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Abstract

The TierMLparameter server system for machine learning (ML) enables aggressive exploitation of transient revocable
resources to complete model training cheaper and/or faster. Many shared computing clusters allow users to utilize
excess idle resources at lower cost or priority, with the proviso that some or all may be taken away at any time
(e.g., the Amazon EC2 spot market often provides such resources at a 90% discount). Unlike other parameter server
systems, TierMLexploits such transient resources, using minimal non-transient resources to efficiently adapt to bulk
additions and revocations of transient machines. Our evaluations show that TierMLreduces cost by ≈75% relative to
non-transient pricing and by 46%-50% relative to using transient resources with checkpointing to address bulk changes,
while nearly matching or decreasing running times.
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1 Introduction

Statistical machine learning (ML) has become a primary data processing activity for business, science,
and online services that attempt to extract insight from observation (training) data. Generally
speaking, ML algorithms iteratively process training data to determine model parameter values
that make an expert-chosen statistical model best fit it. Once fit (trained), such models can predict
outcomes for new data items based on selected characteristics (e.g., for recommendation systems),
correlate effects with causes (e.g., for genomic analyses of diseases), label new media files (e.g.,
which ones are funny cat videos?), and so on.

ML model training is often quite resource intensive, requiring hours on 10s or 100s of cores
to converge on a solution. As such, it should exploit any available extra resources or cost savings.
Many modern compute infrastructures offer a great opportunity: transient availability of cheap
but revocable resources. For example, Amazon EC2’s spot market and Google Compute Engine’s
preemptible instances often allow customers to use machines at a 70–90% discount off the regular
price, but with the risk that they can be taken away at any time. Many cluster schedulers similarly
allow lower-priority jobs to use resources provisioned but not currently needed to support business-
critical activities, taking the resources away when those activities need them. ML model training
could often be faster and/or cheaper by aggressively exploiting such revocable resources [27].

Unfortunately, efficient modern frameworks for parallel ML, such as TensorFlow [5], MxNet [8],
and Petuum [34], are not designed to exploit transient resources. Most use a parameter server
architecture, in which parallel workers process training data independently and use a specialized
key-value store for shared state, offloading communication and synchronization challenges from ML
app writers [22, 19, 9]. Like MPI-based HPC applications, these frameworks generally assume that
the set of machines is fixed, optimizing aggressively for the no failure and no change case (rolling
back to the last checkpoint on any failure). So, using revocable machines risks significant rollback
overhead, and adding newly available machines to a running computation is often not supported.

This paper describes TierML, a parameter server system designed to exploit transient revocable
resources by elastically resizing as groups of machines become available or are revoked. To make such
elasticity more efficient, TierMLexplicitly keeps core functionality on relatively reliable resources (i.e.,
non-transient resources, like on-demand instances in EC2), such that the computation may be slowed
but never has to stop due to bulk revocations. Whenever possible, the vast majority of TierML’s
ML training work is performed on transient resources, exploiting the scaling opportunity while
minimizing cost. But, using a small amount of more reliable resources enables quick adjustments as
resources come and go (in bulk), such as quick re-expansion when new transient resources become
available after a bulk revocation. It also enables proactive transitioning to new transient resources
(such as to a different class of machines) when revocation of current resources appears likely and/or
the price of the new resources drops below that of the current resources.

Figure 1 illustrates the benefits for an ML model training job on Amazon EC2. Using a single
on-demand instance and 63 spot market machines, when possible, TierMLprovides an average cost
savings of ≈75% when compared to using on-demand instances, even when accounting for spot
market variation and revocations, while completing the job nearly as fast (or faster). Compared to
using a checkpointing-based approach (i.e., run on spot market machines and checkpoint regularly
so progress is retained if evicted [17, 27, 28]), TierMLsaves 46–50% the cost and also completes
≈20% faster, winning by avoiding checkpoint overheads, reducing restart delays, and proactively
switching among machine types as their spot market prices vary. Experiments with three real ML
applications confirm that TierML’s elasticity support introduces negligible performance overhead in
the absence of revocations, as well as that TierMLscales well, suffers minimal disruption during bulk
addition or removal of transient machines, and provides significant benefits in both highly transient
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Figure 1: Benefits of exploiting EC2 spot market. This graph shows average cost (left axis) and
runtime (right axis) for running the MLR application (see Section 4.2) on the AWS US-EAST-1 Region.
The four configurations shown are: 16 and 64 on-demand machines, using 64 spot market machines with
checkpoint/restart for dealing with evictions, and TierML using 1 on-demand machine and 63 spot market
machines. TierMLreduces cost by 76% relative to using 64 on-demand machines and by 48% relative to the
checkpointing-based scheme. Full experimental details can be found in Section 4.

and less transient situations.
Minimizing reliance on non-transient resources, while always having them be sufficient for

continued operation, requires changes to the parameter server architecture and control algorithms.
When the ratio of non-transient to transient is small (e.g., 2-to-1), one can simply distribute the
parameter server functionality only across the non-transient machines, instead of across all machines
as is the usual approach. For much larger ratios (e.g., the 63-to-1 ratio of Figure 1), the one
non-transient machine would be a bottleneck in that configuration. In that case, TierMLuses
the non-transient machine(s) as on-line backup parameter servers (BackupPSs) to active primary
parameter servers (ActivePSs) running on transient machines. Updates are coalesced and streamed
from actives to backups in the background at a rate that the network bandwidth accommodates.
TierMLtransitions between these modes (and other functionality shifting) as transient resources
come and go. Also, when different classes of transient machines vary in price and/or predicted
MTTF, TierMLwill proactively transition to better options while continuing to execute, which our
analysis of EC2 spot prices indicates provides over 30% cost savings on average.

This paper makes three primary contributions: First, it describes the first parameter server ML
framework designed to elastically scale with bulk additions and revocations of transient machines.
Second, it describes an architecture+algorithms for exploiting multiple tiers of machine reliability to
more agilely resize in the face of such changes as well as to proactively transition among transient
machine classes when beneficial. Third, it presents results from experiments and analyses showing
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that aggressive multi-tier exploitation of transient machines is both possible and beneficial, reducing
costs by ≈75% relative to using only full-price and by 46–50% relative to checkpointing-based
execution only on transient resources.

2 Motivation and Related Work

This section first presents background on ML model training, focusing on the parameter server
architectures, the most efficient modern frameworks for parallel ML training. Then, it motivates
the desire to have such frameworks be highly elastic, i.e., able to efficiently adapt to the dynamic
availability and revocation of cluster resources. Finally, it discusses existing approaches to elasticity
and how they fall short of desired.

2.1 ML Model Training Frameworks

Statistical machine learning algorithms determine parameter values that make a chosen statistical
model fit a set of training data. Most modern ML approaches rely on iterative convergent algorithms,
such as stochastic gradient descent (SGD), to determine these model parameter values. These
algorithms start with some guess at a solution (a set of parameter values) and refine this guess over
a number of iterations over the training data, improving an explicit goodness-of-solution objective
function until sufficient convergence or goodness has been reached.

ML model training is resource-intensive, especially as model precision grows, and commonly
requires parallel execution to complete in reasonable time. For example, the ML applications used
for experiments reported in Section 4 scale well with machine count yet still require multiple hours
even when using 10s of multicore machines.

Although iterative convergent ML algorithms can be built as sequences of bag-of-task compu-
tations, such as map-reduce jobs, on systems like Hadoop [1] or Spark [35], such implementations
are inefficient. In particular, they preclude several specializations, including flexible consistency
models [24, 10, 22], cross-iteration optimization [11], and early exchange of updates [33]. Collectively,
these specializations can provide an order of magnitude or more increase in training efficiency.

Parameter server architectures. The most efficient modern frameworks for parallel ML use
a parameter server architecture,1 which allows programmers to easily build scalable ML algorithms
while benefiting from such specializations [22, 19, 9]. As a result, open source ML model training
frameworks like TensorFlow [5], MxNet [8], and Petuum [34] use this architecture, as do many
proprietary systems.

Figure 2 illustrates a simple parameter server system. Commonly, training data is partitioned
among the worker threads that execute the ML application code for adjusting model parameter
values. The only state shared among worker threads is the current parameter values, and they are
kept in a specialized key-value store called the “parameter server.” Worker threads process their
assigned training data and use simple read-param and update-param methods to check and apply
deltas to parameter values. The value type is usually application-defined, but must be serializable
and have a commutative and associative aggregation function so that updates from different worker
threads can be applied in any order. For the ML applications used in this paper, the values are
vectors and the aggregation function is component-wise add (+).

To reduce cross-machine traffic, parameter server implementations include a worker-side library
that caches parameter values and buffers updates. While logically a single separate server (left side

1For example, one recent study showed two parameter server systems (IterStore [11] and LazyTable [10]) outperform
PowerGraph [14] significantly (factors of 10X and 2X, respectively) for collaborative filtering via sparse matrix
factorization [11]. The performance advantage of parameter server systems over bag-of-task systems, for such ML
applications, is clarified by combining those results with a recent study showing that a highly-tuned Spark-based
system called GraphX [15] approximately matches PowerGraph.
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Figure 2: Traditional Parameter Server Architecture. The left figure illustrates the logical architecture,

and the right figure illustrates that the parameter server is usually sharded across the same machines as the

workers.

of Figure 2), the parameter server is usually sharded across the same machines as worker threads
(right side of Figure 2), enabling it to scale with the computation power and aggregate memory
and bandwidth used for training. Threads associated with the worker-side cache communicate
with the appropriate server shards for each given value. Updates are write-back cached, and sent
(asynchronously) to the appropriate parameter server shards each iteration.

Given their resource-intensive nature, ML model training frameworks should take advantage of
any extra machines or potential cost savings available. Today’s cluster infrastructures provide such
opportunities, as discussed next.

2.2 Dynamic Availability of Revocable Resources

Cluster workloads are highly dynamic, and modern infrastructures increasingly provide temporarily-
unused machines on a revocable basis at a discount (in public for-pay clouds) or for lower-priority
users (in shared corporate clusters). For both public clouds and mixed-purpose corporate clusters,
lower intensity periods for business critical workloads create an opportunity for extra machines
to be made available to other workloads. But, those machines may need to be taken back if
business-critical workload intensity increases. This section describes how such machines are made
available in several modern infrastructures.

Amazon AWS EC2 spot market. Amazon AWS EC2 [2] is a public cloud that allows
customers to purchase time on virtualized machine resources. The traditional EC2 model, referred
to as “on demand” because machines can be requested and released by customers at any time
(though billing is based on an hourly granularity), involves paying a pre-determined fixed hourly
rate to have guaranteed access to rented machine resources. Amazon also has a so-called “spot
market” for machines, where machines are often available at a steep discount (e.g., 80–90% lower
price) with the proviso that they can be taken back at any time. So, a customer that can exploit
transient machines for their work can potentially save money and/or time.

The EC2 spot market design has interesting properties that affect customer savings and the
likelihood of eviction. First, it is not a free market [6]. Customers specify their bid prices for a
given machine class, but generally do not pay that amount. Instead, a customer is billed according
to the current EC2-determined spot price for that machine class.2 Figure 3 shows one example of
spot price variability over a week, for two machine classes in an EC2 zone. Second, if a customer

2This surprising practice of charging less than a customer explicitly states a willingness to pay is discussed further
in Section 4.7.
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Figure 3: AWS spot prices over time. Spot prices for two classes of machines are shown for 6 days in

January 2016. The unchanging on-demand price for c4.2xlarge is shown, and the values shown for c4.xlarge

are doubled so that all three lines show the price for the same number of cores; c4.2xlarge machines have

8 cores and c4.xlarge have 4 cores.
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receives machine resources in response to their bid price, they will retain them until they release
them or the spot price rises above the customer’s bid price. If the latter occurs, the customer is
not billed for the current hour, but the resources are taken back from the customer. Third, EC2
does not guarantee any warning when resources are going to be revoked, but since 2015 EC2 has
provided a two-minute warning prior to eviction in most cases. Fourth, once a customer submits a
bid and receives a resource, the bid price cannot be changed. The bid can be canceled, if not yet
granted, and a new bid price submitted. But, once the resource is granted, the bid price cannot be
changed until the resource is terminated.

Google Preemptible Instances. Google Compute Engine (GCE) [3] offers revocable machine
resources, called “preemptible instances”, akin to those provided by the EC2 spot market. Google
preemptible instances can be revoked at any time, as the name suggests, but differ from EC2’s
spot market in several ways. First, Google charges a fixed price—70% less than the “on-demand”
(non-revocable instance) price for the requested machine type—there is no price variability. Second,
GCE offers a 30-second warning, rather than a 2-minute warning. Third, GCE limits preemptible
instances to 24 hours.

Dynamic resource offers in mixed-function corporate clusters. Many corporate clus-
ters serve a mix of online services, business critical batch analytics jobs (often with deadlines), and
ad hoc jobs (often called “best effort”) for application development, exploratory data analyses, etc.
Business critical activities are usually given priority, but extra resources are often available for
ad hoc jobs. Moreover, modern schedulers for such clusters, such as YARN [30] and Mesos [18],
have mechanisms to offer recently-freed resources to already running jobs’ “application master”
components, allowing some of them (e.g., large map-reduce jobs) to elastically grow to higher
performance levels by spreading work over more machines. But, these resources may subsequently
be revoked if higher priority workloads intensify or additional jobs arrive [12, 30, 31].

2.3 Prior Work

This section discusses prior work on exploiting transient resources, based on checkpointing, DHTs,
RDDs, and bidding strategies.

Checkpointing. One way to exploit transient resources is by relying on checkpointing when
needing to make a transition [17, 27, 28]. For example, a non-elastic computation can be started
on EC2 spot market machines and checkpointed regularly. If the machines are revoked, the
computation can be restarted on another set of machines from the last completed checkpoint. Gupta
et al. [17] propose this approach for scientific computations. Parameter server architectures such
as TensorFlow [5], MxNet [8], Petuum [34], LazyTables [10], and IterStore [11] provide no explicit
mechanism for exploiting transient resources, and hence would likewise rely on checkpointing. A
single machine failure causes most of these systems to restart an ongoing computation from the most
recent checkpoint. Although this may be acceptable in small-to-medium clusters under traditional
failure modes, it can incur high overheads in elastic settings due to the frequency of revocations (e.g.,
all the spikes in Figure 3). Moreover, dynamically adding machines to running ML applications is
not supported by these frameworks. To do so would seem to require stopping the computation in a
consistent state, adding the resources, adjusting the mapping of computation tasks to machines
and copying any needed state accordingly, and then restarting. (Section 3.3 describes TierML’s
alternative, efficient approach.) In our experiment study, we compare TierML’s explicit elasticity
support to this checkpointing-based approach.

Distributed Hash Tables (DHTs). The parameter server system described by Li et al. [22]
includes support for adding and removing machines during execution. To realize this feature, the
system uses a direct-mapped DHT design based on consistent hashing, wherein each parameter
server process is responsible for a particular key range, and parameter value replication. Protocols
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for adding and removing machines are described. While DHTs are effective for adding or removing
resources one-at-a-time, we believe that TierML’s approach to elasticity is better suited to the
bulk addition and removal of nodes that characterize the transient resource availability discussed
above. Li et al. did not evaluate the speed of node set changes, but we expect that it would be
insufficient to address revocation of a sizable subset of cheap machines within the limited warning
period provided. The replication mechanism also would not solve this issue, because bulk revocation
is akin to correlated failure of many nodes, while the mechanism is designed for independent failures.

Spark and RDDs. Spark achieves fault tolerance via Resilient Distributed Datasets (RDDs),
logging the history of deterministic transformations so failed tasks can be recomputed by reapplying
the logged transformations from a checkpoint. Concurrent with our work, Sharma et al. [27]
proposed Flint, a system for running Spark applications on transient machines. Unlike our tiered
approach that uses both transient and non-transient machines at the same time, Flint runs solely
on transient machines,3 like the checkpointing approach described above. It reduces the cost of
checkpointing/recovery for Spark applications by selectively checkpointing any RDD needed for
fast recovery. Whereas Flint relies heavily on Spark’s computing model in exploiting transient
machines, TierMLenables parameter server systems to exploit such resources, which as noted in
Section 2.1 are different and much more efficient for iterative convergent ML. In addition, TierML’s
use of some non-transient resources enables efficient, proactive switching among transient machine
classes, increasing savings by an additional 30% and reducing machine re-acquisition delays after
bulk evictions when spot prices are volatile. In contrast, because of the high overhead of switching
between machine classes for checkpoint-based approaches, Flint only considers switching when
current resources are revoked (i.e., the overhead must be paid).

Bidding strategies. A number of papers have studied possible bidding strategies for EC2
spot instances [6, 36, 29], noting the challenges in finding an effective strategy. Agmon et al. [6],
for example, observed that there is little correlation in AWS between the near term spot price and
the current availability of spot instances. Marathe et al. [25] proposed using redundancy across
AWS zones to do HPC computations on EC2, and, for interactive workloads, Flint [27] seeks to
diversify across zones and machine classes to lessen the likelihood of large revocations. Like Flint,
TierMLbids the on-demand price. TierMLstrategically switches between classes of machines, as
discussed in Section 3.4.

3 TierMLDesign and Implementation

TierML is designed to reduce cost and decrease run-time when utilizing compute clusters that offer
resources of different tiers of reliability and cost, such as those described in Section 2.2. TierML,
which is implemented as a C++ library linked by an ML application using it, is built upon the
parameter server architecture described in Section 2.1. In the traditional parameter server model,
it is common to have every machine run multiple workers (one per core) and an instance of the
ParamServ. Together, these ParamServsjointly provide the functionality to read and to update
parameter values. This section describes TierML’s architecture, how it handles elasticity, and how
it exploits transient resources to reduce cost.

3.1 Workers and Execution Management

During initialization, an ML application provides TierML with an initial list of reliable and transient
nodes to be used, the input data file path, several functions called by TierML, and a stopping criterion.
The stopping criterion may be a number of iterations, an amount of time, or a determination of
convergence. The input file contains a sequence of data items in an understood format (e.g., rows

3or solely on non-transient machines in the rare case that such machines are cheaper. For non-ML interactive
workloads like TPC-H, Flint seeks out a heterogeneous mix of machine classes.
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that each contain one input data item in an easy-to-process format). During execution, TierML
consists of one process executing on each node being used. Each TierML process starts a worker
thread for each core on the node and a number of background threads for its internal functionality.
The worker threads execute the ML application code for adjusting model parameters based on input
data and the current solution state.

Each worker thread is assigned a unique ID, from zero to N − 1, and a disjoint subset of the
input data items. The default assignment is a contiguous range of the input data, determined based
on the worker ID, number of workers, and number of data items. Each worker has an outer loop for
iterating until the stopping criterion is reached and an inner loop for each iteration.4

3.2 Architecture

The objective of TierML is to enable ongoing computations to be fully elastic, in that they can take
full advantage of changing resource availability and lower price machines. TierML accomplishes
this by introducing the concept of tiers of reliability. TierMLenables ML applications to run on
a dynamic mix of reliable and transient machines, maintaining the state required for continued
operation on reliable machines while taking advantage of the cheaper prices of transient machines.
To avoid the reliable machines becoming a bottleneck as the ratio of transient to reliable machines
increases, TierMLuses three stages of functionality partitioning, as described in this section.

Stage 1: Parameter servers only on reliable machines. For a majority of ML applications
including K-means, DNN, Logistic Regression, Sparse Coding, and the three described in Section 4.2,
amongst many others, the workers are stateless while the ParamServscontain the current state
of the solution. To take advantage of the two tiers of machine reliability (transient and reliable)
in clusters, TierML’s first stage spreads the parameter server across the reliable machines, rather
than all the machines, running only workers on transient machines. This has the effect of removing
all state from transient machines. To illustrate, consider a running example of eight AWS EC2
machines, of which six are spot instances (transient) and two are on-demand instances (reliable).
As shown in Figure 4, we run a ParamServ and workers on each reliable machine and only workers
on each transient machine.

By removing parameter state from transient resources, TierML is able to utilize them without
losing progress when transient resources are revoked (or fail). This means that unlike a traditional

4We have simplified the description a bit. For greater flexibility, TierML actually provides a notion of a clock of
work that gets executed on each inner loop, which may be some number of data items (a “mini-batch” of an iteration)
or some number of iterations.
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parameter-server architecture, no checkpointing is required to assist with using transient resources.5

While this modification successfully removes state from transient resources, as shown in Section 4.3
it also causes a network bottleneck when the ratio of transient to reliable resources grows too large
(e.g., with 60 transient and 4 reliable machines, the network bottleneck to the ParamServsslows the
MF application by 7x). On the other hand, if we were to use only a low ratio of (cheap) transient
vs. (expensive) reliable resources, then our cost savings would be modest at best.

Stage 2: ActivePSson transient machines and BackupPSson reliable machines. To
avoid the network bottleneck for higher transient vs. reliable ratios, TierML’s stage 2 introduces
the concept of ActivePSs. Each ParamServis assigned several ActivePSs, and each one of these
ActivePSs becomes responsible for a portion of the rows the ParamServ was originally responsible for.
In this new architecture, workers send all their updates and read request to the ActivePSsinstead
of the ParamServ. Each ActivePSin turn aggregates the updates, updates its local version of the
solution state, and then pushes the updates to BackupPSsrunning on reliable machines instead of
ParamServs. The purpose of the BackupPSis to serve as a hot backup, ready to step in whenever
an ActivePS fails. As shown in Figure 5 the ActivePSsare able to run on transient resources. If
the resource on which an ActivePSis running fails or is revoked, the state will still exist on the
BackupPS.

In summary, in stage 2, TierMLswitches to a primary-backup model, using reliable machines for
state required for continuous operation but not requiring them to serve as active parameter servers
for the much larger number of workers. As shown in Section 4.3, the ActivePS-based configuration
is much more efficient than stage 1 for higher transient-to-reliable ratios, but it still performs almost
2x slower than the traditional architecture at very high ratios (e.g., 63:1).

ParamServ Contains solution state and al-

ways runs on reliable resources

BackupPS When ratio of transient vs reli-

able resources grows too large,

ParamServ transitions to Back-

upPS, serving as a form of a hot

backup

ActivePS Exist on transient resources, ser-

vices client reads and writes, and

periodically pushes delta of up-

dates to BackupPS

Table 1: Types of solution state servers used by TierML
Stage 3: No workers on reliable machines. When the ratio of transient to reliable machines

increases even further (e.g., beyond 15:1 in our experiments), we found that the ActivePSarchitecture
failed to match the performance of the traditional architecture. This shortcoming was due to those
workers operating on reliable machines becoming stragglers because of the heavy network load
experienced by these machines. As shown in Section 4.3, removing these workers (or turning them
off) enables TierML to reach near ideal performance. Note that this optimization is best applied
only at high ratios, because it reduces the aggregate computational resources executing worker code.
The threshold for turning off the workers on the reliable machines, to keep them from becoming
stragglers, is a function of the quality of the network and the ratio of transient to reliable machines.
Figure 6 shows an architecture (now with 20 spot instances and 1 on-demand instance) with no
workers running on the reliable machine.

5In TierML, there is benefit in checkpointing the reliable resources in case they fail, however as we show later in
this section, this check-pointing has no overhead on system performance.
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TierMLdynamically adjusts to elasticity in the resources available for an ongoing ML application,
by transitioning between these three stages as appropriate.

Elasticity Controller. Another modification to the traditional architecture is the addition of
an elasticity controller, running on a reliable machine, to oversee elasticity. The elasticity controller
is responsible for tracking which resources are participating in ongoing computations and the
assignment of training data (input data) amongst the workers. When new resources are added to
ongoing computations, the elasticity controller determines for which training data the workers on
these new resources should take over responsibility. The elasticity controller is also responsible for
deciding whether additional ActivePSsshould be started. Similarly, when resources are removed,
the elasticity controller decides which resources take over responsibility of the training data they
had been working on, and if any of the ActivePSsshould be shut down. The policies used by the
elasticity controllerto make all these decisions are discussed next.

3.3 Handling Elasticity

In this section we will describe how TierML handles resources being added or removed from an
ongoing computation. In Section 4.5 we evaluate TierML’s effectiveness at handling such elasticity.

Adding resources. When new resources are added to an ongoing job, before they perform
any computation, the resources must first start up, become accessible to the user, contact the
elasticity controllerand load their portion of the input data. Previous work has shown that the
average queuing delay for a spot request on AWS EC2 is 5 minutes [25]. Once the resource becomes
available to the user, and the appropriate dependencies have been installed on the resource, it
contacts the elasticity controller responsible for the job and receives the list of input data for which
it will be responsible. Once the new resource loads the input data from storage (from S3 storage
for AWS EC2), it notifies the elasticity controller that it is ready to join the computation. Upon
receiving this notification, the elasticity controller notifies the resources previously responsible for
this work to cease performing it. The resources giving up this work will continue to operate on the
rest of their assigned work and input data.

As shown in Section 4.3, TierML achieves best performance when running ActivePSs on half
of the resources. When a substantial amount of resources are added to on-going computations,
the number of ActivePSs is increased accordingly. Once TierML decides to start a new ActivePS,
it determines for which partitions (sets of rows) of the solution state the new ActivePS will be
responsible. It then notifies the resource on which it plans to start the ActivePS about the assignment,
and the identity of the previous owner of the partitions. When the resource receives this assignment
it starts the ActivePS and sends a message to the original owner of the partitions. The original
owner then sends the current copy of the partitions being requested and notifies all the workers
about the new owner of the partitions. While the change of ownership message is propagating to
all the workers, the original owner forwards to the new owner all messages associated with the
partitions being transitioned. Additions of workers and ActivePSs are performed in the background,
and as shown in Section 4.5, they have negligible impact on system performance.

Evictions and failures. When resources are removed from an ongoing computation after some
warning, such as the two-minute warning offered by AWS or the 30-second warning offered by GCE,
we call this an eviction. When resources are removed without warning or with a warning detected
with insufficient lead time, we call this a failure or an effective failure, respectively. TierMLhandles
these cases differently.

In the case of evictions, TierMLruns a background thread that checks for eviction warnings
and alerts the elasticity controllerwhen one occurs (on EC2 this thread must run on one of the
spot instances; every 5 seconds it checks for warnings and returns the set of spot instances that
are marked for eviction, if any). In the common scenario where an eviction is about to take back
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all transient resources, the elasticity controllercontacts all the ActivePSsand tells them to push
their most recent consistent state to the BackupPSand to cease operations after that. These update
messages from ActivePSsto BackupPSswill also include a special end-of-life flag signaling that this is
the last message that the ActivePSwill ever send. When the BackupPSsreceive end-of-life messages
from ActivePSs, they signal any workers on reliable machines (including those getting turned on by
the elasticity controller, as discussed at the end of this section) to address read and update requests
to them. Note that the TierMLdesign makes this scenario simple and fast.

In less common scenarios where an eviction is about to take back only some of the transient
resources, the elasticity controllersignals the ActivePSsthat are being evicted to either (i) move their
partitions to the ActivePSsthat will survive the eviction, or (ii) move them to transient resources
that are going to survive the eviction and do not yet have a ActivePSrunning on them. The process
for relocating partitions is similar to the process of adding ActivePSsdescribed earlier, and includes
notifying any surviving worker where to start sending its read/update requests and what part of
the input training data it now owns.

In the case of failures, which are detected via heartbeat messages, or effective failures, which
arise whenever the warning provided to TierMLis not early enough for all evicted ActivePSsto send
their end-of-life messages to BackupPSs, TierMLperforms a form of on-line roll-back recovery. This
roll-back recovery differs depending on how many resources have failed.

In scenarios where all or most of the transient resources fail (usually due to an effective failure),
the BackupPSswill use the last consistent state6 from the ActivePSs as the new solution state, and
the workers will re-do the work lost in the roll-back recovery. The ActivePSssend the workers the
iteration number of the last iteration included in the new solution state, and all workers will restart
from what is essentially an online checkpoint. In scenarios where a single or few resources running
ActivePSsfail, the elasticity controllerreassigns responsibility for the partitions managed by those
ActivePSsto other transient resources. This is done by having the BackupPSsend the solution state
it has to the new owner of the ActivePS. The surviving ActivePSsthen roll-back to a state consistent
with the current state of the BackupPSs. This roll-back to a consistent state is straightforward,
because the ActivePSsalready store the aggregate of the delta applied to their local state since the
last time they applied their state to the BackupPSs.

Reacting to the eviction and failures of workers is orchestrated by the elasticity controller.
When a worker is removed from a computation, the previous owner of the input data the worker was
responsible for assumes responsibility for it. As described in Section 3.4, any input data assigned to
a transient resource will have a previous owner running on a reliable resource, thus there will be no
need to stop and load the input data from disk.

3.4 Usage

This section describes how TierMLtakes advantage of cheap, transient resources, such as spot market
machines offered in AWS EC2. Although we focus here on AWS, these same concepts can be
extended to other clusters that possess similar characteristics. To begin a job, TierML starts up
enough reliable resources to be able to make progress on the submitted job without relying on
additional resources.7

6Recall that parameter server systems often allow flexibility in progress synchronization among workers and shared
state consistency. Often, workers see parameters values that do not yet reflect recent updates from all other workers,
but a bound on the staleness is often enforced [10, 22]. In such systems, the consistent state would reflect all updates
from all workers through a given iteration, and no updates beyond that point. Achieving a consistent state requires
either synchronization of worker progress or (usually) some extra buffer memory.

7If reliable resources are not available, we choose the most reliable resources available. In the ActivePS-architecture,
checkpointing reliable resources running BackupPSsdoes not carry an overhead, making this substitution possible.
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Choosing transient resources. In the case of AWS EC2, there are many machine types
available, each with its own spot market. Our analysis of traces of the AWS spot prices shows that
there is no correlation between the spot market prices of one machine type and the spot market
prices for a different machine type—this finding is supported by other studies [27]. On the other
hand, the time to eviction is correlated with the current spot price: the lower the spot price relative
to the bid price, the longer the expected time to eviction. Following common terminology for
machine failures, we will refer to the mean time to eviction as the MTTF (mean time to failure).
TierMLexploits this latter correlation by, at the beginning of a job, selecting the machine type with
the highest MTTF. This has the added advantage that such machines are often the cheapest option,
when using the bidding strategy discussed below. Moreover, as the job runs, TierMLcontinues to
seek out the machine types with the highest MTTF, thereby improving reliability and reducing
costs, as discussed next.

Changing transient resources. Throughout the run-time of a job, TierMLcontinues to
monitor the MTTF of the different machine types. If the MTTF of the current machine type
becomes lower, meaning that their spot price begins to grow and approach the user bid price,
TierMLwill compare the current MTTF of the machine type being used to the MTTF of other
machine types. If it finds a machine type with an MTTF significantly higher than the current
type, it will request transient resources of that type. Once these machines start-up (5 minutes on
average [25]) and are ready to join the computation, all ActivePSsexisting on the old machine type
will be moved over to the new type, as described in Section 3.3. The old machines will not be
terminated immediately, but instead TierMLwill continue to use those machines to run (stateless)
workers until the end of the current billing hour. This is done because the AWS partial hour rule,
which specifies that any spot instance revoked by AWS will not be charged for the partial hour.
Thus if preemption does occur, the last partial hour on these resources will be free. As shown in
Section 4.6, this strategy of changing transient machine types significantly reduces the cost of jobs.

AWS bidding strategy. TierMLalways bids the on-demand price. When the spot market
price becomes greater than the on-demand price, TierMLtransitions to using on-demand resources
until the spot price returns below the on-demand price. Since AWS charges the user the spot-market
price and not user bid price, bidding the on-demand increases the MTTF, while not increasing
the costs due to our technique of switching to different classes of transient resources when the
spot-market begins to approach the on-demand price. A common prior technique used by AWS spot
market users was to enter bids that were significantly higher than the on-demand price. These users
hoped to avoid eviction while paying the generally low prices set by the spot market. However, this
strategy is no longer effective due to AWS capping user bids at 10x the on-demand price, in addition
to introducing big spikes into the spot market prices that often greatly exceed the on-demand price.
As a result, users who attempt this strategy are stuck paying prices significantly greater than the
on-demand price whenever these big price spikes occur.

If, in the future, AWS changes their policy to charging users their bid prices instead of the
spot-market price, it will force users to use lower bidding prices in order to reap the benefits of the
spot-market costs. These lower bids will bring higher volatilityand lower MTTFs. TierML’s ability
to efficiently handle big changes in resource availability would make it possible to still operate very
efficiently under this new policy, as shown in Section 4.7.

4 Evaluation

This section evaluates TierML’s effectiveness. The results support a number of findings, including: 1)
TierML’s elasticity support introduces minimal overhead to a traditional non-elastic parameter-server
configuration; 2) TierML enacts bulk machine additions and revocations with minimal disruption,
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performing most setup actions in the background; 3) in the context of AWS, TierML’s exploitation
of spot market resources significantly reduces cost (e.g., by ≈75% compared to on-demand only)
and outperforms checkpointing-based elasticity in terms of both cost (by 46%-50%) and runtime
(by ≈17%).

4.1 Experimental Setup

Experimental Platforms. We report results for experiments on two virtual cluster configurations
on AWS. Cluster-A is a cluster of 64 Amazon EC2 c4.2xlarge instances. Each instance has 8
vCPUs and 15 GB memory, running 64-bit Ubuntu Server 14.04 LTS (HVM). Cluster-B is a cluster
of 128 Amazon EC2 c4.xlarge instances. Each instance has 4 vCPUs and 7.5 GB memory, running
64-bit Ubuntu Server 14.04 LTS (HVM). From our testing using iperf, we observe a bandwidth of
1 Gbps between each pair of EC2 instances.

4.2 Application Benchmarks

We use three popular iterative ML applications.
Matrix Factorization (MF) is a technique (a.k.a. collaborative filtering) commonly used in

recommendation systems, such as recommending movies to users on Netflix. The goal is to discover
latent interactions between the two entities (e.g., users and movies). Given a partially filled matrix
X (e.g., a matrix where entry (i, j) is user i’s rating of movie j), MF factorizes X into factor matrices
L and R such that their product approximates X (i.e., X ≈ LR). Like others [13, 21, 10, 11], our
MF implementation uses the stochastic gradient descent (SGD) algorithm. Each worker is assigned
a subset of the observed entries in X; in every iteration, each worker processes every element of its
assigned subset and updates the corresponding row of L and column of R based on the gradient. L
and R are stored in the parameter server.

Our MF experiments use the Netflix dataset, which is a 480k-by-18k sparse matrix with 100m
known elements. They are configured to factor it into the product of two matrices with rank 1000.
We also used a synthetically enlarged version of the Netflix dataset that is 256 times the original.
It’s a 7683k-by-284k sparse matrix with 4.24 billion known elements with rank 100.

Multinomial Logistic Regression (MLR) is a popular model for multi-way classification,
such as used in the last layer of deep learning models for image classification [20] or text classi-
fication [23]. In MLR, the likelihood that each (d-dimensional) observation x ∈ Rd belongs to

each of the K classes is modeled by softmax transformation p(class=k|x) =
exp(wT

k x)∑
j exp(w

T
j x)

, where

{wj}Kj=1 is the linear (d-dimensional) weights associated with each class and are considered the
model parameters. The weight vectors are stored in the parameter server, and we train the MLR
model using SGD where each gradient updates the full model [7].

Our MLR experiments use the ImageNet dataset [26] with LLC features [32], containing 64k
observations with a feature dimension of 21,504 and 1000 classes.

Latent Dirichlet Allocation (LDA) is an unsupervised method for discovering hidden
semantic structures (topics) in an unstructured collection of documents, each consisting of a bag
(multi-set) of words. LDA discovers the topics via word co-occurrence. For example, “Sanders” is
more likely to co-occur with “Congress” than “super-nova”, and thus “Sanders” and “Congress” are
categorized to the same topic associated with political terms, and “super-nova” to another topic
associated with scientific terms. Further, a document with many instances of “Sanders” would be
assigned a topic distribution that peaks for the politics topics. LDA learns the hidden topics and
the documents’ associations with those topics jointly. It is used for news categorization, visual
pattern discovery in images, ancestral grouping from genetics data, community detection in social
networks, and other such applications.
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Figure 7: TierMLstage 1 with
4–32 reliable machines out of 64
total compared to traditional (all
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with 1 reliable and 63 transient
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Our LDA solver implements collapsed Gibbs sampling [16]. In every iteration, each worker goes
through its assigned documents and makes adjustments to the topic assignment of the documents
and the words. The LDA experiments use the Nytimes dataset [4], containing 100m words in 300k
documents with a vocabulary size of 100k. They are configured to classify words and documents
into 1000 topics.

4.3 Efficiency with TierMLtiering

TierML enables execution on a mix of reliable and transient machines, while always maintaining
state required for continued operation on reliable machines. To avoid the reliable machines becoming
a bottleneck, TierMLuses three stages of functionality partitioning (see Section 3.2), decreasing the
reliance on reliable machines as the ratio of transient to reliable increases. (Of course, higher ratios
are better from a cost standpoint, because transient machines are often 70–90% cheaper.) This
section evaluates TierML’s performance relative to the traditional parameter-server architecture
run entirely on high-cost reliable machines, in which all functionality (worker and parameter server)
is partitioned among all machines, showing that TierMLavoids performance loss at least to a ratio
of 63 transient machines to 1 reliable machine. All the results presented in this section are for the
MF application with the Netflix data set on Cluster-A, but results for the other applications and
Cluster-Bare consistent and omitted only due to space constraints.

Stage 1: Parameter servers only on reliable machines. The first stage spreads the
parameter server across the reliable machines, rather than all machines, using transient machines
only for worker processes.

Figure 7 shows the time-per-iteration for different numbers of machines running parameter server
shards (ParamServs) in a 64-machine Cluster-A, representing different ratios of transient to reliable
machines under the stage 1 configuration. All 64 machines run workers. The 64 ParamServ case,
which is labeled “traditional” in the graph, represents the traditional parameter server architecture
in which all machines are reliable and run both worker and parameter server processes. The results
show that stage 1 has negligible slowdown for a small ratio (1:1, represented by “32 ParamServ”)
of transient to reliable machines, but introduces significant slowdown as the ratio increases. The
slowdown is caused by network bottlenecks caused by many workers communicating with a relatively
smaller number of ParamServs.

Stage 2: ActivePSson transient machines and BackupPSs on reliable machines. To
avoid the network bottleneck for higher ratios, stage 2 switches to a tiered primary-backup model,
using reliable machines for continuity but not requiring them to serve as active parameter servers
for a much larger number of workers.

Figure 8 shows the time-per-iteration for different configurations in a 64-machine Cluster-Athat
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consists of 4 reliable machines and 60 transient machines. The “4 ParamServs” and “Traditional”
bars described above for Figure 7 are included as well, for comparison. The other three bars represent
running ActivePSson different numbers of the transient machines, together with BackupPSs on the
4 reliable machines. All 64 machines run worker processes, in each case. The results show that
the ActivePS based architecture with 32 ActivePSs introduces ≈18% slowdown compared to the
traditional parameter-server architecture, when using a 15:1 ratio of transient to reliable machines.
This slowdown does not occur at 7:1 and represents the beginning of the straggler problem addressed
by stage 3.

Stage 3: No workers on reliable machines. When the ratio of transient to reliable
machines increases beyond 15:1, we observe even larger slowdowns for TierMLstage 2 relative to
the traditional parameter-server architecture. This slowdown is caused by the workers running on
reliable machines becoming stragglers; the network load of running BackupPSs for a much larger
number of ActivePSs interferes with the worker communication. To solve this problem, stage 3
simply does not run workers on the reliable machines when the ratio is very high. While this reduces
the worker computation power, stage 3 is only used when the reduction is small because the fraction
of reliable machines is low.

Figure 9 shows time-per-iteration with and without workers on the one reliable machine in
a 64-machine Cluster-Athat consists of 1 reliable machine and 63 transient machines. The one
reliable machine runs only a BackupPS. The “Traditional” bar is again shown for comparison. The
results show that, by shutting down reliable machine workers once they become stragglers, TierML
is able to match the performance of the traditional parameter-server architecture at a 63:1 ratio of
transient to reliable machines.

4.4 TierML Scalability

This section confirms that TierMLscales well as machines are added, like the traditional parameter-
server architecture has been shown to do. Figure 10 shows time-per-iteration for the LDA application,
as a function of the number of Cluster-Amachines used. (We observe the same scaling behavior
for the other ML applications tested.) So, strong scaling is evaluated, and the curve labelled
“Ideal” corresponds to perfect scaling of the 4-machine case. The 4-machine case uses the traditional
parameter-server architecture to provide a baseline. The 8-machine case uses the stage 1 configuration
for 4 reliable and 4 transient machines. The 16-, 32-, and 64-machine cases use the stage 3
configuration for 1 reliable machine and the remainder transient. These results show that TierML
scales effectively, exploiting available transient machines to speed up ML applications.

4.5 Efficiency of TierMLelasticity

This section confirms that TierML’s mechanisms for bulk incorporation and extraction of machines
induce minimal disruption of the ongoing ML application. Figure 11 shows time-per-iteration
for each of 45 MF iterations on Cluster-Amachines. The first 10 iterations execute on 4 reliable
machines. 60 transient machines are incorporated during iteration 11, resulting in immediate
speedup consistent with Figure 10. Adding the 60 machines causes no disruption, because they
are started, initialized, and prepared in the background, signaling the elasticity controller for final
incorporation when ready.

The opposite change is made in iteration 35, extracting the 60 transient machines from the
computation, as though in reaction to an eviction notice. A 13% blip in performance is seen during
the iteration in which the extraction is done, after which the time-per-iteration stabilizes, returning
to its full 4-machine value. The blip occurs because of network overhead in aggressively bringing
up-to-date the BackupPSsand transitioning them to being active ParamServs.
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Figure 10: TierMLscalability for LDA.

4.6 Exploiting diverse machine classes

As discussed in Section 3.4, TierMLwill automatically switch between transient machine types
when doing so would provide significant cost savings and address an anticipated near-term eviction.
Specifically, in the context of EC2, TierMLtracks the spot markets of multiple similar machine classes
(c4.xlarge and c4.2xlarge, in our experiments), which as noted earlier behave largely independently.
When TierML finds that another class has a significantly higher MTTF than the one it is currently
using, it will switch over to using it. Doing so provides two benefits. First, since the MTTF
is determined by the spot market, the new class of machines will usually have a lower per-core
cost. Second, by moving away from a lower MTTF, TierMLreduces the likelihood of being delayed
waiting for EC2 to respond to new requests to replace machines taken back via eviction. Essentially,
TierMLis proactively switching to avoid eviction-based periods of slow progress. And, if the transient
machines TierML is switching away from are revoked during the remaining partial hour, they will
have been free for that partial hour, based on the AWS billing policies.

Overall, we observed that TierML’s use of this switching technique for choosing between
Cluster-Aand Cluster-Breduces cost by 34% on average, regardless of which application is being
performed. It also reduces average runtime by 8%, at the same time. We would expect even larger
benefits from using more than two transient machine classes.

4.7 Cost savings with TierML

TierMLenables significant cost reductions when used on infrastructures that offer inexpensive
transient machines. Figure 1 in Section 1 summarizes the cost and time savings using TierMLfor
the MLR application.

This section drills down further by evaluating TierML’s ability to reduce cost on EC2, relative
to using only reliable on-demand machines, by analyzing the AWS Spot Market Traces from January
1, 2016 to March 14, 2016 for the US-EAST-1 region (all 4 zones). We also estimate the cost savings
that would be achieved by a checkpointing-based scheme for exploiting spot market machines, as
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Figure 12: Average cost savings relative to on-demand. Error bars show standard deviation.

discussed in Section 2.3. We do cost savings analyses with long-term AWS traces, rather than
experiments on EC2, so as to get a fuller picture of expected behavior than our budget-limited
experiments would provide. For each scheme and bidding model considered, we present the average
cost (relative to full on-demand price) across every possible starting minute in each zone.

Checkpointing-based scheme. As a comparison point, we consider a scheme that tries to
run entirely on spot market machines, using checkpointing to recover from evictions. The scheme
chooses the least expensive option (on-demand or either class of spot market machine considered)
when starting initially or restarting from checkpoint after eviction. We assume an MTTF-based
checkpointing frequency, like that used in Flint [27]. We observe a resulting average checkpointing
overhead of 18% for MF on both Cluster-Aand Cluster-B, when bidding the on-demand price, from
the combined overheads of producing a consistent checkpoint state (recall that bounded staleness is
allowed during ML application execution) and storing it. When bid prices more closely track spot
prices, as discussed below, the overhead rises as high as 50%. Both overhead values are consistent
with those reported by others [27].

Bidding the on-demand price. We present data for two approaches to spot market bids.
First, as discussed in Section 3.4, a common practice is to always bid the on-demand price, because
Amazon will charge the spot-market price instead but only evict if that price rises above the bid.
So, bidding the on-demand price guarantees paying the lesser of the two and also leads to fewer
evictions than bidding closer to the spot-market price. There are still regular evictions, because the
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compute machines appropriate for ML applications are among the more popular ones and thus have
more volatile spot markets.

Bidding aggressively (near spot price). While Amazon currently charges customers the
spot-market price, independent of their bids, it is not difficult to imagine that generous pricing model
changing. To consider TierML’s behavior in a more free market, we also evaluate savings if we assume
an alternate policy of charging users what they bid. Under such a policy, customers would need to
more aggressively track the spot prices in setting their bids, resulting in more frequent evictions
(lower MTTF) due to market variation. For these evaluations, we use this simple approach: set the
bid price by rounding the current spot price up to the nearest dime for Cluster-Amachines (e.g., for
a spot market price of $0.23, we would bid $0.3) and to the nearest nickel for Cluster-Bmachines.
More advanced bidding strategies would likely increase the savings further.

Cost savings results. Figure 12 shows expected cost savings for TierMLand the checkpoint-
based scheme, for each of the two bidding approaches. The three graphs represent cost savings
for jobs of compute duration 2, 8, and 20 hours when run on 64 machines from Cluster-Aor 128
machines from Cluster-B. (Figure 1 shows the results for the 4-hour MLR application on Cluster-A.)
The trace analysis accounts for runtime expansion caused by checkpointing overheads and eviction
delays.

The results demonstrate that TierML decidedly outperforms on-demand and checkpointing,
in terms of cost savings. On average, TierML reduces cost by 74%-78% compared to traditional
execution on on-demand machines and 46%-50% compared to the checkpointing-based scheme,
when bidding the on-demand price. With the more aggressive pricing, TierML’s cost savings over
on-demand decreases to 66%-70%, but it remains 52%-55% lower than checkpointing. Note that the
variance of TierML’s relative cost is much smaller than checkpointing’s, in large part because of
TierML’s online backups and proactive machine type switching (Section 4.6); for example, the 95th
percentile cost is still 59% lower than on-demand for BidOnDemand and 32% lower for BidAggressive.
For the checkpointing scheme, no benefit is realized at the 95th percentile. While costs go down
relative to full-size full-price on-demand clusters, the average runtimes do increase somewhat (11%
and 23% for the BidOnDemand and BidAggressive approaches, respectively), because of delays
incurred acquiring new machines after evictions. The average runtime increases are much larger (38%
and 62%, respectively) for the checkpointing scheme, which has those overheads plus checkpointing
overhead and is unable to perform proactive machine type switching the way TierMLdoes.

5 Summary

TierMLaggressively exploits transient revocable machines in its state-of-the-art parameter server
framework to complete ML model training faster and cheaper. For example, TierMLcan exploit
EC2’s spot market to save ≈75% compared to using only on-demand machines. Moreover, by
combining non-transient (e.g., on-demand) and transient (spot) machines, TierMLcan rapidly and
efficiently incorporate new transient resources and deal with revocations, saving 45%-50% compared
to a checkpointing-based approach while also being faster.
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