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Abstract

Today’s commodity disk drives, the basic unit of storage for computer systems large and small, are
actually small computers, with a processor, memory and a network connection, in addition to the
spinning magnetic material that stores the data. Large collections of data are becoming larger, and
people are beginning to analyze, rather than simply store-and-forget, these masses of data. At the
same time, advances in I/O performance have lagged the rapid development of commodity proces-
sor and memory technology. This paper describes the use of Active Disks to take advantage of the
processing power on individual disk drives to run a carefully chosen portion of a relational data-
base system. Moving a portion of the database processing to execute directly at the disk drives
improves performance by: 1) dramatically reducing data traffic; and 2) exploiting the parallelism
in large storage systems. It provides a new point of leverage to overcome the I/O bottleneck. This
paper discusses how to map all the basic database operations - select, project, and join - onto an
Active Disk system. The changes required are small and the performance gains are dramatic. A
prototype based on the Postgres database system demonstrates a factor of 2x performance
improvement on a small system using a portion of the TPC-D decision support benchmark, with the
promise of larger improvements in more realistically-sized systems.
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1. Introduction

An Active Disk is a novel storage architecture that leverages the computation power available
in commodity disk drives to perform application-level processing. Instead of simply processing
low-level storage protocols such as SCSI, these disk drives are able to execute application-level
code, making significantly better use of storage’s aggregate processing power and the intercon-
nection network between storage devices and servers [Acharya98, Keeton98, Riedel98]. Applica-
tions can take advantage of the parallelism in large storage systems and the reduction in
bandwidth possible if data is operated on at the edges of the network, before it is placed onto the
expensive, shared storage interconnect.

The motivation for Active Disks is illustrated in Table 1, which shows two commercial data-
base systems and compares the aggregate computation power in the host and at the disks. If each
disk drive contains a processor with a 100 MHz RISC core, which modern drive chips are begin-
ning to offer [Cirrus98, Siemens98], the aggregate computation power across storage is nearly an
order of magnitude more than the host itself. This is true even in large SMP systems, where the
number of disks is scaled up to balance the demands of the processors. In addition, the aggregate
bandwidth available at the disks usually far exceeds the ability of the I/O sub-system to feed the
processors. Using the disks’ processing power to offload a portion of the host work is a promising
way to take advantage of these trends, given the inherent physical and cost limitations to building
very large SMP systems and very high bandwidth I/O channels. A system with Active Disks can
achieve much higher application-level throughput than a system with traditional disks by offload-
ing a significant portion of the host’s work to the disks and reducing interconnect traffic. 

Previous work [Acharya98, Keeton98, Riedel98] has shown that similar systems can achieve
performance increases across a range of applications such as data mining, image processing, and
some database functions. In this paper, we focus on how Active Disks can support a real database
system. We begin by explaining the modifications to a relational database system necessary to
take advantage of Active Disks, and then describe our prototype implementation using the Postgr-
eSQL database system. We show that all the basic database operations can be mapped onto Active
Disks with an appropriate choice of low-level primitives. Finally, we use a portion of the TPC-D

System Use
Host

Processing
Disks

On-Disk
Processing

Disk
Advantage

System
Bus

Storage
Throughput

Mismatch
Factor

AlphaServer 1000/500 TPC-C, OLTP 500 MHz 61 6,100 MHz 12.2 x 266 MB/s 610 MB/s 2.3 x
1 x 500 MHz 266 GB 64-bit PCI

AlphaServer 8400 TPC-D 300, DSS 7,344 MHz 521 52,100 MHz 7.1 x 532 MB/s 5,210 MB/s 9.8 x
12 x 612 MHz SMP 2.2TB 2 x 64-bit PCI

Proliant 8000 TPC-H 100, DSS 4,400 MHz 152 15,200 MHz 3.5 x 266 MB/s 1,520 MB/s 5.7 x
8 x 550 MHz SMP 1.2 TB 64-bit PCI

Table 1: Comparison of computing power vs. storage power in three commercial database servers. If we estimate that next-
generation disk drives will have 100 MHz of available processing power, large database systems will contain much more
processing power on their combined disks than at the server processors. In addition, even assuming only a conservative
10 MB/s per disk for sequential access, the I/O sub-systems of these servers cannot deliver the aggregate bandwidth of this
number of disk drives. All three systems are audited TPC benchmark systems with published configurations and
performance results [TPC97, TPC98, TPC00] and are representative of the disk to processor ratios in these types of
systems. The AlphaServer 1000 systems most closely matches the prototype “host” system used in this paper, while the
8400 and Proliant represent larger-scale systems for decision support.
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decision support benchmark to demonstrate improvements between 10% and a factor of 2x in our
small prototype system - with the promise of larger improvements in more realistically-sized sys-
tems such as the ones in Table 1.

While disk drives using these 100 MHz and
faster control chips and many megabytes of
memory are not yet available, the integration
trends in the industry are promising. Table 2
compares the performance and cost of the
high-end SCSI disk drive used in the Proliant
system from Table 1 with a network-attached
storage device available today that already
contains this level of processing power.
The rest of this paper is organized as follows.
Section 2 briefly discusses previous work on
database machines and the trends that have
changed the landscape since the time of that
research. Sections 3 and 4 describe the map-
ping of the core database functions - select,
project, and join - onto Active Disks, and the
modifications to the PostgreSQL database

system to support Active Disks. Sections 5 describes our experimental setup and compares the
performance of a prototype system using Active Disks against a database server with traditional
disks. Section 6 discusses related work. Finally, Section 7 concludes and briefly discusses areas of
future work.

2. Background

The basic idea of executing database functions in processing elements directly attached to
individual storage devices was explored extensively in the context of database machines such as
CASSM [Su79], RAP [Ozkarahan75], and numerous others [DeWitt81]. These machines imple-
mented a variety of algorithms directly in hardware and showed dramatic speedups on certain
query streams. There were several difficulties, including basic technology limitations, that pre-
vented these systems from becoming widely available, but the landscape has changed sufficiently
since the time of this research to merit a re-evaluation of this work.

The main counter-arguments to the database machines of the 70s and 80s were summarized by
Boral and DeWitt. Specifically, that 1) a single general-purpose host processor was sufficient to
execute select at the full data rate of a single disk, so no additional hardware was necessary,
2) special-purpose hardware increased the design time and cost of the machine, and 3) for a sig-
nificant fraction of database operations, such as sorts and joins, simple select filters in hardware
did not provide significant benefits [DeWitt81, Boral83].

Compaq SCSI 
disk drive

Quantum
Snap Server

capacity 9.1 GB 10.0 GB
disk speed 10,000 rpm 5,400 rpm

average seek 5.6 ms 9.5 ms
processor 25 MHz RISC core 133 MHz Pentium
memory 4 MB 64 MB
weight 0.6 kg 1.6 kg
volume 370 cm3 2100 cm3

interface 40 MB/s SCSI-3 100 Mb/s 100Base-TX
cost $449 $499

Table 2: Comparison of SCSI disk and network storage device.
The table shows the characteristics of the disk drives in the
Proliant TPC-H system shown in Table 1 compared with a
Snap Server 1000 from Quantum. The Snap Server contains a
disk drive with a second processor and memory board to
provide the network-attached storage functionality. This is still
below the level of integration and cost reduction that should be
possible with the drive control chips currently being
developed, but the direction in performance and price
comparison is promising [Compaq00, Quantum99].
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Changes in storage technology in the intervening years have allowed disk performance to
catch up with the power of host processors. The performance of single disks has increased about
thirty-fold and continues to grow at 20% per year. However, the biggest change since that time is
the widespread use of disk arrays that use a large number of disks in parallel. This allows aggre-
gate storage bandwidth to meet, and exceed, host processing rates simply by adding disks, push-
ing the bottleneck back into the CPU and I/O interconnects.

At the same time, the rapid improvements in silicon technology allow general-purpose pro-
cessing cores [Turley96] to replace what would have been special-purpose silicon in the older
database machines. This, along with the growing popularity of a common “mobile” programming
language in Java [Gosling96, Levin99], overcomes the limitation of developing special-purpose
microcode useful only for very specific custom hardware. The basic challenge to Active Disk
code is ensuring that parallel code exists for executing the basic parts of an algorithm, so that
these can be moved to the disks. In the context of database systems, such parallel algorithms have
been studied in numerous projects since the days of the database machines [DeWitt92].

We will demonstrate that by taking advantage of these technology changes, all of the core
database functions, not just select, can be efficiently implemented using a relatively small amount
of code executed directly at the storage devices - and that the performance benefits are compelling
given the technology that will be available in the near future. We discuss select, project (with the
closely-related aggregation), and join and describe the architecture and algorithms to efficiently
execute any SQL query against a table stored across a set of Active Disks.

3. Database Operations & Algorithms

This section outlines the basic operations in a relational database system and describes how
Active Disks can be used for each of them. The most effective algorithms for Active Disks are
those that can operate in parallel across a large number of disks, are highly selective to reduce net-
work traffic, have low communication among disks, and low memory requirements. The intent is
not to replace general-purpose processors or large-memory multi-processors, but to take advan-
tage of a pre-packaged combination of processing power, memory, and bandwidth to accelerate
I/O-intensive processing.

3.1. Scan - Select

The select operation, as shown in Figure 1, is an obvious candidate for an Active Disk
function. The where clause in a SQL query can be performed in parallel at the drives, each oper-
ating on its local data and returning only the matching records to the host. This is the operation
that was implemented by many of the early database machines [Ozkarahan75, Smith79, Su79,
Martin94]. The query is parsed by the host and the select condition provided to all the drives. The
drives then search all the records in their portion of a table in parallel and return only matching
records. If the condition is highly selective, this greatly reduces the amount of data that must
traverse the interconnect, as records that will not be part of the result must never leave the disks.
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This operation requires very little state at the drives, as only the search condition and the page cur-
rently being operated on must be stored in drive memory.

3.2. Aggregation - Project

The basis for projection and aggregation is the elimination or combination of duplicates,
which can be done in two ways: a) sorting or b) hashing. Sorting is one of the basic functions
within a database system, and a number of algorithms have been proposed for mapping sort to an
Active Disk-style system [Keeton98]. However, sorting is not one of the most effective Active
Disk applications due to the large amount of communication required among nodes for a full sort.
This problem is simplified in the context of the database system because sorting is almost always
used as an input step to another operation, either a join, an aggregation, or as the final step in a
projection (duplicate elimination). The biggest benefit of performing sorting at Active Disks
comes when it is combined with one of these other steps directly at the disks.

Aggregation combines a set of records to compute a sum, average, or count of groups of
records with particular key values. If this summing or counting can be done at the disks as records
are sorted on the group by columns then the network traffic can be greatly reduced. The disks
return only the sums or counts from the individual disks for final aggregation at the host. Simi-
larly, if duplicate elimination can be done while sorting locally at the disks, then the duplicate
records must not be needlessly transferred across the network. An example aggregation operation
is shown in Figure 2 which illustrates a query to determine the total number of items returned by
customers, and the total revenue lost due to these returns, summarized by reason for the return.

l_shipdate l_qtyl_orderkey l_price l_disc

l_shipdate l_qtyl_orderkey l_price

relation S

Figure 1: Illustration of a select operation in a database
system. A single relation is searched for records that
match the given value for the l_shipdate attribute.
There are two means of data reduction in a select. The
first is the selection of matching records (5% in this
example) and the second is the elimination of
unneeded columns from the relation (over 75% of the
data in this example).

01-25-93 61730 11051.6 0.02

04-12-96 323713 29600.3 0.07

10-05-98 237010 29356.3 0.09

05-05-95 832742 9281.9 0.01

11-27-98 3136070 34167.9 0.04

11-27-98 3136070 34167.9

10-05-98 237010 29356.3

select l_qty, l_price from lineitem 
where l_shipdate >= ‘1998-09-02’

l_shipdate l_qtyl_orderkey l_price l_return

relation S

Figure 2: Illustration of an aggregation operation in a
database system. A single relation is processed and values
in the requested columns are summed together. Other
operations include min, max, count, and average. Records
with the same value for the l_return column are combined
into a single sum.

01-25-93 61730 11051.6 A

04-12-96 323713 29600.3 R

10-05-98 237010 29356.3 A

05-05-95 832742 9281.9 R

11-27-98 3136070 34167.9 R

sum_revenue sum_qtyl_return

67936.6 71R

39599.7 29A

select sum(l_quantity),
sum(l_price*(1-l_discount)) 
from lineitem group by l_return
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An alternative method for doing aggregation is via hashing [Graefe95], since sorted order
isn’t strictly required to aggregate groups of records. It is only necessary to combine records with
the same key values, not completely sort the relation.

We have chosen to use sorting with a replacement selection algorithm as the on-drive primi-
tive for projection and aggregation. Each drive operates on its local data and combines the records
into a local sum, then all the local results are returned to the host for final aggregation. We choose
replacement selection because it has good adaptive behavior in the presence of changing memory
conditions, allows straightforward implementation of record aggregation and only requires mem-
ory proportional to the output of the aggregation or projection, not the input relation [Nyberg94].
A solution using hashing would have similar benefits given the appropriate choice of hash func-
tions to match the skew within a particular set of data.

3.3. Joins

Selective joins will benefit significantly from a reduction in data transfer by operating directly
at the drives, and from the offloading of the host processor in doing table lookups. The difficulty
with join is that it involves two relations, which may require both significant communication
among disks, and large amounts of memory at the individual disks.

3.3.1. Join Algorithms

There are a number of algorithms for performing joins, depending on the absolute size, the
relative size, and the existing sort order of the relations being joined. The purpose of a join is to
combine two relations, R and S, on a single join attribute. If the value of the attribute for a partic-
ular record in R matches any record in S, then the combined record is output. The relation R is, by
definition, the smaller of the two relations. It is possible to perform n-way joins among a larger
number of relations, and these are done as a series of 2-way joins. The choice of join order greatly
affects the overall performance and is a major focus of query optimization research [Selinger79].
A two-way join is shown in Figure 2 for a simplified portion of Query 5 from TPC-D.

Figure 3: Illustration of a join
operation in a database system.
Two relations are processed and
combined based on a join attribute.

relation S

relation R

p_name p_brandp_partkey p_type

green car vw2593 11

red boat fast5059 29

green tree pine1098 35

blue sky clear0412 92

red river dirty5692 34

l_partkey l_qtyl_orderkey l_price l_return

2593 61730 11051.6 A

0412 323713 29600.3 R

1098 237010 29356.3 A

5059 832742 9281.9 R

2593 3136070 34167.9 R

l_price l_qtyp_partkey

11051.6 62593

29356.3 231098

34167.9 312593

select l_price, l_quantity, p_partkey 
from lineitem, part
where p_name like ‘%green%’ 
and l_partkey = p_partkey
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Join is defined as the cartesian product of two relations followed by a selection on the join
attribute shared by the two relations. There are a number of algorithms for executing a join, and
we will briefly describe them to motivate the one we choose for Active Disks.

Nested-Loops is the most straightforward algorithm, but is efficient only for small R. The
name itself explains the basic algorithm, which proceeds as two nested loops, choosing a block of
records from S and looping through R looking for matches, then choosing the next block from S
and repeating the process. The advantage of this algorithm is that it requires very little memory,
essentially only buffering for the blocks of tuples currently being compared.

Merge-Join takes advantage of the fact that the input relations are already sorted on the join
attribute and performs the join by simply merging the two lists of records. It does not require
repeated passes across R as in Nested-Loops because the records are known to be sorted, so the
join can proceed to match records in order, as in a Merge Sort. It also have the memory advantage
of Nested-Loops because only the tuples currently being examined need to be in memory. When
only one of the relations is sorted, the optimizer must decide whether it is less expensive to sort
the second relation and perform a Merge-Join, or revert to Hash-Join as if both were unsorted.

Hash-Join [Kitsuregawa83] uses a hash table of R and has been shown to be the best algo-
rithm choice except in the case of already sorted relations [Schneider89, Schneider90]. Hash-Join
builds a hash table of R in memory and then reads S sequentially, hashing the join key for each
record, probing the table for a match with R, and outputting a joined record when a match is
found. This is more effective than Nested-Loops as each of the relation needs to be read only
once. The amount of memory required will be proportional to the size of R, with some overhead
for the hash table structures.

Hybrid Hash-Join is an extension of Hash-Join [DeWitt84] that can be used when the inner
relation is larger than the amount of memory available. Whereas Hash-Join requires sufficient
memory for the entire hash table of R, the Hybrid algorithm can adapt to changing memory condi-
tions. It can use additional memory pages that become available during its processing or give up
memory pages when they are needed elsewhere, at the cost of additional disk accesses to store
intermediate results and manage additional passes over the relations [Zeller90, Pang93].

3.3.2. Semi-Join

Another way to address the problem of an R that is larger than the available memory is by per-
forming a semi-join [Bernstein81]. In a semi-join, that amount of memory required is reduced by
not retaining an entire copy of R at each disk, but only the join keys necessary for determining
whether a particular record from S should be included in the result. This allows us to achieve the
full selectivity savings of the join, without requiring memory for all of R.

The join is performed in two phases. In the first phase, the keys of R are used to filter S and
extract only the records that match the keys of R (producing S’, which contains only records that
will match records from R). The records from S’ are then used to probe the R hash table as in
hash-join, but with each record guaranteed to find a match in R. The algorithm requires much less
memory than a full join in the first phase, because only the keys of R must be kept in memory.
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3.3.3. Bloom Join

If even the keys of R necessary for a semi-join exceed the available memory capacity, a
Bloom Join [Mackert86] can be used in place of the semi-join. This algorithm uses a hash-based
bit vector built up from the join keys of R to eliminate tuples from the outer relation before they
are sent to the host, as illustrated in Figure 4. The goal, as with semi-join, is to exclude tuples
from S that will not find a match in R and therefore will not contribute to the final result.

Instead of storing all the distinct values of the join attribute from R, we create a bit vector
b[1...n], initially set to all ‘0’s. For each value of the join attribute in R, we hash it to a value in the
range 1 to n and set the corresponding bit to ‘1’. We then use this bit vector when processing
tuples from S. If we apply the same hash function to the join attribute in S, then any tuple for
which the bit is set to ‘0’ can be excluded from the result, since it will not match any tuples from
R. This will allow some number of “false positives” from S to be sent back to the host, but it will
give us the selectivity benefits of semi-join while using only constant memory. The memory
required for a Bloom join at the drives is independent of the size of the relations and can get sig-
nificant selectivity benefits with only a small amount of memory, as shown in Table 3 for a num-
ber of the TPC-D queries. Since this algorithm uses constant memory and achieves much of the
selectivity benefit of semi-join when megabyte-size filters are used, we choose this as the pre-
ferred method for joins on Active Disks.

Figure 4: Illustration of the Bloom Join
algorithm. Keys from the inner relation
(R) are used to form a hash-based bit-
vector that is broadcast to all the disks.
The disks use this bit vector to filter
records from the outer relation (S)
before records are returned to the host.
The filter will return some number of
“false positives” since the bit vector
cannot represent all the keys exactly
(multiple keys may hash to the same
bit position), but it will always return
all the necessary records from S. This
provides most of the selectivity benefit
of a highly selective join, while
requiring only constant memory at the
drives - the size of the Bloom filter can
be chosen based on the memory
available, rather than requiring
memory proportional to the size of the
relations in a particular query.

Bloom filter

l_price l_qtyp_partkey

11051.6 62593

29356.3 231098

34167.9 312593

relation S

l_partkey l_qtyl_orderkey l_price l_return

2593 61730 11051.6 A

0412 323713 29600.3 R

1098 237010 29356.3 A

5059 832742 9281.9 R

2593 3136070 34167.9 R

relation R

p_name p_brandp_partkey p_type

green car vw2593 11

red boat fast5059 29

green tree pine1098 35

blue sky clear0412 92

red river dirty5692 34

l_partkey l_qtyl_orderkey l_price l_return

2593 61730 11051.6 A

1098 237010 29356.3 A

2593 3136070 34167.9 R

query join size of Bloom filter
128 bits 1 kilobyte 8 kilobytes 64 kilobytes 1 megabyte ideal

Q3 1.1 1.0 1.8 3.0 3.0 3.0 4.8
Q5 4.1 1.1 4.5 4.5 4.5 4.5 4.5
Q9 1.1 1.0 9.1 9.1 9.1 9.1 20.0
Q10 2.1 3.0 4.8 4.8 12.5

Table 3: Sizes and selectivities of
joins using Bloom filters of varying
size. Note that these measurements
are based on a particular choice of
execution plan, the sizes required for
the different joins would be different
if the join order were changed.
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4. Database Structure

This section describes the modifications required for a database system to support Active
Disks. We have chosen to modify PostgreSQL version 6.5, an open-source database system based
on work originally done at Berkeley, for use with our prototype Active Disks. We use this system
due to the ready availability of the code, its use in past published research, and the difficulty of
collaborating with a commercial vendor, but we feel the nature of the changes should be applica-
ble to other systems as well.

The common structure for the processing done at the Active Disks is to push down qualifica-
tion, aggregation, and semijoin operations into what would be a parallel table scan in a modern
database system. The Active Disk operators act as filters on the data as it is read from the disks,
reducing the amount of data returned and offloading repetitive per-record computations from the
host. Only filtered records are returned to the host for final processing and output.

The downside of doing this type of filtering at the drives is that full records are not returned to
the host for later re-use. In the case of small relations, this decrease in cache efficiency could well
outweigh the benefits of Active Disk processing. This problem can be addressed by having the
query optimizer choose plans where small relations (for which caching will be beneficial) are
returned to the host in their entirety, while large relations (which would normally bypass the
buffer pool anyway) are processed at the disks and not cached at the host. This also avoids the
cache coherence problems that arise if Active Disks are allowed to process pages that may be
dirty in the host’s buffer pool. 

There are some additional locking and concurrency issues that must be addressed in the pres-
ence of updates. We feel these are important considerations in the design of an Active Disk data-
base system, but for the prototype described here, we assume that relations being processed at the
disks are marked uncacheable at the hosts, and that cursor stability [Gray92] is sufficient for the
decision support queries we evaluated.

4.1. Host Modifications

The code running at the host is a version of the PostgreSQL system with two sets of modifica-
tions, as detailed in Table 4. Changes were made in the storage layer to provide striping and use a
network storage interface for disk access, rather than a traditional filesystem, and in the scan
function to provide a way to ship filter conditions to the drives and start Active Disk processing.

A “bypass” point is added to each of the execute nodes where parameters for scans, aggrega-
tions, and semijoins are passed to the disks. For scans and semi-joins, the work at the drives sim-
ply reduces the number of records that are processed at the host. For aggregation, the schema as
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seen by the host is changed to accommodate the computation already done at the drives, as illus-
trated below:

for a portion of the schema used in Query 1.

4.2. Query Optimization

The query optimizer must be modified to take into account the presence of a particular num-
ber of Active Disks, as well as their memory sizes and processing rates. The PostgreSQL opti-
mizer already maintains information about the costs of each of the basic execute nodes, including
all the possible join algorithms, selections, aggregations, and index scans. It also maintains a set
of statistics for each table in the database, tracking the data type, minimum and maximum values,
and an estimate of the disbursion of the values currently in the database for that attribute. Knowl-
edge of the data types, the range of values, and the disbursion allows the optimizer to estimate the
size of outputs and intermediate results at each stage of the query, and estimate the resources
required and relative cost of different possible execution plans, including whether the use of
Active Disk processing is appropriate for a particular stage of the query.

4.3. Active Disk Code

The PostgreSQL code required at the drives is also shown in Table 4. The on-drive code must
understand the layout of pages on disk, the schemas of the database, and tuple layout formats. The

module original
modified host

(new & changed)
Active Disk

Files Code Files Code Files Code
access 72 26,385 - - 1 838

bootstrap 2 1,259 - - - -
catalog 43 13,584 - - - -

commands 34 11,635 - - - -
executor 49 17,401 9 938 4 3,574

parser 31 9,477 - - - -
lib 35 7,794 - - - -

nodes 24 13,092 - - 6 4,130
optimizer 72 19,187 2 620 - -

port 5 514 - - - -
regex 12 4,665 - - - -

rewrite 13 5,462 - - - -
storage 50 17,088 1 273 - -

tcop 11 4,054 - - - -
utils/adt 40 31,526 - - 2 315

utils/fmgr 4 2,417 - - 1 281
utils 81 19,908 - - 1 47

Total 578 205,448 12 1,831 15 9,185
New 1,257

Table 4: Code changes required to
adapt PostgreSQL to Active Disks.
The table shows the major modules
of PostgreSQL, the changes
required to the code at the host, and
the amount of code that runs at the
drives for each module. Note that
only the ADT functions necessary
to support the TPC-D queries are
included in the drive code - to
support the range of “basic”
database type, another 5,000 lines
of code would be added have to be
added to the on-disk code.

l_qty decimal
l_price decimal
l_returnflag char, 1
l_shipdate date

sum_l_qty decimal
cnt_l_qty decimal
sum_l_price decimal
cnt_l_price decimal
l_returnflag char, 1
l_shipdate date

accumulated total

accumulated count
(to compute AVG)

schema on disk schema seen by host



12

WORK IN PROGRESS. DO NOT REDISTRIBUTE.

code also includes operators for dealing with basic calculations on database fields for all the data
types that the drive supports. This includes comparison operators for scan and sorting and arith-
metic operators for aggregation. In addition, the code contains the three core primitives adapted
for use within the constraints of the drive environment. The preceding section discussed the algo-
rithms that are used to implement each of the database operations. Select is performed in the
straightforward manner; aggregation, projection and sorting are performed using a single replace-
ment selection sort primitive that allows combining of records when performing aggregation or
duplicate elimination; and join is performed by forming a fixed-size Bloom filter at the host, using
this to perform a semi-join at each of the drives, and completing the final join at the host. These
three primitives are sufficient to implement all the data-intensive portions of the query processing.

4.4. Benchmark Evaluation

Table 6 shows the details of a number of the queries from the TPC-D benchmark and shows
the selectivity savings possible if the various processing steps are performed at the disks. Simply
using the disks for the scan primitive to eliminate table columns that are not needed in the query
reduces data by a factor of three on average. Including the qualification conditions increases the
savings to an aggregate of between 2.5 times and over 100 times reduction, depending on the
query. Processing large joins gives double-digit gains and near 500 times for Q5. Semijoin, even
with fixed-size Bloom filters, gives reductions similar to doing the full joins, while using only
constant memory. The reduction for a semijoin may be less than for a join due to the false posi-
tives possible with Bloom filters. The semijoin reduction may be more due to the expansion of the
cartesian product in the full join. Finally, it is clear that including aggregation at the drives gives
the largest benefits, although in many of the queries, the absolute savings at this point are only
several dozen pages.

query tbls lineitem order quals joins semijoin aggregation time (s)
Q1 1 scan 2.3 - - 1x cond 1.1 - - - 8x SUM/AVG/COUNT, 6x arith 6104.0 4,357.1
Q3 3 index - scan 3.8 1x cond 2.1 HJ, NL 5.7 1.9 1x SUM, 2x arith 81.0 754.8
Q4 2 index - scan 2.9 2x cond 30.5 - - - 1x COUNT 41.0 625.4
Q5 6 scan 3.6 scan 3.8 - - 4x HJ, NL 490.7 736.0 1x SUM, 2x arith 9.0 1,988.2
Q6 1 scan 3.2 - - 5x cond 68.6 - - - 1x SUM, 1x arith 73.0 63.1
Q9 6 scan 2.8 scan 4.5 - - 6x HJ 13.8 24.9 1x SUM, 4x arith 75.0 2710.8
Q10 4 scan 3.2 scan 4.5 1x cond 4.6 3x HJ 1.0 1.0 1x SUM, 2x arith 1088.0 810.1
Q13 2 index - scan 2.9 1x cond 1250.0 NL - - 1x SUM 1.0 5.9
Q17 2 scan 3.6 - - 1x cond - HJ 1051.8 255.5 2x SUM/AVG 5.8 166.0

total all 17 queries 15,264.0

Table 5: Details of selected TPC-D queries. The queries listed cover all query types and represent over 75% of the
execution time of the 17 read-only queries in the benchmark. The access method for the two largest tables in the database
is given, as well as the selectivity savings of performing the scan, qualification, join, and aggregation steps at the disks.
The selectivity savings are not cumulative, so the overall savings for Q1 is over 15,000 if the scan, qualification, and
aggregation are all done at the disks. The second column of join selectivity gives the savings if only a semi-join with a 1-
megabyte Bloom filter is used at the drives. The final column gives the performance of each query on the Digital 8400
system listed in Table 1 [TPC98]. Savings and query plans were determined by PostgreSQL running on the validation data
set, but the query plan details are consistent with previous studies, including those of commercial database systems
[Barroso98, Tamaru99].
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5. Experiments

The testbed used for all of our experiments consists of ten prototype Active Disks, each one a
six-year-old Digital Alpha 3000/400 (133 MHz, 64 MB, Digital UNIX 3.2g) with two 2.0 GB
Seagate ST52160 Medalist disks. A single Digital AlphaStation 500/500 (500 MHz, 256 MB,
Digital UNIX 3.2g) with four 4.5 GB Seagate Cheetah disks on two Ultra-Wide SCSI busses is
used for the server case. All these machines are connected by an Ethernet switch and a 155 Mb/s
OC-3 ATM switch. This setup is illustrated in Figure 5 showing the details of both systems. 

All of our experiments compare the performance of the single server machine with directly-
attached SCSI disks against the same machine with network-attached Active Disks, each of which

is a workstation with two directly-attached SCSI disks1.

1. the need for two physical disks on each single Active Disk is an artifact of using old workstations not explicitly
designed for this purpose. The 3000/400 contains two narrow SCSI busses, with a maximum bandwidth of 5 MB/s
each. The Seagate Medalist disks are capable of 7 MB/s each, but the use of the narrow SCSI busses limits sequential
throughput to a total of 6.5 MB/s when two are used in combination. For all the queries presented here, the use of two
disks instead of a single, faster disk does not impact the system performance and will be pessimistic to the Active
Disk case, since the server disks are each capable of a much higher 11 MB/s.

Server

Switched network

Database Server

UltraSCSI

Obj Stor

Controller

Network Security

Traditional System

Active Disk System

Controller

SCSI

Figure 5: Active Disk prototype systems. The components of the two systems compared in the
prototype numbers to follow. The diagram shows a traditional server system with directly-
attached SCSI disks. The lower picture shows an Active Disk system using network-attached
disks.
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256 MB memory
2 x 155 Mb/s ATM
Digital UNIX 4.0

Digital Alpha AXP 3000/400
133 MHz Alpha 21064
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2 x Seagate Medalist
Digital UNIX 3.2g

Digital Gigaswitch/ATM
52 ports, 155 Mb/s
10.4 Gb/s backplane
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5.1. Database - Select (Query 6)

Figure 6 compares the performance of a database server with traditional disks against a server
with an equivalent number of Active Disks for a simple select query. The query is:

select * from lineitem where l_shipdate > ‘1998-09-02’

using tables and test data from the TPC-D benchmark. The records in the database cover dates
from 1992 through the end of 1998, so this query returns about 4% of the total records in the
lineitem table. This query performs the qualification at the disks and returns a record to the
host only if the condition matches. This is very similar to the processing of Q6 in TPC-D. We
used a modified Q1 because it does not benefit from the declustering (on l_shipdate) that
most TPC-D benchmark systems do precisely to speed up Q6. The implications of physical design
for Active Disk systems is further discussed in Section 5.5.

The server performs better than the Active Disk system for small numbers of disks, since each
individual disk is much less powerful than the 500 MHz host. Once the aggregate compute power
of the disks passes that of the host, the Active Disk system continues to scale while the server per-
formance remains flat, no matter how much aggregate disk bandwidth is available. Notice that the
performance increase in the Active Disk system is somewhat less than linear. This is due to the
sequential overhead of performing the query - primarily the startup overhead of initiating the
query and beginning the Active Disk processing. This overhead is amortized over the entire size
of the table processed. For the experiments in the chart, the table is only 125 MB in size, so the
overhead is significant and noticeable in the results. A real TPC-D system sized for a 300 GB
benchmark, would have a lineitem table of over 100 GB and this startup overhead would be
negligible.

5.2. Database - Aggregation (Query 1)

Figure 7 compares the performance of the database server against a server with Active Disks
for a simple aggregation query. The query being performed is:

select l_returnflag, l_linestatus,
sum(l_qty), sum(l_price*(1-l_disc))

Figure 6: Performance of PostgreSQL select.
The PostgreSQL select operation shows linear
scaling with number of disks up to 37 MB/s
with 10 disks, while the server system
bottlenecks at 18 MB/s.
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from lineitem where l_shipdate <= ’1998-09-02’ 
group by l_returnflag, l_linestatus 
order by l_returnflag, l_linestatus

which is a simplified version of Q1. This query summarizes about 95% of the records in the
lineitem table. The prototype performs both the qualification and aggregation at the disks and
returns per-disk summaries that are then combined into a single set of results at the host.

The computation required for aggregation is significantly more than for the select. The same
comparison as in the select is performed to identify records that match the qualification condition.
Matching records are then inserted into a sorted heap using replacement selection, combined
based on the group by keys and aggregated into the sums and averages specified by the query.

5.3. Database - Join (Query 9)

Figure 8 compares the performance of a database server against a server with Active Disks for
a simple two-way join. The query being performed is:

select sum(l_quantity), count(*) from part, lineitem
where p_partkey = l_partkey and p_name like ’%green%’ 
group by n_name, t_year order by n_name, t_year desc

which is a simplified version of Q9. The records in the database cover 1,000 unique items, so this
query matches about 10% of the unique part numbers in the database. The prototype performs a

Figure 7: Performance of PostgreSQL
aggregation. The PostgreSQL aggregation
shows linear scaling with the number of
Active Disks and reaches 13 MB/s with eight
disks, while the server bottlenecks on the
CPU at 6.5 MB/s.
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Figure 8:‘Performance of a 2-way PostgreSQL
join. The PostgreSQL join scales nearly
linearly to 24 MB/s with Active Disks, and is
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semijoin at the disks and returns a record to the host only if the join key matches the Bloom filter
created from the part table.

The results in Figure 9 show the performance of a more complex join, executing the full 5-
way join given by Q9. The query being performed is:

select n_name, t_year, 
sum(l_price*(1-l_disc)-ps_supplycost*l_quantity)
from part, supplier, lineitem, partsupp, order, nation, time
where s_suppkey = l_suppkey 
and ps_suppkey = l_suppkey and ps_partkey = l_partkey 
and p_partkey = l_partkey 
and o_orderkey = l_orderkey 
and t_alpha = o_orderdate 
and s_nationkey = n_nationkey 
and p_name like ’%green%’ 
group by n_name, t_year order by n_name, t_year desc

again using tables and data from the validation data set. 
This query has a much higher serial fraction than the two-way join, and shows the perfor-

mance limitation in the Active Disk much sooner than the simple join. The serial fraction of this
entire query is more than 80%, so the maximum speedup possible with Active Disks is a factor of
1.25x, even with perfect parallel scaling. The prototype results show an 11% improvement in per-
formance with eight disks.

5.4. Database - Summary

Table 6 summarizes the results of the last several sections and compares the performance of
the server system and the Active Disk prototype on several of the most expensive queries from the
TPC-D benchmark. We see that the scan-intensive applications, including the 2-way join, show
linear scalability, while the more complex joins have significantly higher serial overheads, but
still show significant speedups with Active Disk processing. These results are with a small proto-
type system of only eight disks, which is much smaller than the system that are built in practice
for this type of workload. We would expect proportionally higher performance for a system with

Figure 9: Performance of a 5-way
PostgreSQL join. This query has a
significantly higher serial fraction than the
previous applications, so the scaling with
Active Disks drops off relatively early. The
performance improvement is about 11% with
eight disks.
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60 disks, such as the one shown in Table 1, as well as for the multi-processor systems that have
higher host processing rates, but also considerably more disks.

5.5. Physical Design

The choice of database layout across the disks in a large storage system is critical to the per-
formance of the queries, and much care is taken by designers of TPC benchmark systems to orga-
nize data on disks in a way that is advantageous to the largest number of queries. According to the
benchmark rules, the data layout cannot take direct advantage of knowledge of what queries will
be executed, as the intent is to model ad-hoc queries that are not known beforehand. In practice,
database implementors must choose one attribute for declustering the lineitem table, and
l_shipdate is the most advantageous. This means, however, that ad-hoc queries that happened
to use the l_receiptdate or l_commitdate will perform poorly. The use of Active Disks
simplifies this problem by providing much greater resources for such parallel scans. The same
declustering can also be performed in an Active Disk system, speeding queries based on
l_shipdate, but queries on other columns will perform much better than they would in a tradi-
tional system, easing the sensitivity to the one-time choice of physical layout.

In order to make most effective use of the Active Disk processing power, it will be beneficial
to spread particular tables across the largest number of disks possible, which adds an additional
consideration to physical design in the presence of Active Disks.

Our prototype has not considered the use of indices in processing Active Disk queries. When
an index scan is chosen by the optimizer, Active Disk processing is not used. There may be some
benefits from also performing these indexed scans in parallel, or maintaining parallel indices
across the disks, but we have not yet explored this direction.

5.6. Computation Requirements

The application characteristics of each of the database operations for the prototype platform
are shown in Table 7. We see that the select is the least expensive, using less than four instructions
per byte of data processed. It also uses very little memory since only enough memory to evaluate
one page of tuples at a time is required. 

The computation required for aggregation is significantly more than for the select. The same
comparison as in the select is performed to identify records that match the qualification condition.
Matching records are then sorted and combined using the group by keys and aggregated into

query type input
(MB)

output
(KB)

disks host
(s)

tput
(MB/s)

Active Disk
(s)

tput
(MB/s)

parallel 
fraction

Q1 aggr 494 0.2 8 76.0 6.5 38.0 12.6 100% cpu-bound 0.99
Q5 join (6) 494 0.1 8 219.0 2.2 186.5 2.6 17% cpu-bound 0.28
Q6 select 494 5057 8 27.2 18.8 17.0 29.0 60% disk-bound 0.99
Q9s join (2) 494 0.5 8 44.5 11.1 21.6 22.9 108% cpu-bound 0.99
Q9 join (6) 494 0.5 8 95.0 5.2 85.4 5.8 11% cpu-bound 0.19

Table 6: Summary of TPC-D results using PostgreSQL. A portion of the TPC-D benchmark running on the
PostgreSQL database system modified to use Active Disks.
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the sums and averages specified by the query. Each disk returns the aggregation values for its por-
tion of the relation, and these results are then combined at the host.

The join must hash each of the join attribute values and apply the Bloom filter to determine
whether a particular record will contribute to the result, returning only matching records. The
records from all the disks are combined at the host and joined using a complete hash table.

5.7. “Beta” Prototype

Table 8 compares the prototype discussed so far based on 6-year-old workstations with a new
engineering prototype developed for us that has a form factor and processing capability much
closer to what we would expect first-generation Active Disks to have. We see that the basic pro-
cessing rates are very comparable for the two devices. The “beta” device has a significantly faster
processor and disk, giving it an advantage over the workstation prototype, but does have a signif-
icantly higher cycle/byte cost for the basic computations. These “beta” devices have only recently
been made available to us, and we are continuing to experiment with them to further characterize
the performance of the PostgreSQL code in this embedded system version of Active Disks.

6. Related Work

The basic idea of executing functions in processing elements directly attached to individual
disks was explored extensively in the context of database machines such as CASSM [Su79], RAP
[Ozkarahan75], and numerous others [DeWitt81]. These machines fell out of favor due to the lim-
ited performance of disks at the time and the complexity of building and programming special-
purpose hardware that could only handle limited functions. Extensive work on parallel database

application
computation

(instr/byte)
computation
(cycles/byte)

throughput
(MB/s)

memory 
(KB)

selectivity
(factor)

code
(KB)

database select 3.8 6.5 19.5 88 52.0 20.5 (13.3)
database aggregation 15.0 31.1 120 31.9 26.7 (18.4)
database join 3.4 6.2 20.0 88 4.3 19.8 (14.4)

Table 7: Costs of the database operations. Computation requirement, memory required, and the selectivity factor in the network.
The computation requirement is shown in both instructions per byte and cycles per byte. The last column also gives the total size
of the code executed at the drives (and the total size of the code that is executed more than once).

“alpha”
prototype

“beta”
prototype

processor 133 MHz Alpha 200 MHz StrongARM
memory 64 MB 32 MB
storage 4.2 GB 13 GB
disk bandwidth 6.5 MB/s 11 MB/s
network bandwidth 10.5 MB/s 9.5 MB/s
operating system Digital UNIX Linux
select 5.5 MB/s 6.8 MB/s

(cycles/byte) 6.5 12.6
aggregation 1.8 MB/s 1.6 MB/s

(cycles/byte) 31.1 52.0
join 4.3 MB/s 7.3 MB/s

(cycles/byte) 6.2 11.0

Table 8: Comparison of our “alpha” and “beta”
prototypes. The table shows the characteristics of
two generations of Active Disk prototypes. The
“alpha” prototype is a Digital AXP 3000/400
workstation with two Seagate Medalist disk
drives, as described earlier in the paper. The
“beta” prototype is an engineering prototype
using an embedded processor and a single
Quantum Viking disk drive. We see that the
processing rates for select and join are higher in
the “beta” prototype due to the higher disk
bandwidth, while the aggregation is slightly
slower due to the higher cycle/byte cost of the
computation, which is only partially overcome by
the faster processor.
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systems has explored all of the basic database algorithms discussed and their mapping to parallel
systems that serve as the basis for choosing the proper algorithms that fit the characteristics of
Active Disk systems. An excellent survey of many years of this work can be found in [DeWitt92].

Previous work on Active Disk systems has explored the benefits of mapping applications
from data mining, image processing, sorting, and data cubes onto an architecture with computa-
tion at storage nodes [Acharya98, Riedel98]. Work on Intelligent Disks explored the use of pro-
cessing on storage devices to offload portions of an SMP database system using an analytic model
for speedup [Keeton98]. Simulations of the use of Active Disks for decision support have shown
that such systems can outperform traditional SMP servers, and provide performance similar to
clusters of workstations [Uysal00]. The work discussed here extends this work and provides mea-
surements from a running prototype implementation to validate that the benefits promised in these
papers are realizable in a realistic database system with relatively small modifications.

Work in the SmartSTOR project at Berkeley and IBM explored the use of a similar architec-
ture for decision support queries and concluded that the processor available on an individual disk
drive would be insufficient for handling the computation rates required, and that an additional
processor board supporting several disks should be used instead [Hsu99]. This study also con-
cluded that the increased use of pre-computed aggregates would reduce the need for parallel scans
of the data, as many queries would be answered directly from these aggregates. This trend away
from the intended ad-hoc nature of the TPC-D benchmark has led the Transaction Processing Per-
formance Council to obsolete TPC-D and create two new benchmarks: TPC-R for reporting and
TPC-H for ad-hoc querying, where the first allows the use of pre-aggregates, and the second does
not [TPC99]. The benefits discussed in this paper will continue to be more applicable to queries of
the ad-hoc nature, as embodied by TPC-H.

Implementation work at the University of Tokyo has demonstrated performance results simi-
lar to those presented here by mapping a database system onto the nodes of a parallel cluster of
commodity PCs. They also introduce a transposed file system organization for the columns in
their database that allows them to obtain the scan benefits discussed here without on-disk support
for selectively returning columns of individual records to the host [Tamura99].

Work at Digital, Compaq, and Rice University considered the memory and processor perfor-
mance of large decision support systems, among other workloads [Barroso98, Ranganathan98].
The authors conclude that I/O performance is no longer the primary determinant of large-system
performance, as improvements in disk arrays and software structures allow sufficient disk band-
width to be added to a system until the processors are the bottleneck. Our work on Active Disks
takes advantage of these same trends toward systems with large numbers of individual disks to
provide more efficient processing in these systems. The intent of Active Disks is not to replace
large-memory multi-processors, but to boost the performance of these systems by taking advan-
tage of resources that already exist inside the I/O sub-system and are not being taken advantage of
due to limited interfaces.
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7. Conclusions and Future Work

We have shown that all the basic database functions can be efficiently mapped onto an Active
Disk system. The changes necessary to adapt an existing relational database system for use with
Active Disks required modifying about 2% of the code at the host, and running about 10% of the
total database system code at the drives. We have demonstrated a speedup of up to 2x using a pro-
totype system with eight Active Disks compared to a server system with traditional disks. We
expect these improvements to scale well to the systems with dozens and hundreds of disks that are
commonly used today.

We have also provided preliminary results for an engineering prototype that is much closer to
the form factor and processing capability we would expect commercially available Active Disks
to have. Initial results are promising that the results obtained in our “alpha” prototype will transfer
to the “beta” prototype, and we are actively developing a testbed including fifty of the “beta”
devices for larger scalability studies.

The intent of this work is to provide a proof of concept implementation to illustrate the bene-
fits possible with Active Disks. There are a number of issues in concurrency control and fault tol-
erance that we have not discussed here, including how to most efficiently handle updates in this
highly distributed system. These items, as well as further exploration of the appropriate program-
ming models for Active Disk functions are active parts of our future work.
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