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Abstract

Semantic file systems enable users to search for files based on attributes rather than just pre-assigned names. This paper devel-
ops and evaluates several new approaches to automatically generating file attributes based on context, complementing existing
approaches based on content analysis. Context captures broader system state that can be used to provide new attributes for files,
and to propagate attributes among related files; context is also how humans often remember previous items [2], and so should fit
the primary role of semantic file systems well. Based on our study of ten systems over four months, the addition of context-based
mechanisms, on average, reduces the number of files with zero attributes by 73%. This increases the total number of classifiable

files by over 25% in most cases, as is shown in Figure 1. Also, on average, 71% of the content-analyzable files also gain additional
valuable attributes.
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1 Introduction

As storage capacity continues to increase, the number of files belonging to an individual user has increased
accordingly. Already, storage capacity has reached the point where there is little reason for a user to delete
old content—in fact, the time required to do so would be wasted. A recent filesystem study [10] found
that both the number of files and file lifetime have increased significantly over studies conducted during the
previous 20 years. The challenge has shifted from deciding what to keep to finding particular information
when it is desired. To meet this challenge, users need better tools for personal file organization and search.

Most file systems today use a hierarchical directory structure. Although easy to reason about at small
and medium scales, hierarchies often do not scale to large collections and the fine-grained classifications
that result. In particular, as the hierarchy grows, each piece of data is increasingly likely to have several
different classifications, but can only have one location within the hierarchy. To find the file later, the user
must remember the one classification that was originally chosen.

To help alleviate this problem, several different groups have proposed semantic file systems [13, 14, 30].
These systems assign attributes (i.e., keywords) to files, providing the ability to cluster and search for files
by their attributes. The key challenge is assigning useful, meaningful attributes to files.

Most semantic file systems rely upon two sources of file attribute assignment: user input and content
analysis. Although users often have a good understanding of the files they create, it can be time-consuming
and unpleasant to distill that information into the right set of keywords. As a result, many users are under-
standably reluctant to do so. On the other hand, content analysis automatically distills keywords from the
file contents, taking none of the user’s time. Unfortunately, the complexity of language parsing, combined
with the large number of proprietary file formats and non-textual data types, restricts the effectiveness of
content analysis. And, more importantly, it fails to capture an important way that users think about their
data: context.

Context is defined by the Merriam-Webster dictionary [27] as “the interrelated conditions in which
something exists or occurs.” Thus, the context of a file refers to any information external to the contents
of the file that may be present while the file is being created or accessed. Examples of this might include
active applications, other open files, the current physical location of the user, etc. Context is often the way
that humans remember things, such as the location of a previously stored file; a recent study of user search
behavior found exactly this tendency: users usually use context to locate data [2].

This paper makes the case for context-based attribute assignment, introducing approaches from two
categories: application assistance and user access patterns. Application assistance uses application knowl-
edge of user workloads to provide information about the user’s current state. For example, a web browser
can usually provide information about downloaded files. User access patterns indicate inter-file relationships
that can then be used to propagate attributes among strongly related files. This paper also introduces a new
content-based approach, content similarity, that propagates attributes between files with similar content.

Figure 1 summarizes the benefits of combining existing content analysis with the three new categories
of file attribute assignment examined in this paper. The multi-part bar on the left shows that adding these
schemes allows the system to automatically classify an additional 33% of the user’s files, taking the total
from 65% to 98%. The four single-category bars on the right show that many of the classification schemes
overlap, resulting in more attributes for each file. By gathering more attributes for more files, we believe
that semantic file systems will provide more useful and accurate results to users.

The remainder of this paper is organized as follows. Section 2 discusses existing search and organiza-
tional tools. Section 3 outlines the space of automated attribute assignment. Sections 4, 5, and 6 describe
our three new attribute generation tools and evaluate their merits. Section 7 discusses how existing systems
will need to change given these new tools. Section 8 concludes.
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Figure 1: Breakdown of classifications. This figure shows the benefits of combining context- and propagation-based attribute
generation schemes with existing content analysis schemes. We ran the schemes over the four month “donut” trace described in
Section 4. By combining schemes, it is possible to classify more files than any individual scheme. The overlap of classifications by
different schemes also provides more attributes to each of the classifiable files than any individual scheme.

2 File organization and search

When searching for recently accessed files, or within a small collection, users can often find what they are
looking for. However, when searching for older files, or within a large collection, users often forget the name
or location of particular files, making them difficult to find. Most people have stories of wasting 10 minutes
or more searching through their files to find a specific, important document; as a user’s file collection grows,
this problem becomes worse. This section describes existing tools for file organization and search, as well
as additional related work from outside the realm of file systems.

2.1 Directories

By far, the most common organizational structure for files is the directory hierarchy. The directory hierarchy
relies entirely upon user input to provide useful classifications to files, in the form of a pathname. The
advantage of user input is that any provided classification should closely match how the user thinks about
the file, and often combines both content and context attributes. Unfortunately, these attributes become far
less effective as the number of files grows.

There are four factors that limit the scalability of traditional directory hierarchies. First, files within
the hierarchy only have a single categorization. As the categories grow finer, choosing a single category
for each file becomes more and more difficult. Although links (giving multiple names to a file) provide a



mechanism to mitigate this problem, there exists no convenient way to locate and update a file’s links to
reflect re-categorization (since they are unidirectional). Second, much information describing a file is lost
without a well-defined and detailed naming scheme. For example, the name of a family picture would likely
not contain the names of every family member. Third, unless related files are placed within a common sub-
tree, their relationship is lost. Fourth, because the entire pathname of the file is required to retrieve it, the
user must remember the exact categorization for a desired file.

Users are now faced with a dilemma: either organize files into detailed categories and remember the
exact set and order of attributes for each file, or do not organize but face the difficulty of locating a single
file within a sea of filenames. Clearly, users require better organization and search mechanisms.

2.2 Indexing and search tools

Today, many users rely upon indexing and search tools to help find files lost in their directory hierarchy.
Tools such as find/grep and Glimpse [24] use text analysis and file pathnames to provide searchable attributes
for files. Others, such as Microsoft Windows’ search utility, use filters to gather attributes from well-known
file formats (e.g., Word documents). Recent systems, such as Grokker [18] and Fractal:PC [12], layer new
visualizations over existing indexing technologies in an attempt to help users locate and organize files.

The advantage of these tools is that they require no additional user action to provide benefit. Instead,
they use existing directory information and combine it with automated content analysis. Unfortunately, these
tools work best for files with well-understood data formats that can be reduced to text, leaving a large class
of files with only the original hierarchical classification.

2.3 Semantic file systems

To go beyond the limited hierarchical namespace of directories, several groups have developed systems
that extend the namespace with attribute-based indexing. BeFS [13] provides an additional organizational
structure for indexing files by attribute. The system takes a set of (keyword, file) pairings and creates an
index allowing fast lookup of a keyword to return the associated file. This structure is useful for files that
have a set of well-known attributes on which to index (e.g., (sender, email message)).

The Semantic File System [14] provides a searchable mapping of generic (category, value) pairings
to files. These attributes are assigned either by user input or by an external indexing tool. These indexing
tools, referred to as transducers, traditionally perform content analysis, but could provide any attribute that
can be extracted automatically (such as context information). Once attributes are assigned, the user can
create virtual directories that contain links to all files with a particular attribute. The search can be narrowed
by creating further virtual sub-directories.

Several groups have explored other ways of merging hierarchical and attribute-based naming schemes.
Sechrest and McClennen [30] detail a set of rules for constructing various mergings of hierarchical and flat
namespaces using Venn diagrams. Gopal [16] defines five goals for merging hierarchical name spaces with
attribute-based naming and evaluates a system that meets those goals.

By assigning multiple attributes to a single file, the information available to search tools is increased
dramatically. Unfortunately, although these systems generally make no limitations on the methods for gath-
ering attributes, previous examples of such systems use only content analysis to provide additional attributes,
making them no more effective than existing search tools.

2.4 Additional related work

This section discusses additional work from outside file systems research that is related to gathering and
using context for file organization and search.



Web search engines: Over the last 10 years, a large number of web search engines have come into
existence [1, 15, 23, 34]. Early web search-engines, such as Lycos [25], relied upon user input (user submit-
ted web pages) and content analysis (word counts, word proximity, etc.). Although valuable, the success of
these systems has been eclipsed by the success of Google [6].

To provide better search results, Google utilized the text associated with a link to decide on attributes
for the linked site. This text provides the context of both the creator of the linking site and the user who
clicks on the link at that site. The more times that a particular word links to a site, the higher that word is
ranked for that site.

Recently, Google announced their intent to develop a local file search; however, their approach for
ranking web pages does not translate directly into the realm of file systems. The links between pages that
are inherent in the web do not exist between files. As such, it is likely that their initial tools will instead
leverage their extensive knowledge of text analysis and indexing.

Improved interfaces: The Haystack project [28] aims to improve the organization of user data by
providing improved interfaces that manipulate data using open, well-annotated file formats. By easing the
methods for users to input information into the system, Haystack can gather more useful attributes than
most existing systems. Combining a user-interface such as Haystack with automated methods of attribute
assignment and propagation could provide the user with an even greater ability to locate information than
either system alone.

Mobile cache hoarding: As distributed and decentralized systems have become more prevalent, many
groups have examined the idea of automatically hoarding networked files locally on mobile nodes [19, 20,
33]. The Aura project has examined schemes for allowing users to specify hoarded files by specifying
tasks [31], a set of applications and files that make up a particular context. Assuming that users are willing
to provide this information, it could also provide context hints to the indexing system.

Networked attributes: Researchers have explored the problem of providing an attribute-based names-
pace across a network of computers. Harvest [5] and the Scatter/Gather system [8] provide a way to gather
and merge attributes from a number of different sites. The Semantic Web [4] proposes a framework for an-
notating web documents with XML tags, providing applications with self-describing attribute information
for each file, and its data format is the basis for much of the Haystack work described above.

3 Sources of attributes

We believe that there is a broad array of automated attribute assignment approaches that can be exploited for
semantic file systems. We separate them into two groups—direct and indirect—based on how the attributes
are assigned. Direct assignment approaches provide attributes to files at creation or access time. Indirect
assignment approaches propagate attributes from a file to other closely related files. This section describes
content- and context-based approaches that fall into these two groups.

3.1 Direct attribute assignment

Although significant potential exists for a variety of attribute generation schemes, existing systems have
only used three particular direct assignment schemes: user input, content analysis, and file system attributes.
This section outlines these existing schemes, as well as three new schemes that use context information.

3.1.1 Existing schemes

User input: The most common form of attribute assignment is user input. Although users are often unwill-
ing to provide detailed attributes for each file, the high accuracy of these attributes makes them an important



part of attribute assignment. Attributes from user input include the filename, the pathname, any additional
hard and soft links, and any keywords (in systems that accept them).

Content analysis: Content analysis uses an understanding of a file’s format to extract keywords to
use as attributes for the file. The most common form of this is text analysis, used by most of the systems
described in Section 2. Some systems, such as Microsoft Window’s search utility, use their knowledge of
certain file formats (e.g., Word or PowerPoint) to reduce file contents into raw text, allowing text analysis of
the contents. Researchers continue to work on content analysis of music, images, and video files [7, 9], but
this remains a complex problem that is far from solved.

File system attributes: Most filesystems store a small set of context attributes within each file’s meta-
data, such as the owner of the file and the creation time. This information is one way that a user may search
for a file, and is often used to enrich the set of searchable attributes in existing search tools. Going further,
the Lifestreams system uses this context information as a first-class entity, providing a stream-like view of
all documents based on access time [11]. The utility of these few context attributes suggests that additional
context information could be quite helpful to the user.

3.1.2 Context-based schemes

Application assistance: Although personal computers can provide a vast array of functionality, most people
use their computer for a small set of routine tasks. Most of these tasks are performed by a small set of
applications, that in turn access and create most of the user’s files. These applications could explicitly
provide attributes for these files based on their knowledge of the user’s context. For example, if a user
executes a web search for “chess openings” and then downloads a file, the browser can note that this file
probably relates to “chess openings.” It could also extract keywords from the web address, the hyperlink
text, other information on the linking page, and other pages accessed recently. The evaluation in Section 5
explores the specific case of context-based attributes that can be provided by web browsers.

User feedback: Many search tools gather information about their results from either direct or inferred
user feedback. Similarly, an attribute-based search tool can obtain information from user queries. If a user
initially queries the system for “semantic file system™ and chooses a file that only contains the attribute
“semantic,” then the additional terms “file” and *“system” could be applied to that file. Also, if the possible
matches are presented in the order that the system believes them to be most relevant, having the user choose
files further into the list may be an indicator of success or failure. Also, as is done in some web search
engines, a system could elicit feedback from the user after a query has completed, allowing them to indicate
the success of the query using a pre-defined scale.

Although this particular form of context is effective for web search engines, it is unlikely to be as
effective for user file systems for two reasons. First, user file collections are rarely shared among users,
reducing the amount of feedback provided for each collection. Second, because users can generally find
recently accessed files, they generally only search for old files, making file searches far less frequent than
web searches.

External context: There also exists a significant amount of context that the user may have from events
occurring outside of the system. For example, the physical location of the user (e.g., at the local coffee
shop, in a scheduled meeting), the weather, significant news events, recent phone calls, etc., may all be clues
that the user would like to use to find a particular file. Although this information is not directly available to
the system, it may be possible to gather some of this information from external sources, such as calendar
programs, web searches, wireless network roaming services, phone records, etc. We view such external
context sources as an interesting area for future exploration.



3.2 Indirect attribute assignment

Until now, the area of indirect attribute assignment has been left entirely unexplored. This section outlines
two schemes for propagating attributes among files found to be related: one that uses context and one that
uses content. Sections 4 and 6 explore these in more detail.

User access patterns: As users access their files, the pattern of their accesses records a set of temporal
relationships between files. These relationships have previously been used to guide a variety of performance
enhancements (e.g., prefetching, cache hoarding [21, 26, 32]). Another possible use of this information is
to help propagate information between contextually related files. For example, accessing “SemanticFS.ps”
and “Gopal98.ps” followed by updating “related-work.tex” may indicate a relationship between the three
files. Subsequently, accessing “related-work.tex” and creating “osdi-submit.ps” may indicate a transitive
relationship.

Content similarity: Even within a single user’s file space, there may be multiple copies or versions of
a single file. For example, being unable to find a particular file, a user may re-download the file from the
web to a new location. Each time the user re-downloads the file, he is likely to provide a different context,
and thus a different set of attributes. By relating these copies of the file, the attributes from each copy can
be shared, hopefully making the file easier to locate the next time the user searches for it.

4 Propagating attributes using access patterns

As users work, their pattern of file accesses represent temporal relationships between their files. These
relationships form a picture of the user’s context, capturing concurrently accessed files as a single contextual
unit. Using these connections, the system can share attributes among related files, allowing classification of
previously unclassifiable files.

This section evaluates algorithms for context-based attribute propagation. There are three goals of this
evaluation. The first is to quantify the potential of these schemes to classify files, by measuring the increase
in classifications over direct assignment using ideal content analysis. The second is to measure the effect of
varying each aspect of the algorithm. The third is to get a feel for the accuracy of these relationships through
a by-hand examination of the generated relationships.

4.1 Algorithm design

A number of existing projects have extracted file inter-relationships from access patterns to provide file
prefetching and hoarding [3, 20, 22]. These algorithms convert the file system into a graph, with files at the
nodes and each relationship specified as a weighted link between nodes. The weight of a link is the number
of times that the relationship is seen, where “relationship” is traditionally defined as an access to the two
files in sequence.

To better explore the space of options, our tool generalizes existing algorithms into one algorithm with
five component parts: a graph style, a set of operation filters, a relation window, a stream extractor, and a
weight cutoff. A graph-generation algorithm is formed by choosing a point along each of these five axes.

Graph style: The “graph style” specifies whether relationship links in the graph are directed or undi-
rected. The direction of a link indicates the flow of attributes during indirect assignment, and is specified by
the operation filters. Undirected links allow attributes to flow in both directions.

Operation filters: This component specifies the set of file system operations considered when gener-
ating the relationships. The filter specifies operations as input, output, or both. Input operations indicate
the files that are the source of a relationship, while output operations indicate the files that are the sink of a
relationship.
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Figure 2: Access tree. This graphic illustrates the parent/child process tree and (along the bottom) the associated files accessed.
In this example, a user runs make from the command line. This process then spawns a number of sub-processes that then access
files. The advantage of this scheme over a simple PID-based scheme is that relationships across related programs are now captured.
For example, “test.s” is accessed by both “cc1” and “as” and so the relationship between “test.c” and “test.0” is captured.

The tool provides three main filters and a layerable filter that is used in concert with one of the main fil-
ters. The open filter treats open calls as both inputs and outputs. The read/write filter treats read operations
as inputs and write operations as outputs. The complex filter treats all access operations as inputs, including
mmap, open, read, stat, and the source file from a dup, 1ink, or rename. It treats all output operations as
outputs, including write, mknod, and the destination file from a dup, 1ink, or rename. The layerable user
filter discards all operations that do not act on a file owned by the user performing the operation.

Relation window: The relation window tracks the current set of input files. When an input file is passed
from the operation filter, it is placed into the window. When an output file is passed from the operation filter,
it becomes related to the files in the window. The window size is defined as either a number of files (managed
in LRU order) and/or a set period of time.

Stream extractors: This component separates independent streams of requests from the trace. Each
stream maintains a separate relation window, meaning that operations from one stream will not affect the
relationships generated by another stream.

The tool currently supports three stream extractors. The Simple extractor treats the trace as a single
stream of requests. The UID extractor creates a separate stream of requests for each user ID in the trace.
The Access Tree extractor [22] creates a stream of requests based on the file operations performed by a
parent process and all of its sub-processes (as illustrated in Figure 2). The root of an access tree is a process
spawned directly by the user or the system, and is currently defined as any process spawned by a user-
interface (such as X-windows or bash) or init.

Weight cutoff: Once the graph is generated, the link weights determine which relationships provide
indirect assignment. A simple scheme, such as following every relationship, is unreasonable, because the
result is a large number of false positives (i.e., relationships with little contextual value). Unfortunately,
cutting the links using a fixed weight is also problematic, because important relationships to less frequently
accessed files are lost. For example, if a file is downloaded, printed, and then never accessed again, the



Machine Unique Content-
Name Files Written | Classifiable
bliss 11963 58%
cloudnine 2147 74%
donut 1618 65%
garfield 1035 78%
glee 6959 71%
merriment 2424 49%
nirvana 1180 98%
odie 1928 54%
rapture 1498 51%
sylvester 6984 98%

Table 1: File system traces. This table lists characteristics of each of the ten file system traces.

single weight links from that file would likely be cut, making it impossible to locate that file later.

Our solution is to only consider links whose weight makes up more than a certain percentage of a file’s
total outgoing or incoming weight. In this manner, lightly weighted links coming from or to files with few
total accesses still receive indirect assignments, but only the most heavily weighted links are considered for
frequently accessed files. This percentage is referred to as the weight cutoff.

4.1.1 Summary of graph-generation algorithms

Using these five components, we can capture the behavior of various existing cache hoarding and prefetching
tools. For example, the model examined by Griffioen and Appleton [17] uses a directed graph style, the open
filter, a fixed window size of 2, the simple stream extractor, and a 0% cutoff. The model examined by Lei
and Duchamp [22] uses a directed graph style, the open filter, a fixed window size of 1, the access tree
extractor, and a 0% cutoff.

The goal of this work is not to capture the exact next access given a particular file, but rather find several
relationships that may be of use. As such, models that use very strict cutoff rules, such as last-successor, first-
successor, and Noah [3], cannot be captured by our algorithms, although many of the underlying techniques
are the same.

4.2 Experimental setup

As a starting point for evaluation, we assume that there exists a perfect content analysis tool that can provide
useful attributes for all ASCII text (such as source code, html, raw text, etc.), Postscript, and PDF files. Our
traces and experiments are on Linux systems. On MS Windows systems one would assume the tool could
also classify file formats like Word and Powerpoint. Based on this, we partition files into content-classifiable
and content-unclassifiable.

421 Traces

To capture user access patterns, ten researchers ran a specialized Linux kernel module on their desktop
machines for a period of four months. On startup, the module dumps the state of all processes and open
files, and during operation it tracks all file system and process management calls made in the system. Each
entry in the trace keeps enough information to maintain the state of the entire system throughout the lifetime
of the trace. Table 1 shows a summary of the ten traces.



4.2.2 Assumptions

Unless otherwise noted, all figures show only data for files owned by users. This is because we believe that
the average user is only interested in finding files created by himself or other users, and have little interest
in files created by the system (such as system logs, hardware configuration files, etc.). An examination of
the results for all files, as opposed to only the user files, showed slightly lower increases in the percentage
of classifiable files. This is because the system generated files make up most of these files, and less often
have useful context.

Also, except in the cases of undirected links, only those files that are marked as output files by the
operation filter are considered when calculating the number of classifiable and unclassifiable files. At some
point during the lifetime of the system, each file must have been used as an output, and thus if the traces
were available for that time period, they could have potentially been classified. Considering these files in
the calculation without this information would be unfairly biased against these algorithms.

Once a graph is generated, attributes are propagated along the links to related files. Often, the connec-
tion between two files in a sub-graph is through other files (i.e., “foo.c” to “f00.0” to the “foo” executable).
To capture this, attributes may be propagated more than one step from a classifiable file. By taking extra
steps, it is possible to classify more and more of the files within a sub-graph, until the entire sub-graph is
classified. Our figures either plot the steps taken along the x-axis, or use a specified number of steps.

4.2.3 Metrics

We consider three metrics when evaluating a graph-generation algorithm. First is the number of content-
unclassifiable files that now receive attributes. Second is the number of content-classifiable files that now
receive additional attributes. Third is the accuracy of the generated relationships.

To get a feel for the accuracy of the generated relationships, we examined the “donut” trace in detail*.
Although not an exact science, this subjective evaluation provides critical insight into the success of the
different algorithms.

4.3 Overall effectiveness

After exploring a large cross-product of different algorithm component values, we found a default scheme
that consistently performed well based on our three metrics. The default scheme uses the UID extractor,
directed graph style, read/write+user filter, two minute window, and a 1% cutoff.

Figure 3 shows the percentage of content-unclassifiable files that can be classified using the default
scheme and taking up to two steps (in the file relationship graph) from content-classifiable files for each of
the ten traces. The benefit is clear: more than 40% of all content-unclassifiable files can be classified in all
cases, and more than 80% in half the cases.

Although the percentage increase in classifiable files is high, in two of the traces (“nirvana” and
“sylvester”) a large percentage of the files were already classifiable using content analysis. In these cases,
attribute propagation still provides benefit, by adding additional attributes to files. Figure 4 shows the in-
crease in attributes for content-classifiable files for each of the ten traces using the default algorithm. With
the exception of one trace (“glee”), more than 70% of content-classifiable files receive extra attributes.

Examining the generated relationships shows most of them to be valid and useful. Although source
code is generally well-structured, compiled source code was related to the generated “.0” and program files.
For example, the code for the trace analysis tools was related to the tool itself. More importantly, the tool
became related to its generated output (such as log files), which were usually stored in a less structured

1This machine was used by one of the authors, allowing a detailed understanding of both the files and the accuracy of the
generated relationships.
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Figure 3: Newly classified files. This figure shows the percentage of content-unclassifiable files that can be classified by context-
based propagation for each of the ten traces. The “rapture” and “glee” traces observed the smallest increase in classifiable files,
because their users regularly downloaded pictures from their digital cameras (an action with no connection to content-classifiable
files).

fashion. Also, additional copies of the tool created for separate simulation runs were also related to the
source code through the original copy of the tool. Other examples of useful relationships we saw included
instant message logs to files downloaded from links sent by friends, PDFs of related work to the files making
up a paper being edited (and vice versa), and various files to old versions and backups.

4.4 Exploring the algorithms

To explore the trade-offs involved with each of the components of the graph-generation algorithms, we ran
experiments varying each component of the default scheme. We present the results of the “donut” trace,
as we have the best understanding of the accuracy of the relationships generated by this trace, although the
presented results are similar for each of the other nine traces.

4.4.1 Weight cutoff

Figure 5 shows the effect of varying the cutoff percentage on the “donut” trace. As expected, increasing the
cutoff percentage decreases the number of classifiable files, however, all cutoffs smaller than 2% perform
extremely well, classifying over 30% of the content-unclassifiable files.

In addition to cutting some files off from classification altogether, increasing the cutoff percentage also
makes the remaining sub-graphs more sparse. As a result, some files within large sub-graphs grow further

10
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Figure 4: Additional attributes. This figure shows the percentage of content-classifiable files that receive additional attributes
from attribute propagation for each of the ten traces. The “glee” trace had the fewest additional classifications because it had the
smallest amount of trace data; that user performed a significant amount of his work on an untraced laptop machine while travelling
during the four months of tracing.

away from the content-classifiable files, and thus it takes more steps for the attributes to be propagated to
them. This can be seen by the difference in the maximum number of steps taken between the 2% and 5%
cases: 3 and 6 respectively.

Even at a 0% cutoff there are still some unclassifiable files. These files are created by programs that
generate data without using existing files as input. Examples of this kind of data are web log files, files
transfered from another machine, or images retrieved from a digital camera. Although it would be possible
to generate relationships for these files using a larger relation window, these relationships would likely be
invalid. For example, if a user hasn’t used his computer for more than an hour, and then downloads images
from a digital camera, it is quite unlikely that the work done an hour ago is related to the images. Using an
undirected graph style may help to classify some of these files, however, most of these files are either never
accessed (such as the web logs), or only accessed as a group (examining the images from a trip) and thus
have no outgoing links. The most likely way to provide attributes to these files is through other assignment
schemes, such as application assistance.

For each cutoff percentage, we examined the set of unclassifiable files and compared it to the unclassi-
fiable files from the next smallest cutoff (i.e., comparing the 2% cutoff to the 1% cutoff). This allowed us
to see exactly which relationships were cut between different values of the cutoff. In our by-hand analysis,
we found that that using a cutoff higher than 1% starts to give a large number of false negatives (removing
file connections that are valid). We found that most of the connections between files at this cutoff appeared
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Figure 5: Trade-off of the cutoff percentage. This figure shows the percentage of classified files using a variety of cutoff per-
centages. The x-axis shows the number of steps from a content-classifiable file, where 0 indicates files that are content-classifiable.
This graph was generated from the trace of the “donut” desktop machine.

valid, but that very low cutoff values resulted in many false positives. We also found that invalid connections
become weaker as more data is gathered (i.e., as trace length grows) because by their nature they will occur
less frequently.

4.4.2 Operation filters

Figure 6 shows the effect of the different operation filters on the “donut” trace. Although there are six
possible operation filters, Figure 6 only reports the results for four of them. This is because the choice of
filter has a large affect on the number of links created, and thus the amount of memory required to store and
analyze the results. Using the open and complex filters alone, each resulted in close to 100 million links
between files over the four month trace, requiring more than the 3 GB of memory available to processes in
Linux. We are currently examining schemes to either reduce the memory required to examine the traces or
store portions of the data out-of-core.

The four schemes shown in Figure 6 all perform well in terms of quantitative classification, increasing
the number of classifiable files by 25-30%, with the read/write filters performing the best. A by-hand exam-
ination of the classifications generated by the read/write filters also show them to be the most accurate. The
open filter makes no distinction between files opened for writing, and files opened for reading. Because files
opened for writing had far fewer connections, many of the connections outgoing from these files were inac-
curate. The complex filter provided very similar results to the read/write filter, however, files accessed using
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Figure 6: Trade-off of the filter scheme. This figure shows the percentage of classified files using each of the six filtering
schemes. The x-axis shows the number of steps from a content-classifiable file, where 0 indicates that files that are content-
classifiable. This graph was generated from the trace of the “donut” desktop machine.

the stat syscall were often unrelated to files written later in the window, resulting in invalid connections.

An examination of the read/write and read/write+user filters shows that they produce nearly identical
classifications. In a desktop’s single-user environment, it is rare that a user accesses another user’s files
(generally only the “system” user during background tasks). The result is that these infrequent events have
little effect on classification.

4.4.3 Graph style

An examination of the ten traces found that there were no cases of directed links from unclassifiable to
classifiable files. The result is that changing links from directed to undirected has no affect on the number of
classifiable files. Using undirected links, it is possible to pass additional attributes among already classifiable
files, although in all ten traces less than 25% of the classifiable files received extra attributes.

4,44 Stream extractor

Figure 7 shows the effect of the different stream extractors on the “donut” trace. The access tree extractor
classifies fewer files than the others, because useful connections can also be formed among files from differ-
ent applications. The simple and user extractors perform identically. This is because a desktop’s single-user
workload results in no extra relationships being formed between files of differing users. Background tasks
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accessing files concurrently with the user occur infrequently enough that such links are ignored (due to
weight cutoff).

4.45 Relation window

Figure 8 shows the effect of varying window sizes on the “donut” trace. The interesting aspects of this
graph are at the two extremes of the window sizes. The largest window sizes (5 and 10 minutes) classify the
fewest files. This is because the increased number of links are eventually cut as invalid by the 1% weight
cutoff. At the smallest window size, 10 seconds, the first step of classification provides fewer attributes
than the 1, 2, and 3 minute windows. This is because the window provides so few connections as to limit
even potentially valid direct connections between files. Taking additional steps can renew some of these
connections by stepping through an intermediary file, however, a comparison of the remaining unclassified
files for the 10 second and 2 minute windows shows that taking additional steps does not always create the
same classifications. Instead, because the 10 second window does not have enough information, it creates
and follows links between less strongly connected files. As a result, a window size between 1 and 3 minutes
appears to most accurately capture the set of files that make up the user’s context at that time.
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5 Application assistance using web browsing

Because most applications are designed for specific tasks, they are uniquely suited to provide attributes
describing what their user is currently doing. An examination of the traces indicates that web-browsing is
one of the most frequently performed user activities. As such, it has potential to gather a significant amount
of user context. We examine two methods of gathering context information from a web browser: gathering
the context of downloaded files from recent user activity, and marking periods of time with the context of
the user using recently browsed pages.

5.1 Algorithm design

As a user browses the web, the pages he visits form trees of activity, with attributes added along each link.
Pages that are accessed directly (e.g., bookmarks, direct entry, external programs) act as root nodes. Each
page request generated from a given page (either through a hyperlink or form) acts as a child to that page.
The link between a parent and its child is marked with the attributes of the request: either the text of the
hyperlink or the submitted form data. The attributes for a given page are determined by tracing the links
from the page to the root and gathering all of the attributes along the path. Downloaded files are treated as
leaves in the tree, and as such, are assigned attributes by following the path to the root.

Periods of browsing activity are marked using a windowing scheme similar to the relation window
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described in Section 4. When a page is accessed, its attributes are placed into the window. Output files
(as specified by the system’s operation filter) accessed within this window are assigned all attributes in the
window.

5.2 Experimental setup

To gather the information about user web activity, we instrumented a module for the Mozilla web browser
to keep a trace of web activity. One of the ten researchers (the user of the “donut” system) ran the tracing
tool for two of the four months of file system tracing.

To make use of more of the available data, we compared the set of downloaded files from the web trace
against the set of files created by Mozilla in the file system trace for those two months (not including those
files created in the browser-specific “.mozilla” directory), and found an exact match. We also confirmed that
no files in the web trace were downloaded without the user having first clicked on at least one hyperlink.
As such, we consider it safe to assume that any such files created in any of the file system traces could be
considered files downloaded by Mozilla, and would receive additional attributes from application assistance.

5.3 Overall effectiveness

To evaluate the effectiveness of the downloading scheme we ran the tool over four of the ten file system
traces?. To evaluate marking periods of web activity, we combined the existing web trace with the matching
two months of file system tracing.

5.3.1 File downloads

Figure 9 provides a summary of the downloaded files for four of the traced machines. It shows the total
number of files downloaded over the four month period, as well as a breakdown of the file type of the
downloaded files. This breakdown is based on afile’s likelihood of being content-classifiable; text, Postscipt,
and PDF files are considered content-classifiable, while “unclassifiable” includes all remaining files, mostly
consisting of images, video, music, and compressed archives.

One disappointing aspect of this data is that few of the files created by the users were downloaded from
the web. However, the files downloaded off the web are often some of the least well organized in the user’s
system. An examination of the pathnames of downloaded files found that between 40% and 95% of the
files downloaded were placed into a single directory, often either the user’s home directory or a personal
directory called “downloads” or “tmp.” This indicates that the additional attributes generated by application
assistance could be quite valuable to the user later when performing a search.

Although these files make up a small fraction of the created files, their application-applied attributes
could be propagated to many additional files via the inter-file relationships generated by user access patterns.
Figure 10 shows the percentage of files classified by combining these schemes. Although combining these
extra attributes with content-based attributes has little effect on the total number of classifiable files, it can
increase the number of useful attributes per file. This represents an added benefit of application assisted
attributes.

Finally, by-hand examination of these assignments shows them to be quite relevant. For example, one
file saved to a user’s home directory named “KA2.mpg” was given the attributes “Honda car commercial.”
Another file saved to the home directory named “gw.zip” appeared to be related to both “guild wars” and
“demo.” Although unable to remember the contents of either file initially, when presented with the keywords,
the user was able to indicate that they were quite accurate in both cases.

2The users of the other six traced machines downloaded no files using the Mozilla web-browser. Some used other browsers, and
some performed no downloading.
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Figure 9: Web downloads. This figure shows a count of files downloaded on four different desktop machines over a period of
four months. The “text” and “ps or pdf” bars for each machine shows the number of downloaded files that can be classified using
traditional content analysis schemes. The “unclassifiable” bars are the remaining, unclassified files that were downloaded.

5.3.2 Web activity

By marking periods of web activity with context attributes, it was possible to classify 53 files, including
36 previously unclassifiable files. Figure 11 shows the result of combining this scheme with user access
pattern propagation over the two months of available traces. Similarly to the propagation of downloaded
file attributes, combining this small set of files with indirect attribute assignment provides a large set of
classifiable files.

Unfortunately, unlike previous schemes, many of the classifications made by this scheme seem inaccu-
rate. This appears to stem from the user’s behavior of browsing the web during program compilations. The
result is that many source and program files become associated strongly with a variety of news websites.
One way to try and prevent this is to classify the user’s web sites into categories based on usage patterns. If a
user frequents a particular website during a variety of activities, then it is probably not tied to any particular
one of these. However, if a user performs a directed search or visits a website only in correlation with a
particular task, then they could be strongly connected. Experiments with this heuristic (and others) will be
a useful direction for future work.
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Figure 10: Attribute propagation from web downloads. This figure shows the effect of combining the attributes generated for
downloaded files with user access pattern propagation for the four machines shown in Figure 9. The y-axis shows the percentage
of files classified and the x-axis shows the number of steps taken from a downloaded file.

6 Propagating attributes using content similarity

To get a feel for the potential of relationships formed by content similarity, we ran an experiment to find all
duplicate copies of files owned by the user of the “donut” desktop system. To do so, we generated an md5
checksum [29] of all files owned by the user and then found duplicate checksums that also had identical file
sizes. Although possible, the likelihood of a collision between two different files is extremely low.

The experiment located 2,644 sets of identical files, with an average set size of 4.54 files. Using these
additional connections, it was possible to classify an additional 2% of files beyond those unclassifiable by
content, application assistance, or user access patterns, advancing the total classification to 97% (from 95%).

The largest sources of duplicate files came from duplicate or versioned source trees, CVS generated
duplicates, and apparently re-downloaded or hand copied files. This last set of files is of particular interest, as
these files are “organized” by the user. An example of this is two identical files we found in the user’s home
directory, “submit.ps” and “usenix.final.ps,” that were created approximately two hours apart. Interestingly,
when asked about the files, the user was able to remember the context in which the files were created, but
was unable to recall the exact title of the paper in question.
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Figure 11: Direct attribute assignment based on concurrent web browsing. This figure shows the effect of combining the
attributes generated from concurrent web browsing with user access pattern propagation using the “donut” trace. The y-axis shows
the percentage of files classified and the x-axis shows the number of steps taken from a downloaded file.

7 System architecture

This paper takes a critical first step towards the use of automated context-based attribute assignment in
semantic file systems, by developing and evaluating algorithms for doing so. The next step is to deploy,
and gain real user experiences with, such attributes in a real semantic file system. This section describes the
architecture of such a system and how the tools described in Sections 4, 5, and 6 fit into it.

7.1 Extensions to traditional semantic file systems

Figure 12a shows the basic design of most semantic file systems (simplified from [14]). The system traces
application requests to watch for file updates, and potentially to overlay its indexing system on the existing
file system interface by extending the namespace [14, 16]. When a file is updated, the tracer notifies its
transducer, which reads the file and updates its attributes in the index. Applications query the index using
either a separate interface or a namespace extension.

Figure 12b shows a diagram of a prototype system for indexing and searching attribute information that
incorporates the various tools for automatic attribute assignment described Sections 4, 5, and 6. As before,
application requests are routed through the tracer, but are now passed both to the direct assignment tools (to
notate file updates) and to the indirect assignment tools (to trace user access patterns and notify the content
similarity tool of updates). Applications may also provide attributes through application assistance or user
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Figure 12: System design. This figure shows both the traditional design of semantic file systems, and the design of our new
prototype system. The key difference in our prototype system is the introduction of the new attribute assignment tools described
in Sections 4, 5, and 6. These tools fall into the two categories of indirect and direct assignment, and their different properties also
affect the design of the indexing database.

feedback. These parts of the system map directly onto the tools described in this paper, and make up the
bulk of the prototype system.

The database maintains three separate indices. The direct index stores direct attribute assignments,
while the indirect map stores the inter-file relationships. The main index stores the combined attribute
assignments after applying inter-file relationships to the direct attribute assignments.

Although not discussed in our evaluation, there are both computational and memory overheads for
running these tools, most significantly for the tools that generate inter-file relationships from user access
patterns. A single 4-month simulation takes approximately 2 hours and ranges between using 1 and 3 GB of
memory. However, this is not representative of how a system would use these tools. More likely, indexing
would be performed each night, and relationships would be stored out-of-core in the database. Running the
tool over a single day of traces requires only a few minutes, and takes very little memory (dependent upon
the amount of activity performed during that day, but generally less than 100MB). The result is that the
performance overheads of these tools are likely to be as little or less than current content-based indexing.

7.2 Challenges and trade-offs

The addition of so many and varied attribute generation schemes introduces challenges to the design of a
complete system. Most significant are the increase in available attributes for all files, and the introduction of
attribute propagation schemes. This section discusses how these changes affect the unbuilt portions of the
system: the search interface and the attribute database.

7.2.1 Search interfaces

In most existing file search systems, when a user searches for a particular keyword, he is presented with
a list of all matching files. With a dramatic increase in the number of attributes assigned to each file, file
search tools will be presented with a problem similar to that of web search tools: too many results. To deal
with this problem, web search tools assign weights to the keywords for each page. File search tools will
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require a similar solution, allowing the user interface to order search results by weight.

The addition of weights introduces two secondary problems. First, the weights generated by an attribute
assignment tool must be normalized against the other tools in the system, to prevent a single tool from
overriding the attributes generated by other tools. This normalization could be agreed upon in advance
by all tools, or it could be managed by the system using the average weighting of each tool. Second, the
database must maintain a separate weight by tool for each (attribute,file) pairing, simplifying normalization
in the case of more than one tool generating the same attribute for a file.

7.2.2 Managing indirect attributes

The key challenge of indirect attribute assignment is to avoid re-propagation. For example, if an attribute
is passed along two steps of a sub-graph from file “A” to file “B” during the indexing phase, it must not be
re-propagated two steps from file “B” during a later indexing phase (and thus 4 steps in total). To avoid
this, the database should maintain a separate mapping for indirect attribute assignment. This can then be
re-combined with any directly assigned attributes during an indexing phase.

This separate indirect map has two potential implementations: either the map stores the attributes
propagated at the time the relationship is generated, or the map stores the relationship between the files
and re-gathers the propagated attributes during each indexing phase. Each approach has potential merit.
By storing the attributes, the map captures the context relationship between the files at the exact time the
relationship was formed. By storing the relationship, the map may capture new attributes that are valid to
both files with additional direct attribute assignments. Comparing these two schemes is an area of ongoing
work.

8 Conclusion

The addition of context-based attributes can make semantic file systems more effective, by tackling their
primary shortcoming: the unavailability of quality attributes. Context attributes capture the state of users
while they accessing their files, a key way that users recall and search for data [2]. Combining context and
content attributes with attribute propagation increases both the number of classifiable files, and the number
of attributes assigned to each file. The result is a more informed system that has a far better chance of
successfully helping users locate specific files when desired.
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