect

Percentile-detect
Indri

Figure 7.11: Super node detection

7.2 Alternate content analysis

While Indri provides detailed confidence information for its ranked results, most file system
search tools in use today provide either no ranking information (such as Microsoft Fast
Find or Glimpse) or a rank order with no provided confidence information (such as Google
Desktop or MSN Desktop). To see how context can enhance these tools, I consider the
following questions: (1) how much benefit is derived from context when no rank order is
provided for the content-only results, and (2) given a rank order, can a naive confidence
curve be applied to the order to achieve benefits similar to those achieved with full confidence
information?

To answer the these questions, I compared the original Connections system that uses full
confidence information to two alternate implementations. The first ignores all confidence
and ranking information and assumes equal confidence for all results returned by Indri.
The second ignores provided confidence information and instead applies a linear confidence
function based on the provided rank order. Equation 7.1 describes how confidence Ci was
calculated for each of the n nodes in the results, where i ∈ {0 . . . (n − 1)} is the rank order
of each node.2 Effectively, the first result receives the most confidence, with linear spacing

2This particular equation was choosen to provide both linearly decreasing confidences and the property
that the confidences would sum to 1. A more detailed examination of this space would likely require a more
complex model [9, 11, 55].

76 · Using context to assist in personal file retrieval

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1e-05 1e-04 0.001 0.01 0.1 1

P
er

ce
nt

ag
e

of
 fi

le
s

Percentage of links

m1
m2
m3
m4
m5
m6

Figure 7.12: Super node distribution

between ranked results.

Ci =
2 · (n − i)

n · (n + 1)
(7.1)

The results of this comparison are shown in figure 7.14. There are three interesting
aspects of these results. First, even with little or no information about the rankings of the
content analysis tool, Connections can still make informed and accurate ranking decisions
based solely on context information. Second, the difference between rank order information
and no information is small. While surprising, this is primarily due to the low precision of
the content rankings; by identifying the most relevant items in the set based on user actions
Connections is able to provide better rankings by pushing these items higher in the list.
Third, after 60% recall, the precision of Connections is dominated entirely by the context
ranking. This is because, in most queries, the content analysis systems do not achieve this
level of recall and thus do not provide rankings for results past this point. This lack of
information from content-only rankings may also contribute to the advantage of context
rankings at lower recall levels.

To further explore the effect of alternate content analysis methods, I explored two other
alternate content rankings: a ranking that uses a strict boolean AND to identify results and
a ranking that uses pseudo-relevance feedback to alter the content results and rankings.

Figure 7.15 shows the results of using a boolean AND to identify and rank content

7.2 Alternate content analysis · 77

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Basic-BFS
PR-detect

Clique-detect
StdDev-detect

Percentile-detect
Indri

Figure 7.13: Super node detection with weight cutoff 0.1%

results, as opposed to Indri’s original inference network approach. Unsurprisingly, boolean
AND provides lower precision at low recall levels than Indri’s default ranking. When adding
context information, there are two takeaways. First, because the context ranking relies
on the provided content confidences, errors in the content rankings will manifest in lower
benefits for context; for example, at 10%, the benefit with boolean AND is only 8% as
opposed to the 11% seen by the original system. Second, while the total number of correct
results returned by boolean AND is similar to that of Indri’s original results, the number of
related results is significantly smaller. This is what causes the sharp drop of Connections at
100% when using boolean AND; without the related information, Connections cannot find
as many additional results.

Figure 7.16 shows the results of using pseudo-relevance feedback3 on the original content
results, as opposed to Indri’s original inference network approach alone. Pseudo-relevance
feedback takes the first n results of the original content-only search and then, using content-
similarity techniques, identifies additional keywords from these results that should be in-
cluded with the user-provided keywords. This full set of keywords is then queried to get the
final result list.

Interestingly, the pseudo-relevance feedback performs very similarly to original content
rankings. This is likely caused by the assumption within pseudo-relevance feedback that

3I ran the pseudo-relevance feedback on the first ten results, finding up to 20 additional terms, as is
described in Chapter 4.3.

78 · Using context to assist in personal file retrieval

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Full information
Rank order only
No information

Content-only

Figure 7.14: Combining context with alternate content analysis tools

the provided “feedback” results are actually relevant to the query. Unfortunately, because
most of the first ten results are inaccurate, the relevance feedback finds additional terms
that are also irrelevant to the query. In contrast, because Connections can find the temporal
commonality among many low-ranked results to increase the ranking of relevant results, it
often reduces the relevance of high-ranked results that are contextually irrelevant.

The change to using pseudo-relevance feedback in underlying content results also has a
sharp effect on the total number of correctly located items in Connections. The addition
of pseudo-relevance feedback increases the content similarity of the returned results, which
in turn appears to reduce the context spread. In other words, some contextually related
results that don’t have content similarity to the first ten results are dropped, reducing the
number of additional hits that Connections can locate. This matches with the increase in
improvement seen from 20% to 60% recall, since the increase in items within a single context
provide Connections with more information to improve the rank of those items.

Overall, these results provide two takeaways. First, context information provides useful
information for ranking results in personal file search. Even without knowledge of the content
rankings, context-enhanced search outperforms content-only search alone. Second, focusing
the content results too strongly on particular aspects of the query terms, thus finding
either too few results, or results with very similar content, can limit the effectiveness of
context-enhanced search. In many cases, a term is relevant to different contextual groups,
but Connection cannot identify additional relevant items from a contextual group without

7.3 Existing user input · 79

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Original + Context
Original

Boolean AND + Context
Boolean AND

Figure 7.15: Using a strict boolean AND to identify content results

starting points from within that group.

7.3 Existing user input

In traditional semantic file systems, attributes come from two sources: content and user
input. Up until now, I have only discussed using content analysis as a basis for search,
mostly because user input is notoriously difficult to obtain. However, file systems already
contain one source of user input: the path and name of a file. While the file name information
is already used to enhance content analysis, this section discusses using the clustering aspect
of directories to try to enhance context analysis.

To see how effective the directory hierarchy is at capturing the user’s context, I created
a version of Connections that generated its relation graph by connecting files in the same
directory together with equally weighted links. Using this directory-based relation graph, I
could evaluate the effectiveness of using existing user input as context. If using directory
information in the relation graph can enhance content-only search, then combining directory
information with temporal locality might provide additional benefits.

Figure 7.17 graphs precision against recall for each of the three systems: Connections
using temporal locality, Connections using the directory hierarchy, and Indri. The result is
that using the directory hierarchy information reduces the precision of the system at each
recall level, performing worse than content-only search. This reduction is caused by two

80 · Using context to assist in personal file retrieval

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Original + Context
Original

PRF (10) + Context
PRF (10)

Figure 7.16: Using pseudo-relevance feedback to identify content results

different user behaviors. First, many users do not actively organize many of their files and
directories. For example, a user’s “downloads” directory often contains a large number of
unrelated files. If a file within that directory is found using content, the result is a large
number of false-positives created by the “closely related” items in the graph. Second, users
will often organize their files in one way and then search for them another way. For example,
a user might organize a set of papers by conference, but then later search for them by topic
(or vice versa), again resulting in a large number of false positives.

7.4 Graph growth on result quality

Because Connections does not perform any hysteresis (e.g., decaying link weights over time),
there is potential that misleading information stored in the graph could eventually have
enough weight to have an effect on result quality. To explore this possibility, I continued
to gather traces from each of the users for an additional 18 months after the time of the
study. Using these traces, I built eight relation graphs for each machine, one at each three
month interval throughout the lifetime of the traces, using the default settings described in
Section 5.1.1. Thus the 9 month relation graph contained 9 months of traces, while the 15
month relation graph contained 15 months of traces, etc. I then re-ran each of the queries
on each of the respective relation graphs to see how the changes in the graph over time
would affect the precision and recall of the searches.

7.4 Graph growth on result quality · 81

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Temporal Context
Content-only

Directory Context

Figure 7.17: Applying existing user input from the directory hierarchy

Figure 7.18 illustrates the precision/recall curves for each of the eight time periods
examined, with the results at six months matching the results presented in Figure 5.1.
Because the queries were issued at six months, it is expected for the graph at six months
to provide the most accurate results, since it has complete context for the queries being
issued, without having additional, potentially faulty, information.

In the case where the graph contains less trace information (e.g., at three months),
some of the missing information describes files relevant to a query that were created and
accessed between when the graph was generated and when the query was issued. The result
is false-negatives that lead to lower overall system precision.

Examining the graphs with more trace information, it is clear that the system’s preci-
sion slowly degrades over time. There are two possible explanations for this behavior. One
possibility is that the addition of links, over time, adds enough noise to the graph that it
becomes impossible to discern between relevant and irrelevant relationships, indicating that
some amount of hysteresis will be critical to any live system using these techniques. Another
possibility is that, over time, additional results in the graph (i.e., newly created or accessed
files) are relevant to the query and that the addition of these results is artificially reducing
the precision of the system (since the standard against which results are measured was also
generated at six months).

To experiment with this possibility, I was able to get 3 users to repeat the study with
14 queries using results gathered on the graph data at 24 months. By having the users re-

82 · Using context to assist in personal file retrieval

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

3 months
6 months
9 months

12 months
15 months
18 months
21 months
24 months

Figure 7.18: Effect of graph growth on result quality

evaluate the results, and regenerate the oracle results, it is possible to measure the benefit
of any new results added by additional nodes in the graph.

Figure 7.19 illustrates the precision/recall curves for just those 3 user’s queries on for
different systems: Indri’s content-only search, the six month graph compared against the
original oracle results created at six months, the 24 month graph compared against the
original oracle results, and the 24 month graph compared agains the new oracle results
generated at 24 months. Just as before, the 24 month graph’s precision drops significantly
when compared against the original oracle results. However, when compared against the
new oracle results, the precision of the system returns to nearly the level of the six month
graph. This result indicates that (1) the context of a query is important, and the results
of a query may change over time, (2) the graph continues to capture valuable information,
even over long periods of time, and (3) the slight drop in precision, especially at low recall
levels, indicates that some hysteresis could improve these results further by reducing the
effect of ephemeral and irrelevant links over time, but may not be critical to implementing
a working system.

7.5 Wrap-up

This sensitivity analysis provides four important takeaways. First, the algorithms described
in Chapter 3 are robust to both improper parameter settings of the underlying algorithms

7.5 Wrap-up · 83

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Content Only
6 months (old)

24 months (old)
24 months (new)

Figure 7.19: Effect of graph growth on result quality given new classification

and graph growth over time. Second, with better starting points, Connections can more
accurately identify correct contextual results, thus, as content analysis tools continue to
improve, so should context-enhanced search tools. Third, sources of user input, while po-
tentially valuable, must be considered carefully before being included as contextual clues.
Fourth, although the detrimental effects of additional history information are small, long-
term archival data stores will need to address the currently open problem of hysteresis to
reduce index sizes and prevent eventual dilution of context information.

84 · Using context to assist in personal file retrieval

8 Conclusions

Context is a powerful tool in assisting users to organize and locate data. It has been identified
by others as a key way that users think about and locate their personal data, and its use
on the world wide web has resulted in significant improvements in search quality.

This thesis describes Connections, a context-enhanced file system search tool. Connec-
tions identifies contextual inter-file relationships using temporal locality of file accesses taken
from system-level traces. Using these relationships, Connections extends and re-ranks the
results of traditional content-only search tools. Offline analysis of Connections shows im-
provements in both precision and recall, and a live user study suggests that Connections
reduces the amount of user input and time required to successfully locate desired data.
This confirms the thesis of this work that automatically gathered context information pro-
vides more attributes to more files that content analysis alone and that this increase in
information improves the effectiveness of file indexing and search tools.

A sensitivity analysis of Connections’s algorithms and components shows that, while
there are potential pitfalls with Connections’s design, its advantages are surprisingly robust
to imperfect parameter settings. A performance analysis of Connections shows that the
benefits of context-enhanced search can be achieved with minimal space utilization and
performance overheads.

Overall, the largest contribution of this work is to show the relevance of context infor-
mation in personal file search. Despite the simplicity of many of the algorithms presented
in this work, integrating context information significantly improves a large class of queries,
showing the potential of combining context information with traditional content-only anal-
ysis techniques. The remainder of this chapter describes the additional contributions and
limitations of this work, and describes some areas of future work that could lead to further
advancements.

8.1 Contributions and limitations

This thesis contributes three key advances in personal file search. First, it provides algo-
rithms for identifying and utilizing temporal inter-file relationships in personal file search.
The analysis of these algorithms, along with their parameter trade-offs, lays the groundwork
for future advances and enhancements in this space. Furthermore, while these algorithms
are very likely non-optimal, they show that content alone is insufficient to completely satisfy
a large class of personal data queries. In many cases, relevant query results include data

85

86 · Using context to assist in personal file retrieval

that do not contain the user-specified keywords, particular in the case of non-text queries
but also in a surprising number of non-text queries. These algorithms succeed by identifying
these files using context and including them in the result set. Second, this thesis provides a
framework for implementing and experimenting with context-enhanced search. Most impor-
tantly, this framework provides explicit separation between content and context analysis. As
new techniques for both context and content analysis emerge, they can be quickly and easily
combined with and compared against existing search tools. Extending the chain of tech-
niques within the framework beyond two (i.e., the existing content-to-context chain) could
allow for combinations of multiple context analysis techniques without directly integrating
the techniques. Third, this thesis provides Connections, a working context-enhanced search
tool for both Linux and Windows. Connections can be used directly to identify contextual
relations providing a database of file inter-relationships for use in other applications and as
a drop-in replacement for existing search tools.

Connections’s context-enhanced search also has advantages over traditional content-
only search. First, Connections locates more relevant data for most searches, increasing
average recall, particularly when examining all returned results. This increase makes it
more likely for users to locate all of the desired data and, when combined with accurate
ranking algorithms, provides the opportunity for improved precision. Second, Connections
is able to locate relevant files that contain little or no parsable contents, increasing average
recall and precision significantly when users search for results that include non-text data.
Third, this ability to locate relevant files without the use of keywords extends to locating
relevant content-parsable files that do not contain the user-specified keywords for a search,
thus increasing recall and precision for some textual searches as well.

Despite Connections’s advances and advantages, it still has several limitations, which if
addressed, could further improve the effectiveness of its search. First, it requires at least a
month of traces before its algorithms improve effectiveness, since without state about the
user’s access patterns, it can provide no additional information. Second, because the most
successful algorithms only locate data that the user has created or modified Connections
is ineffective in read-only data sets and for data created before Connections is installed.
Third, unlike hyperlinks, the links identified by Connections do not contain associated
keywords. This limit on available information reduces the effectiveness of many of the web-
search algorithms that rely on these contextual clues to further improve search. Potential
approaches to deal with the second two limitations, as well as other potential advancements
using Connections are discussed below.

8.2 Future work

As shown in this work, temporal locality is a powerful form of context that can be leveraged
to improve file indexing and search. However, despite the benefits shown here, the form
of temporal locality considered in this work is crude. Connections employs system-level
information, which captures application behavior rather than direct user actions. The result
is that application oddities can significantly affect the witnessed temporal relationships. This

8.2 Future work · 87

is most obvious when using settings such as the read/read access filter, which introduces
significant numbers of false-positives. While techniques such as super-node detection can
alleviate some of these problems, a long-term solution requires a better understanding of
the application’s translation of user intent to file system activity. One direction for future
research would be to explore forms of application profiling to help capture this translation
and better inform Connections of the validity of formed relationships.

Other sources of context could both help inform Connections of relationship validity
and provide additional sources of relationships. Application assistance would be one way
to enhance application profiling and remove sources of faulty relationships. With a better
understanding of link relevance, settings such as read/read could be employed, allowing
Connections’s to locate any files that the user accesses (rather than the current limitation
of user created and modified files). Furthermore, application provided keywords could be
assigned to created links, potentially opening the door for application of web ranking al-
gorithms that harness hyperlink text. Furthermore, application assistance could be useful
when application cache file accesses (e.g., web caches, email caches, text document buffer
caches, etc.) and could provide more detailed information about sub-document relationships
(e.g., individual emails from an IMAP folder, links on a cached web-page, paragraphs in a
document, etc.). Other areas of consideration include hints from user interfaces, environ-
mental factors (e.g., mobile computing), user specified contexts, etc. [25].

Connections currently keeps all gathered context information permanently, but as the
number of sources of context and the time over which information is kept both grow, inte-
grating hysteresis into Connections will become an important task. Even over a two-year
span slight degradations in Connections’s performance are noticeable and, with the current
focus on long-term archival storage projects lasting over a lifetime of data, these degrada-
tions will eventually render context-enhanced search untenable if not addressed.

Currently, Connections identifies relationships based on information gathered from a
single computer, but today’s users often interact with several machines. Actions performed
with a set of data on one computer will likely be relevant when accessing or searching for
that data from another computer. Examining how context information should be shared
among machines will be an interesting area of future work.

Similarly, as users begin to share more data, the question arises regarding inter-user
context sharing. If Alice accesses data also used by Bob, should Alice’s actions be used to
assist Bob in organizing and searching the data? If so, should Bob be able to identify what
Alice was doing, and how could one obfuscate that information while still providing relevant
contextual hints?

As contextual information continues to become more relevant and accurate, the questions
regarding its use will continue to grow. Through the Connections prototype, this work shows
one form of context and how it can improve the utility of local file search, opening the door
to explore these questions and others.

88 · Using context to assist in personal file retrieval

Bibliography

[1] N. Abdul-Jaleel, J. Allan, W. B. Croft, F. Diaz, L. Larkey, X. Li, D. Metzler, M. D.
Smucker, T. Strohman, H. Turtle, and C. Wade. UMass at TREC 2004: Notebook.
Text Retrieval Conference, 2004.

[2] N. Abdul-Jaleel, A. Corrada-Emmanuel, Q. Li, X. Liu, C. Wade, and J. Allan. UMass
at TREC 2003: HARD and QA. Text Retrieval Conference, pages 715–725, 2003.

[3] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. ACM SIGMOD International Conference on Management of
Data, pages 207–216, 1993.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. International
Conference on Very Large Databases, 1994.

[5] AltaVista, http://www.altavista.com/.

[6] A. Amer, D. Long, J.-F. Paris, and R. Burns. File access prediction with adjustable
accuracy. International Performance Conference on Computers and Communication.
IEEE, 2002.

[7] American Library Association. Anglo-American Cataloguing Rules 2005. American
Library Association.

[8] Apple Spotlight, http://www.apple.com/macosx/features/spotlight/.

[9] A. Arampatzis and A. van Hameren. The Score-Distributional Threshold Optimization
for Adaptive Binary Classification Tasks. Pages 285-293.

[10] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press, 1999.

[11] C. Baumgarten. A Probabilitstic Solution to the Selection and Fusion Problem in
Distributed Information Retrieval. Pages 246-253.

[12] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Secret. The worldwide
web. Communications of the ACM, 37(8):76+, August 1994.

[13] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5):34–43, 2001.

89

90 · Using context to assist in personal file retrieval

[14] C. M. Bowman, P. B. Danzig, U. Manber, and M. F. Schwartz. Scalable internet
resource discovery: research problems and approaches. Communications of the ACM,
37(8):98–114, 1994.

[15] P. S. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to large
databases. International Conference on Knowledge Discovery and Data Mining, pages
9–15, 1998.

[16] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

[17] J. P. Callan, W. B. Croft, and S. M. Harding. The INQUERY Retrieval System.
International Conference on Database and Expert Systems Applications, pages 78–83,
1992.

[18] R. Card, T. Ts’o, and S. Tweedie. Design and implementation of the Second Extended
Filesystem. First Dutch International Symposium on Linux, 1994.

[19] G. Chen and D. Kotz. A survey of context-aware mobile computing research. Dartmouth
Computer Science Technical Report TR2000-381. November 2000.

[20] C. Clarke, N. Craswell, and I. Soboroff. Overview of the TREC 2004 Terabyte Track.
Text REtrieval Conference. NIST, 2004.

[21] Clusty, http://www.clusty.com/.

[22] K. Collins-Thompson, P. Ogilvie, and J. Callan. Initial results with structured queries
and laguage models on half a terabyte of text. Text REtrieval Conference. NIST, 2004.

[23] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey. Scatter/Gather: a
cluster-based approach to browsing large document collections. ACM SIGIR Inter-
national Conference on Research and Development in Information Retrieval, pages
318–329. ACM, 1992.

[24] M. Czerwinski, S. Dumais, G. Robertson, S. Dziadosz, S. Tiernan, and M. van Dantzich.
Visualizing implicit queries for information management and retrieval. CHI, pages 560–
567, 1999.

[25] P. Dourish. What we talk about when we talk about context. Personal and ubiquitous
computing, 8(1):19–30, February 2004.

[26] P. Dourish, K. Edwards, A. LaMarca, and M. Salisbury. Uniform Document Inter-
action with Document Properties. ACM Symposium on User Interface Software and
Technology, 1999.

[27] S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D. CRobbins. Stuff I’ve
seen: a system for personal information retrieval and re-use. ACM SIGIR International
Conference on Research and Development in Information Retrieval. ACM press, 2003.

Bibliography · 91

[28] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in
time-series databases. ACM SIGMOD International Conference on Management of
Data, pages 419–429, 1994.

[29] S. Fertig, E. Freeman, and D. Gelernter. Lifestreams: an alternative to the desktop
metaphor. ACM SIGCHI Conference, pages 410–411, 1996.

[30] G. R. Ganger and M. F. Kaashoek. Embedded inodes and explicit grouping: exploiting
disk bandwidth for small files. USENIX Annual Technical Conference, pages 1–17,
January 1997.

[31] V. Ganti, R. Ramakrishnan, J. Gehrke, A. Powell, and J. French. Clustering large
datasets in arbitrary metric spaces. International Conference on Data Engineering,
pages 502–511, 1999.

[32] J. Gemmell, G. Bell, R. Lueder, S. Drucker, and C. Wong. MyLifeBits: fulfilling the
Memex vision. ACM Multimedia, pages 235–238. ACM, 2002.

[33] J. Gemmell, L. Williams, K. Wood, G. Bell, and R. Lueder. Passive capture and ensuing
issues for a personal lifetime store. Workshop on Continuous Archival and Retrieval of
Personal Experiences, pages 48–55, 2004.

[34] D. Giampaolo. Practical file system design with the Be file system. Morgan Kaufmann,
1998.

[35] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole Jr. Semantic file systems.
ACM Symposium on Operating System Principles. Published as Operating Systems
Review, 25(5):16–25, 13–16 October 1991.

[36] Google Desktop, http://desktop.google.com/.

[37] Yahoo Desktop, http://desktop.yahoo.com/.

[38] B. Gopal and U. Manber. Integrating content-based access mechanisms with hierarchi-
cal file systems. Symposium on Operating Systems Design and Implementation, pages
265–278. ACM, 1999.

[39] J. Griffioen and R. Appleton. Reducing file system latency using a predictive approach.
Summer USENIX Technical Conference, pages 197–207. USENIX Association, 1994.

[40] Grokker, http://www.grokker.com/.

[41] S. Guha, R. Rastogi, and K. Shim. CURE: an efficient clustering algorithm for large
databases. ACM SIGMOD International Conference on Management of Data, pages
73–84, 1998.

92 · Using context to assist in personal file retrieval

[42] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse. The Lumiere project:
bayesian user modeling for inferring the goals and needs of software users. Conference
on Uncertainty in Artificial Intelligence, pages 256–265, 1998.

[43] M. A. W. Houtsma and A. N. Swami. Set-oriented mining for association rules in
relational databases. International Conference on Data Engineering, pages 25–33, 1995.

[44] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub. Extrapolation
methods for accelerating PageRank computations. World Wide Web Conference. ACM,
2003.

[45] D. Kelly and J. Teevan. Implicit feedback for inferring user preference: a bibliography.
SIGIR Forum, 32(2):18–28, 2003.

[46] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM, 46(5):604–632. ACM, September 1999.

[47] T. M. Kroeger and D. D. E. Long. Predicting file system actions from prior events.
USENIX Annual Technical Conference, pages 319–328. USENIX Association, 1996.

[48] H. Lei and D. Duchamp. An analytical approach to file prefetching. USENIX Annual
Technical Conference. USENIX Association, 1997.

[49] The Lemur Toolkit, http://www.lemurproject.org/.

[50] J. R. Lorch and A. J. Smith. The VTrace tool: Building a system tracer for Windows
NT and Windows 2000. MSDN Magazine, 15(10):86–102, October 2000.

[51] Linux Cross-Reference (LXR), http://lxr.linux.no/.

[52] Lycos, http://www.lycos.com/.

[53] U. Manber, M. Smith, and B. Gopal. WebGlimpse: combining browsing and searching.
USENIX Annual Technical Conference. USENIX Association, 1997.

[54] U. Manber and S. Wu. GLIMPSE: a tool to search through entire file systems. Winter
USENIX Technical Conference, pages 23–32. USENIX Association, 1994.

[55] R. Manmatha, T. M. Rath, and F. Feng. Modeling Score Distributions for Combining
the Outputs of Search Engines. Pages 267-275.

[56] M. L. Mauldin. Retrieval performance in Ferret a conceptual information retrieval
system. ACM SIGIR International Conference on Research and Development in Infor-
mation Retrieval, pages 347–355. ACM Press, 1991.

[57] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A fast file system for UNIX.
ACM Transactions on Computer Systems, 2(3):181–197, August 1984.

Bibliography · 93

[58] D. Metzler, T. Strohman, H. Turtle, and W. B. Croft. Indri at TREC 2004: terabyte
track. Text Retrieval Conference, 2004.

[59] T. M. Mitchell. Machine learning. McGraw-Hill, 1997.

[60] B. C. Neuman. The Prospero file system: a global file system based on the virtual
system model. USENIX Workshop on File Systems, pages 13–28, 21–22 May 1992.

[61] J. S. Park, M.-S. Chen, and P. S. Yu. An effective hash-based algorithm for mining
association rules. ACM SIGMOD International Conference on Management of Data,
pages 175–186, 1995.

[62] T. Qin, T.-Y. Liu, X.-D. Zhang, Z. Chen, and W.-Y. Ma. A study of relevance propa-
gation for web search. ACM SIGIR International Conference on Research and Devel-
opment in Information Retrieval, 2005.

[63] D. Quan, D. Huynh, and D. R. Karger. Haystack: a platform for authoring end user
semantic web applications. International Semantic Web Conference, 2003.

[64] B. Rhodes. Using physical context for just-in-time information retrieval. IEEE Trans-
actions on Computers, 52(8):1011–1014. ACM Press, August 2003.

[65] B. Rhodes and T. Starner. The Remembrance Agent: a continuously running auto-
mated information retrieval system. International Conference on The Practical Appli-
cation of Intelligent Agents and Multi Agent Technology, pages 487–495, 1996.

[66] M. Russinovich. Inside NTFS. Windows NT Magazine, January 1998.

[67] S. Sechrest and M. McClennen. Blending hierarchical and attribute-based file naming.
International Conference on Distributed Computing Systems, pages 572–580, 1992.

[68] A. Shakery and C. X. Zhai. Relevance propagation for topic distillation UIUC TREC-
2003 web track experiments. Text REtrieval Conference, 2003.

[69] R. Song, J.-R. Wen, S. Shi, G. Xin, T.-Y. Liu, T. Qin, X. Zheng, J. Zhang, G. Xue,
and W.-Y. Ma. Microsoft Research Asia at web track and terabyte track of TREC
2004. Text REtrieval Conference, 2004.

[70] J. L. Steffen. Interactive examination of a C program with Cscope. Winter USENIX
Technical Conference, pages 170–175. USENIX Association, 1985.

[71] J. Teevan, C. Alvarado, M. S. Ackerman, and D. R. Karger. The perfect search engine is
not enough: a study of orienteering behavior in directed search. Conference on Human
Factors in Computing Systems, pages 415–422. ACM, 2004.

[72] J. Teevan, S. T. Dumais, and E. Horvitz. Personalizing search via automated analysis
of interests and activities. ACM SIGIR International Conference on Research and
Development in Information Retrieval. ACM, 2005.

94 · Using context to assist in personal file retrieval

[73] Terrier Information Retrieval Platform, http://ir.dcs.gla.ac.uk/terrier/.

[74] H. Toivonen. Sampling large databases for association rules. International Conference
on Very Large Databases, pages 134–145, 1996.

[75] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,
393:440–442, 1998.

[76] Merriam-Webster OnLine, http://www.m-w.com/.

[77] Windows Desktop Search, http://www.microsoft.com/windows/desktopsearch/.

[78] Microsoft WinFS, http://http://msdn.microsoft.com/data/ref/winfs/.

[79] J. Xu and W. B. Croft. Query expansion using local and global document analysis.
ACM SIGIR International Conference on Research and Development in Information
Retrieval, pages 4–11, 1996.

[80] Z. Xu, M. Karlsson, C. Tang, and C. Karamanolis. Towards a semantic-aware file store.
Hot Topics in Operating Systems, pages 145–150. USENIX Association, 2003.

[81] K. Yaghmour and M. R. Dagenais. Measuring and characterizing system behavior
using kernel-level event logging. USENIX Annual Technical Conference, 2000.

[82] Yahoo!, http://www.yahoo.com/.

	Contents
	Figures
	Tables
	Introduction
	The landscape today
	Context
	Thesis statement
	Problem breakdown
	Temporal locality
	Connections
	Evaluating utility

	Contributions
	Outline

	Background an related work
	Organization: hierarchies and attributes
	Attribute-based naming systems
	The world wide web
	Summary (Organization)

	Search: content analysis techniques
	File system search
	Web search
	Summary (Search)

	Inter-file relationships
	Context-aware computing
	Data organization and retrieval
	Personalized search
	Data mining
	Machine learning
	Summary (Context-aware computing)

	Wrap-up

	Context-enhanced search
	Architectural overview
	Content-only search
	Context-enhanced search
	Alternate methods

	Identifying inter-file relationships
	Basic successor models
	Probability graphs
	Relation graphs
	Trade-offs
	Summary (Identifying inter-file relationships)

	Searching relationships
	Weight cutoff
	Path length
	Trade-offs

	Ranking the results
	Basic Breadth First Expansion (Basic-BFE)
	Web ranking algorithms
	Super-nodes
	Trade-offs

	Wrap-up

	Connections
	Tracing
	Linux
	Microsoft Windows

	Database layout and interaction
	Content-only search tools
	Wrap-up

	Utility evaluation
	Methodology
	Offline study
	Online study

	Overview
	Offline results
	Online results
	Wrap-up

	Performance evaluation
	Indexing performance
	Space utilization
	Querying performance
	Wrap-up

	Sensitivity analysis
	Parameter sensitivity
	Indexing parameters
	Search parameters
	Ranking algorithms

	Alternate content analysis
	Existing user input
	Graph growth on result quality
	Wrap-up

	Conclusions
	Contributions and limitations
	Future work

	Bibliography

