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ABSTRACT
Connections is a file system search tool that combines tradi-
tional content-based search with context information gath-
ered from user activity. By tracing file system calls, Con-
nections can identify temporal relationships between files
and use them to expand and reorder traditional content
search results. Doing so improves both recall (reducing false-
positives) and precision (reducing false-negatives). For ex-
ample, Connections improves the average recall (from 13%
to 22%) and precision (from 23% to 29%) on the first ten
results. When averaged across all recall levels, Connections
improves precision from 17% to 28%. Connections provides
these benefits with only modest increases in average query
time (2 seconds), indexing time (23 seconds daily), and in-
dex size (under 1% of the user’s data set).

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; D.4.3 [Operating Systems]: File
Systems Management—File organization

General Terms
Algorithms, Design, Human Factors, Management

Keywords
context, file system search, successor models

1. INTRODUCTION
Users need more effective ways of organizing and search-

ing their data. Over the last ten years, the amount of data
storage available to individual users has increased by nearly
two orders of magnitude [16], allowing today’s users to store
practically unbounded amounts of data. This shifts the chal-
lenge for individual users from deciding what to keep to
finding particular files when needed.

Most personal computer systems today provide hierarchi-
cal, directory-based naming that allows users to place each
file along a single, unique path. Although useful on a small
scale, having only one classification for each file is unwieldy
for large data sets. When traversing large hierarchies, users
may not remember the exact location of each file. Or, users
may think of a file in a different manner than when they filed
it, sending them down an incorrect path in the hierarchy.
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Attribute-based naming allows users to classify each file
with multiple attributes [9, 12, 37]. Once in place, these at-
tributes provide additional paths to each file, helping users
locate their files. However, it is unrealistic and inappropri-
ate to require users to proactively provide accurate and use-
ful classifications. To make these systems viable, they must
automatically classify the user’s files, and, in fact, this re-
quirement has led most systems to employ search tools over
hierarchical file systems rather than change their underlying
methods of organization.

The most prevalent automated classification method to-
day is content analysis: examining the contents and path-
names of files to determine attributes that describe them.
Systems using attribute-based naming, such as the Seman-
tic file system [9], use content analysis to automate attribute
assignment. Search tools, such as Google Desktop [11], use
content analysis to map user queries to a ranked list of files.

Although clearly useful, there are two limitations to con-
tent analysis. First, only files with understandable contents
can be analyzed (e.g., it is difficult to identify attributes for
movie clips or music files). Second, examining only a file’s
contents overlooks a key way that users think about and
organize their data: context.

Context is “the interrelated conditions in which something
exists or occurs” [43]. Examples of a file’s context include
other concurrently accessed files, the user’s current task,
even the user’s physical location — any actions or data that
the user associates with the file’s use. A recent study [38]
showed that most users organize and search their data using
context. For example, a user may group files related to a
particular task into a single directory, or search for a file
by remembering what other files they were accessing at the
time. These contextual relationships may be impossible to
gather from a file’s contents.

The focus of our work is to increase the utility of file sys-
tem search using context. In this paper, we specifically ex-
amine temporal locality, one of the clearest forms of context
and one that has been successfully exploited in other areas of
file systems. Temporal locality captures a file’s setting, con-
necting files through the actions that make up user tasks.
Connections is a new search tool that identifies temporal
contextual relationships between files at the time they are
being accessed using traces of file system activity. When
a user performs a search, Connections first locates files us-
ing traditional content-based search and then extends these
results with contextually related files.

User studies with Connections show that combining con-
tent analysis with context analysis improves both recall (in-
creasing the number of relevant hits) and precision (return-
ing fewer false positives) over content analysis alone. When
compared to Indri, a state-of-the-art content-only search
tool [25], Connections increases average precision at each
recall level, increasing the overall average from 17% to 28%.
When considering just the top 30 results, Connections in-



creases average recall from 18% to 34%, and average pre-
cision from 17% to 23%. With no cutoff, Connections in-
creases average recall from 34% to 74% and average preci-
sion from 15% to 16%.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related work. Section 3 outlines the design
and implementation of Connections. Section 4 analyzes the
utility of Connections’s context-based search. Section 5 dis-
cusses interesting considerations for building context-based
search systems like Connections.

2. BACKGROUND AND RELATED WORK
Context is one of the key ways that users remember and

locate data [38]. For example, a user may not remember
where they stored a downloaded email attachment, but may
remember several contextually related items: the sender of
the email, approximately when the email arrived, where they
were when they read the email, or what they were doing at
the time they downloaded the attachment. Automatically
identifying the file’s context can assist the user in locating it
later using any of this related contextual information, rather
than only the filename or contents of the attachment.

This section begins by describing background work from
file systems and web search that motivated our exploration
of context-based search. It then describes work that success-
fully utilizes Connection’s specific form of context, temporal
locality, in other domains. The section ends with a descrip-
tion of search and organizational systems that utilize other
forms of context, and how our work on identifying contextual
relationships with temporal locality could enhance them.

2.1 Semantic file systems
Many researchers have identified organizational problems

with strict hierarchical naming. Several proposed attribute-
based naming as a solution: attaching multiple attributes
(or keywords) to a file to improve organizational structure
and search capabilities. The Semantic file system [9] was
one of the first to explore attribute-based naming, providing
a searchable mapping of 〈category, value〉 pairings to files.
Other research [12, 37] and commercial [8] systems merge hi-
erarchical namespaces with flat attribute-based namespaces
in various ways, providing new organizational structures.

Although attribute-based naming has the potential to im-
prove file system search, these systems focused on the mech-
anism to store additional attributes, not the sources of at-
tributes. Traditionally, attributes come from two sources:
users and content analysis. Understandably, most users are
unwilling to perform the difficult and time-consuming task
of manually assigning attributes to their files. As a result,
rather than changing the underlying file system structure,
recent focus has been on using content analysis to provide
file system search on existing hierarchical systems.

2.2 Content-based search
The simplest content-based search tools (e.g., UNIX tools

find and grep) scan the contents of a set of files for a given
term (or terms), returning all hits. To speed this process,
tools such as locate and Glimpse [29] use indices to reduce
the amount of data accessed during a search. These tools
work on the premise that the provided keywords can narrow
the resulting list of files to a more human-searchable size.

Commercial systems such as Google Desktop [11] and X1
desktop search [44] leverage the work done in text-based in-

formation retrieval to provide more accurate, ranked search
results. Although the exact methods of commercial sys-
tems are unpublished, it is likely they use techniques sim-
ilar to cutting-edge information retrieval systems such as
Terrier [40] and Indri [25]. These modern tools use proba-
bilistic models to map documents to terms [41], providing
ranked results that include both full and partial matches.
Probabilities are generated using methods such as term fre-
quency within a document, inverse term frequency across a
collection, and other more complex language models [31].

2.3 Context in web search
Despite these tools, one could argue that it is easier to

find things on the web than in one’s own filespace — even
with the order of magnitude larger search space and the
non-personalized organization. This seems strange, but it’s
largely enabled by the availability of user-provided context
attributes in the form of hyperlinks.

Just as in current file system search, early web search-
engines [26, 30, 45] relied on user input (user submitted
web page classifications) and content analysis (word counts,
word proximity, etc.). More recently, two techniques have
emerged that use the inherent link structure of the web to
identify contextual links. The HITS algorithm [20] defines a
sub-graph of the web using content search results, and then
uses the link structure of the graph to identify the authority
and hub nodes. The popular Google search engine [10] uses
the link structure in two primary ways. First, it uses the
text associated with a hyperlink to guide content classifica-
tions for the linked site. Second, it uses PageRank [5], an
algorithm that uses the link structure of the web to calculate
the “importance” of individual sites.

Although successful for the web, these techniques face
challenges in personal file systems because tagged, contex-
tual links do not inherently exist in the file system. Our work
aims to add untagged contextual links between files using
temporal locality. An evaluation of combining our approach
with both HITS and PageRank is discussed in Section 4.3.3.

Another context-based approach seen in web search is
personalization, using the user’s current context to target
search results. WebGlimpse [28] took a first step toward
personalized search using the concept of a “neighborhood,”
the set of web pages within a certain hyperlink distance of
a given page. Users could choose to search only within the
current page’s neighborhood, creating a directed search of
potentially related pages based on the user’s current context.
More recent work has focused on targeting results to partic-
ular topics or interests, sometimes gathered from a user’s re-
cent activity [15, 39]. These systems remove results that do
not relate to the user’s current context, improving precision.
Conversely, Connections extends results using context infor-
mation gathered from previous activity. We believe these
techniques complement each other well: removing unrelated
content-based results prevents Connections from gathering
files from an unrelated context.

2.4 Identifying context: temporal locality
In file systems, temporal locality can provide some of the

contextual clues that are so readily available on the web. By
observing how users access their files, the system can deter-
mine contextual relationships between files. Our work uses
these contextual relationships to enhance existing content-
based search tools.



To identify temporal relationships, we borrow from other
work that uses temporal locality to model how users access
their data. One example of this is using temporal locality
to predict access patterns for file prefetching.

Almost all file systems use prefetching to hide storage la-
tencies by predicting what the user will access next and read-
ing it into the cache before they request it. Some prefetching
schemes [13, 21] use temporal locality to correlate common
user access patterns with individual user contexts. These
systems keep a history of file access patterns using succes-
sor models: directed graphs that predict the next access
based on the most recent accesses. If a sequence of ac-
cesses matches one of the stored successor models, the sys-
tem assumes that the user’s context matches this model, and
prefetches the specified data.

The success of these schemes has led to a variety of algo-
rithms for building successor models [2, 24, 27]. Similarly,
many cache hoarding schemes use successor models to pre-
dict which files a user is likely to need if they become discon-
nected from the network [19, 22]. Connections uses successor
models to identify relationships between files, as they have
successfully identified related files in other domains.

2.5 Existing uses of context for file search
Several systems leverage other forms of context as a guide

for file organization and search. Gathering context from
temporal locality, as Connections does, could enhance these
systems by providing additional contextual clues for classi-
fication.

The Haystack [34] and MyLifeBits [7] projects use context-
based data organization at the core of their interface design,
allowing users to group and assign classifications to objects
more quickly. If these interfaces motivate users to provide
additional classifications, they will result in improved search
facilities. Our work could assist users of such a system by
adding automated groupings based on temporal locality.

A few systems attempt to determine the user’s current
context to predict and prefetch potentially desired data.
The Lumiere project provides users with help data in the Mi-
crosoft Office application suite; attempting to predict user
problems by predicting their current context from recent
actions [17]. The Rememberance Agent [35, 36] continually
provides a list of related files (based on content similarity)
to the user while they are working. By feeding recently ac-
cessed file data into a content-based search system, it locates
files with similar contents that may reflect the user’s current
context. Our work could enhance such systems by provid-
ing additional contextually related files — those based on
temporal locality rather than content similarity.

Most content-based search tools organize their search re-
sults, allowing the user to hone in on the set of files that
is most likely to contain what they are searching for. For
example, the Lifestreams project [6] orders search results us-
ing the latest access time of the resulting files. The Grokker
search tool [14] clusters search results, grouping together
files with similar contents. Our work could be used to clus-
ter results using contextual relationships rather than, or in
addition to, content-similarity or access time.

3. CONNECTIONS
Connections combines traditional content analysis with

contextual relationships identified from temporal locality of
file accesses. This section describes its architecture, relation-

Applications

Tracer

File system

User

Relation
Graph

Content−based
Search

Results

Results

Context−enhanced Search

Keywords

Figure 1: Architecture of Connections. Both applica-
tions and the file system remain unchanged, as the
only information required by Connections can be
gathered either by a transparent tracing module or
directly from existing file system interfaces.

ship tracking and result ranking algorithms, and our proto-
type implementation.

3.1 Architecture
In traditional content-only search systems, the user sub-

mits keywords to the search tool, which returns rank-ordered
results directly to the user. Often, the search tool is separate
from the file system, using a background process to read and
index file data.

Figure 1 illustrates the architecture of Connections. From
a user’s perspective, Connections’s context-enhanced search
is identical to existing content-only search: a tool separate
from the file system that takes in keywords and returns a
ranked list of results. Internally, when Connections receives
keywords from the user, it begins with a content search,
retrieving the same results as a content-only search tool.
It feeds these results into the relation-graph, which locates
additional hits through contextual relationships. The com-
bined results are then ranked and passed back to the user.

To identify and store these relationships, Connections adds
two new components: the tracer and the relation-graph.
The tracer sits between applications and the file system,
monitoring all file system activity. Connections uses these
traces to identify contextual relationships between files.

The relation-graph stores the contextual relationships be-
tween files. Each file in the system maps to a node in the
graph. Edges between nodes represent contextual relation-
ships between files, with the weight of the edge indicating
the strength of the relationship. Because different users
may have different contexts for a particular file, Connections
maintains a separate relation-graph for each user based on
their file accesses alone. This also separates user tasks from
background system activity in single-user systems.

Three algorithms drive the context-based portions of Con-
nections. The first algorithm takes the captured file traces
and identifies the contextual relationships, creating the
relation-graph. The second algorithm takes content-based
search results and locates contextually related files within
the relation-graph, creating a smaller result-graph. The
third algorithm uses the result-graph to rank the combined
set of content-based and context-related results.



System Call Description

open(S) Opens file S reading or writing
read(S) Reads data from file S

write(D) Writes data to file D

mmap(S) Maps file S into a memory region
stat(S) Reads the inode of file S

dup(S, D) Duplicates file handle S to D

link(S, D) Adds directory entry D for file S

rename(S, D) Changes the name of file S to D

Table 1: File system calls. This table lists the file
system calls considered by Connections when iden-
tifying relationships from traces. Each parameter is
identified as either a source (S) or destination (D).

Each of the algorithms in Connections is specifically de-
signed for flexibility, and as such have several tunable pa-
rameters. This flexibility allows us to study a range of op-
tions for each algorithm. An evaluation of sensitivity within
each algorithm is provided in Section 4.3.

3.2 Identifying relationships
Connections identifies temporal relationships by construct-

ing a successor model from file traces. Files accessed within
a given window of time are connected in the relation-graph.
Over time, a user’s access patterns form probabilistic map-
pings between files that are the basis of Connections’s con-
textual relationships. The specific algorithm for generating
the relation-graph is described by three parameters: relation
window, edge style, and operation filter.

Relation window: The relation window maintains a list
of input files accessed within the last N seconds.1 Concep-
tually, this captures the period of time during which a user
is focused on a particular task. Too short a window will miss
key relationships, while too large a window will connect files
from unrelated tasks.

When the window sees an output file, it creates an edge
in the relation-graph with weight 1 from each of the input
files to the output file. If such an edge already exists, its
weight is incremented. To avoid creating heavy weightings
during long sequences of output operations to a single file
(e.g., large file writes), any two files are only connected once
while the input file stays in the relation window.

Edge style: The edge style specifies whether edges of
the relation-graph are directed or undirected. Direction in-
dicates how the edges of the relation-graph may be followed
during a search. Directed edges point from input files to
output files, while undirected edges may be followed either
direction. Conceptually, undirected links reverse the causal
nature of the relation-graph, allowing searches to locate the
input of a given file.

Operation filter: Each entry in the trace corresponds to
a file system operation. An operation filter specifies which
system calls to consider from the trace and classifies the
source and/or destination files accessed by each system call
(shown in Table 1) as an input or an output.

In this paper, we consider three different operation filters:

1We also considered using a fixed number of files as the
window, but in practice we found that the burstiness of file
accesses made this approach perform poorly. Related files
during bursts were not connected, and unrelated files were
connected over long periods of idleness.

open, read/write, and all-ops. The open filter classifies the
source file of an open call as both input and output. Concep-
tually, this captures strict temporal locality: files accessed
nearby in time become related.

The read/write filter classifies the source file of a read call
as input and the destination file of a write call as output.
Conceptually, this captures causal data relationships: the
data read from one file may affect the data later written to
another file, relating the files.

The all-ops filter classifies the source file of a mmap, read,
stat, dup, link, or rename as input. It classifies the desti-
nation file of a write, dup, link, or rename as output. This
filter extends on the causal relationships of the read/write
filter, adding in other access-to-modification relationships.

3.3 Searching relationships
The context-based portion of a search in Connections starts

with the results of a content-based search. For each file in
these results, Connections performs a breadth-first graph
traversal starting at the node for that file. Files touched
during the traversal are added to the result-graph, a sub-
graph with the results for a specific search.

In the process of building the relation-graph, incorrect
edges can form. For example, when a user switches context
between disparate tasks (e.g., from writing personal email
to examining a spreadsheet), the edges formed during the
transition could be misleading. Our algorithm attempts to
reduce the number of such paths introduced to the result-
graph using two tunable parameters: path length and weight
cutoff.

Path length: Path length is the maximum number of
steps taken from any starting node in the graph. As the
system follows edges further and further from an initial file,
the strength of the relationship grows weaker and weaker.
By limiting the path length, one reduces the number of false
positives created by a long chain of edges that leads to un-
related files.

Weight cutoff : The weight cutoff specifies that an edge’s
weight must make up at least a given minimum percentage
of either the source’s outgoing weight or the sink’s incom-
ing weight. In this manner, lightly weighted edges coming
from or to files with few total accesses are still followed,
but only the most heavily weighted edges are followed for
frequently accessed files. This limits the effects of context-
switches, removing links between oft-accessed files that are
rarely accessed together.

To see how the weight cutoff and the path length work
together, consider the example relation-graph in Figure 2.
Assume that D was the starting point for a search using a
path length of 2 and a 30% weight cutoff. Connections starts
by examining D and sees that the edge DB makes up only
20% of D’s outgoing weight and 20% of B’s incoming weight,
thus it is not followed. Following edge DE, Connections
repeats the procedure. In this case, although both EB and
EF make up less than 30% of E’s outgoing weight, they
make up more than 30% of the incoming weight of nodes B
and F respectively, and both are followed. Thus the result-
graph would contain only edges DE, EF , EG and EB. If
the path length were increased to 3, the result-graph would
also contain edges BA and BC. Similarly, if the cutoff were
reduced to 15%, edge DB would be followed, the result-
graph would contain all of the presented edges.
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Figure 2: Relation-graph example. Each of the nodes in
the relation-graph map to a file in a user’s system.
Edges indicate related files with weights specifying
the strength of the relationship. Note that the edge
weights in the figure are specifically chosen for the
algorithm behavior example in the text.

3.4 Ranking results
Most modern search tools rank order results to provide

their best guesses first. Connections implements three rank-
ing algorithms: Basic-BFS, an algorithm that pushes weights
down edges in a breadth-first manner, and two extensions
to Basic-BFS based on the popular web-search algorithms
HITS [20] and PageRank [5].

3.4.1 Basic-BFS
Basic-BFS uses the rankings provided by content-search

to guide the rankings of contextually related items. Close
relations, and relations with multiple paths to them, will
receive more weight than distant relations with few incoming
paths. Intuitively, this should match to the user’s activity:
if a file is rarely used in association with content-matched
files, it will receive a low rank, and vice-versa.

Let N be the set of all nodes in the result-graph, and P
be the path length used to generate the result-graph. Each
n ∈ N is assigned a weight wn0 by the content-based search
scheme. If a file is not ranked by content analysis, then
wn0 = 0. Connections then runs the following algorithm for
P iterations.

Let Em be the set of all incoming edges to node m. Let
enm ∈ Em be the percentage of the outgoing edge weight at
n for a given edge from n to m. Assuming that this is the
ith iteration of the algorithm, then let:

wmi
=

X

enm∈Em

wn(i−1)
· [enm ∗ α + (1 − α)]

The value wmi
represents all of the weight pushed to node

m during iteration i of the algorithm, and α dictates how
much to trust the specific weighting of an edge. After all
runs of the algorithm, the total weight of each node is then:

wn =

P
X

i=0

wni

This sum, wn, represents the contributions of all contex-
tual relationship paths to node n plus the contribution of its
original content ranking. The final ranking of results sorts
each file from highest weight to lowest.

As an example of how the algorithm works, assume that

the graph in Figure 2 is the result-graph, the path length
is 2, α = 0.25, and the content-based search returns wD0 =
4 and wB0 = 2. Consider wB . On the first pass of the
algorithm, wB1 is updated based on wD0 and wE0 . In this
case, wE0 = 0, so only wD0 affects its value:

wB1 = 4 · [(2/10) · 0.25 + 0.75] = 3.2

On the second pass, wE1 = 3.8 (using the formula from
above) and wD1 = 0 , thus:

wB2 = 3.8 · [(8/113) · 0.25 + 0.75] = 2.92

The final weight wB , is then the sum of these weights,
2 + 3.2 + 2.92 = 8.12.

3.4.2 HITS
The HITS algorithm attempts to locate authority and hub

nodes within a graph, given a specific set of starting nodes.
Authority nodes are those with incoming links from many
hub nodes, while hub nodes are those with outgoing links to
many authority nodes. In the web, authorities are analogous
to pages linked many times for a particular topic (e.g., the
official SOSP web site), while hubs are analogous to pages
with lists of links to authorities (e.g., a page with links to
all ACM conference websites).

HITS identifies authorities and hubs using three steps.
First, it runs a content-based search to locate an initial set of
nodes. Second, it creates a sub-graph of the relation-graph
by locating all nodes with incoming/outgoing links from/to
the starting nodes. Third, it runs a recursive algorithm to
locate the “principal eigenvectors of a pair of matrices Mauth

and Mhub derived from the link structure” [20]. These eigen-
vectors indicate the authority and hub probabilities for each
node.

Connections implements HITS in two ways. The first im-
plementation, HITS-original, runs an unmodified version of
HITS. The second implementation, HITS-new, begins with
the result-graph derived in Section 3.3, and then runs only
the third part of the HITS algorithm. Our evaluation in
Section 4.3.3 examines both the hub and authority rankings
of each implementation.

3.4.3 PageRank
PageRank is the ranking algorithm used by the Google

web search engine [5]. It takes the graph of hyperlinks in the
web and calculates the principal eigenvector of a stochastic
transition matrix describing this graph. This eigenvector
describes the probabilities for reaching a particular node on
a random walk of the graph. This probability is referred to
as a page’s PageRank.

Within Connections, we use the Power Method [18] to
calculate the PageRank of each file in the relation-graph.
Unfortunately, Google’s method of merging content search
results with PageRank is not documented, thus we imple-
mented three possible uses for a file’s PageRank within Con-
nections.

The first implementation, PR-before, applies a file’s Page-
Rank to its content-based ranking (i.e., take the product of
the original ranking and the PageRank as the new ranking),
and then runs the Basic-BFS algorithm. The second im-
plementation, PR-after, runs the Basic-BFS algorithm, and
then applies the PageRank to the final results. The third



implementation, PR-only, ignores the content rankings, and
uses only PageRank to rank the files within the result-graph.

3.5 Implementation
Our prototype implementation of Connections has the

three components shown in Figure 1: a tracer, a content-
based search, and a relation-graph. To minimize foreground
impact, only the tracer runs on the system continuously,
while indexing required by content-based search and the
relation-graph runs either during idle time or as background
processes. The delay in indexing only affects users if they
search for files created between indexing periods, a scenario
that already exists with today’s content-only search tools.

The tracing component sits at the system call layer in the
kernel and watches user activity, tracing all file system and
process management calls. Process management calls allow
proper reconstruction of file descriptor activity. The tracing
component is operating system specific, and Connections
currently runs exclusively under Linux 2.4 kernels. Similar
system call tracing infrastructure exists in other systems
(e.g., Windows XP), and porting Connections should not be
difficult. The performance impact of the tracing component
is minimal, as with other file system tracing tools [3].

The content-based search component uses Indri [25], a
state-of-the-art content analysis tool. We chose Indri be-
cause of its consistently high performance (and that of its
predecessors) in several tracks of the Text REtrieval Con-
ference (TREC) over the last few years [1, 23, 32]. TREC
is an annual, competitive ranking of content-only informa-
tion retrieval systems with different tracks using distinct cor-
pora of data and queries geared toward particular retrieval
tasks [42].

Connections creates the relation-graph using the algorithm
described in Section 3.2 and stores it using BerkeleyDB
4.2 [33]. Connections searches the relation-graph using the
algorithm described in Section 3.3 and ranks the results of
the search using the algorithms described in Section 3.4.

Users specify queries in Connections as a set of keywords
and (optionally) one or more file types. If file types are spec-
ified, final query results are filtered to remove other types.
For example, a user searching for a copy of this paper might
input the keywords content, context with the types .ps, .pdf.
Connections would perform its search using content and con-
text, and then filter the final results showing only .ps and
.pdf files.

4. EVALUATION
Our evaluation of Connections has three parts. First,

we evaluate the utility of Connections’s context-enhanced
search, comparing its precision and recall against Indri, a
state-of-the-art content-only search tool; as hoped, the ad-
dition of context makes the search tool more effective. Sec-
ond, we evaluate the sensitivity of the various parameters
within Connections, showing that, while the settings of pa-
rameters affect search quality, using “reasonable” settings
that are close to optimal is sufficient to see benefits from
context. Third, we evaluate the performance of indexing
and querying in Connections, finding that both space and
time overheads from adding context analysis are minimal.

4.1 Experimental approach
Our evaluation compares Indri’s (version 3.1.1) content-

only search [25] to Connections’s context-enhanced search.

To compare the utility of these two systems, we borrow and
adapt techniques from information retrieval [4]. Tradition-
ally, content-only search tools are evaluated using large pub-
lic corpora of data, such as archived library data or collec-
tions of publicly accessible websites. Queries are generated
by experts and evaluated by individuals familiar with the
material. These “oracle” results are then compared to the
results generated by the system under evaluation.

Unfortunately, two subtle differences make file system
search, and especially context-enhanced search, more dif-
ficult to evaluate. First, the nature of the queries (searching
for old data) demand that traces exist over a long period of
time; Connections cannot provide context-enhanced results
if it has no trace data for the desired data. Second, because
the data is personal, only its owner can create meaningful
queries and act as oracle for evaluating query results, es-
pecially when queries must be formed with the period of
tracing in mind. Doing otherwise would render the experi-
ment useless, since tracing would be present over the lifetime
of a production system.

4.1.1 Gathering data
To gather context data, we traced the desktop comput-

ers of six computer science researchers for a period of six
months. Using the traces, we generated a relation-graph for
each user using the following default parameters: a 30 sec-
ond relation window, a directed edge style, and a read/write
operation filter.2

To gather content-based search results (both for the
content-only system and Connections’s internal use), we ran
Indri over the set of all parsable document types on the
users’ computers (any files appearing to contain text, as well
as PDF and Postscript files).

Each user submitted 3-5 queries. Table 2 lists three sub-
mitted queries as representative examples; they cannot all
be listed for both space and privacy reasons. We ran queries
in Indri (both alone and internally to Connections) using
the “#combine()” operator. We ran Connections’s relation-
graph search algorithm using the default parameters of a
path length of 3 and a weight cutoff of 0.1%, and used the
Basic-BFS ranking algorithm with an α parameter of 0.75.

4.1.2 Evaluation
Recall and precision measure the effectiveness of the search

system in matching the “oracle” results. A system’s recall
is the number of relevant documents retrieved over the to-
tal number specified by the oracle. A system’s precision is
the number of relevant documents retrieved over the total
number of documents retrieved.

Unfortunately, only the user of the system knows the data
well enough to act as oracle for its queries, and our users
were not willing to examine every file in their systems for
each query. To account for this, we use a technique known
as pooling [4] that combines the results from a number of
different search techniques, generating a set of results with
good coverage of relevant files. In our case, we pooled sev-
eral context-enhanced searches using both broader param-
eter settings and the default settings being evaluated, and
presented them to users. Users then chose the relevant doc-
uments from this pooled set of files to create the oracle.

2We chose these settings after performing the sensitivity
analysis described in Section 4.3.



Query Num Query File Types Description

1 osdi, background .ps, .pdf Papers that made up the related work
of a particular paper submission

3 content, context, figure .eps Figures relating to content-based
or context-based search

14 mozilla, obzerver, log N/A Mozilla web browsing logs generated
by the obzerver tracing tool

Table 2: Selected search queries. This table shows three specific user-submitted queries. Each query’s search
terms and file type are listed, along with an English description of the search submitted by the user.

We compare the recall and precision of different systems
using two techniques. The first technique is to examine the
recall/precision curve of each system. This curve plots the
precision of the two systems at each of 11 standard recall
levels (0% - 100% in 10% increments) [4]. Examining this
curve shows how well a system ranks the results that it gen-
erates. At each recall level n, the curve plots the highest
precision seen between n and n + 1. To calculate the aver-
age recall/precision values over a set of queries, the precision
of each query at a given recall level is calculated, and then
averaged.

The second technique is to examine the recall and pre-
cision of each system with fixed numbers of results. Most
search systems present only a few results to the user at a
time (e.g., a page with the first 10 results), requiring prompt-
ing from the user for more results. For example, result cut-
offs of 10, 20, and 30 may map to 1, 2, or 3 pages of re-
sults, after which many users may give up or try a different
query. Examining the recall and precision at low result cut-
offs shows how quickly a user could locate relevant data with
the system. Examining the recall and precision with an in-
finite result cutoff shows how many relevant results can be
located using the system.

4.2 The utility of context
This section compares the recall and precision of Indri

to that of Connections. First, we compare the rankings of
the two systems using their recall/precision graphs. Second,
we examine the interactive performance of the two systems,
comparing their recall and precision at various result cut-
offs. Third, we examine each of the queries in detail to get an
understanding of Connections’s specific strengths and weak-
nesses. Fourth, we present anecdotal evidence about the ad-
vantages of context-enhanced search from a user’s perspec-
tive. Fifth, we discuss using another popular content-only
search tool, Glimpse, in place of Indri, and the effect on
search utility. Sixth, we compare automated context rela-
tionships to the relationships inherent in the existing user
organization using Indri-Dir, a system that uses directories
as contextual clusters.

4.2.1 Ranking performance
Figure 3 shows both the raw recall/precision data in table

form, as well as a plot of the data. The most noticeable
feature of this data is that Connections outperforms Indri
at every recall level (as shown by its line being higher on
the figure at each point). This indicates that Connections
finds more relevant data (as evidenced by its high precision
at high recall levels) and ranks it higher (as evidenced by
its higher precision at lower recall levels) than content-only
search.

Cutoff Recall % Precision %
Indri Connections Indri Connections

10 13 22 23 29
20 16 29 20 25
30 18 34 17 23
50 25 40 17 21
100 28 45 17 20
inf. 34 74 15 16

Table 3: Recall and precision at varying cutoffs averaged
over 25 queries. This table lists the recall and pre-
cision levels of Indri and Connections at six differ-
ent cutoff points. Low cutoffs show how the system
performs in an interactive situation, where users re-
quest pages of results. Higher cutoffs show how the
system performs when the user is trying to locate
all available information on a topic.

4.2.2 Interactive query performance
Table 3 shows the recall and precision levels of the two

systems at various cutoff points. Again, the key feature of
this data is that by combining content and context, Connec-
tions outperforms content-only search at every cutoff point,
increasing both recall and precision.

Connections also significantly increases the total number
of results found by the system. With no result cutoff (in-
finite), Connections increases average recall across the 25
queries by 40%. These results indicate that not only will
users be more likely to find their data quickly, but that they
will have a better chance of finding their data at all.

4.2.3 Individual query performance
Table 4 shows the performance of these two schemes for

each of the 25 queries using a result cutoff of 1000. The
most noticeable result is that, for most queries, Connections
provides more correct results than content-only search with
similar or better precision. To assist with interpretation, the
horizontal lines partition the queries into 3 categories.

For queries 1-18, the user specified a file type. This filter
reduces the number of retrieved results, improving average
precision. In queries 11-14, the user specified that the file
was an image (e.g., .jpg or .eps), making it much more diffi-
cult for Indri to locate relevant files. In queries 11, 12, and
13, Connections was able to leverage its contextual relation-
ships to locate relevant images.

For queries 19-24, the user did not specify a file type. In
three cases, Connections improved recall and precision. For
queries 21 and 22, Connections ranked the relevant content-
only results lower than Indri, resulting in lower precision.
Improvements in the ranking algorithm could help Connec-



Recall % Precision %

Indri Connections

0 36 41

10 33 41

20 26 35

30 18 31

40 17 29

50 17 28

60 14 26

70 12 24

80 5 24

90 4 14

100 4 11

average 17 28
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Figure 3: Precision at 11 recall points averaged over 25 queries. The table on the left lists the precision of Indri and
Connections at 11 different recall levels, as well as the average over all levels. This indicates how accurate
the results of a system are; higher precision levels mean that more data is found more quickly by the system.
The plot on the right is a graphical representation of the data in the table. A perfect system would have a
line across the top at 100 for each recall point.

tions match, if not improve upon, these queries by pushing
the relevant results higher in the rankings.

For query 25, Indri’s results did not exist in the relation-
graph. This is a side-effect of the experimental setup; the
relation-graph only contains data on files accessed during the
period of tracing. If Connections was in place throughout a
system’s lifetime, some contextual data would exist.

Examining some of the queries where Connections was
unable to improve search effectiveness provides interesting
insights. For queries 22 and 24, the most relevant files lo-
cated by Indri were mailbox files. Such “meta-files” are com-
posed of several smaller sub-units of data. Because the trace
data cannot distinguish among relationships for individual
sub-units, these files often have misleading edges, making it
difficult for Connections to provide accurate results. This
problem indicates a need for some level of application assis-
tance (e.g., storing individual emails in separate files).

For queries 14 and 23, the search terms had multiple
meanings within the user’s data. For example, in query
23, one of the words the user specified was “training” to re-
fer to their workout schedule, but they also happened to be
working on a project related to machine learning that often
contained the word “training.” These disjoint uses of a sin-
gle word indicate that some level of result clustering could
be useful in presenting results to users. By clustering con-
textually related results together, the ranks of disjoint sets
could be adjusted to include some results from each cluster.

4.2.4 User satisfaction
Another important consideration for any search system

is the satisfaction of the user, both with the ease of use
of the system and with the provided results. Although not
easily measurable, we have anecdotal evidence that indicates
context-enhanced search can improve the user’s satisfaction
with file system search.

One improvement noted by users is that queries can be
more “intuitive.” For example, in query 1 (see Table 2), the
keywords intuitively describe what the user is searching for,
but content-based search tools are unlikely to ever provide

accurate results for such a query. Often, users appear to be
searching based on their context, but are instead forced to
come up with content-friendly search terms.

Another improvement noted by users is the kind of results
found by the system. Several users mentioned that Con-
nections located relevant files that they hadn’t remembered
were on their machine. Rather than looking for a specific
file that the user remembers, a user’s search terms can be
less directed, relying more on the search system to provide
the desired data.

Although far from a scientific study of user satisfaction,
such anecdotal evidence lends weight to the argument for
context-based search.

4.2.5 Other content analysis tools
In exploring the utility of combining content analysis with

context analysis, we also implemented a version of Con-
nections using Glimpse [29] as the content analysis tool
(Glimpse-Connections). Because Glimpse does not rank its
search results (and thus neither does Glimpse-Connections),
it is impossible to use any comparisons that rely on rank-
ing, such as recall/precision curves or specific result cutoffs.
Thus, recall and precision can only be compared with an
infinite result cutoff.

Comparing Glimpse to Glimpse-Connections with infinite
cutoff, we see results similar to those in Table 3: Glimpse has
a 20% recall and 29% precision, while Glimpse-Connections
has a 62% recall and 48% precision. The reduced recall and
increased precision of these two systems over the Indri-based
systems is due to Glimpse’s strict boolean AND of all query
terms, which results in fewer hits than Indri for most queries.

4.2.6 Directories as context
Traditionally, users organize their files into a directory hi-

erarchy, grouping related files together. As such, it might
seem that using these groupings as contextual relationships
could provide many of the same benefits as Connections;
however, in practice it does not. To explore this possibility,
we built Indri-Dir, a tool that uses the directory structure
to enhance search results. Specifically, Indri-Dir looks in



Category Query Indri Connections
Description Num Total Correct Recall % Precision % Total Correct Recall % Precision %

Typed 1 14 0 0 0 40 11 100 28
queries 2 8 0 0 0 30 2 100 7

3 40 8 62 20 59 13 100 22
4 39 3 50 8 58 4 67 7
5 40 3 30 8 59 8 80 14
6 116 53 71 46 138 64 85 46
7 111 76 71 68 134 87 81 65
8 165 55 72 33 187 65 86 35
9 345 0 0 0 380 13 87 3
10 2 2 25 100 31 5 63 16
11 (1000) 0 0 0 18 16 100 89
12 (1000) 0 0 0 27 9 100 33
13 (445) 0 0 0 58 1 100 2
14 (1000) 0 0 0 15 0 0 0
15 (1000) 0 0 0 1 0 0 0
16 11 0 0 0 1000 0 0 0
17 47 13 81 28 1000 13 81 1
18 23 7 100 30 36 7 100 19

Untyped 19 956 2 1 0 1000 42 13 4
queries 20 934 26 41 3 1000 28 44 3

21 786 327 37 42 1000 354 40 35
22 756 14 100 2 1000 14 100 1
23 231 1 100 0 1000 0 0 0
24 65 0 0 0 1000 0 0 0

No data available 25 (6) 0 0 0 (6) 0 0 0

Table 4: Query result details at 1000 result cutoff. For the two search systems, this table shows: (1) the total
number of results presented to the user, (2) from those, the total number of correct results, (3) the recall of
the system, and (4) the precision of the system. When no files of the requested type are found, the number
of files located before filtering is listed in parenthesis.

the directories of content-based results for files of the re-
quested type, assigning these files the combined weight of
any content matches in the directory. If no type is specified,
Indri-Dir adds all files in the directory assigning them the
weight of the highest ranked content result in that directory.

Indri-Dir significantly underperforms both Connections
and Indri on all metrics. The reason for this is two-fold.
First, Indri-Dir relies on users organizing their files into di-
rectories in contextually meaningful ways, but many users
have too many files to do this effectively (.e.g., cluttered
home directories, download folders, “paper” directories, etc.).
Second, Indri-Dir relies on a directory’s organization to match
the context of the user’s search, but users often organize files
in one way and then use them in another. For example, a
user might download all of the proceedings for a particular
conference into a single directory, but later find that one
particular paper is of use in their project. Rather than find-
ing other papers related to the project, Indri-Dir will find
other papers from that conference.

4.3 Sensitivity analysis
To understand the sensitivity of different parameter set-

tings, we examined a wide variety of parameter configura-
tions for each of the three phases of context search. For
space considerations, we present a subset of the results us-
ing three queries (those listed in Table 2) that represent the
space. For each query, we present a recall/precision graph,
like that shown in Figure 3. In each set of graphs, we exam-
ine the sensitivity of a single parameter, using the default
settings for all other parameters.

4.3.1 Identifying relationships
Relation window: Figure 4 presents the recall/precision

curves for Connections configured to use each of five different
relation window sizes: 10, 30 (our default), 60, 120, and 300
seconds. These graphs illustrate that a larger window size
tends to reduce precision. The increase in links at each node
results in the weight cutoff removing some accurate links.
However, as shown in query 1, too small of a window can
result in missing some relationships due to edges not being
formed.

Edge style: Figure 5 presents the recall/precision curves
for Connections configured to use either directed (our de-
fault) or undirected edge styles. In almost every case, the
directed edge style outperforms the undirected edge style.
The reason for this is nuanced. Within the traces, there are
many misleading input files that are related to many files
(e.g., .bashrc or .emacs). Adding these as output files signif-
icantly increases the number of outgoing edges at each node,
causing the weight cutoff to remove some relevant edges. Al-
though these misleading edges may not be followed, cutting
the additional edges removes paths that would have other-
wise located relevant files.

Operation filter: Figure 6 presents the recall/precision
curves for Connections configured to use each of three op-
eration filters: read/write (our default), open, and all-ops.
Across all queries, the open filter performs poorly; its in-
creased number of edges result in many incorrect relation-
ships being followed. In cases where the user specified a
type (such as queries 1 and 3), the all-ops and read/write
filters perform similarly. However, in untyped queries (such
as query 14), the all-ops filter provides lower precision. The
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Figure 4: Sensitivity analysis of Connections using five different relation window sizes.
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Figure 5: Sensitivity analysis of Connections using the two different edge styles.
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Figure 6: Sensitivity analysis of Connections using three different operation filters.
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Figure 7: Sensitivity analysis of Connections using four different path lengths.
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Figure 8: Sensitivity analysis of Connections using five different weight cutoffs.
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Figure 9: Sensitivity analysis of Connections using five different α settings.
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Figure 10: Sensitivity analysis of Connections using five different HITS methods.

discrepancy is because the user specified type filter hides
most of the added, incorrect edges generated by the all-ops
scheme.

4.3.2 Searching relationships
Path length: Figure 7 presents the recall/precision curves

for Connections configured to use each of four different path
lengths: 1, 2, 3 (our default), and 4. In most queries, a path
length of 1 found few relevant files, while higher path lengths
all perform quite well. Too high of a path length would re-
duce precision, except the ranking algorithm places nodes
that are too far away on the path lower in the rankings.

Weight cutoff : Figure 8 presents the recall/precision
curves for Connections configured to use each of five different
weight cutoffs: 0%, 0.1% (our default), 1% , 2%, and 5%. At
high cutoff levels, the recall suffers as relevant links are cut.
With no cutoff, many incorrect paths are followed, reducing
precision.

4.3.3 Ranking results
Basic-BFS: Figure 9 presents the recall/precision curves

for Connections configured to use each of five different α
parameters: 0, 0.25, 0.5, 0.75 (our default), and 1. The α
parameter sets the tradeoff between individual link weight
and the existence of a link. A setting of 1 specifies that only
the link weight should be considered, acting as a cutoff for
lightweight links in the result-graph. Other settings of α
perform similarly, with 0.75 performing slightly better than
the others on average. This indicates that, after creating an
accurate result-graph, the individual link weights are of less
importance.

HITS: Figure 10 presents the recall/precision curves for
Connections configured to use each of five different HITS im-
plementations: the default scheme with no HITS rankings,
and the authority and hub rankings of both HITS-original

and HITS-new. These results illustrate the difficulty of using
web-based graph algorithms on temporal locality graphs.

Most web-based algorithms focus on finding either the au-
thority or hub for a topic, however, these algorithms rely
on links being a valid indicator of context. Because Con-
nections’s result-graph is only an approximation of context,
many of its links are erroneous. For example, a file with
many outgoing and incoming links in the result-graph (such
as “.bash history”) is neither an authority nor a hub in terms
of accuracy of links, however shows up as both within HITS.
As a result, HITS-new performs poorly compared to Basic-
BFS. HITS-original’s limited result-graph further detracts
from its accuracy.

PageRank: Figure 11 presents the recall/precision curves
for Connections configured to use each of 4 different Page-
Rank implementations: the default scheme with no use of
PageRank, PR-before, PR-after, and PR-only. Because Page-
Rank is a measure of a node’s authority in the graph, the
PageRank schemes have similar difficulties to the HITS-
based algorithms. Of the three, PR-after performs best, be-
cause the highest ranked nodes all have similarly low Page-
Rank values, resulting in only a shifting of the top-ranked
results. Because Basic-BFS’s rankings are additive in na-
ture, PR-before generally performs worse than PR-only.

4.3.4 Sensitivity analysis summary
When building the relation-graph and result-graph, each

parameter has settings that either increase or decrease the
number of paths in the graph. Unsurprisingly, then, there
is a mid-range of settings for each parameter that provides
the best recall/precision trade-off. Erring on the side of too
few paths results in reduced recall, while erring on the side
of too many paths results in reduced precision.

Fortunately, our results indicate that this mid-range of
settings is sufficiently wide that perfect tuning is not crit-
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Figure 11: Sensitivity analysis of Connections using four different PageRank methods.

ical to the success of context-enhanced search. Using al-
most any set of “reasonable” parameters, Connections out-
performs content-only search.

When ranking results, it is important to consider that,
although the result-graph has been pruned, it still contains
misleading connections. For this reason, the Basic-BFS rank-
ing algorithm outperforms algorithms that excel in web search.

4.4 System performance
Connections demonstrates that combining content and

context in file search improves both recall and precision.
But few users will utilize such a system unless (1) their
foreground work is not impacted by the required indexing,
(2) the additional storage space required by the index does
not exceed reasonable bounds, and (3) their queries are an-
swered quickly. Although Connections’s implementation is
not tuned, our analysis indicates that all three requirements
can be satisfied.

We ran all timing experiments using an Intel-based Pen-
tium 3 1 Ghz processor with 384 MB of RAM and a Quan-
tum Atlas 10K 9 GB disk drive.

4.4.1 Indexing performance
In Connections, the indexing phase consists of both con-

tent analysis and merging file system traces into the relation-
graph. Although the startup cost of content indexing is
high, the incremental costs are low enough that many users
already accept them.

With context analysis, there is no startup cost, since no
record of temporal relationships exists initially. We mea-
sured the incremental costs as the time required to merge
each day of traces into that machine’s relation-graph. The
average indexing time per day was 23 seconds with a stan-
dard deviation of 38 seconds. The longest indexing time
observed was 702 seconds.

These overheads are low enough that we believe most
users will find them acceptable. Even if the machine is con-
stantly in use while powered on, a worst-case 15 minute
per-day indexing time is likely low enough to run in the
background with little impact on foreground work.

4.4.2 Indexing space
Connections’s index consists of both a content-only in-

dex and a relation-graph. Because the space overheads of
content-only indexing are well-known [32], we examine the
additional space required by the relation-graph. To do so,
we incrementally added each day of tracing to the relation-
graph for each of the six machines and measured the total
size of the relation-graph after each month.
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Figure 12: Relation-graph size. This figure illustrates
the cumulative size of the relation-graph after each
month of tracing for each of the five machines in our
experiments.

Figure 12 shows the space required by the relation-graph
after each month of tracing for each machine. These results
indicate that relation-graph size is not a barrier to context-
enhanced search. First, the final graph sizes are quite small,
with none requiring more than 150 MB. On average, the
index size was less than 1% of the size of the user’s data set.
Second, the graphs appear to grow linearly over time, for the
most part matching the slow growth in user data set size.
Although the worst-case for the graph is O(N 2) growth, this
would almost never be seen in practice because, while the
total number of files in a user’s system grows over time,
the user’s working set stays relatively constant. Edges form
between constant-sized clusters of files, and as the working
set shifts, the relation-graph grows at a linear rate. Only
when the user drastically changes their context does the
graph grow significantly in size. An example of this is seen
during month 3 of Machine 5, where the user began work
on a new piece of software.

4.4.3 Querying performance
Connections’s average query time across all queries is 2.62

seconds, a combination of the content search (0.98 seconds)
and context search (1.64 seconds)3. While higher than con-

3Query time averages are calculated across 15 runs of each
query, and all standard deviations are within 1% of the
mean.



tent search alone, we believe that the query times of Con-
nections are such that users will still find the system usable.

4.5 Summary
Connections demonstrates the benefits and flexibility of

combining content and context in file search. When com-
pared to Indri, a state-of-the-art content analysis tool, Con-
nections improves both average recall and average precision.
Although parameter tuning could improve the results fur-
ther, simply finding settings that are “good enough” pro-
vides most of the benefit, meaning that even non-tuned sys-
tems will perform well. Finally, the performance overheads
of adding context analysis to existing file system search sys-
tems are low, even in a prototype such as Connections.

5. DISCUSSION
While designing Connections, we focused on highlighting

the significant improvements that can be garnered from com-
bining content analysis with context analysis. This section
briefly discusses other considerations that could lead to fur-
ther improvements in Connections.

Application assistance: Beyond temporal relationships,
there are a number of other ways that the system could as-
sign context to files. For example, many applications (e.g.,
e-mail) could provide context clues to the system for the files
they use (e.g., sender, time, subject). Other context clues
could include the user’s physical location, current schedule,
visible windows, etc.

Per-user settings: Different users manage and use their
data in different ways. These differences mean that Con-
nections may provide even greater benefits if the algorithm
parameters are tuned for individual users. If true, one in-
teresting question is if Connections could determine the cor-
rect parameter settings automatically, starting with broad
settings, and eventually honing in on the correct values.

Deleted files: Because the relation-graph is built using
trace data, over time the graph contains files that the user
has deleted. Although Connections currently leaves these
in place, should deleted files eventually be pruned from the
relation-graph? If left in, should they be shown to users, po-
tentially curbing needless searches for data that they have
deleted, or will the increased results reduce search effective-
ness? These questions merit further study.

Organizing results: As mentioned at the end of Sec-
tion 4.2.3, Connections could divide results into categories
based on disjoint sets in the relation-graph (e.g., disjoint
uses of the word “training”), allowing users to quickly hone
in on the desired set of files, even with large numbers of
search results. This organization could also help the rank-
ing algorithm by adjusting the rankings of disjoint result
sets to include some results from each set.

Network storage: In many settings, it is common for
users to store some of their files remotely using networked
storage. One of the key advantages of such an approach is
that the data can then be accessed from any of a variety
of machines. This causes problems for Connections because
the access patterns for a particular piece of data are now
spread across the remote machines. Examining how this in-
formation could be centralized or collated will be important
as mobile devices shift user data toward this usage model.

Personalization: Web and file search researchers have
found that search accuracy is improved when results can
be targeted to a user’s current context. We believe that

Connections is uniquely targeted to this task. By examining
recently accessed files, Connections could use the relation-
graph to identify the set of files that make up the user’s
current context, further targeting the search.

File system interaction: Currently, the only compo-
nent of Connections that interacts directly with the file sys-
tem is the tracer. As a result, Connections relies on both
the existence of complete traces (such that no system state
is lost) and its ability to perfectly reconstruct system state
from these traces (a process that takes up most of the in-
dexing time for Connections). Connections also uses the
filename as a tag to the file’s relation information, which
can be faulty (e.g., if a user renames a file, or has multiple
paths to the same file). By moving Connections inside the
file system, these problems could be alleviated. Addition-
ally, a Connections-like system within the file system could
be used to assist with, or even automate, file organization by
grouping related files into virtual directories, automatically
assigning attributes from related files, and so on.

6. CONCLUSIONS
As individual data sets grow, search and organizational

tools grow increasingly important. This paper presents Con-
nections, a search tool that combines traditional content
analysis with contextual relationships identified by temporal
locality. We show that Connections improves both average
recall and average precision over a state-of-the-art content-
only search system. The results demonstrate that context
information is an important complement to content analysis
for file search tools.
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